1
|
Luo Y, Wu H, Min X, Chen Y, Deng W, Chen M, Yang C, Xiong H. SIRT1 prevents noise-induced hearing loss by enhancing cochlear mitochondrial function. Cell Commun Signal 2025; 23:160. [PMID: 40176044 PMCID: PMC11963675 DOI: 10.1186/s12964-025-02152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Abstract
Exposure to traumatic noise triggers cochlear damage and consequently causes permanent sensorineural hearing loss. However, effective treatment strategies for noise-induced hearing loss (NIHL) are lacking. Sirtuin 1 (SIRT1) is a NAD+-dependent deacetylase that plays a critical role in multiple physiological and pathological events. However, its role in NIHL pathogenesis remains elusive. This study revealed that SIRT1 expression in the cochlea progressively decreases in a mouse model of NIHL. Hair cell-specific knockout of SIRT1 exacerbates the noise-induced loss of outer and inner hair cell synaptic ribbons, retraction of cochlear nerve terminals, and oxidative stress, leading to more severe NIHL. Conversely, adeno-associated virus (AAV)-mediated SIRT1 overexpression effectively attenuated most noise-induced cochlear damage and alleviated NIHL. Transcriptomic analysis revealed that SIRT1 deficiency impairs glucose metabolism and inhibits antioxidant pathways in the cochlea following exposure to noise. Further investigation revealed that SIRT1 exerts an antioxidant effect, at least in part, through AMPK activation in cultured auditory HEI-OC1 cells exposed to oxidative stress. Collectively, these findings indicate that SIRT1 is essential for the maintenance of redox balance and mitochondrial function in the cochlea after traumatic noise exposure, thus providing a promising therapeutic target for NIHL treatment.
Collapse
Affiliation(s)
- Yuelian Luo
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haoyang Wu
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Min
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yi Chen
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenting Deng
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Minjun Chen
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chuxuan Yang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Jaime Tobón LM, Moser T. Bridging the gap between presynaptic hair cell function and neural sound encoding. eLife 2024; 12:RP93749. [PMID: 39718472 DOI: 10.7554/elife.93749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca2+ channels. The postsynaptic SGNs differ in their spontaneous firing rates, sound thresholds, and operating ranges. While a causal relationship between synaptic heterogeneity and neural response diversity seems likely, experimental evidence linking synaptic and SGN physiology has remained difficult to obtain. Here, we aimed at bridging this gap by ex vivo paired recordings of murine IHCs and postsynaptic SGN boutons with stimuli and conditions aimed to mimic those of in vivo SGN characterization. Synapses with high spontaneous rate of release (SR) were found predominantly on the pillar side of the IHC. These high SR synapses had larger and more temporally compact spontaneous EPSCs, lower voltage thresholds, tighter coupling of Ca2+ channels and vesicular release sites, shorter response latencies, and higher initial release rates. This study indicates that synaptic heterogeneity in IHCs directly contributes to the diversity of spontaneous and sound-evoked firing of SGNs.
Collapse
Affiliation(s)
- Lina María Jaime Tobón
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center, University of Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging of Excitable Cells', Göttingen, Germany
| | - Tobias Moser
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center, University of Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging of Excitable Cells', Göttingen, Germany
| |
Collapse
|
3
|
Mansour Y, Haddad L, Breeden Z, Kulesza RJ. Impact of repeated intranasal gentamicin irrigation on auditory brainstem evoked potentials in rats. Exp Brain Res 2024; 243:20. [PMID: 39656249 DOI: 10.1007/s00221-024-06967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/16/2024] [Indexed: 02/05/2025]
Abstract
Gentamicin is a bactericidal aminoglycoside antibiotic that broadly targets Gram-negative microbes. Both human and animal studies have shown that administration of gentamicin is ototoxic by several routes of administration and results in sensorineural hearing loss due to damaged hair cell at the base of the cochlea. However, gentamicin is also administered intranasally to treat sinusitis in humans, but no animal studies have examined ototoxicity of gentamicin administered via this route. We hypothesized that intranasal irrigation of gentamicin will result in ototoxicity and impaired auditory function similar to systemic delivery. We investigated this hypothesis in Sprague-Dawley rats that received intranasal irrigations of gentamicin or saline from postnatal day (P) 21-31. We examined auditory function by assessing brainstem auditory evoked potentials in response to both broadband clicks and pure tone-pips (4, 8, 16, 24 and 32 kHz) on P41. We found significant changes in auditory function in gentamicin-exposed animals. Specifically, gentamicin-exposed animals had significantly higher thresholds in response to both clicks and tone-pips. In response to broadband clicks, there were no changes in latency for waves I through IV. However, we found significantly longer wave and interwave latencies for all waves in response to the 24 kHz tone-pip. Together, these findings suggest that intranasal administration of gentamicin results in impaired auditory function consistent with other routes of delivery.
Collapse
Affiliation(s)
- Yusra Mansour
- Department of Otolaryngology - Head and Neck Surgery, Henry Ford Macomb Hospital, Clinton Township, MI, USA
| | - LeAnn Haddad
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, 1858 West Grandview Blvd Erie, Erie, PA, 16504, USA
| | - Zachary Breeden
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, 1858 West Grandview Blvd Erie, Erie, PA, 16504, USA
| | - Randy J Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, 1858 West Grandview Blvd Erie, Erie, PA, 16504, USA.
| |
Collapse
|
4
|
O’Connor AP, Amariutei AE, Zanella A, Hool SA, Carlton AJ, Kong F, Saenz-Roldan M, Jeng JY, Lecomte MJ, Johnson SL, Safieddine S, Marcotti W. In vivo AAV9-Myo7a gene rescue restores hearing and cholinergic efferent innervation in inner hair cells. JCI Insight 2024; 9:e182138. [PMID: 39641274 PMCID: PMC11623941 DOI: 10.1172/jci.insight.182138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/16/2024] [Indexed: 12/07/2024] Open
Abstract
In the mammalian cochlea, sensory hair cells are crucial for the transduction of acoustic stimuli into electrical signals, which are then relayed to the central auditory pathway via spiral ganglion neuron (SGN) afferent dendrites. The SGN output is directly modulated by inhibitory cholinergic axodendritic synapses from the efferent fibers originating in the superior olivary complex. When the adult cochlea is subjected to noxious stimuli or aging, the efferent system undergoes major rewiring, such that it reestablishes direct axosomatic contacts with the inner hair cells (IHCs), which occur only transiently during prehearing stages of development. The trigger, origin, and degree of efferent plasticity in the cochlea remains largely unknown. Using functional and morphological approaches, we demonstrate that efferent plasticity in the adult cochlea occurs as a direct consequence of mechanoelectrical transducer current dysfunction. We also show that, different from prehearing stages of development, the lateral olivocochlear - but not the medial olivocochlear - efferent fibers are those that form the axosomatic synapses with the IHCs. The study also demonstrates that in vivo restoration of IHC function using AAV-Myo7a rescue reestablishes the synaptic profile of adult IHCs and improves hearing, highlighting the potential of using gene-replacement therapy for progressive hearing loss.
Collapse
Affiliation(s)
- Andrew P. O’Connor
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Ana E. Amariutei
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Alice Zanella
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Sarah A. Hool
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Adam J. Carlton
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Fanbo Kong
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Mauricio Saenz-Roldan
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Jing-Yi Jeng
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Marie-José Lecomte
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Saaid Safieddine
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Carlton AJ, Jeng JY, Grandi FC, De Faveri F, Amariutei AE, De Tomasi L, O'Connor A, Johnson SL, Furness DN, Brown SDM, Ceriani F, Bowl MR, Mustapha M, Marcotti W. BAI1 localizes AMPA receptors at the cochlear afferent post-synaptic density and is essential for hearing. Cell Rep 2024; 43:114025. [PMID: 38564333 DOI: 10.1016/j.celrep.2024.114025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/25/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Type I spiral ganglion neurons (SGNs) convey sound information to the central auditory pathway by forming synapses with inner hair cells (IHCs) in the mammalian cochlea. The molecular mechanisms regulating the formation of the post-synaptic density (PSD) in the SGN afferent terminals are still unclear. Here, we demonstrate that brain-specific angiogenesis inhibitor 1 (BAI1) is required for the clustering of AMPA receptors GluR2-4 (glutamate receptors 2-4) at the PSD. Adult Bai1-deficient mice have functional IHCs but fail to transmit information to the SGNs, leading to highly raised hearing thresholds. Despite the almost complete absence of AMPA receptor subunits, the SGN fibers innervating the IHCs do not degenerate. Furthermore, we show that AMPA receptors are still expressed in the cochlea of Bai1-deficient mice, highlighting a role for BAI1 in trafficking or anchoring GluR2-4 to the PSDs. These findings identify molecular and functional mechanisms required for sound encoding at cochlear ribbon synapses.
Collapse
Affiliation(s)
- Adam J Carlton
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Jing-Yi Jeng
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Fiorella C Grandi
- Sorbonne Université, INSERM, Institute de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | | | - Ana E Amariutei
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Lara De Tomasi
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Andrew O'Connor
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Stuart L Johnson
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - David N Furness
- School of Life Sciences, Keele University, Keele ST5 5BG, UK
| | - Steve D M Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Federico Ceriani
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Mirna Mustapha
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
6
|
Li G, Gao Y, Wu H, Zhao T. Gentamicin administration leads to synaptic dysfunction in inner hair cells. Toxicol Lett 2024; 391:86-99. [PMID: 38101494 DOI: 10.1016/j.toxlet.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Ototoxicity is a major side effect of aminoglycosides, which can cause irreversible hearing loss. Previous studies on aminoglycoside-induced ototoxicity have primarily focused on the loss of sensory hair cells. Recent investigations have revealed that aminoglycosides can also lead to the loss of ribbon synapses in inner hair cells (IHCs). However, the functional implications of ribbon synapse loss and the underlying mechanisms remain unclear. In this study, we intraperitoneally injected C57BL/6 J mice with 300 mg/kg gentamicin once daily for 3, 10, and 20 days. Then, we performed immunofluorescence staining, patch-clamp recording, proteomics analysis and western blotting to characterize the changes in ribbon synapses in IHCs and the associated mechanisms. After gentamicin treatment, the auditory brainstem response (ABR) threshold was elevated, and the ABR wave I amplitude was decreased. We also observed loss of ribbon synapses in IHCs. Interestingly, ribbon synapse loss occurred on both the modiolar and pillar sides of IHCs. Whole-cell patch-clamp recordings in IHCs revealed a reduction in the calcium current amplitude, along with a shifted half-activation voltage and altered calcium voltage dependency. Moreover, exocytosis of IHCs was reduced, consistent with the reduction in the ABR wave I amplitude. Through proteomic analysis, western blotting, and immunofluorescence staining, we found that gentamicin treatment resulted in downregulation of myosin VI, a protein crucial for synaptic vesicle recycling and replenishment in IHCs. Furthermore, we evaluated the kinetics of endocytosis and found a significant reduction in IHC exocytosis, possibly reflecting the impact of myosin VI downregulation on synaptic vesicle recycling. In summary, our findings demonstrate that gentamicin treatment leads to synaptic dysfunction in IHCs, highlighting the important role of myosin VI downregulation in gentamicin-induced synaptic damage.
Collapse
Affiliation(s)
- Gen Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yunge Gao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Ting Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
7
|
Michanski S, Kapoor R, Steyer AM, Möbius W, Früholz I, Ackermann F, Gültas M, Garner CC, Hamra FK, Neef J, Strenzke N, Moser T, Wichmann C. Piccolino is required for ribbon architecture at cochlear inner hair cell synapses and for hearing. EMBO Rep 2023; 24:e56702. [PMID: 37477166 PMCID: PMC10481675 DOI: 10.15252/embr.202256702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Cochlear inner hair cells (IHCs) form specialized ribbon synapses with spiral ganglion neurons that tirelessly transmit sound information at high rates over long time periods with extreme temporal precision. This functional specialization is essential for sound encoding and is attributed to a distinct molecular machinery with unique players or splice variants compared to conventional neuronal synapses. Among these is the active zone (AZ) scaffold protein piccolo/aczonin, which is represented by its short splice variant piccolino at cochlear and retinal ribbon synapses. While the function of piccolo at synapses of the central nervous system has been intensively investigated, the role of piccolino at IHC synapses remains unclear. In this study, we characterize the structure and function of IHC synapses in piccolo gene-trap mutant rats (Pclogt/gt ). We find a mild hearing deficit with elevated thresholds and reduced amplitudes of auditory brainstem responses. Ca2+ channel distribution and ribbon morphology are altered in apical IHCs, while their presynaptic function seems to be unchanged. We conclude that piccolino contributes to the AZ organization in IHCs and is essential for normal hearing.
Collapse
Affiliation(s)
- Susann Michanski
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center GöttingenGöttingenGermany
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Multiscale Bioimaging of Excitable Cells, Cluster of ExcellenceGöttingenGermany
| | - Rohan Kapoor
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- IMPRS Molecular Biology, Göttingen Graduate School for Neuroscience and Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Anna M Steyer
- Electron Microscopy Core Unit, Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Wiebke Möbius
- Multiscale Bioimaging of Excitable Cells, Cluster of ExcellenceGöttingenGermany
- Electron Microscopy Core Unit, Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Iris Früholz
- Developmental, Neural, and Behavioral Biology Master ProgramUniversity of GöttingenGöttingenGermany
| | | | - Mehmet Gültas
- Faculty of AgricultureSouth Westphalia University of Applied SciencesSoestGermany
| | - Craig C Garner
- German Center for Neurodegenerative DiseasesBerlinGermany
- NeuroCureCluster of ExcellenceCharité – UniversitätsmedizinBerlinGermany
| | - F Kent Hamra
- Department of Obstetrics and GynecologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Jakob Neef
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Nicola Strenzke
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Auditory Systems Physiology Group, Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
| | - Tobias Moser
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Multiscale Bioimaging of Excitable Cells, Cluster of ExcellenceGöttingenGermany
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center GöttingenGöttingenGermany
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Multiscale Bioimaging of Excitable Cells, Cluster of ExcellenceGöttingenGermany
| |
Collapse
|
8
|
Jeng JY, Carlton AJ, Goodyear RJ, Chinowsky C, Ceriani F, Johnson SL, Sung TC, Dayn Y, Richardson GP, Bowl MR, Brown SD, Manor U, Marcotti W. AAV-mediated rescue of Eps8 expression in vivo restores hair-cell function in a mouse model of recessive deafness. Mol Ther Methods Clin Dev 2022; 26:355-370. [PMID: 36034774 PMCID: PMC9382420 DOI: 10.1016/j.omtm.2022.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
The transduction of acoustic information by hair cells depends upon mechanosensitive stereociliary bundles that project from their apical surface. Mutations or absence of the stereociliary protein EPS8 cause deafness in humans and mice, respectively. Eps8 knockout mice (Eps8 -/- ) have hair cells with immature stereocilia and fail to become sensory receptors. Here, we show that exogenous delivery of Eps8 using Anc80L65 in P1-P2 Eps8 -/- mice in vivo rescued the hair bundle structure of apical-coil hair cells. Rescued hair bundles correctly localize EPS8, WHIRLIN, MYO15, and BAIAP2L2, and generate normal mechanoelectrical transducer currents. Inner hair cells with normal-looking stereocilia re-expressed adult-like basolateral ion channels (BK and KCNQ4) and have normal exocytosis. The number of hair cells undergoing full recovery was not sufficient to rescue hearing in Eps8 -/- mice. Adeno-associated virus (AAV)-transduction of P3 apical-coil and P1-P2 basal-coil hair cells does not rescue hair cells, nor does Anc80L65-Eps8 delivery in adult Eps8 -/- mice. We propose that AAV-induced gene-base therapy is an efficient strategy to recover the complex hair-cell defects in Eps8 -/- mice. However, this therapeutic approach may need to be performed in utero since, at postnatal ages, Eps8 -/- hair cells appear to have matured or accumulated damage beyond the point of repair.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Adam J. Carlton
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Richard J. Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Colbie Chinowsky
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Federico Ceriani
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Stuart L. Johnson
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Tsung-Chang Sung
- Transgenic Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yelena Dayn
- Transgenic Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Guy P. Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD UK
| | - Steve D.M. Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD UK
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Walter Marcotti
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
9
|
Spaiardi P, Marcotti W, Masetto S, Johnson SL. Signal transmission in mature mammalian vestibular hair cells. Front Cell Neurosci 2022; 16:806913. [PMID: 35936492 PMCID: PMC9353129 DOI: 10.3389/fncel.2022.806913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
The maintenance of balance and gaze relies on the faithful and rapid signaling of head movements to the brain. In mammals, vestibular organs contain two types of sensory hair cells, type-I and type-II, which convert the head motion-induced movement of their hair bundles into a graded receptor potential that drives action potential activity in their afferent fibers. While signal transmission in both hair cell types involves Ca2+-dependent quantal release of glutamate at ribbon synapses, type-I cells appear to also exhibit a non-quantal mechanism that is believed to increase transmission speed. However, the reliance of mature type-I hair cells on non-quantal transmission remains unknown. Here we investigated synaptic transmission in mammalian utricular hair cells using patch-clamp recording of Ca2+ currents and changes in membrane capacitance (ΔCm). We found that mature type-II hair cells showed robust exocytosis with a high-order dependence on Ca2+ entry. By contrast, exocytosis was approximately 10 times smaller in type-I hair cells. Synaptic vesicle exocytosis was largely absent in mature vestibular hair cells of CaV1.3 (CaV1.3−/−) and otoferlin (Otof−/−) knockout mice. Even though Ca2+-dependent exocytosis was small in type-I hair cells of wild-type mice, or absent in CaV1.3−/− and Otof−/−mice, these cells were able to drive action potential activity in the postsynaptic calyces. This supports a functional role for non-quantal synaptic transmission in type-I cells. The large vesicle pools in type-II cells would facilitate sustained transmission of tonic or low-frequency signals. In type-I cells, the restricted vesicle pool size, together with a rapid non-quantal mechanism, could allow them to sustain high-frequency phasic signal transmission at their specialized large calyceal synapses.
Collapse
Affiliation(s)
- Paolo Spaiardi
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Sheffield Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Sergio Masetto
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Sheffield Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Stuart L. Johnson
| |
Collapse
|
10
|
Signatures of cochlear processing in neuronal coding of auditory information. Mol Cell Neurosci 2022; 120:103732. [PMID: 35489636 DOI: 10.1016/j.mcn.2022.103732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022] Open
Abstract
The vertebrate ear is endowed with remarkable perceptual capabilities. The faintest sounds produce vibrations of magnitudes comparable to those generated by thermal noise and can nonetheless be detected through efficient amplification of small acoustic stimuli. Two mechanisms have been proposed to underlie such sound amplification in the mammalian cochlea: somatic electromotility and active hair-bundle motility. These biomechanical mechanisms may work in concert to tune auditory sensitivity. In addition to amplitude sensitivity, the hearing system shows exceptional frequency discrimination allowing mammals to distinguish complex sounds with great accuracy. For instance, although the wide hearing range of humans encompasses frequencies from 20 Hz to 20 kHz, our frequency resolution extends to one-thirtieth of the interval between successive keys on a piano. In this article, we review the different cochlear mechanisms underlying sound encoding in the auditory system, with a particular focus on the frequency decomposition of sounds. The relation between peak frequency of activation and location along the cochlea - known as tonotopy - arises from multiple gradients in biophysical properties of the sensory epithelium. Tonotopic mapping represents a major organizational principle both in the peripheral hearing system and in higher processing levels and permits the spectral decomposition of complex tones. The ribbon synapses connecting sensory hair cells to auditory afferents and the downstream spiral ganglion neurons are also tuned to process periodic stimuli according to their preferred frequency. Though sensory hair cells and neurons necessarily filter signals beyond a few kHz, many animals can hear well beyond this range. We finally describe how the cochlear structure shapes the neural code for further processing in order to send meaningful information to the brain. Both the phase-locked response of auditory nerve fibers and tonotopy are key to decode sound frequency information and place specific constraints on the downstream neuronal network.
Collapse
|
11
|
Lorente-Cánovas B, Eckrich S, Lewis MA, Johnson SL, Marcotti W, Steel KP. Grxcr1 regulates hair bundle morphogenesis and is required for normal mechanoelectrical transduction in mouse cochlear hair cells. PLoS One 2022; 17:e0261530. [PMID: 35235570 PMCID: PMC8890737 DOI: 10.1371/journal.pone.0261530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022] Open
Abstract
Tasmanian devil (tde) mice are deaf and exhibit circling behaviour. Sensory hair cells of mutants show disorganised hair bundles with abnormally thin stereocilia. The origin of this mutation is the insertion of a transgene which disrupts expression of the Grxcr1 (glutaredoxin cysteine rich 1) gene. We report here that Grxcr1 exons and transcript sequences are not affected by the transgene insertion in tde homozygous (tde/tde) mice. Furthermore, 5'RACE PCR experiments showed the presence of two different transcripts of the Grxcr1 gene, expressed in both tde/tde and in wild-type controls. However, quantitative analysis of Grxcr1 transcripts revealed a significantly decreased mRNA level in tde/tde mice. The key stereociliary proteins ESPN, MYO7A, EPS8 and PTPRQ were distributed in hair bundles of homozygous tde mutants in a similar pattern compared with control mice. We found that the abnormal morphology of the stereociliary bundle was associated with a reduction in the size and Ca2+-sensitivity of the mechanoelectrical transducer (MET) current. We propose that GRXCR1 is key for the normal growth of the stereociliary bundle prior to the onset of hearing, and in its absence hair cells are unable to mature into fully functional sensory receptors.
Collapse
Affiliation(s)
- Beatriz Lorente-Cánovas
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stephanie Eckrich
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Morag A. Lewis
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Karen P. Steel
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
12
|
Wichmann C, Kuner T. Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. Physiol Rev 2022; 102:269-318. [PMID: 34727002 DOI: 10.1152/physrev.00039.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are commonly known as a structurally and functionally highly diverse class of cell-cell contacts specialized to mediate communication between neurons. They represent the smallest "computational" unit of the brain and are typically divided into excitatory and inhibitory as well as modulatory categories. These categories are subdivided into diverse types, each representing a different structure-function repertoire that in turn are thought to endow neuronal networks with distinct computational properties. The diversity of structure and function found among a given category of synapses is referred to as heterogeneity. The main building blocks for this heterogeneity are synaptic vesicles, the active zone, the synaptic cleft, the postsynaptic density, and glial processes associated with the synapse. Each of these five structural modules entails a distinct repertoire of functions, and their combination specifies the range of functional heterogeneity at mammalian excitatory synapses, which are the focus of this review. We describe synapse heterogeneity that is manifested on different levels of complexity ranging from the cellular morphology of the pre- and postsynaptic cells toward the expression of different protein isoforms at individual release sites. We attempt to define the range of structural building blocks that are used to vary the basic functional repertoire of excitatory synaptic contacts and discuss sources and general mechanisms of synapse heterogeneity. Finally, we explore the possible impact of synapse heterogeneity on neuronal network function.
Collapse
Affiliation(s)
- Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg, Germany
| |
Collapse
|
13
|
Chakrabarti R, Jaime Tobón LM, Slitin L, Redondo Canales M, Hoch G, Slashcheva M, Fritsch E, Bodensiek K, Özçete ÖD, Gültas M, Michanski S, Opazo F, Neef J, Pangrsic T, Moser T, Wichmann C. Optogenetics and electron tomography for structure-function analysis of cochlear ribbon synapses. eLife 2022; 11:79494. [PMID: 36562477 PMCID: PMC9908081 DOI: 10.7554/elife.79494] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Ribbon synapses of cochlear inner hair cells (IHCs) are specialized to indefatigably transmit sound information at high rates. To understand the underlying mechanisms, structure-function analysis of the active zone (AZ) of these synapses is essential. Previous electron microscopy studies of synaptic vesicle (SV) dynamics at the IHC AZ used potassium stimulation, which limited the temporal resolution to minutes. Here, we established optogenetic IHC stimulation followed by quick freezing within milliseconds and electron tomography to study the ultrastructure of functional synapse states with good temporal resolution in mice. We characterized optogenetic IHC stimulation by patch-clamp recordings from IHCs and postsynaptic boutons revealing robust IHC depolarization and neurotransmitter release. Ultrastructurally, the number of docked SVs increased upon short (17-25 ms) and long (48-76 ms) light stimulation paradigms. We did not observe enlarged SVs or other morphological correlates of homotypic fusion events. Our results indicate a rapid recruitment of SVs to the docked state upon stimulation and suggest that univesicular release prevails as the quantal mechanism of exocytosis at IHC ribbon synapses.
Collapse
Affiliation(s)
- Rituparna Chakrabarti
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Center for Biostructural Imaging of Neurodegeneration, University Medical Center GöttingenGöttingenGermany,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany
| | - Lina María Jaime Tobón
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Loujin Slitin
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Center for Biostructural Imaging of Neurodegeneration, University Medical Center GöttingenGöttingenGermany,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany
| | - Magdalena Redondo Canales
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Center for Biostructural Imaging of Neurodegeneration, University Medical Center GöttingenGöttingenGermany,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany
| | - Gerhard Hoch
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Marina Slashcheva
- Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of GöttingenGöttingenGermany
| | - Elisabeth Fritsch
- Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of GöttingenGöttingenGermany
| | - Kai Bodensiek
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany
| | - Özge Demet Özçete
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Mehmet Gültas
- Faculty of Agriculture, South Westphalia University of Applied SciencesSoestGermany
| | - Susann Michanski
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Center for Biostructural Imaging of Neurodegeneration, University Medical Center GöttingenGöttingenGermany,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center GöttingenGöttingenGermany,NanoTag Biotechnologies GmbHGöttingenGermany,Institute of Neuro- and Sensory Physiology, University Medical Center GöttingenGöttingenGermany
| | - Jakob Neef
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Tina Pangrsic
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany,Multiscale Bioimaging: from Molecular Machines to Networks of Excitable CellsGöttingenGermany,Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany
| | - Tobias Moser
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany,Multiscale Bioimaging: from Molecular Machines to Networks of Excitable CellsGöttingenGermany
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Center for Biostructural Imaging of Neurodegeneration, University Medical Center GöttingenGöttingenGermany,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany,Multiscale Bioimaging: from Molecular Machines to Networks of Excitable CellsGöttingenGermany
| |
Collapse
|
14
|
Boero LE, Payne S, Gómez-Casati ME, Rutherford MA, Goutman JD. Noise Exposure Potentiates Exocytosis From Cochlear Inner Hair Cells. Front Synaptic Neurosci 2021; 13:740368. [PMID: 34658832 PMCID: PMC8511412 DOI: 10.3389/fnsyn.2021.740368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022] Open
Abstract
Noise-induced hearing loss has gained relevance as one of the most common forms of hearing impairment. The anatomical correlates of hearing loss, principally cell damage and/or death, are relatively well-understood histologically. However, much less is known about the physiological aspects of damaged, surviving cells. Here we addressed the functional consequences of noise exposure on the capacity of inner hair cells (IHCs) to release synaptic vesicles at synapses with spiral ganglion neurons (SGNs). Mice of either sex at postnatal day (P) 15–16 were exposed to 1–12 kHz noise at 120 dB sound pressure level (SPL), for 1 h. Exocytosis was measured by tracking changes in membrane capacitance (ΔCm) from IHCs of the apical cochlea. Upon IHC depolarization to different membrane potentials, ΔCm showed the typical bell-shaped curve that mirrors the voltage dependence of Ca2+ influx, in both exposed and unexposed cells. Surprisingly, from IHCs at 1-day after exposure (d.a.e.), we found potentiation of exocytosis at the peak of the bell-shaped curve. The increase in exocytosis was not accompanied by changes in whole-cell Ca2+ influx, suggesting a modification in coupling between Ca2+ channels and synaptic vesicles. Consistent with this notion, noise exposure also changed the Ca2+-dependence of exocytosis from linear to supralinear. Noise exposure did not cause loss of IHCs, but did result in a small reduction in the number of IHC-SGN synapses at 1-d.a.e. which recovered by 14-d.a.e. In contrast, a strong reduction in auditory brainstem response wave-I amplitude (representing synchronous firing of SGNs) and distortion product otoacoustic emissions (reflecting outer hair cell function) indicated a profound hearing loss at 1- and 14-d.a.e. To determine the role of glutamate release in the noise-induced potentiation of exocytosis, we evaluated vesicular glutamate transporter-3 (Vglut3) knock-out (KO) mice. Unlike WT, IHCs from Vglut3KO mice showed a noise-induced reduction in ΔCm and Ca2+ influx with no change in the Ca2+-dependence of exocytosis. Together, these results indicate that traumatic noise exposure triggers changes of IHC synaptic function including a Vglut3-dependent potentiation of exocytosis.
Collapse
Affiliation(s)
- Luis E Boero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Buenos Aires, Argentina.,Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shelby Payne
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Mark A Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Juan D Goutman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Buenos Aires, Argentina
| |
Collapse
|
15
|
Oestreicher D, Picher MM, Rankovic V, Moser T, Pangrsic T. Cabp2-Gene Therapy Restores Inner Hair Cell Calcium Currents and Improves Hearing in a DFNB93 Mouse Model. Front Mol Neurosci 2021; 14:689415. [PMID: 34489639 PMCID: PMC8417311 DOI: 10.3389/fnmol.2021.689415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/28/2021] [Indexed: 12/02/2022] Open
Abstract
Clinical management of auditory synaptopathies like other genetic hearing disorders is currently limited to the use of hearing aids or cochlear implants. However, future gene therapy promises restoration of hearing in selected forms of monogenic hearing impairment, in which cochlear morphology is preserved over a time window that enables intervention. This includes non-syndromic autosomal recessive hearing impairment DFNB93, caused by defects in the CABP2 gene. Calcium-binding protein 2 (CaBP2) is a potent modulator of inner hair cell (IHC) voltage-gated calcium channels CaV1.3. Based on disease modeling in Cabp2–/– mice, DFNB93 hearing impairment has been ascribed to enhanced steady-state inactivation of IHC CaV1.3 channels, effectively limiting their availability to trigger synaptic transmission. This, however, does not seem to interfere with cochlear development and does not cause early degeneration of hair cells or their synapses. Here, we studied the potential of a gene therapeutic approach for the treatment of DFNB93. We used AAV2/1 and AAV-PHP.eB viral vectors to deliver the Cabp2 coding sequence into IHCs of early postnatal Cabp2–/– mice and assessed the level of restoration of hair cell function and hearing. Combining in vitro and in vivo approaches, we observed high transduction efficiency, and restoration of IHC CaV1.3 function resulting in improved hearing of Cabp2–/– mice. These preclinical results prove the feasibility of DFNB93 gene therapy.
Collapse
Affiliation(s)
- David Oestreicher
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Maria Magdalena Picher
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Vladan Rankovic
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Restorative Cochlear Genomics Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Tobias Moser
- Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| | - Tina Pangrsic
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
De Faveri F, Marcotti W, Ceriani F. Sensory adaptation at ribbon synapses in the zebrafish lateral line. J Physiol 2021; 599:3677-3696. [PMID: 34047358 PMCID: PMC7612133 DOI: 10.1113/jp281646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 11/22/2022] Open
Abstract
Adaptation is used by sensory systems to adjust continuously their sensitivity to match changes in environmental stimuli. In the auditory and vestibular systems, the release properties of glutamate-containing vesicles at the hair-cell ribbon synapses play a crucial role in sensory adaptation, thus shaping the neural response to sustained stimulation. How ribbon synapses regulate the release of glutamate and how they modulate afferent responses in vivo is still largely unknown. Here, we have used two-photon imaging and electrophysiology to investigate the synaptic transfer characteristics of the hair cells in the context of sensory adaptation in live zebrafish. Prolonged and repeated water-jet stimulation of the hair-cell stereociliary bundles caused adaptation of the action potential firing rate elicited in the afferent neurons. By monitoring glutamate at ribbon synapses using time-lapse imaging, we identified two kinetically distinct release components: a rapid response that was exhausted within 50-100 ms and a slower and sustained response lasting the entire stimulation. After repeated stimulations, the recovery of the fast component followed a biphasic time course. Depression of glutamate release was largely responsible for the rapid firing rate adaptation recorded in the afferent neurons. However, postsynaptic Ca2+ responses had a slower recovery time course than that of glutamate release, indicating that they are also likely to contribute to the afferent firing adaptation. Hair cells also exhibited a form of adaptation during inhibitory bundle stimulations. We conclude that hair cells have optimised their synaptic machinery to encode prolonged stimuli and to maintain their sensitivity to new incoming stimuli.
Collapse
Affiliation(s)
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Federico Ceriani
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
17
|
Rutherford MA, von Gersdorff H, Goutman JD. Encoding sound in the cochlea: from receptor potential to afferent discharge. J Physiol 2021; 599:2527-2557. [PMID: 33644871 PMCID: PMC8127127 DOI: 10.1113/jp279189] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Ribbon-class synapses in the ear achieve analog to digital transformation of a continuously graded membrane potential to all-or-none spikes. In mammals, several auditory nerve fibres (ANFs) carry information from each inner hair cell (IHC) to the brain in parallel. Heterogeneity of transmission among synapses contributes to the diversity of ANF sound-response properties. In addition to the place code for sound frequency and the rate code for sound level, there is also a temporal code. In series with cochlear amplification and frequency tuning, neural representation of temporal cues over a broad range of sound levels enables auditory comprehension in noisy multi-speaker settings. The IHC membrane time constant introduces a low-pass filter that attenuates fluctuations of the receptor potential above 1-2 kHz. The ANF spike generator adds a high-pass filter via its depolarization-rate threshold that rejects slow changes in the postsynaptic potential and its phasic response property that ensures one spike per depolarization. Synaptic transmission involves several stochastic subcellular processes between IHC depolarization and ANF spike generation, introducing delay and jitter that limits the speed and precision of spike timing. ANFs spike at a preferred phase of periodic sounds in a process called phase-locking that is limited to frequencies below a few kilohertz by both the IHC receptor potential and the jitter in synaptic transmission. During phase-locking to periodic sounds of increasing intensity, faster and facilitated activation of synaptic transmission and spike generation may be offset by presynaptic depletion of synaptic vesicles, resulting in relatively small changes in response phase. Here we review encoding of spike-timing at cochlear ribbon synapses.
Collapse
Affiliation(s)
- Mark A. Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Henrique von Gersdorff
- Vollum Institute, Oregon Hearing Research Center, Oregon Health and Sciences University, Portland, Oregon 97239
| | | |
Collapse
|
18
|
Krinner S, Predoehl F, Burfeind D, Vogl C, Moser T. RIM-Binding Proteins Are Required for Normal Sound-Encoding at Afferent Inner Hair Cell Synapses. Front Mol Neurosci 2021; 14:651935. [PMID: 33867935 PMCID: PMC8044855 DOI: 10.3389/fnmol.2021.651935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 11/19/2022] Open
Abstract
The afferent synapses between inner hair cells (IHC) and spiral ganglion neurons are specialized to faithfully encode sound with sub-millisecond precision over prolonged periods of time. Here, we studied the role of Rab3 interacting molecule-binding proteins (RIM-BP) 1 and 2 – multidomain proteins of the active zone known to directly interact with RIMs, Bassoon and CaV1.3 – in IHC presynaptic function and hearing. Recordings of auditory brainstem responses and otoacoustic emissions revealed that genetic disruption of RIM-BPs 1 and 2 in mice (RIM-BP1/2–/–) causes a synaptopathic hearing impairment exceeding that found in mice lacking RIM-BP2 (RIM-BP2–/–). Patch-clamp recordings from RIM-BP1/2–/– IHCs indicated a subtle impairment of exocytosis from the readily releasable pool of synaptic vesicles that had not been observed in RIM-BP2–/– IHCs. In contrast, the reduction of Ca2+-influx and sustained exocytosis was similar to that in RIMBP2–/– IHCs. We conclude that both RIM-BPs are required for normal sound encoding at the IHC synapse, whereby RIM-BP2 seems to take the leading role.
Collapse
Affiliation(s)
- Stefanie Krinner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Friederike Predoehl
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Dinah Burfeind
- Presynaptogenesis and Intracellular Transport in Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Vogl
- Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Presynaptogenesis and Intracellular Transport in Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Multiscale Bioimaging Cluster of Excellence, University of Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Phase-Locking Requires Efficient Ca 2+ Extrusion at the Auditory Hair Cell Ribbon Synapse. J Neurosci 2021; 41:1625-1635. [PMID: 33446517 DOI: 10.1523/jneurosci.1324-18.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/25/2020] [Accepted: 12/27/2020] [Indexed: 11/21/2022] Open
Abstract
Proper perception of sounds in the environment requires auditory signals to be encoded with extraordinary temporal precision up to tens of microseconds, but how it originates from the hearing organs in the periphery is poorly understood. In particular, sound-evoked spikes in auditory afferent fibers in vivo are phase-locked to sound frequencies up to 5 kHz, but it is not clear how hair cells can handle intracellular Ca2+ changes with such high speed and efficiency. In this study, we combined patch-clamp recording and two-photon Ca2+ imaging to examine Ca2+ dynamics in hair cell ribbon synapses in the bullfrog amphibian papilla of both sexes. We found that Ca2+ clearance from single synaptic ribbons followed a double exponential function, and the weight of the fast component, but not the two time constants, was significantly reduced for prolonged stimulation, and during inhibition of the plasma membrane Ca2+ ATPase (PMCA), the mitochondrial Ca2+ uptake (MCU), or the sarcolemma/endoplasmic reticulum Ca2+ ATPase (SERCA), but not the Na+/Ca2+ exchanger (NCX). Furthermore, we found that both the basal Ca2+ level and the Ca2+ rise during sinusoidal stimulation were significantly increased by inhibition of PMCA, MCU, or SERCA. Consistently, phase-locking of synaptic vesicle releases from hair cells was also significantly reduced by blocking PMCA, MCU, or SERCA, but not NCX. We conclude that, in addition to fast diffusion mediated by mobile Ca2+ buffer, multiple Ca2+ extrusion pumps are required for phase-locking at the auditory hair cell ribbon synapse.SIGNIFICANCE STATEMENT Hair cell synapses can transmit sound-driven signals precisely in the kHz range. However, previous studies of Ca2+ handling in auditory hair cells have often been conducted in immature hair cells, with elevated extracellular Ca2+ concentration, or through steady-state stimulation that may not be physiologically relevant. Here we examine Ca2+ clearance from hair cell synaptic ribbons in a fully mature preparation at physiological concentration of external Ca2+ and at physiological temperature. By stimulating hair cells with sinusoidal voltage commands that mimic pure sound tones, we recapitulated the phase-locking of hair cell exocytosis with an in vitro approach. This allowed us to reveal the Ca2+ extrusion mechanisms that are required for phase-locking at auditory hair cell ribbon synapses.
Collapse
|
20
|
Özçete ÖD, Moser T. A sensory cell diversifies its output by varying Ca 2+ influx-release coupling among active zones. EMBO J 2020; 40:e106010. [PMID: 33346936 PMCID: PMC7917556 DOI: 10.15252/embj.2020106010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
The cochlea encodes sound pressures varying over six orders of magnitude by collective operation of functionally diverse spiral ganglion neurons (SGNs). The mechanisms enabling this functional diversity remain elusive. Here, we asked whether the sound intensity information, contained in the receptor potential of the presynaptic inner hair cell (IHC), is fractionated via heterogeneous synapses. We studied the transfer function of individual IHC synapses by combining patch‐clamp recordings with dual‐color Rhod‐FF and iGluSnFR imaging of presynaptic Ca2+ signals and glutamate release. Synapses differed in the voltage dependence of release: Those residing at the IHC' pillar side activated at more hyperpolarized potentials and typically showed tight control of release by few Ca2+ channels. We conclude that heterogeneity of voltage dependence and release site coupling of Ca2+ channels among the synapses varies synaptic transfer within individual IHCs and, thereby, likely contributes to the functional diversity of SGNs. The mechanism reported here might serve sensory cells and neurons more generally to diversify signaling even in close‐by synapses.
Collapse
Affiliation(s)
- Özge D Özçete
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany.,Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Ashmore J. Tonotopy of cochlear hair cell biophysics (excl. mechanotransduction). CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Martelletti E, Ingham NJ, Houston O, Pass JC, Chen J, Marcotti W, Steel KP. Synaptojanin2 Mutation Causes Progressive High-frequency Hearing Loss in Mice. Front Cell Neurosci 2020; 14:561857. [PMID: 33100973 PMCID: PMC7546894 DOI: 10.3389/fncel.2020.561857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/14/2020] [Indexed: 12/04/2022] Open
Abstract
Progressive hearing loss is very common in the human population but we know little about the underlying molecular mechanisms. Synaptojanin2 (Synj2) has been reported to be involved, as a mouse mutation led to a progressive increase in auditory thresholds with age. Synaptojanin2 is a phosphatidylinositol (PI) phosphatase that removes the five-position phosphates from phosphoinositides, such as PIP2 and PIP3, and is a key enzyme in clathrin-mediated endocytosis. To investigate the mechanisms underlying progressive hearing loss, we have studied a different mutation of mouse Synj2 to look for any evidence of involvement of vesicle trafficking particularly affecting the synapses of sensory hair cells. Auditory brainstem responses (ABR) developed normally at first but started to decline between 3 and 4 weeks of age in Synj2tm1b mutants. At 6 weeks old, some evidence of outer hair cell (OHC) stereocilia fusion and degeneration was observed, but this was only seen in the extreme basal turn so cannot explain the raised ABR thresholds that correspond to more apical regions of the cochlear duct. We found no evidence of any defect in inner hair cell (IHC) exocytosis or endocytosis using single hair cell recordings, nor any sign of hair cell synaptic abnormalities. Endocochlear potentials (EP) were normal. The mechanism underlying progressive hearing loss in these mutants remains elusive, but our findings of raised distortion product otoacoustic emission (DPOAE) thresholds and signs of OHC degeneration both suggest an OHC origin for the hearing loss. Synaptojanin2 is not required for normal development of hearing but it is important for its maintenance.
Collapse
Affiliation(s)
- Elisa Martelletti
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Neil J Ingham
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Oliver Houston
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Johanna C Pass
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Jing Chen
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Walter Marcotti
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
23
|
Jeng JY, Ceriani F, Olt J, Brown SDM, Holley MC, Bowl MR, Johnson SL, Marcotti W. Pathophysiological changes in inner hair cell ribbon synapses in the ageing mammalian cochlea. J Physiol 2020; 598:4339-4355. [PMID: 32710572 DOI: 10.1113/jp280018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Age-related hearing loss (ARHL) is associated with the loss of inner hair cell (IHC) ribbon synapses, lower hearing sensitivity and decreased ability to understand speech, especially in a noisy environment. Little is known about the age-related physiological and morphological changes that occur at ribbon synapses. We show that the differing degrees of ARHL in four selected mouse stains is correlated with the loss of ribbon synapses, being most severe for the strains C57BL/6NTac and C57BL/6J, less so for C57BL/6NTacCdh23+ -Repaired and lowest for C3H/HeJ. Despite the loss of ribbon synapses with age, the volume of the remaining ribbons increased and the size and kinetics of Ca2+ -dependent exocytosis in IHCs was unaffected, indicating the presence of a previously unknown degree of functional compensation at ribbon synapses. Although the age-related morphological changes at IHC ribbon synapses contribute to the different progression of ARHL, without the observed functional compensation hearing loss could be greater. ABSTRACT Mammalian cochlear inner hair cells (IHCs) are specialized sensory receptors able to provide dynamic coding of sound signals. This ability is largely conferred by their ribbon synapses, which tether a large number of vesicles at the IHC's presynaptic active zones, allowing high rates of sustained synaptic transmission onto the afferent fibres. How the physiological and morphological properties of ribbon synapses change with age remains largely unknown. Here, we have investigated the biophysical and morphological properties of IHC ribbon synapses in the ageing cochlea (9-12 kHz region) of four mouse strains commonly used in hearing research: early-onset progressive hearing loss (C57BL/6J and C57BL/6NTac) and 'good hearing' strains (C57BL/6NTacCdh23+ and C3H/HeJ). We found that with age, both modiolar and pillar sides of the IHC exhibited a loss of ribbons, but there was an increased volume of those that remained. These morphological changes, which only occurred after 6 months of age, were correlated with the level of hearing loss in the different mouse strains, being most severe for C57BL/6NTac and C57BL/6J, less so for C57BL/6NTacCdh23+ and absent for C3H/HeJ strains. Despite the age-related reduction in ribbon number in three of the four strains, the size and kinetics of Ca2+ -dependent exocytosis, as well as the replenishment of synaptic vesicles, in IHCs was not affected. The degree of vesicle release at the fewer, but larger, individual remaining ribbon synapses colocalized with the post-synaptic afferent terminals is likely to increase, indicating the presence of a previously unknown degree of functional compensation in the ageing mouse cochlea.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Federico Ceriani
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jennifer Olt
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Steve D M Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, UK
| | - Matthew C Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, UK
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
24
|
Spaiardi P, Marcotti W, Masetto S, Johnson SL. Exocytosis in mouse vestibular Type II hair cells shows a high-order Ca 2+ dependence that is independent of synaptotagmin-4. Physiol Rep 2020; 8:e14509. [PMID: 32691536 PMCID: PMC7371649 DOI: 10.14814/phy2.14509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 11/24/2022] Open
Abstract
Mature hair cells transduce information over a wide range of stimulus intensities and frequencies for prolonged periods of time. The efficiency of such a demanding task is reflected in the characteristics of exocytosis at their specialized presynaptic ribbons. Ribbons are electron-dense structures able to tether a large number of releasable vesicles allowing them to maintain high rates of vesicle release. Calcium entry through rapidly activating, non-inactivating CaV 1.3 (L-type) Ca2+ channels in response to cell depolarization causes a local increase in Ca2+ at the ribbon synapses, which is detected by the exocytotic Ca2+ sensors. The Ca2+ dependence of vesicle exocytosis at mammalian vestibular hair cell (VHC) ribbon synapses is believed to be linear, similar to that observed in mature cochlear inner hair cells (IHCs). The linear relation has been shown to correlate with the presence of the Ca2+ sensor synaptotagmin-4 (Syt-4). Therefore, we studied the exocytotic Ca2+ dependence, and the release kinetics of different vesicle pool populations, in Type II VHCs of control and Syt-4 knockout mice using patch-clamp capacitance measurements, under physiological recording conditions. We found that exocytosis in mature control and knockout Type II VHCs displayed a high-order dependence on Ca2+ entry, rather than the linear relation previously observed. Consistent with this finding, the Ca2+ dependence and release kinetics of the ready releasable pool (RRP) of vesicles were not affected by an absence of Syt-4. However, we did find that Syt-4 could play a role in regulating the release of the secondary releasable pool (SRP) in these cells. Our findings show that the coupling between Ca2+ influx and neurotransmitter release at mature Type II VHC ribbon synapses is faithfully described by a nonlinear relation that is likely to be more appropriate for the accurate encoding of low-frequency vestibular information, consistent with that observed at low-frequency mammalian auditory receptors.
Collapse
Affiliation(s)
- Paolo Spaiardi
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | - Walter Marcotti
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Sergio Masetto
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | | |
Collapse
|
25
|
Soto J, Castaneda-Villa N, Gil A, Gonzalez-Velez V. Simulation of the efficiency of inner hair cell secretion in the auditory pathway. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2332-2335. [PMID: 31946367 DOI: 10.1109/embc.2019.8857293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sound coding involves several stages of processing along the auditory path. Specifically, the Inner Hair Cells (IHC) act as sensory receptors and transduce acoustic information -frequency, intensity and duration of the stimulus- into neuronal signals. In this work, a stochastic model was implemented to achieve a better understanding of the IHC-auditory nerve synapse, specifically, the process of Ready Releasable Pool (RRP) vesicle exocytosis, a complicated process to study experimentally because current protocols do not provide adequate temporal resolution, in the order of milliseconds. The presented model allows predicting the efficiency of glutamate release towards explaining maturation changes or disease impacts in the auditory pathway.
Collapse
|
26
|
Moser T, Grabner CP, Schmitz F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea. Physiol Rev 2020; 100:103-144. [DOI: 10.1152/physrev.00026.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, sensory neuroscientists have made major efforts to dissect the structure and function of ribbon synapses which process sensory information in the eye and ear. This review aims to summarize our current understanding of two key aspects of ribbon synapses: 1) their mechanisms of exocytosis and endocytosis and 2) their molecular anatomy and physiology. Our comparison of ribbon synapses in the cochlea and the retina reveals convergent signaling mechanisms, as well as divergent strategies in different sensory systems.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Chad P. Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Frank Schmitz
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| |
Collapse
|
27
|
Wesseling JF. Considerations for Measuring Activity-Dependence of Recruitment of Synaptic Vesicles to the Readily Releasable Pool. Front Synaptic Neurosci 2019; 11:32. [PMID: 31824292 PMCID: PMC6879548 DOI: 10.3389/fnsyn.2019.00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/06/2019] [Indexed: 11/29/2022] Open
Abstract
The connection strength of most chemical synapses changes dynamically during normal use as a function of the recent history of activity. The phenomenon is known as short-term synaptic plasticity or synaptic dynamics, and is thought to be involved in processing and filtering information as it is transmitted across the synaptic cleft. Multiple presynaptic mechanisms have been implicated, but large gaps remain in our understanding of how the mechanisms are modulated and how they interact. One important factor is the timing of recruitment of synaptic vesicles to a readily-releasable pool. A number of studies have concluded that activity and/or residual Ca2+ can accelerate the mechanism, but alternative explanations for some of the evidence have emerged. Here I review the methodology that we have developed for isolating the recruitment and the dependence on activity from other kinds of mechanisms that are activated concurrently.
Collapse
Affiliation(s)
- John F Wesseling
- CSIC/Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
28
|
Vincent PFY, Cho S, Tertrais M, Bouleau Y, von Gersdorff H, Dulon D. Clustered Ca 2+ Channels Are Blocked by Synaptic Vesicle Proton Release at Mammalian Auditory Ribbon Synapses. Cell Rep 2019; 25:3451-3464.e3. [PMID: 30566869 DOI: 10.1016/j.celrep.2018.11.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 08/31/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
A Ca2+ current transient block (ICaTB) by protons occurs at some ribbon-type synapses after exocytosis, but this has not been observed at mammalian hair cells. Here we show that a robust ICaTB occurs at post-hearing mouse and gerbil inner hair cell (IHC) synapses, but not in immature IHC synapses, which contain non-compact active zones, where Ca2+ channels are loosely coupled to the release sites. Unlike ICaTB at other ribbon synapses, ICaTB in mammalian IHCs displays a surprising multi-peak structure that mirrors the EPSCs seen in paired recordings. Desynchronizing vesicular release with intracellular BAPTA or by deleting otoferlin, the Ca2+ sensor for exocytosis, greatly reduces ICaTB, whereas enhancing release synchronization by raising Ca2+ influx or temperature increases ICaTB. This suggests that ICaTB is produced by fast multivesicular proton-release events. We propose that ICaTB may function as a submillisecond feedback mechanism contributing to the auditory nerve's fast spike adaptation during sound stimulation.
Collapse
Affiliation(s)
- Philippe F Y Vincent
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France
| | - Soyoun Cho
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68131, USA; The Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Margot Tertrais
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France
| | - Yohan Bouleau
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France
| | | | - Didier Dulon
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France.
| |
Collapse
|
29
|
Johnson SL, Safieddine S, Mustapha M, Marcotti W. Hair Cell Afferent Synapses: Function and Dysfunction. Cold Spring Harb Perspect Med 2019; 9:a033175. [PMID: 30617058 PMCID: PMC6886459 DOI: 10.1101/cshperspect.a033175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To provide a meaningful representation of the auditory landscape, mammalian cochlear hair cells are optimized to detect sounds over an incredibly broad range of frequencies and intensities with unparalleled accuracy. This ability is largely conferred by specialized ribbon synapses that continuously transmit acoustic information with high fidelity and sub-millisecond precision to the afferent dendrites of the spiral ganglion neurons. To achieve this extraordinary task, ribbon synapses employ a unique combination of molecules and mechanisms that are tailored to sounds of different frequencies. Here we review the current understanding of how the hair cell's presynaptic machinery and its postsynaptic afferent connections are formed, how they mature, and how their function is adapted for an accurate perception of sound.
Collapse
Affiliation(s)
- Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Saaid Safieddine
- UMRS 1120, Institut Pasteur, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, Complexité du Vivant, Paris, France
| | - Mirna Mustapha
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, California 94035
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
30
|
Nakamura Y. EGTA Can Inhibit Vesicular Release in the Nanodomain of Single Ca 2+ Channels. Front Synaptic Neurosci 2019; 11:26. [PMID: 31632263 PMCID: PMC6779814 DOI: 10.3389/fnsyn.2019.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/02/2019] [Indexed: 01/21/2023] Open
Abstract
The exogenous Ca2+ chelator EGTA (ethylene glycol tetraacetic acid) has been widely used to probe the coupling distance between Ca2+ channels and vesicular Ca2+ sensors for neurotransmitter release. Because of its slow forward rate for binding, EGTA is thought to not capture calcium ions in very proximity to a channel, whereas it does capture calcium ions at the remote distance. However, in this study, our reaction diffusion simulations (RDSs) of Ca2+ combined with a release calculation using vesicular sensor models indicate that a high concentration of EGTA decreases Ca2+ and vesicular release in the nanodomain of single channels. We found that a key determinant of the effect of EGTA on neurotransmitter release is the saturation of the vesicular sensor. When the sensor is saturated, the reduction in the Ca2+ concentration by EGTA is masked. By contrast, when the sensor is in a linear range, even a small reduction in Ca2+ by EGTA can decrease vesicular release. In proximity to a channel, the vesicular sensor is often saturated for a long voltage step, but not for a brief Ca2+ influx typically evoked by an action potential. Therefore, when EGTA is used as a diagnostic tool to probe the coupling distance, care must be taken regarding the presynaptic Ca2+ entry duration as well as the property of the vesicular Ca2+ sensor.
Collapse
Affiliation(s)
- Yukihiro Nakamura
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
How to Build a Fast and Highly Sensitive Sound Detector That Remains Robust to Temperature Shifts. J Neurosci 2019; 39:7260-7276. [PMID: 31315946 DOI: 10.1523/jneurosci.2510-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 06/13/2019] [Accepted: 07/09/2019] [Indexed: 12/26/2022] Open
Abstract
Frogs must have sharp hearing abilities during the warm summer months to successfully find mating partners. This study aims to understand how frog hair cell ribbon-type synapses preserve both sensitivity and temporal precision during temperature changes. Under room (∼24°C) and high (∼32°C) temperature, we performed in vitro patch-clamp recordings of hair cells and their afferent fibers in amphibian papillae of either male or female bullfrogs. Afferent fibers exhibited a wide heterogeneity in membrane input resistance (Rin) from 100 mΩ to 1000 mΩ, which may contribute to variations in spike threshold and firing frequency. At higher temperatures, most fibers increased their frequency of spike firing due to an increase in spontaneous EPSC frequencies. Hair cell resting membrane potential (Vrest) remained surprisingly stable during temperature increases, because Ca2+ influx and K+ outflux increased simultaneously. This increase in Ca2+ current likely enhanced spontaneous EPSC frequencies. These larger "leak currents" at Vrest also lowered Rin and produced higher electrical resonant frequencies. Lowering Rin will reduce the hair cells receptor potential and presumably moderate the systems sensitivity. Using membrane capacitance measurements, we suggest that hair cells can partially compensate for this reduced sensitivity by increasing exocytosis efficiency and the size of the readily releasable pool of synaptic vesicles. Furthermore, paired recordings of hair cells and their afferent fibers showed that synaptic delays shortened and multivesicular release becomes more synchronous at higher temperatures, which should improve temporal precision. Together, our results explain many previous in vivo observations on the temperature dependence of spikes in auditory nerves.SIGNIFICANCE STATEMENT The vertebrate inner ear detects and transmits auditory information over a broad dynamic range of sound frequency and intensity. It achieves remarkable sensitivity to soft sounds and precise frequency selectivity. How does the ear of cold-blooded vertebrates maintain its performance level as temperature changes? More specifically, how does the hair cell to afferent fiber synapse in bullfrog amphibian papilla adjust to a wide range of physiological temperatures without losing its sensitivity and temporal fidelity to sound signals? This study uses in vitro experiments to reveal the biophysical mechanisms that explain many observations made from in vivo auditory nerve fiber recordings. We find that higher temperature facilitates vesicle exocytosis and electrical tuning to higher sound frequencies, which benefits sensitivity and selectivity.
Collapse
|
32
|
Coate TM, Scott MK, Gurjar MC. Current concepts in cochlear ribbon synapse formation. Synapse 2019; 73:e22087. [PMID: 30592086 PMCID: PMC6573016 DOI: 10.1002/syn.22087] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
In mammals, hair cells and spiral ganglion neurons (SGNs) in the cochlea together are sophisticated "sensorineural" structures that transduce auditory information from the outside world into the brain. Hair cells and SGNs are joined by glutamatergic ribbon-type synapses composed of a molecular machinery rivaling in complexity the mechanoelectric transduction components found at the apical side of the hair cell. The cochlear hair cell ribbon synapse has received much attention lately because of recent and important findings related to its damage (sometimes termed "synaptopathy") as a result of noise overexposure. During development, ribbon synapses between type I SGNs and inner hair cells form in the time window between birth and hearing onset and is a process coordinated with type I SGN myelination, spontaneous activity, synaptic pruning, and innervation by efferents. In this review, we highlight new findings regarding the diversity of type I SGNs and inner hair cell synapses, and the molecular mechanisms of selective hair cell targeting. Also discussed are cell adhesion molecules and protein constituents of the ribbon synapse, and how these factors participate in ribbon synapse formation. We also note interesting new insights into the morphological development of type II SGNs, and the potential for cochlear macrophages as important players in protecting SGNs. We also address recent studies demonstrating that the structural and physiological profiles of the type I SGNs do not reach full maturity until weeks after hearing onset, suggesting a protracted development that is likely modulated by activity.
Collapse
Affiliation(s)
- Thomas M. Coate
- Georgetown University, Department of Biology, 37th and O St. NW. Washington, DC. 20007. USA
| | - M. Katie Scott
- Department of Biological Sciences and Purdue Institute of Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907. USA
| | - Mansa C. Gurjar
- Georgetown University, Department of Biology, 37th and O St. NW. Washington, DC. 20007. USA
| |
Collapse
|
33
|
Zorio DAR, Monsma S, Sanes DH, Golding NL, Rubel EW, Wang Y. De novo sequencing and initial annotation of the Mongolian gerbil (Meriones unguiculatus) genome. Genomics 2019; 111:441-449. [PMID: 29526484 PMCID: PMC6129228 DOI: 10.1016/j.ygeno.2018.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 12/28/2022]
Abstract
The Mongolian gerbil (Meriones unguiculatus) is a member of the rodent family that displays several features not found in mice or rats, including sensory specializations and social patterns more similar to those in humans. These features have made gerbils a valuable animal for research studies of auditory and visual processing, brain development, learning and memory, and neurological disorders. Here, we report the whole gerbil annotated genome sequence, and identify important similarities and differences to the human and mouse genomes. We further analyze the chromosomal structure of eight genes with high relevance for controlling neural signaling and demonstrate a high degree of homology between these genes in mouse and gerbil. This homology increases the likelihood that individual genes can be rapidly identified in gerbil and used for genetic manipulations. The availability of the gerbil genome provides a foundation for advancing our knowledge towards understanding evolution, behavior and neural function in mammals. ACCESSION NUMBER: The Whole Genome Shotgun sequence data from this project has been deposited at DDBJ/ENA/GenBank under the accession NHTI00000000. The version described in this paper is version NHTI01000000. The fragment reads, and mate pair reads have been deposited in the Sequence Read Archive under BioSample accession SAMN06897401.
Collapse
Affiliation(s)
- Diego A R Zorio
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| | | | - Dan H Sanes
- Center for Neural Science, New York University, New York, NY, USA
| | - Nace L Golding
- University of Texas at Austin, Department of Neuroscience, Center for Learning and Memory, Austin, TX, USA
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, USA
| | - Yuan Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA; Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
34
|
Phase Locking of Auditory-Nerve Fibers Reveals Stereotyped Distortions and an Exponential Transfer Function with a Level-Dependent Slope. J Neurosci 2019; 39:4077-4099. [PMID: 30867259 DOI: 10.1523/jneurosci.1801-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
Phase locking of auditory-nerve-fiber (ANF) responses to the fine structure of acoustic stimuli is a hallmark of the auditory system's temporal precision and is important for many aspects of hearing. Period histograms from phase-locked ANF responses to low-frequency tones exhibit spike-rate and temporal asymmetries, but otherwise retain an approximately sinusoidal shape as stimulus level increases, even beyond the level at which the mean spike rate saturates. This is intriguing because apical cochlear mechanical vibrations show little compression, and mechanoelectrical transduction in the receptor cells is thought to obey a static sigmoidal nonlinearity, which might be expected to produce peak clipping at moderate and high stimulus levels. Here we analyze phase-locked responses of ANFs from cats of both sexes. We show that the lack of peak clipping is due neither to ANF refractoriness nor to spike-rate adaptation on time scales longer than the stimulus period. We demonstrate that the relationship between instantaneous pressure and instantaneous rate is well described by an exponential function whose slope decreases with increasing stimulus level. Relatively stereotyped harmonic distortions in the input to the exponential can account for the temporal asymmetry of the period histograms, including peak splitting. We show that the model accounts for published membrane-potential waveforms when assuming a power-of-three, but not a power-of-one, relationship to exocytosis. Finally, we demonstrate the relationship between the exponential transfer functions and the sigmoidal pseudotransducer functions obtained in the literature by plotting the maxima and minima of the voltage responses against the maxima and minima of the stimuli.SIGNIFICANCE STATEMENT Phase locking of auditory-nerve-fiber responses to the temporal fine structure of acoustic stimuli is important for many aspects of hearing, but the mechanisms underlying phase locking are not fully understood. Intriguingly, period histograms retain an approximately sinusoidal shape across sound levels, even when the mean rate has saturated. We find that neither refractoriness nor spike-rate adaptation is responsible for this behavior. Instead, the peripheral auditory system operates as though it contains an exponential transfer function whose slope changes with stimulus level. The underlying mechanism is distinct from the comparatively weak cochlear mechanical compression in the cochlear apex, and likely resides in the receptor cells.
Collapse
|
35
|
Fekete A, Nakamura Y, Yang YM, Herlitze S, Mark MD, DiGregorio DA, Wang LY. Underpinning heterogeneity in synaptic transmission by presynaptic ensembles of distinct morphological modules. Nat Commun 2019; 10:826. [PMID: 30778063 PMCID: PMC6379440 DOI: 10.1038/s41467-019-08452-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 12/28/2018] [Indexed: 11/09/2022] Open
Abstract
Synaptic heterogeneity is widely observed but its underpinnings remain elusive. We addressed this issue using mature calyx of Held synapses whose numbers of bouton-like swellings on stalks of the nerve terminals inversely correlate with release probability (Pr). We examined presynaptic Ca2+ currents and transients, topology of fluorescently tagged knock-in Ca2+ channels, and Ca2+ channel-synaptic vesicle (SV) coupling distance using Ca2+ chelator and inhibitor of septin cytomatrix in morphologically diverse synapses. We found that larger clusters of Ca2+ channels with tighter coupling distance to SVs elevate Pr in stalks, while smaller clusters with looser coupling distance lower Pr in swellings. Septin is a molecular determinant of the differences in coupling distance. Supported by numerical simulations, we propose that varying the ensemble of two morphological modules containing distinct Ca2+ channel-SV topographies diversifies Pr in the terminal, thereby establishing a morpho-functional continuum that expands the coding capacity within a single synapse population.
Collapse
Affiliation(s)
- Adam Fekete
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yukihiro Nakamura
- Department of Pharmacology, Jikei University School of Medicine, Nishishinbashi, Minato-ku, Tokyo, 1058461, Japan
| | - Yi-Mei Yang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, Universitätsstrasse 150, D-44780, Bochum, Germany
| | - Melanie D Mark
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, Universitätsstrasse 150, D-44780, Bochum, Germany
| | - David A DiGregorio
- Unit of Dynamic Neuronal Imaging, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
- Centre National de la Recherche Scientifique (CNRS), UMR 3571, Genes, Synapses and Cognition, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Lu-Yang Wang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
36
|
Pangrsic T, Singer JH, Koschak A. Voltage-Gated Calcium Channels: Key Players in Sensory Coding in the Retina and the Inner Ear. Physiol Rev 2019; 98:2063-2096. [PMID: 30067155 DOI: 10.1152/physrev.00030.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Calcium influx through voltage-gated Ca (CaV) channels is the first step in synaptic transmission. This review concerns CaV channels at ribbon synapses in primary sense organs and their specialization for efficient coding of stimuli in the physical environment. Specifically, we describe molecular, biochemical, and biophysical properties of the CaV channels in sensory receptor cells of the retina, cochlea, and vestibular apparatus, and we consider how such properties might change over the course of development and contribute to synaptic plasticity. We pay particular attention to factors affecting the spatial arrangement of CaV channels at presynaptic, ribbon-type active zones, because the spatial relationship between CaV channels and release sites has been shown to affect synapse function critically in a number of systems. Finally, we review identified synaptopathies affecting sensory systems and arising from dysfunction of L-type, CaV1.3, and CaV1.4 channels or their protein modulatory elements.
Collapse
Affiliation(s)
- Tina Pangrsic
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Joshua H Singer
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Alexandra Koschak
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
37
|
Ritzau-Jost A, Jablonski L, Viotti J, Lipstein N, Eilers J, Hallermann S. Apparent calcium dependence of vesicle recruitment. J Physiol 2018; 596:4693-4707. [PMID: 29928766 DOI: 10.1113/jp275911] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/11/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Synaptic transmission relies on the recruitment of neurotransmitter-filled vesicles to presynaptic release sites. Increased intracellular calcium buffering slows the recovery from synaptic depression, suggesting that vesicle recruitment is a calcium-dependent process. However, the molecular mechanisms of vesicle recruitment have only been investigated at some synapses. We investigate the role of calcium in vesicle recruitment at the cerebellar mossy fibre to granule cell synapse. We find that increased intracellular calcium buffering slows the recovery from depression following physiological stimulation. However, the recovery is largely resistant to perturbation of the molecular pathways previously shown to mediate calcium-dependent vesicle recruitment. Furthermore, we find two pools of vesicles with different recruitment speeds and show that models incorporating two pools of vesicles with different calcium-independent recruitment rates can explain our data. In this framework, increased calcium buffering prevents the release of intrinsically fast-recruited vesicles but does not change the vesicle recruitment rates themselves. ABSTRACT During sustained synaptic transmission, recruitment of new transmitter-filled vesicles to the release site counteracts vesicle depletion and thus synaptic depression. An elevated intracellular Ca2+ concentration has been proposed to accelerate the rate of vesicle recruitment at many synapses. This conclusion is often based on the finding that increased intracellular Ca2+ buffering slows the recovery from synaptic depression. However, the molecular mechanisms of the activity-dependent acceleration of vesicle recruitment have only been analysed at some synapses. Using physiological stimulation patterns in postsynaptic recordings and step depolarizations in presynaptic bouton recordings, we investigate vesicle recruitment at cerebellar mossy fibre boutons. We show that increased intracellular Ca2+ buffering slows recovery from depression dramatically. However, pharmacological and genetic interference with calmodulin or the calmodulin-Munc13 pathway, which has been proposed to mediate Ca2+ -dependence of vesicle recruitment, barely affects vesicle recovery from depression. Furthermore, we show that cerebellar mossy fibre boutons have two pools of vesicles: rapidly fusing vesicles that recover slowly and slowly fusing vesicles that recover rapidly. Finally, models adopting such two pools of vesicles with Ca2+ -independent recruitment rates can explain the slowed recovery from depression upon increased Ca2+ buffering. Our data do not rule out the involvement of the calmodulin-Munc13 pathway during stronger stimuli or other molecular pathways mediating Ca2+ -dependent vesicle recruitment at cerebellar mossy fibre boutons. However, we show that well-established two-pool models predict an apparent Ca2+ -dependence of vesicle recruitment. Thus, previous conclusions of Ca2+ -dependent vesicle recruitment based solely on increased intracellular Ca2+ buffering should be considered with caution.
Collapse
Affiliation(s)
- Andreas Ritzau-Jost
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Lukasz Jablonski
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Julio Viotti
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany.,Department of Anatomy and Embryology, Center of Anatomy, University Medical Center Göttingen, Göttingen, Germany
| | - Noa Lipstein
- Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Jens Eilers
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Stefan Hallermann
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
38
|
Abstract
Sensory hair cells are specialized secondary sensory cells that mediate our senses of hearing, balance, linear acceleration, and angular acceleration (head rotation). In addition, hair cells in fish and amphibians mediate sensitivity to water movement through the lateral line system, and closely related electroreceptive cells mediate sensitivity to low-voltage electric fields in the aquatic environment of many fish species and several species of amphibian. Sensory hair cells share many structural and functional features across all vertebrate groups, while at the same time they are specialized for employment in a wide variety of sensory tasks. The complexity of hair cell structure is large, and the diversity of hair cell applications in sensory systems exceeds that seen for most, if not all, sensory cell types. The intent of this review is to summarize the more significant structural features and some of the more interesting and important physiological mechanisms that have been elucidated thus far. Outside vertebrates, hair cells are only known to exist in the coronal organ of tunicates. Electrical resonance, electromotility, and their exquisite mechanical sensitivity all contribute to the attractiveness of hair cells as a research subject.
Collapse
|
39
|
Voltage-Gated Calcium Influx Modifies Cholinergic Inhibition of Inner Hair Cells in the Immature Rat Cochlea. J Neurosci 2018; 38:5677-5687. [PMID: 29789373 DOI: 10.1523/jneurosci.0230-18.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 11/21/2022] Open
Abstract
Until postnatal day (P) 12, inner hair cells of the rat cochlea are invested with both afferent and efferent synaptic connections. With the onset of hearing at P12, the efferent synapses disappear, and afferent (ribbon) synapses operate with greater efficiency. This change coincides with increased expression of voltage-gated potassium channels, the loss of calcium-dependent electrogenesis, and the onset of graded receptor potentials driven by sound. The transient efferent synapses include near-membrane postsynaptic cisterns thought to regulate calcium influx through the hair cell's α9-containing and α10-containing nicotinic acetylcholine receptors. This influx activates small-conductance Ca2+-activated K+ (SK) channels. Serial-section electron microscopy of inner hair cells from two 9-d-old (male) rat pups revealed many postsynaptic efferent cisterns and presynaptic afferent ribbons whose average minimal separation in five cells ranged from 1.1 to 1.7 μm. Efferent synaptic function was studied in rat pups (age, 7-9 d) of either sex. The duration of these SK channel-mediated IPSCs was increased by enhanced calcium influx through L-type voltage-gated channels, combined with ryanodine-sensitive release from internal stores-presumably the near-membrane postsynaptic cistern. These data support the possibility that inner hair cell calcium electrogenesis modulates the efficacy of efferent inhibition during the maturation of inner hair cell synapses.SIGNIFICANCE STATEMENT Strict calcium buffering is essential for cellular function. This problem is especially acute for compact hair cells where increasing cytoplasmic calcium promotes the opposing functions of closely adjoining afferent and efferent synapses. The near-membrane postsynaptic cistern at efferent synapses segregates synaptic calcium signals by acting as a dynamic calcium store. The hair cell serves as an informative model for synapses with postsynaptic cisterns (C synapses) found in central neurons.
Collapse
|
40
|
Wen X, Van Hook MJ, Grassmeyer JJ, Wiesman AI, Rich GM, Cork KM, Thoreson WB. Endocytosis sustains release at photoreceptor ribbon synapses by restoring fusion competence. J Gen Physiol 2018; 150:591-611. [PMID: 29555658 PMCID: PMC5881445 DOI: 10.1085/jgp.201711919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/21/2018] [Indexed: 01/15/2023] Open
Abstract
Endocytosis is an essential process at sites of synaptic release. Not only are synaptic vesicles recycled by endocytosis, but the removal of proteins and lipids by endocytosis is needed to restore release site function at active zones after vesicle fusion. Synaptic exocytosis from vertebrate photoreceptors involves synaptic ribbons that serve to cluster vesicles near the presynaptic membrane. In this study, we hypothesize that this clustering increases the likelihood that exocytosis at one ribbon release site may disrupt release at an adjacent site and therefore that endocytosis may be particularly important for restoring release site competence at photoreceptor ribbon synapses. To test this, we combined optical and electrophysiological techniques in salamander rods. Pharmacological inhibition of dynamin-dependent endocytosis rapidly inhibits release from synaptic ribbons and slows recovery of ribbon-mediated release from paired pulse synaptic depression. Inhibiting endocytosis impairs the ability of second-order horizontal cells to follow rod light responses at frequencies as low as 2 Hz. Inhibition of endocytosis also increases lateral membrane mobility of individual Ca2+ channels, showing that it changes release site structure. Visualization of single synaptic vesicles by total internal reflection fluorescence microscopy reveals that inhibition of endocytosis reduces the likelihood of fusion among vesicles docked near ribbons and increases the likelihood that they will retreat from the membrane without fusion. Vesicle advance toward the membrane is also reduced, but the number of membrane-associated vesicles is not. Endocytosis therefore appears to be more important for restoring later steps in vesicle fusion than for restoring docking. Unlike conventional synapses in which endocytic restoration of release sites is evident only at high frequencies, endocytosis is needed to maintain release from rod ribbon synapses even at modest frequencies.
Collapse
Affiliation(s)
- Xiangyi Wen
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Matthew J Van Hook
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE
| | - Justin J Grassmeyer
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Alex I Wiesman
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Grace M Rich
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE
| | - Karlene M Cork
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Wallace B Thoreson
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
41
|
Variations in Ca 2+ Influx Can Alter Chelator-Based Estimates of Ca 2+ Channel-Synaptic Vesicle Coupling Distance. J Neurosci 2018; 38:3971-3987. [PMID: 29563180 DOI: 10.1523/jneurosci.2061-17.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 02/23/2018] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
The timing and probability of synaptic vesicle fusion from presynaptic terminals is governed by the distance between voltage-gated Ca2+ channels (VGCCs) and Ca2+ sensors for exocytosis. This VGCC-sensor coupling distance can be determined from the fractional block of vesicular release by exogenous Ca2+ chelators, which depends on biophysical factors that have not been thoroughly explored. Using numerical simulations of Ca2+ reaction and diffusion, as well as vesicular release, we examined the contributions of conductance, density, and open duration of VGCCs, and the influence of endogenous Ca2+ buffers on the inhibition of exocytosis by EGTA. We found that estimates of coupling distance are critically influenced by the duration and amplitude of Ca2+ influx at active zones, but relatively insensitive to variations of mobile endogenous buffer. High concentrations of EGTA strongly inhibit vesicular release in close proximity (20-30 nm) to VGCCs if the flux duration is brief, but have little influence for longer flux durations that saturate the Ca2+ sensor. Therefore, the diversity in presynaptic action potential duration is sufficient to alter EGTA inhibition, resulting in errors potentially as large as 300% if Ca2+ entry durations are not considered when estimating VGCC-sensor coupling distances.SIGNIFICANT STATEMENT The coupling distance between voltage-gated Ca2+ channels and Ca2+ sensors for exocytosis critically determines the timing and probability of neurotransmitter release. Perfusion of presynaptic terminals with the exogenous Ca2+ chelator EGTA has been widely used for both qualitative and quantitative estimates of this distance. However, other presynaptic terminal parameters such as the amplitude and duration of Ca2+ entry can also influence EGTA inhibition of exocytosis, thus confounding conclusions based on EGTA alone. Here, we performed reaction-diffusion simulations of Ca2+-driven synaptic vesicle fusion, which delineate the critical parameters influencing an accurate prediction of coupling distance. Our study provides guidelines for characterizing and understanding how variability in coupling distance across chemical synapses could be estimated accurately.
Collapse
|
42
|
Jean P, Lopez de la Morena D, Michanski S, Jaime Tobón LM, Chakrabarti R, Picher MM, Neef J, Jung S, Gültas M, Maxeiner S, Neef A, Wichmann C, Strenzke N, Grabner C, Moser T. The synaptic ribbon is critical for sound encoding at high rates and with temporal precision. eLife 2018; 7:29275. [PMID: 29328020 PMCID: PMC5794258 DOI: 10.7554/elife.29275] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/19/2017] [Indexed: 11/30/2022] Open
Abstract
We studied the role of the synaptic ribbon for sound encoding at the synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in mice lacking RIBEYE (RBEKO/KO). Electron and immunofluorescence microscopy revealed a lack of synaptic ribbons and an assembly of several small active zones (AZs) at each synaptic contact. Spontaneous and sound-evoked firing rates of SGNs and their compound action potential were reduced, indicating impaired transmission at ribbonless IHC-SGN synapses. The temporal precision of sound encoding was impaired and the recovery of SGN-firing from adaptation indicated slowed synaptic vesicle (SV) replenishment. Activation of Ca2+-channels was shifted to more depolarized potentials and exocytosis was reduced for weak depolarizations. Presynaptic Ca2+-signals showed a broader spread, compatible with the altered Ca2+-channel clustering observed by super-resolution immunofluorescence microscopy. We postulate that RIBEYE disruption is partially compensated by multi-AZ organization. The remaining synaptic deficit indicates ribbon function in SV-replenishment and Ca2+-channel regulation. Our sense of hearing relies on our ears quickly and tirelessly processing information in a precise manner. Sounds cause vibrations in a part of the inner ear called the cochlea. Inside the cochlea, the vibrations move hair-like structures on sensory cells that translate these movements into electrical signals. These hair cells are connected to specialized nerve cells that relay the signals to the brain, which then interprets them as sounds. Hair cells communicate with the specialized nerve cells via connections known as chemical synapses. This means that the electrical signals in the hair cell activate channel proteins that allow calcium ions to flow in. This in turn triggers membrane-bound packages called vesicles inside the hair cell to fuse with its surface membrane and release their contents to the outside. The contents, namely chemicals called neurotransmitters, then travels across the space between the cells, relaying the signal to the nerve cell. The junctions between the hair cells and the nerve cells are more specifically known as ribbon synapses. This is because they have a ribbon-like structure that appears to tether a halo of vesicles close to the active zone where neurotransmitters are released. However, the exact role of this synaptic ribbon has remained mysterious despite decades of study. The ribbon is mainly composed of a protein called Ribeye, and now Jean, Lopez de la Morena, Michanski, Jaime Tobón et al. show that mutant mice that lack this protein do not have any ribbons at their “ribbon synapses”. Hair cells without synaptic ribbons are less able to timely and reliably send signals to the nerve cells, most likely because they cannot replenish the vesicles at the synapse quickly enough. Further analysis showed that the synaptic ribbon also helps to regulate the calcium channels at the synapse, which is important for linking the electrical signals in the hair cell to the release of the neurotransmitters. Jean et al. also saw that hair cells without ribbons reorganize their synapses to form multiple active zones that could transfer neurotransmitter to the nerve cells. This could partially compensate for the loss of the ribbons, meaning the impact of their loss may have been underestimated. Future studies could explore this by eliminating the Ribeye protein only after the ribbon synapses are fully formed. These findings may help scientists to better understand deafness and other hearing disorders in humans. They will also be of interest to neuroscientists who research synapses, hearing and other sensory processes.
Collapse
Affiliation(s)
- Philippe Jean
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - David Lopez de la Morena
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - Susann Michanski
- Collaborative Research Center, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany.,Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Lina María Jaime Tobón
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Rituparna Chakrabarti
- Collaborative Research Center, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany.,Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Maria Magdalena Picher
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - SangYong Jung
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Neuro Modulation and Neuro Circuitry Group, Singapore Bioimaging Consortium (SBIC), Biomedical Sciences Institutes, Singapore, Singapore
| | - Mehmet Gültas
- Department of Breeding Informatics, Georg-August-University Göttingen, Göttingen, Germany
| | - Stephan Maxeiner
- Institute for Anatomy and Cell Biology, University of the Saarland, Homburg, Germany
| | - Andreas Neef
- Bernstein Group Biophysics of Neural Computation, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Carolin Wichmann
- Collaborative Research Center, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany.,Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Nicola Strenzke
- Collaborative Research Center, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Auditory Systems Physiology Group, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - Chad Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
43
|
Krinner S, Butola T, Jung S, Wichmann C, Moser T. RIM-Binding Protein 2 Promotes a Large Number of Ca V1.3 Ca 2+-Channels and Contributes to Fast Synaptic Vesicle Replenishment at Hair Cell Active Zones. Front Cell Neurosci 2017; 11:334. [PMID: 29163046 PMCID: PMC5673845 DOI: 10.3389/fncel.2017.00334] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
Ribbon synapses of inner hair cells (IHCs) mediate high rates of synchronous exocytosis to indefatigably track the stimulating sound with sub-millisecond precision. The sophisticated molecular machinery of the inner hair cell active zone realizes this impressive performance by enabling a large number of synaptic voltage-gated CaV1.3 Ca2+-channels, their tight coupling to synaptic vesicles (SVs) and fast replenishment of fusion competent SVs. Here we studied the role of RIM-binding protein 2 (RIM-BP2)—a multidomain cytomatrix protein known to directly interact with Rab3 interacting molecules (RIMs), bassoon and CaV1.3—that is present at the inner hair cell active zones. We combined confocal and stimulated emission depletion (STED) immunofluorescence microscopy, electron tomography, patch-clamp and confocal Ca2+-imaging, as well as auditory systems physiology to explore the morphological and functional effects of genetic RIM-BP2 disruption in constitutive RIM-BP2 knockout mice. We found that RIM-BP2 (1) positively regulates the number of synaptic CaV1.3 channels and thereby facilitates synaptic vesicle release and (2) supports fast synaptic vesicle recruitment after readily releasable pool (RRP) depletion. However, Ca2+-influx—exocytosis coupling seemed unaltered for readily releasable SVs. Recordings of auditory brainstem responses (ABR) and of single auditory nerve fiber firing showed that RIM-BP2 disruption results in a mild deficit of synaptic sound encoding.
Collapse
Affiliation(s)
- Stefanie Krinner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,IMPRS Molecular Biology, Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Tanvi Butola
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,IMPRS Neuroscience, Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - SangYong Jung
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany.,Neuromodulation and Neurocircuitry Group, Singapore Bioimaging Consortium (SBIC), Biomedical Sciences Institutes (BMSI), Agency for Science Technology and Research (A∗STAR), Singapore, Singapore
| | - Carolin Wichmann
- Collaborative Research Center, University of Göttingen, Göttingen, Germany.,Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,IMPRS Molecular Biology, Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| |
Collapse
|