1
|
Long RM, Ong H, Wang WX, Komirishetty P, Areti A, Chandrasekhar A, Larouche M, Lefebvre JL, Zochodne DW. The Role of Protocadherin γ in Adult Sensory Neurons and Skin Reinnervation. J Neurosci 2023; 43:8348-8366. [PMID: 37821230 PMCID: PMC10711737 DOI: 10.1523/jneurosci.1940-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
The clustered protocadherins (cPcdhs) play a critical role in the patterning of several CNS axon and dendritic arbors, through regulation of homophilic self and neighboring interactions. While not explored, primary peripheral sensory afferents that innervate the epidermis may require similar constraints to convey spatial signals with appropriate fidelity. Here, we show that members of the γ-Pcdh (Pcdhγ) family are expressed in both adult sensory neuron axons and in neighboring keratinocytes that have close interactions during skin reinnervation. Adult mice of both sexes were studied. Pcdhγ knock-down either through small interfering RNA (siRNA) transduction or AAV-Cre recombinase transfection of adult mouse primary sensory neurons from floxed Pcdhγ mice was associated with a remarkable rise in neurite outgrowth and branching. Rises in outgrowth were abrogated by Rac1 inhibition. Moreover, AAV-Cre knock-down in Pcdhγ floxed neurons generated a rise in neurite self-intersections, and a robust rise in neighbor intersections or tiling, suggesting a role in sensory axon repulsion. Interestingly, preconditioned (3-d axotomy) neurons with enhanced growth had temporary declines in Pcdhγ and lessened outgrowth from Pcdhγ siRNA. In vivo, mice with local hindpaw skin Pcdhγ knock-down by siRNA had accelerated reinnervation by new epidermal axons with greater terminal branching and reduced intra-axonal spacing. Pcdhγ knock-down also had reciprocal impacts on keratinocyte density and nuclear size. Taken together, this work provides evidence for a role of Pcdhγ in attenuating outgrowth of sensory axons and their interactions, with implications in how new reinnervating axons following injury fare amid skin keratinocytes that also express Pcdhγ.SIGNIFICANCE STATEMENT The molecular mechanisms and potential constraints that govern skin reinnervation and patterning by sensory axons are largely unexplored. Here, we show that γ-protocadherins (Pcdhγ) may help to dictate interaction not only among axons but also between axons and keratinocytes as the former re-enter the skin during reinnervation. Pcdhγ neuronal knock-down enhances outgrowth in peripheral sensory neurons, involving the growth cone protein Rac1 whereas skin Pcdhγ knock-down generates rises in terminal epidermal axon growth and branching during re-innervation. Manipulation of sensory axon regrowth within the epidermis offers an opportunity to influence regenerative outcomes following nerve injury.
Collapse
Affiliation(s)
- Rebecca M Long
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Honyi Ong
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Wendy Xueyi Wang
- Program for Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5R 0A3, Canada
| | - Prashanth Komirishetty
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Aparna Areti
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Ambika Chandrasekhar
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Matt Larouche
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Julie L Lefebvre
- Program for Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5R 0A3, Canada
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
2
|
Dey S, Barkai O, Gokhman I, Suissa S, Haffner-Krausz R, Wigoda N, Feldmesser E, Ben-Dor S, Kovalenko A, Binshtok A, Yaron A. Kinesin family member 2A gates nociception. Cell Rep 2023; 42:113257. [PMID: 37851573 DOI: 10.1016/j.celrep.2023.113257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Nociceptive axons undergo remodeling as they innervate their targets during development and in response to environmental insults and pathological conditions. How is nociceptive morphogenesis regulated? Here, we show that the microtubule destabilizer kinesin family member 2A (Kif2a) is a key regulator of nociceptive terminal structures and pain sensitivity. Ablation of Kif2a in sensory neurons causes hyperinnervation and hypersensitivity to noxious stimuli in young adult mice, whereas touch sensitivity and proprioception remain unaffected. Computational modeling predicts that structural remodeling is sufficient to explain the phenotypes. Furthermore, Kif2a deficiency triggers a transcriptional response comprising sustained upregulation of injury-related genes and homeostatic downregulation of highly specific channels and receptors at the late stage. The latter effect can be predicted to relieve the hyperexcitability of nociceptive neurons, despite persisting morphological aberrations, and indeed correlates with the resolution of pain hypersensitivity. Overall, we reveal a critical control node defining nociceptive terminal structure, which is regulating nociception.
Collapse
Affiliation(s)
- Swagata Dey
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Omer Barkai
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem 91120, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Irena Gokhman
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sapir Suissa
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rebecca Haffner-Krausz
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noa Wigoda
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Andrew Kovalenko
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem 91120, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avraham Yaron
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
3
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Dos Santos NL, Lenert ME, Castillo ZW, Mody PH, Thompson LT, Burton MD. Age and sex drive differential behavioral and neuroimmune phenotypes during postoperative pain. Neurobiol Aging 2023; 123:129-144. [PMID: 36577640 PMCID: PMC9892227 DOI: 10.1016/j.neurobiolaging.2022.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
Surgical procedures in the geriatric population are steadily increasing, driven by improved healthcare technologies and longer lifespans. However, effective postoperative pain treatments are lacking, and this diminishes quality of life and recovery. Here we present one of the first preclinical studies to pursue sex- and age-specific differences in postoperative neuroimmune phenotypes and pain. We found that aged males, but not females, had a delayed onset of mechanical hypersensitivity post-surgery and faster resolution than young counterparts. This sex-specific age effect was accompanied by decreased paw innervation and increased local inflammation. Additionally, we find evidence of an age-dependent decrease in hyperalgesic priming and perioperative changes in nociceptor populations and spinal microglia in the aged. These findings suggest that impaired neuronal function and maladaptive inflammatory mechanisms influence postoperative pain development in advanced age. Elucidation of these neuroimmune phenotypes across age and sex enables the development of novel therapies that can be tailored for improved pain relief.
Collapse
Affiliation(s)
- Natalia L Dos Santos
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA
| | - Melissa E Lenert
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA
| | - Zachary W Castillo
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA
| | - Prapti H Mody
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA
| | - Lucien T Thompson
- Aging and Memory Research Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson TX, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA.
| |
Collapse
|
5
|
Clary RC, Jenkins BA, Lumpkin EA. Spatiotemporal dynamics of sensory neuron and Merkel-cell remodeling are decoupled during epidermal homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528558. [PMID: 36824872 PMCID: PMC9949164 DOI: 10.1101/2023.02.14.528558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
As the juncture between the body and environment, epithelia are both protective barriers and sensory interfaces that continually renew. To determine whether sensory neurons remodel to maintain homeostasis, we used in vivo two-photon imaging of somatosensory axons innervating Merkel cells in adult mouse skin. These touch receptors were highly plastic: 63% of Merkel cells and 89% of branches appeared, disappeared, grew, regressed and/or relocated over a month. Interestingly, Merkel-cell plasticity was synchronized across arbors during rapid epithelial turnover. When Merkel cells remodeled, the degree of plasticity between Merkel-cell clusters and their axons was well correlated. Moreover, branches were stabilized by Merkel-cell contacts. These findings highlight the role of epithelial-neural crosstalk in homeostatic remodeling. Conversely, axons were also dynamic when Merkel cells were stable, indicating that intrinsic neural mechanisms drive branch plasticity. Two terminal morphologies innervated Merkel cells: transient swellings called boutons, and stable cups termed kylikes. In Atoh1 knockout mice that lack Merkel cells, axons showed higher complexity than control mice, with exuberant branching and no kylikes. Thus, Merkel cells limit axonal branching and promote branch maturation. Together, these results reveal a previously unsuspected high degree of plasticity in somatosensory axons that is biased, but not solely dictated, by plasticity of target epithelial cells. This system provides a platform to identify intrinsic and extrinsic mechanisms that govern axonal patterning in epithelial homeostasis.
Collapse
|
6
|
Zochodne DW. Growth factors and molecular-driven plasticity in neurological systems. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:569-598. [PMID: 37620091 DOI: 10.1016/b978-0-323-98817-9.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
It has been almost 70 years since the discovery of nerve growth factor (NGF), a period of a dramatic evolution in our understanding of dynamic growth, regeneration, and rewiring of the nervous system. In 1953, the extraordinary finding that a protein found in mouse submandibular glands generated a halo of outgrowing axons has now redefined our concept of the nervous system connectome. Central and peripheral neurons and their axons or dendrites are no longer considered fixed or static "wiring." Exploiting this molecular-driven plasticity as a therapeutic approach has arrived in the clinic with a slate of new trials and ideas. Neural growth factors (GFs), soluble proteins that alter the behavior of neurons, have expanded in numbers and our understanding of the complexity of their signaling and interactions with other proteins has intensified. However, beyond these "extrinsic" determinants of neuron growth and function are the downstream pathways that impact neurons, ripe for translational development and potentially more important than individual growth factors that may trigger them. Persistent and ongoing nuances in clinical trial design in some of the most intractable and irreversible neurological conditions give hope for connecting new biological ideas with clinical benefits. This review is a targeted update on neural GFs, their signals, and new therapeutic ideas, selected from an expansive literature.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Division of Neurology, Department of Medicine and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Poitras T, Zochodne DW. Unleashing Intrinsic Growth Pathways in Regenerating Peripheral Neurons. Int J Mol Sci 2022; 23:13566. [PMID: 36362354 PMCID: PMC9654452 DOI: 10.3390/ijms232113566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 10/17/2023] Open
Abstract
Common mechanisms of peripheral axon regeneration are recruited following diverse forms of damage to peripheral nerve axons. Whether the injury is traumatic or disease related neuropathy, reconnection of axons to their targets is required to restore function. Supporting peripheral axon regrowth, while not yet available in clinics, might be accomplished from several directions focusing on one or more of the complex stages of regrowth. Direct axon support, with follow on participation of supporting Schwann cells is one approach, emphasized in this review. However alternative approaches might include direct support of Schwann cells that instruct axons to regrow, manipulation of the inflammatory milieu to prevent ongoing bystander axon damage, or use of inflammatory cytokines as growth factors. Axons may be supported by a growing list of growth factors, extending well beyond the classical neurotrophin family. The understanding of growth factor roles continues to expand but their impact experimentally and in humans has faced serious limitations. The downstream signaling pathways that impact neuron growth have been exploited less frequently in regeneration models and rarely in human work, despite their promise and potency. Here we review the major regenerative signaling cascades that are known to influence adult peripheral axon regeneration. Within these pathways there are major checkpoints or roadblocks that normally check unwanted growth, but are an impediment to robust growth after injury. Several molecular roadblocks, overlapping with tumour suppressor systems in oncology, operate at the level of the perikarya. They have impacts on overall neuron plasticity and growth. A second approach targets proteins that largely operate at growth cones. Addressing both sites might offer synergistic benefits to regrowing neurons. This review emphasizes intrinsic aspects of adult peripheral axon regeneration, emphasizing several molecular barriers to regrowth that have been studied in our laboratory.
Collapse
Affiliation(s)
| | - Douglas W. Zochodne
- Neuroscience and Mental Health Institute, Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| |
Collapse
|
8
|
Kupczyk P, Rykala M, Serek P, Pawlak A, Slowikowski B, Holysz M, Chodaczek G, Madej JP, Ziolkowski P, Niedzwiedz A. The cannabinoid receptors system in horses: Tissue distribution and cellular identification in skin. J Vet Intern Med 2022; 36:1508-1524. [PMID: 35801813 PMCID: PMC9308437 DOI: 10.1111/jvim.16467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The endocannabinoid system (ECS) is composed of cannabinoid receptors type 1 (CBR1) and type 2 (CBR2), cannabinoid-based ligands (endogenous chemically synthesized phytocannabinoids), and endogenous enzymes controlling their concentrations. Cannabinoid receptors (CBRs) have been identified in invertebrates and in almost all vertebrate species in the central and peripheral nervous system as well as in immune cells, where they control neuroimmune homeostasis. In humans, rodents, dogs, and cats, CBRs expression has been confirmed in the skin, and their expression and tissue distribution become disordered in pathological conditions. Cannabinoid receptors may be a possible therapeutic target in skin diseases. OBJECTIVES To characterize the distribution and cellular expression of CBRs in the skin of horses under normal conditions. ANIMALS Fifteen healthy horses. METHODS Using full-thickness skin punch biopsy samples, skin-derived primary epidermal keratinocytes and dermal-derived cells, we performed analysis of Cnr1 and Cnr2 genes using real-time PCR and CBR1 and CBR2 protein expression by confocal microscopy and Western blotting. RESULTS Normal equine skin, including equine epidermal keratinocytes and dermal fibroblast-like cells, all exhibited constant gene and protein expression of CBRs. CONCLUSIONS AND CLINICAL IMPORTANCE Our results represent a starting point for developing and translating new veterinary medicine-based pharmacotherapies using ECS as a possible target.
Collapse
Affiliation(s)
- Piotr Kupczyk
- Division of General and Experimental Pathology, Department of Clinical and Experimental Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Marta Rykala
- Department of Internal Medicine and Clinic for Horses, Dogs and Cats, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wroclaw, Poland
| | - Pawel Serek
- Department of Biochemistry and Immunochemistry, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wroclaw, Poland
| | - Bartosz Slowikowski
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Karol Marcinkowski Poznan University of Medical Sciences, Poznan, Poland
| | - Marcin Holysz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Karol Marcinkowski Poznan University of Medical Sciences, Poznan, Poland
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Lukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Jan P Madej
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Piotr Ziolkowski
- Division of General and Experimental Pathology, Department of Clinical and Experimental Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Artur Niedzwiedz
- Department of Internal Medicine and Clinic for Horses, Dogs and Cats, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
9
|
Poitras T, Singh V, Piragasam RS, Wang X, Mannaa AM, Chandrasekhar A, Martinez J, Fahlman R, Zochodne DW. Repurposed major urinary protein pheromones and adult sensory neurons: roles in neuron plasticity and experimental diabetes. Am J Physiol Endocrinol Metab 2022; 323:E53-E68. [PMID: 35635311 DOI: 10.1152/ajpendo.00001.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Major urinary proteins (MUPs), members of the broader lipocalin protein family, are classified as pheromones that are excreted in male rodent urine to define conspecific territoriality. In screening for differentially regulated mRNA transcripts in a mouse model of type 1 experimental diabetes mellitus (DM), we identified an unexpected upregulation of several closely related MUP transcripts within diabetic sensory dorsal root ganglia (DRG). Both sexes expressed overall MUP protein content as identified by an antibody widely targeting these upregulated family members, and immunohistochemistry identified expression within neurons, satellite glial cells, and Schwann cells. In dissociated adult sensory neurons, knockdown by an siRNA targeting upregulated MUP mRNAs, enhanced neurite outgrowth, indicating a growth-suppressive role, an impact that was synergistic with subnanomolar insulin neuronal signaling. While MUP knockdown did not generate rises in insulin signaling transcripts, the protein did bind to several mitochondrial and glial targets in DRG lysates. Analysis of a protein closely related to MUPs but that is expressed in humans, lipocalin-2, also suppressed growth, but its impact was unrelated to insulin. In a model of chronic type 1 DM, MUP siRNA knockdown improved electrophysiological and behavioral abnormalities of experimental neuropathy. MUPs have actions beyond pheromone signaling in rodents that involve suppression of growth plasticity of sensory neurons. Its hitherto unanticipated actions overlap with those of lipocalin-2 and may identify a common and widely mediated impact on neuron growth properties by members of the lipocalin family. Knockdown of MUP supports the trophic actions of insulin as a strategy that may improve features of type 1 experimental diabetic neuropathy.NEW & NOTEWORTHY New molecular mechanisms are important to unravel and understand diabetic polyneuropathy, a disorder prevalent in over half of persons with diabetes mellitus (DM). MUPs, members of the lipocalin family of molecules, have an unexpected impact on the plasticity of sensory neurons that are targeted in type 1 experimental diabetic neuropathy. This work explores this potential target in neuropathy in the context of the lipocalin family of molecules.
Collapse
Affiliation(s)
- Trevor Poitras
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Vandana Singh
- Division of Neurology, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - Xiuling Wang
- Southern Alberta Microarray Facility, Department Biochemistry and Molecular. Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Atef M Mannaa
- INSERM U1192, Laboratoire Protéomique, Réponse Inflammatoire & Spectrométrie de Masse (PRISM), Université de Lille, Lille, France
- Higher Institute of Engineering and Technology, New Borg El-Arab City, Egypt
| | - Ambika Chandrasekhar
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jose Martinez
- Division of Neurology, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Richard Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Neurology, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Advanced Gene-Targeting Therapies for Motor Neuron Diseases and Muscular Dystrophies. Int J Mol Sci 2022; 23:ijms23094824. [PMID: 35563214 PMCID: PMC9101723 DOI: 10.3390/ijms23094824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Gene therapy is a revolutionary, cutting-edge approach to permanently ameliorate or amend many neuromuscular diseases by targeting their genetic origins. Motor neuron diseases and muscular dystrophies, whose genetic causes are well known, are the frontiers of this research revolution. Several genetic treatments, with diverse mechanisms of action and delivery methods, have been approved during the past decade and have demonstrated remarkable results. However, despite the high number of genetic treatments studied preclinically, those that have been advanced to clinical trials are significantly fewer. The most clinically advanced treatments include adeno-associated virus gene replacement therapy, antisense oligonucleotides, and RNA interference. This review provides a comprehensive overview of the advanced gene therapies for motor neuron diseases (i.e., amyotrophic lateral sclerosis and spinal muscular atrophy) and muscular dystrophies (i.e., Duchenne muscular dystrophy, limb-girdle muscular dystrophy, and myotonic dystrophy) tested in clinical trials. Emphasis has been placed on those methods that are a few steps away from their authoritative approval.
Collapse
|
11
|
Alles SRA, Smith PA. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. FRONTIERS IN PAIN RESEARCH 2021; 2:750583. [PMID: 35295464 PMCID: PMC8915663 DOI: 10.3389/fpain.2021.750583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.
Collapse
Affiliation(s)
- Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Peter A Smith
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Cutaneous innervation in impaired diabetic wound healing. Transl Res 2021; 236:87-108. [PMID: 34029747 PMCID: PMC8380642 DOI: 10.1016/j.trsl.2021.05.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is associated with several potential comorbidities, among them impaired wound healing, chronic ulcerations, and the requirement for lower extremity amputation. Disease-associated abnormal cellular responses, infection, immunological and microvascular dysfunction, and peripheral neuropathy are implicated in the pathogenesis of the wound healing impairment and the diabetic foot ulcer. The skin houses a dense network of sensory nerve afferents and nerve-derived modulators, which communicate with epidermal keratinocytes and dermal fibroblasts bidirectionally to effect normal wound healing after trauma. However, the mechanisms through which cutaneous innervation modulates wound healing are poorly understood, especially in humans. Better understanding of these mechanisms may provide the basis for targeted treatments for chronic diabetic wounds. This review provides an overview of wound healing pathophysiology with a focus on neural involvement in normal and diabetic wound healing, as well as future therapeutic perspectives to address the unmet needs of diabetic patients with chronic wounds.
Collapse
|
13
|
Poitras T, Piragasam RS, Joy T, Jackson J, Chandrasekhar A, Fahlman R, Zochodne DW. Major urinary protein excreted in rodent hindpaw sweat. J Anat 2021; 239:529-535. [PMID: 33686663 PMCID: PMC8273588 DOI: 10.1111/joa.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022] Open
Abstract
Alternative roles for sweat production beyond thermoregulation, considered less frequently, include chemical signaling. We identified the presence of a well-established rodent urinary pheromone, major urinary protein (MUP) in sweat ductules of the footpad dermal skin of mice. A hindpaw sweat proteomic analysis in hindpaw sweat samples collected in rats and generated by unmyelinated axon activation, identified seven lipocalin family members including MUP and 19 additional unique proteins. Behavioural responses to sniffing male mouse foot protein lysates suggested avoidance in a subset of male mice, but were not definitive. Rodent hindpaw sweat glands secrete a repertoire of proteins that include MUPs known to have roles in olfactory communication.
Collapse
Affiliation(s)
- Trevor Poitras
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | | | - Twinkle Joy
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | - Jesse Jackson
- Department of Physiology and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | - Ambika Chandrasekhar
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | - Richard Fahlman
- Department of BiochemistryUniversity of AlbertaEdmontonABCanada
| | - Douglas W. Zochodne
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
14
|
Kobayashi M, Zochodne DW. Diabetic polyneuropathy: Bridging the translational gap. J Peripher Nerv Syst 2021; 25:66-75. [PMID: 32573914 DOI: 10.1111/jns.12392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
Abstract
Clinical trials for diabetic polyneuropathy (DPN) have failed to identify therapeutic impacts that have arrested or reversed the disorder, despite a long history. This review considers DPN in the context of a unique neurodegenerative disorder that targets peripheral neurons and their companion glial cells. The approach is to examine what cells, cell substructures, and pathways are implicated in causing DPN and how they might be addressed therapeutically. These include axonopathy, neuronopathy, hyperglycemia, polyol flux, advanced glycation endproduct (AGE)-receptor AGE signaling, growth factor disruption, abnormal insulin signaling, and abnormalities of other intrinsic neuron pathways. Mitochondrial dysfunction and lipid toxicity are largely delegated to the companion review in this issue by Stino and Feldman. Finally, the linkage between axon plasticity of cutaneous nerves, peripheral neuroregenerative pathways, and diabetes are discussed.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Department of Neurology, Nissan Tamagawa Hospital, Tokyo, Japan.,Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Douglas W Zochodne
- Division of Neurology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Komirishetty P, Zubkow K, Areti A, Ong H, Zochodne DW. Delayed manipulation of regeneration within injured peripheral axons. Neurobiol Dis 2021; 155:105383. [PMID: 33945876 DOI: 10.1016/j.nbd.2021.105383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/20/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022] Open
Abstract
While several new translational strategies to enhance regrowth of peripheral axons have been identified, combined approaches with different targets are rare. Moreover, few have been studied after a significant delay when growth programs are already well established and regeneration-related protein expression has waned. Here we study two approaches, Rb1 (Retinoblastoma 1) knockdown that targets overall neuron plasticity, and near nerve insulin acting as a growth factor. Both are validated to boost regrowth only at the outset of regeneration. We show that local delivery of Rb1 siRNA alone, with electroporation to an area of prior sciatic nerve injury generated knockdown of Rb1 mRNA in ipsilateral lumbar dorsal root ganglia. While mice treated with Rb1-targeted siRNA, compared with scrambled control siRNA, starting 2 weeks after the onset of regeneration, had only limited behavioural or electrophysiological benefits, they had enhanced reinnervation of epidermal axons. We next confirmed that intrinsic Rb1 knockdown combined with exogenous insulin had dramatic synergistic impacts on the growth patterns of adult sensory neurons studied in vitro, prompting analysis of a combined approach in vivo. Using an identical delayed post-injury protocol, we noted that added insulin not only augmented epidermal reinnervation rendered by Rb1 knockdown alone but also improved indices of mechanical sensation and motor axon recovery. The findings illustrate that peripheral neurons that are well into attempted regrowth retain their responsiveness to both intrinsic and exogenous approaches that improve their recovery. We also identify a novel local approach to manipulate gene expression and outcome in regrowing axons.
Collapse
Affiliation(s)
- P Komirishetty
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada
| | - K Zubkow
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada
| | - A Areti
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada
| | - H Ong
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada
| | - D W Zochodne
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada.
| |
Collapse
|
16
|
Kessler JA, Shaibani A, Sang CN, Christiansen M, Kudrow D, Vinik A, Shin N. Gene therapy for diabetic peripheral neuropathy: A randomized, placebo-controlled phase III study of VM202, a plasmid DNA encoding human hepatocyte growth factor. Clin Transl Sci 2021; 14:1176-1184. [PMID: 33465273 PMCID: PMC8212761 DOI: 10.1111/cts.12977] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 12/20/2020] [Indexed: 12/26/2022] Open
Abstract
VM202 is a plasmid DNA encoding two isoforms of hepatocyte growth factor (HGF). A previous phase II study in subjects with painful diabetic peripheral neuropathy (DPN) showed significant reductions in pain. A phase III study was conducted to evaluate the safety and efficacy of VM202 in DPN. The trial was conducted in two parts, one for 9 months (DPN 3-1) with 500 subjects (VM202: 336 subjects; and placebo: 164) and a preplanned subset of 101 subjects (VM202: 65 subjects; and placebo: 36) with a noninterventional extension to 12 months (DPN 3-1b). VM202 or placebo was administered to calf muscles on days 0 and 14, and on days 90 and 104. The primary end point in DPN 3-1 was change from baseline in the mean 24-h Numerical Rating Scale (NRS) pain score. In DPN 3-1b, the primary end point was safety, whereas the secondary efficacy end point was change in the mean pain score. VM202 was well-tolerated in both studies without significant adverse events. VM202 failed to meet its efficacy end points in DPN 3-1. In DPN 3-1b, however, VM202 showed significant and clinically meaningful pain reduction versus placebo. Pain reduction in DPN 3-1b was even greater in subjects not receiving gabapentin or pregabalin, confirming an observation noted in the phase II study. In DPN 3-1b, symptomatic relief was maintained for 8 months after the last injection suggesting that VM202 treatment might change disease progression. Despite the perplexing discrepancy between the two studies, the safety and long-lasting pain-relieving effects of VM202 observed in DPN 3-1b warrant another rigorous phase III study. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? Current therapies for painful diabetic peripheral neuropathy (DPN) are palliative and do not target the underlying mechanisms. Moreover, symptomatic relief is often limited with existing neuropathic pain drugs. Thus, there is a great medical need for safer and effective treatments for DPN. WHAT QUESTION DID THIS STUDY ADDRESS? Can nonviral gene delivery of hepatocyte growth factor reduce pain in patients with DPN and potentially modify progression of the disorder? WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? Nonviral gene therapy can be used safely and practically to treat DPN. HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? As the first gene medicine to enter advanced clinical trials for the treatment of DPN, this study provides the proof of concept of an entirely new potential approach to the disorder.
Collapse
Affiliation(s)
- John A Kessler
- Department of Neurology, Northwestern University, Chicago, Illinois, USA
| | - Aziz Shaibani
- Nerve and Muscle Center of Texas, Texas Medical Center, Houston, Texas, USA
| | - Christine N Sang
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - David Kudrow
- Neurological Research Institute, Santa Monica, California, USA
| | - Aaron Vinik
- Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | | | | |
Collapse
|
17
|
Chandrasekhar A, Komirishetty P, Areti A, Krishnan A, Zochodne DW. Dual Specificity Phosphatases Support Axon Plasticity and Viability. Mol Neurobiol 2021; 58:391-407. [PMID: 32959171 DOI: 10.1007/s12035-020-02119-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
In peripheral neuropathies, axonal degeneration (AxD) impairs the prognosis for recovery. Here, we describe a role for dual specificity phosphatases (DUSPs; MAP kinase phosphatases, MKPs), in supporting autonomous axon plasticity and viability. Both DUSPs 1 and 4 were identified within intact or axotomized sensory neurons. Knockdown of DUSP 1 or 4 independently or combined impaired neurite outgrowth in adult dissociated sensory neurons. Furthermore, adult sensory neurons with DUSP knockdown were rendered sensitive to axonopathy in vitro following exposure to low, subtoxic TrpV1 (transient receptor potential cation channel subfamily V member 1) activation by capsaicin, an intervention normally supportive of growth. This was not prevented by concurrent DLK (dual leucine zipper kinase) knockdown. Ex vivo neurofilament dissolution was heightened by DUSP inhibition within explanted nerves. In vivo DUSP knockdown or inhibition was associated with more rapid loss of motor axon excitability. The addition of SARM1 (sterile alpha and TIR motif containing 1) siRNA abrogated DUSP1 and 4 mediated loss of excitability. DUSP knockdown accelerated neurofilament breakdown and there was earlier morphological evidence of myelinated axon degeneration distal to axotomy. Taken together, the findings identify a key role for DUSPs in supporting axon plasticity and survival.
Collapse
Affiliation(s)
- Ambika Chandrasekhar
- Neuroscience and Mental Health Institute and Division of Neurology, Department of Medicine, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Prashanth Komirishetty
- Neuroscience and Mental Health Institute and Division of Neurology, Department of Medicine, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Aparna Areti
- Neuroscience and Mental Health Institute and Division of Neurology, Department of Medicine, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Anand Krishnan
- Neuroscience and Mental Health Institute and Division of Neurology, Department of Medicine, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Douglas W Zochodne
- Neuroscience and Mental Health Institute and Division of Neurology, Department of Medicine, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
18
|
Bautista J, Chandrasekhar A, Komirishetty PK, Duraikannu A, Zochodne DW. Regenerative plasticity of intact human skin axons. J Neurol Sci 2020; 417:117058. [PMID: 32755738 DOI: 10.1016/j.jns.2020.117058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 01/29/2023]
Abstract
The evaluation of human epidermal innervation and its impact by disease has largely focused on rigorous immunohistochemical counts of PGP 9.5 labelled axons. In this brief and preliminary report, we expand the repertoire of epidermal axon markers to include those with an influence on their regenerative plasticity. We studied human lower limb punch skin samples with tandem analyses of their mRNA content using qRT-PCR. Normal human subjects (n = 11) and two patients with newly diagnosed CIDP were sampled with the latter undergoing serial tandem biopsies before and after 3 months of immunotherapy. Controls expressed regeneration proteins within dermal and epidermal axons: GAP43 (growth associated protein 43), Shh (sonic hedgehog) and SCG (superior cervical ganglion-10; stathmin 2). Moreover, this expression accompanied intraepidermal nerve fiber density (IENF) within normal established values. CIDP patients had lower IENF but also expressed GAP43, Shh, and SCG. Tandem qRT-PCR identified confirmed the presence not only of these plasticity markers but of additional regeneration related mRNAs. CIDP patients had marked elevation of several mRNAs, with improvement following treatment. The findings support the concept of dynamic skin axon plasticity in humans is relevant toward consideration of newer therapeutic approaches.
Collapse
Affiliation(s)
- J Bautista
- Division of Neurology, Department of Medicine, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - A Chandrasekhar
- Division of Neurology, Department of Medicine, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - P K Komirishetty
- Division of Neurology, Department of Medicine, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - A Duraikannu
- Division of Neurology, Department of Medicine, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - D W Zochodne
- Division of Neurology, Department of Medicine, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
19
|
Lee SI, Hoeijmakers JGJ, Faber CG, Merkies ISJ, Lauria G, Waxman SG. The small fiber neuropathy NaV1.7 I228M mutation: impaired neurite integrity via bioenergetic and mitotoxic mechanisms, and protection by dexpramipexole. J Neurophysiol 2020; 123:645-657. [DOI: 10.1152/jn.00360.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Gain-of-function variants in voltage-gated sodium channel NaV1.7 that increase firing frequency and spontaneous firing of dorsal root ganglion (DRG) neurons have recently been identified in 5–10% of patients with idiopathic small fiber neuropathy (I-SFN). Our previous in vitro observations suggest that enhanced sodium channel activity can contribute to a decrease in length of peripheral sensory axons. We have hypothesized that sustained sodium influx due to the expression of SFN-associated sodium channel variants may trigger an energetic deficit in neurons that contributes to degeneration and loss of nerve fibers in SFN. Using an ATP FRET biosensor, we now demonstrate reduced steady-state levels of ATP and markedly faster ATP decay in response to membrane depolarization in cultured DRG neurons expressing an SFN-associated variant NaV1.7, I228M, compared with wild-type neurons. We also observed that I228M neurons show a significant reduction in mitochondrial density and size, indicating dysfunctional mitochondria and a reduced bioenergetic capacity. Finally, we report that exposure to dexpramipexole, a drug that improves mitochondrial energy metabolism, increases the neurite length of I228M-expressing neurons. Our data suggest that expression of gain-of-function variants of NaV1.7 can damage mitochondria and compromise cellular capacity for ATP production. The resulting bioenergetic crisis can consequently contribute to loss of axons in SFN. We suggest that, in addition to interventions that reduce ionic disturbance caused by mutant NaV1.7 channels, an alternative therapeutic strategy might target the bioenergetic burden and mitochondrial damage that occur in SFN associated with NaV1.7 gain-of-function mutations. NEW & NOTEWORTHY Sodium channel NaV1.7 mutations that increase dorsal root ganglion (DRG) neuron excitability have been identified in small fiber neuropathy (SFN). We demonstrate reduced steady-state ATP levels, faster depolarization-evoked ATP decay, and reduced mitochondrial density and size in cultured DRG neurons expressing SFN-associated variant NaV1.7 I228M. Dexpramipexole, which improves mitochondrial energy metabolism, has a protective effect. Because gain-of-function NaV1.7 variants can compromise bioenergetics, therapeutic strategies that target bioenergetic burden and mitochondrial damage merit study in SFN.
Collapse
Affiliation(s)
- Seong-il Lee
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
- Center for Neuroscience and Regeneration Research, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Janneke G. J. Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Catharina G. Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ingemar S. J. Merkies
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Neurology, Curaçao Medical Center, Willemstad, Curaçao
| | - Giuseppe Lauria
- Neuroalgology Unit, Foundazione IRCCS Istituto Neurologico “Carlo Besta,” Milan, Italy
- Department of Biomedical and Clinical Sciences “Luigi Sacco,” University of Milan, Milan, Italy
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
- Center for Neuroscience and Regeneration Research, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
20
|
Bray ER, Chéret J, Yosipovitch G, Paus R. Schwann cells as underestimated, major players in human skin physiology and pathology. Exp Dermatol 2019; 29:93-101. [DOI: 10.1111/exd.14060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Eric R. Bray
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
- Miami Itch Center University of Miami Miller School of Medicine Miami FL USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
- Centre for Dermatology Research University of Manchester Manchester UK
| |
Collapse
|
21
|
Azmi S, Jeziorska M, Ferdousi M, Petropoulos IN, Ponirakis G, Marshall A, Alam U, Asghar O, Atkinson A, Jones W, Boulton AJM, Brines M, Augustine T, Malik RA. Early nerve fibre regeneration in individuals with type 1 diabetes after simultaneous pancreas and kidney transplantation. Diabetologia 2019; 62:1478-1487. [PMID: 31175373 PMCID: PMC6647173 DOI: 10.1007/s00125-019-4897-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/15/2019] [Indexed: 01/17/2023]
Abstract
AIMS/HYPOTHESIS The study aimed to assess the impact on neuropathy of simultaneous pancreas and kidney transplantation (SPK) in individuals with type 1 diabetes. METHODS This longitudinal observational study examined neuropathic symptoms, deficits, quantitative sensory testing, neurophysiology, corneal confocal microscopy and skin biopsy results in 32 healthy (non-diabetic) control participants, 29 individuals with type 1 diabetes and severe diabetic peripheral neuropathy [DPN] and 36 individuals with type 1 diabetes after SPK. RESULTS Following SPK, HbA1c, eGFR, triacylglycerols and HDL improved significantly (all p < 0.05). Compared with the DPN group, which remained unchanged over the 36 month study period, corneal confocal microscopy assessments improved over 36 months following SPK, with increasing corneal nerve fibre density of 5/mm2 (95% CI 1.8, 8.2; p = 0.003) and corneal nerve fibre length of 3.2 mm/mm2 (95% CI 0.9, 5.5; p = 0.006). The Neuropathy Symptom Profile and peroneal nerve conduction velocity also improved significantly by 36 months compared with DPN (2.5; 95% CI 0.7, 4.3; p = 0.008 and 4.7 m/s; 95% CI 2.2, 7.4; p = 0.0004, respectively), but with a temporal delay compared with the corneal confocal microscopy assessments. Intraepidermal nerve fibre density did not change following SPK; however, mean dendritic length improved significantly at 12 (p = 0.020) and 36 (p = 0.019) months. In contrast, there were no changes in the Neuropathy Disability Score, quantitative sensory testing or cardiac autonomic function assessments. Except for a small decrease in corneal nerve fibre density in the healthy control group, there were no changes in any other neuropathy measure in the healthy control or DPN groups over 36 months. CONCLUSIONS/INTERPRETATION SPK is associated with early and maintained small nerve fibre regeneration in the cornea and skin, followed by an improvement in neuropathic symptoms and peroneal nerve conduction velocity.
Collapse
Affiliation(s)
- Shazli Azmi
- Institute of Cardiovascular Sciences, University of Manchester and Central Manchester NHS Foundation Trust, Core Technology Facility, Grafton Street, Manchester, M13 9NT, UK
| | - Maria Jeziorska
- Institute of Cardiovascular Sciences, University of Manchester and Central Manchester NHS Foundation Trust, Core Technology Facility, Grafton Street, Manchester, M13 9NT, UK
| | - Maryam Ferdousi
- Institute of Cardiovascular Sciences, University of Manchester and Central Manchester NHS Foundation Trust, Core Technology Facility, Grafton Street, Manchester, M13 9NT, UK
| | - Ioannis N Petropoulos
- Department of Medicine, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Georgios Ponirakis
- Department of Medicine, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Andrew Marshall
- Department of Clinical Neurophysiology, Central Manchester NHS Foundation Trust, Manchester, UK
| | - Uazman Alam
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Omar Asghar
- Institute of Cardiovascular Sciences, University of Manchester and Central Manchester NHS Foundation Trust, Core Technology Facility, Grafton Street, Manchester, M13 9NT, UK
| | - Andrew Atkinson
- Institute of Cardiovascular Sciences, University of Manchester and Central Manchester NHS Foundation Trust, Core Technology Facility, Grafton Street, Manchester, M13 9NT, UK
| | - Wendy Jones
- Institute of Cardiovascular Sciences, University of Manchester and Central Manchester NHS Foundation Trust, Core Technology Facility, Grafton Street, Manchester, M13 9NT, UK
| | - Andrew J M Boulton
- Institute of Cardiovascular Sciences, University of Manchester and Central Manchester NHS Foundation Trust, Core Technology Facility, Grafton Street, Manchester, M13 9NT, UK
| | | | - Titus Augustine
- Department of Transplant and Endocrine Surgery, Central Manchester University Hospital NHS Foundation Trust, Manchester, UK
| | - Rayaz A Malik
- Institute of Cardiovascular Sciences, University of Manchester and Central Manchester NHS Foundation Trust, Core Technology Facility, Grafton Street, Manchester, M13 9NT, UK.
- Department of Medicine, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
22
|
Takahashi S, Ishida A, Kubo A, Kawasaki H, Ochiai S, Nakayama M, Koseki H, Amagai M, Okada T. Homeostatic pruning and activity of epidermal nerves are dysregulated in barrier-impaired skin during chronic itch development. Sci Rep 2019; 9:8625. [PMID: 31197234 PMCID: PMC6565750 DOI: 10.1038/s41598-019-44866-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/24/2019] [Indexed: 12/19/2022] Open
Abstract
The epidermal barrier is thought to protect sensory nerves from overexposure to environmental stimuli, and barrier impairment leads to pathological conditions associated with itch, such as atopic dermatitis (AD). However, it is not known how the epidermal barrier continuously protects nerves for the sensory homeostasis during turnover of the epidermis. Here we show that epidermal nerves are contained underneath keratinocyte tight junctions (TJs) in normal human and mouse skin, but not in human AD samples or mouse models of chronic itch caused by epidermal barrier impairment. By intravital imaging of the mouse skin, we found that epidermal nerve endings were frequently extended and retracted, and occasionally underwent local pruning. Importantly, the epidermal nerve pruning took place rapidly at intersections with newly forming TJs in the normal skin, whereas this process was disturbed during chronic itch development. Furthermore, aberrant Ca2+ increases in epidermal nerves were induced in association with the disturbed pruning. Finally, TRPA1 inhibition suppressed aberrant Ca2+ increases in epidermal nerves and itch. These results suggest that epidermal nerve endings are pruned through interactions with keratinocytes to stay below the TJ barrier, and that disruption of this mechanism may lead to aberrant activation of epidermal nerves and pathological itch.
Collapse
Affiliation(s)
- Sonoko Takahashi
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Azusa Ishida
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.,Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Kawasaki
- Department of Dermatology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.,Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Disease Biology Group, RIKEN Medical Sciences Innovation Hub Program, Yokohama, Kanagawa, 230-0045, Japan
| | - Sotaro Ochiai
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Manabu Nakayama
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Haruhiko Koseki
- Disease Biology Group, RIKEN Medical Sciences Innovation Hub Program, Yokohama, Kanagawa, 230-0045, Japan.,Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.,Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Takaharu Okada
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan. .,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan. .,JST, PRESTO, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
23
|
Poitras T, Chandrasekhar A, McCoy L, Komirishetty P, Areti A, Webber CA, Zochodne DW. Selective Sensory Axon Reinnervation and TRPV1 Activation. Mol Neurobiol 2019; 56:7144-7158. [PMID: 30989631 DOI: 10.1007/s12035-019-1574-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
Abstract
Current strategies to enhance regeneration of peripheral neurons involve broad activation of sensory, autonomic, and motor axons. Peripheral neuron regeneration is limited in persons with damage or disease of peripheral axons. Here, we provide evidence that subtoxic activation of TRPV1 channels in sensory neurons is associated with activation of growth and subtle changes in skin reinnervation. We identify a bidirectional, dose-related impact of capsaicin, a TRPV1 agonist, on sensory neurons and their axons with rises in their outgrowth plasticity at low doses and toxic neurodegeneration at high doses. Moreover, its impact on growth added to that of preconditioning. Neither outcome was observed in TRPV1 null neurons. We confirmed that low dose activation was associated with rises in neuronal calcium, as well as rises in TRPV1 mRNA transcripts. In mice with a sciatic nerve crush followed by a single application of capsaicin directly to the injury site, there was no impact on motor or myelinated axon recovery but there was evidence of better recovery of thermal sensation toward baseline with hyperalgesia. Moreover, skin reinnervation by epidermal axons approached contralateral levels. TRPV1 null mice displayed loss of thermal sensation during later recovery. In sensory axons innervating the pinna of the ear, local capsaicin rendered early axon loss followed by later hyperinnervation. Taken together, TRPV1 activation alters the regenerative behavior of adult neurons and their axons both in vitro and during epidermal reinnervation in vivo. The findings identify a selective manipulation that augments cutaneous innervation by thermosensitive axons.
Collapse
Affiliation(s)
- T Poitras
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 132A-Clinical Sciences Building, 11350 Ave, Edmonton, Alberta, T6G 2G3, Canada
| | - A Chandrasekhar
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 132A-Clinical Sciences Building, 11350 Ave, Edmonton, Alberta, T6G 2G3, Canada
| | - L McCoy
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 132A-Clinical Sciences Building, 11350 Ave, Edmonton, Alberta, T6G 2G3, Canada
| | - P Komirishetty
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 132A-Clinical Sciences Building, 11350 Ave, Edmonton, Alberta, T6G 2G3, Canada
| | - A Areti
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 132A-Clinical Sciences Building, 11350 Ave, Edmonton, Alberta, T6G 2G3, Canada
| | - C A Webber
- Division of Anatomy, Department of Surgery and the Neuroscience and Mental Health Institute, University of Alberta, 11350 Ave, Edmonton, Alberta, T6G 2G3, Canada
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 132A-Clinical Sciences Building, 11350 Ave, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
24
|
Li B, Hu W, Ma K, Zhang C, Fu X. Are hair follicle stem cells promising candidates for wound healing? Expert Opin Biol Ther 2019; 19:119-128. [PMID: 30577700 DOI: 10.1080/14712598.2019.1559290] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION With the continued focus on in-depth investigations of hair follicle stem cells (HFSCs), the role of HFSCs in wound healing has attracted increasing attention from researchers. This review may afford meaningful implications for HFSC treatment of wounds. AREAS COVERED We present the properties of HFSCs, analyze the possibility of HFSCs in wound healing, and sum up the recent studies into wound repair with HFSCs. The details of HFSCs in wound healing have been discussed. The possible mechanisms of wound healing with HFSCs have been elaborated. Additionally, the factors that influence HFSCs in wound healing are also summarized. EXPERT OPINION Hair follicle stem cells are promising sources for wound healing. However, a further understanding of human HFSCs and the safety use of HFSCs in clinical practice still remain in relative infancy.
Collapse
Affiliation(s)
- Bingmin Li
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Wenzhi Hu
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Kui Ma
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Cuiping Zhang
- b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Xiaobing Fu
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| |
Collapse
|
25
|
UCHL1/PGP 9.5 Dynamic in Neuro-Immune-Cutaneous Milieu: Focusing on Axonal Nerve Terminals and Epidermal Keratinocytes in Psoriatic Itch. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7489316. [PMID: 30148172 PMCID: PMC6083486 DOI: 10.1155/2018/7489316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 01/03/2023]
Abstract
Psoriasis is an immunogenetic skin disease manifesting as plaque lesions on the skin. Patients with psoriasis frequently suffer from itch, an unpleasant sensation causing a desire to scratch. Psoriatic itch is mainly transmitted by unmyelinated C-fibers; however, the exact molecular mechanism of psoriatic itch is still unexplained. Protein gene product 9.5 (PGP 9.5) is a panneurological marker commonly used for analysis of peripheral peptidergic and nonpeptidergic nerves and identification of cutaneous neuro-immune-endocrine cells. However, some studies suggested that nonneuronal cells, like keratinocytes, may also express PGP 9.5. This phenomenon might be linked with impaired axonal transport, keratinocyte injury, or dysfunctions of neuro-immune-cutaneous connections. The aim of this study was to analyze the expression of PGP 9.5 in psoriatic skin. We observed significantly altered density of PGP 9.5-positive axonal nerve terminals in pruritic lesional (p=0.04) and nonlesional psoriatic skin (p>0.001) compared with controls. In contrast, no significant differences were observed between psoriatic skin without itch and controls. Furthermore, PGP 9.5 expression by suprabasal keratinocytes (SBKs) was significantly increased in itchy skin lesions (p=0.007) compared to skin without itch, and a positive correlation was observed between PGP 9.5 expression and itch intensity (r=0.64; p=0.02). Our findings indicate changes in peripheral innervations and psoriatic keratinocytes, which may influence neuro-immune-cutaneous homeostasis and modulate itch transmission.
Collapse
|
26
|
Brazill JM, Cruz B, Zhu Y, Zhai RG. Nmnat mitigates sensory dysfunction in a Drosophila model of paclitaxel-induced peripheral neuropathy. Dis Model Mech 2018; 11:dmm.032938. [PMID: 29716954 PMCID: PMC6031360 DOI: 10.1242/dmm.032938] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/25/2018] [Indexed: 01/03/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the major dose-limiting side effect of many commonly used chemotherapeutic agents, including paclitaxel. Currently, there are no neuroprotective or effective symptomatic treatments for CIPN. Lack of understanding of the in vivo mechanisms of CIPN has greatly impeded the identification of therapeutic targets. Here, we optimized a model of paclitaxel-induced peripheral neuropathy using Drosophila larvae that recapitulates aspects of chemotherapy-induced sensory dysfunction. We showed that nociceptive sensitivity is associated with disrupted organization of microtubule-associated MAP1B/Futsch and aberrant stabilization of peripheral sensory dendrites. These findings establish a robust and amenable model for studying peripheral mechanisms of CIPN. Using this model, we uncovered a critical role for nicotinamide mononucleotide adenylyltransferase (Nmnat) in maintaining the integrity and function of peripheral sensory neurons and uncovered Nmnat's therapeutic potential against diverse sensory symptoms of CIPN. Summary: Neurotoxic side effects of chemotherapy are poorly understood. Here, the authors optimize a Drosophila model of paclitaxel-induced sensory dysfunction, which is then used to explore the neuroprotective capacity of Nmnat.
Collapse
Affiliation(s)
- Jennifer M Brazill
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Beverley Cruz
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA .,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China
| |
Collapse
|
27
|
Schmitd LB, Beesley LJ, Russo N, Bellile EL, Inglehart RC, Liu M, Romanowicz G, Wolf GT, Taylor JMG, D'Silva NJ. Redefining Perineural Invasion: Integration of Biology With Clinical Outcome. Neoplasia 2018; 20:657-667. [PMID: 29800815 PMCID: PMC6030236 DOI: 10.1016/j.neo.2018.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 12/03/2022] Open
Abstract
A diagnosis of perineural invasion (PNI), defined as cancer within or surrounding at least 33% of the nerve, leads to selection of aggressive treatment in squamous cell carcinoma (SCC). Recent mechanistic studies show that cancer and nerves interact prior to physical contact. The purpose of this study was to explore cancer-nerve interactions relative to clinical outcome. Biopsy specimens from 71 patients with oral cavity SCC were stained with hematoxylin and eosin and immunohistochemical (IHC; cytokeratin, S100, GAP43, Tuj1) stains. Using current criteria, PNI detection was increased with IHC. Overall survival (OS) tended to be poor for patients with PNI (P = .098). OS was significantly lower for patients with minimum tumor-nerve distance smaller than 5 μm (P = .011). The estimated relative death rate decreased as the nerve-tumor distance increased; there was a gradual drop off in death rate from distance equal to zero that stabilized around 500 μm. In PNI-negative patients, nerve diameter was significantly related to OS (HR 2.88, 95%CI[1.11,7.49]). Among PNI-negative nerves, larger nerve-tumor distance and smaller nerve diameter were significantly related to better OS, even when adjusting for T-stage and age (HR 0.82, 95% CI[0.72,0.92]; HR 1.27, 95% CI[1.00,1.62], respectively). GAP43, a marker for neuronal outgrowth, stained less than Tuj1 in nerves at greater distances from tumor (OR 0.76, 95% CI[0.73,0.79]); more GAP43 staining was associated with PNI. Findings from a small group of patients suggest that nerve parameters other than presence of PNI can influence outcome and that current criteria of PNI need to be re-evaluated to integrate recent biological discoveries.
Collapse
Affiliation(s)
- Ligia B Schmitd
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA
| | - Lauren J Beesley
- Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, USA
| | - Nickole Russo
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA
| | - Emily L Bellile
- Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, USA
| | - Ronald C Inglehart
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA
| | - Min Liu
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA
| | - Genevieve Romanowicz
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA
| | - Gregory T Wolf
- Otolaryngology, University of Michigan Medical School, 1500 E Medical Center Dr, Ann Arbor, MI, USA
| | - Jeremy M G Taylor
- Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, USA
| | - Nisha J D'Silva
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA;; Pathology, University of Michigan Medical School, 1500 E Medical Center Dr, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Woo V, Cheng C, Duraikannu A, Chandrasekhar A, Purdy K, Martinez J, Zochodne D. Caspase-6 is a Dispensable Enabler of Adult Mammalian Axonal Degeneration. Neuroscience 2018; 371:242-253. [DOI: 10.1016/j.neuroscience.2017.11.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
|
29
|
Kang H, Orlowsky RL, Gerling GJ. A DISCRETE-EVENT SIMULATION APPROACH TO IDENTIFY RULES THAT GOVERN ARBOR REMODELING FOR BRANCHING CUTANEOUS AFFERENTS IN HAIRY SKIN. PROCEEDINGS OF THE ... WINTER SIMULATION CONFERENCE. WINTER SIMULATION CONFERENCE 2018. [PMID: 29527094 DOI: 10.1109/wsc.2017.8247992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In mammals, touch is encoded by sensory receptors embedded in the skin. For one class of receptors in the mouse, the architecture of its Merkel cells, unmyelinated neurites, and heminodes follow particular renewal and remodeling trends over hair cycle stages from ages 4 to 10 weeks. As it is currently impossible to observe such trends across a single animal's hair cycle, this work employs discrete event simulation to identify and evaluate policies of Merkel cell and heminode dynamics. Well matching the observed data, the results show that the baseline model replicates dynamic remodeling behaviors between stages of the hair cycle - based on particular addition and removal polices and estimated probabilities tied to constituent parts of Merkel cells, terminal branch neurites and heminodes. The analysis shows further that certain policies hold greater influence than others. This use of computation is a novel approach to understanding neuronal development.
Collapse
Affiliation(s)
- Hyojung Kang
- Department of Systems and Information Engineering, University of Virginia, 151 Engineers' Way, Charlottesville, VA 22904, USA
| | - Rachel L Orlowsky
- Department of Systems and Information Engineering, University of Virginia, 151 Engineers' Way, Charlottesville, VA 22904, USA
| | - Gregory J Gerling
- Department of Systems and Information Engineering, University of Virginia, 151 Engineers' Way, Charlottesville, VA 22904, USA
| |
Collapse
|
30
|
Bönhof GJ, Strom A, Püttgen S, Ringel B, Brüggemann J, Bódis K, Müssig K, Szendroedi J, Roden M, Ziegler D. Patterns of cutaneous nerve fibre loss and regeneration in type 2 diabetes with painful and painless polyneuropathy. Diabetologia 2017; 60:2495-2503. [PMID: 28914336 DOI: 10.1007/s00125-017-4438-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS The determinants and mechanisms of the development of diabetic sensorimotor polyneuropathy as a painful (DSPN+p) or painless (DSPN-p) entity remain unclear. We examined the degree of cutaneous nerve fibre loss and regeneration in individuals with type 2 diabetes with DSPN+p or DSPN-p compared with individuals with recent-onset type 2 diabetes and corresponding healthy volunteers. METHODS In this cross-sectional study, skin biopsies taken from the distal lateral calf were obtained from individuals with recent-onset type 2 diabetes (n = 32) from the German Diabetes Study, with DSPN+p (n = 34) and DSPN-p (n = 32) from the PROPANE study, and volunteers with normal glucose tolerance (n = 50). Double immunofluorescence staining for protein gene product 9.5 (PGP9.5) (pan-neuronal marker) and growth-associated protein 43 (GAP-43) (nerve regeneration marker) was applied to assess intraepidermal nerve fibre density (IENFD) and length (IENFL) and dermal nerve fibre length (DNFL). DSPN was diagnosed using the modified Toronto Consensus (2011) criteria, while neuropathic pain was assessed using an 11-point Numerical Rating Scale. RESULTS After adjustment for age, sex, BMI and HbA1c, IENFD and IENFL were reduced for both markers in individuals with recent-onset diabetes and both DSPN groups compared with control participants (all p < 0.05), but did not differ between the DSPN groups. The DNFL GAP-43/PGP9.5 ratio was higher in the DSPN+p and DSPN-p groups compared with control participants (1.18 ± 0.28 and 1.07 ± 0.10 vs 1.02 ± 0.10; p ≤ 0.05) and in the DSPN + p group compared with DSPN-p (p < 0.05). Correlation analyses showed distinct inverse associations between the DNFL GAP-43/PGP9.5 ratio and PGP9.5 positive IENFD as well as DNFL (IENFD: β = -0.569, DNFL: β = -0.639; both p < 0.0001) in individuals with type 2 diabetes, but not in the control group. A similar pattern was found for correlations between the DNFL GAP-43/PGP9.5 ratio and peripheral nerve function tests. CONCLUSIONS/INTERPRETATION Dermal nerve fibre regeneration is enhanced in DSPN, particularly in DSPN+p, and increases with advancing intraepidermal nerve fibre loss. These data suggest that, despite progressive epidermal fibre loss, dermal nerve repair is preserved, particularly in DSPN+p, but fails to adequately counteract epidermal neurodegenerative processes.
Collapse
Affiliation(s)
- Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Sonja Püttgen
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | - Bernd Ringel
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | - Jutta Brüggemann
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | - Kálmán Bódis
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | - Karsten Müssig
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany.
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
31
|
Marshall KL, Clary RC, Baba Y, Orlowsky RL, Gerling GJ, Lumpkin EA. Touch Receptors Undergo Rapid Remodeling in Healthy Skin. Cell Rep 2017; 17:1719-1727. [PMID: 27829143 DOI: 10.1016/j.celrep.2016.10.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/21/2016] [Accepted: 10/12/2016] [Indexed: 11/24/2022] Open
Abstract
Sensory tissues exposed to the environment, such as skin, olfactory epithelia, and taste buds, continuously renew; therefore, peripheral neurons must have mechanisms to maintain appropriate innervation patterns. Although somatosensory neurons regenerate after injury, little is known about how these neurons cope with normal target organ changes. To elucidate neuronal plasticity in healthy skin, we analyzed the structure of Merkel-cell afferents, which are gentle touch receptors, during skin remodeling that accompanies mouse hair-follicle regeneration. The number of Merkel cells is reduced by 90% and axonal arbors are simplified during active hair growth. These structures rebound within just days. Computational modeling predicts that Merkel-cell changes are probabilistic, but myelinated branch stability depends on Merkel-cell inputs. Electrophysiology and behavior demonstrate that tactile responsiveness is less reliable during active growth than in resting skin. These results reveal that somatosensory neurons display structural plasticity at the cost of impairment in the reliability of encoding gentle touch.
Collapse
Affiliation(s)
- Kara L Marshall
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; Integrated Training Program in Cellular, Molecular and Biomedical Sciences, Columbia University, New York, NY 10032, USA
| | - Rachel C Clary
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; Neurobiology and Behavior Training Program, Columbia University, New York, NY 10032, USA
| | - Yoshichika Baba
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Rachel L Orlowsky
- Department of Systems and Information Engineering, University of Virginia, Charlottesville, VA 22904, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Gregory J Gerling
- Department of Systems and Information Engineering, University of Virginia, Charlottesville, VA 22904, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Ellen A Lumpkin
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; Integrated Training Program in Cellular, Molecular and Biomedical Sciences, Columbia University, New York, NY 10032, USA; Neurobiology and Behavior Training Program, Columbia University, New York, NY 10032, USA; Department of Dermatology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
32
|
Budamakuntla L, Loganathan E, Sarvajnamurthy SA, Nataraj HV. Follicular Unit Grafting in Chronic Nonhealing Leg Ulcers: A Clinical Study. J Cutan Aesthet Surg 2017; 10:200-206. [PMID: 29491655 PMCID: PMC5820837 DOI: 10.4103/jcas.jcas_38_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction and Objectives The restoration of the epithelium after injury takes place by migration of epithelial cells adjoining a wound or by centrifugal migration from hair follicles. To evaluate the feasibility and potential healing capacity of scalp follicular unit grafts transplanted into the wound bed of chronic leg ulcers. Materials and Methods Patients with chronic nonhealing ulcers of more than 6 weeks duration were selected for the study. Those with infected ulcers and uncontrolled diabetes were excluded from the study. Fifteen patients were included in the study. Follicular unit grafts were harvested under local anesthesia using small-diameter (1 mm) circular punches. A density of 5 follicular grafts/cm2 was implanted into the ulcer bed. The ulcer was dressed with Vaseline gauze and elastic bandage for 24 h. The wound area and volume were calculated by length × width × 0.7854 and length × width × depth × 0.7854, respectively. The treatment outcome was defined as the percentage in change of area and volume of the ulcer, 18 weeks after intervention. Results A total of 15 patients with 17 ulcers were treated with the above method. Of these 17 ulcers, 11 were venous ulcers, 2 were pyoderma gangrenosum associated with varicose veins, 2 were traumatic ulcers, and 2 were trophic ulcers. The baseline mean area of the ulcer was 6.72 cm2 (SD 5.65) and baseline volume was 2.87 cm3 (SD 2.9). The final area of the ulcer at the end of 18 weeks after the procedure was 3.84 cm2 (SD 5.43) and the final volume was 1.21 cm3 (SD 2.45), which was statistically significant. The mean percentage improvement in the area and volume of the ulcer was 48.8% and 71.98%, respectively. Two patients did not respond to the treatment. There were no adverse events after the procedure. Conclusion We conclude that follicular unit grafting into wound beds is feasible and represents a promising therapeutic alternative for managing nonhealing chronic leg ulcers.
Collapse
Affiliation(s)
- Leelavathy Budamakuntla
- Department of Dermatology, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| | - Eswari Loganathan
- Department of Dermatology, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| | | | - H V Nataraj
- Department of Dermatology, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| |
Collapse
|
33
|
Gornstein EL, Schwarz TL. Neurotoxic mechanisms of paclitaxel are local to the distal axon and independent of transport defects. Exp Neurol 2016; 288:153-166. [PMID: 27894788 DOI: 10.1016/j.expneurol.2016.11.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/15/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting side effect of paclitaxel and other chemotherapeutic agents. Paclitaxel binds and stabilizes microtubules, but the cellular mechanisms that underlie paclitaxel's neurotoxic effects are not well understood. We therefore used primary cultures of adult murine dorsal root ganglion neurons, the cell type affected in patients, to examine leading hypotheses to explain paclitaxel neurotoxicity. We address the role of microtubule hyperstabilization and its downstream effects. Paclitaxel administered at 10-50nM for 1-3days induced retraction bulbs at the tips of axons and arrested axon growth without triggering axon fragmentation or cell death. By correlating the toxic effects and microtubule stabilizing activity of structurally different microtubule stabilizing compounds, we confirmed that microtubule hyperstabilization, rather than an off-target effect, is the likely primary cause of paclitaxel neurotoxicity. We examined potential downstream consequences of microtubule hyperstabilization and found that changes in levels of tubulin posttranslational modifications, although present after paclitaxel exposure, are not implicated in the paclitaxel neurotoxicity we observed in the cultures. Additionally, defects in axonal transport were not implicated as an early, causative mechanism of paclitaxel's toxic effects on dorsal root ganglion neurons. By using microfluidic chambers to selectively treat different parts of the axon with paclitaxel, we found that the distal axon was primarily vulnerable to paclitaxel, indicating that paclitaxel acts directly on the distal axon to induce degenerative effects. Together, our findings point to local effects of microtubule hyperstabilization on the distal-most portion of the axon as an early mediator of paclitaxel neurotoxicity. Because sensory neurons have a unique and ongoing requirement for distal growth in order to reinnervate the epidermis as it turns over, we propose that the ability of paclitaxel to arrest their growth accounts for the selective vulnerability of sensory neurons to paclitaxel neurotoxicity.
Collapse
Affiliation(s)
- Erica L Gornstein
- The F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, MA 02115, USA; Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas L Schwarz
- The F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Effects of small-fiber neuropathy induced by resiniferatoxin on skin healing and axonal regrowth after burn. Burns 2016; 43:562-572. [PMID: 27743736 DOI: 10.1016/j.burns.2016.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Damage to the peripheral nervous system influences wound healing and, after a deep burn, imperfect cutaneous nerve regeneration occurs. A third-degree burn model was developed in rats combined with the use of resiniferatoxin (RTX), known to promote sensory neuropathy. METHODS Rats were injected intraperitoneally either with RTX or vehicle. A mechanical sensory assay and the hot plate thermal sensory test were performed. The structural integrity of the sciatic nerve was assessed using transmission electron microcopy. After RTX injection, third-degree thermal burns were performed. Wound closure was monitored and samples were collected for histological analysis, immunohistochemistry and immunoblotting for neuronal markers. RESULTS RTX promoted both mechanical and thermal hypoalgesia. This transient RTX-mediated sensory deficit occurred without damaging the integrity of nerve fibers and induced a significant depletion of neuropeptides in both neuronal bodies and intraepidermal nerve fibers. Although wound closure rates were similar in both groups, the kinetic of granulation tissue remodeling was delayed in the RTX group compared with control group. A significant reduction of the peripherin expression in the RTX group was observed indicating impaired axonal regrowth of small fibers within the wound. CONCLUSION Our study confirms the important roles of innervation during skin healing and the defect of nerve regeneration after burn.
Collapse
|
35
|
Abstract
Diabetic polyneuropathy (DPN) is a common but intractable degenerative disorder of peripheral neurons. DPN first results in retraction and loss of sensory terminals in target organs such as the skin, whereas the perikarya (cell bodies) of neurons are relatively preserved. This is important because it implies that regrowth of distal terminals, rather than neuron replacement or rescue, may be useful clinically. Although a number of neuronal molecular abnormalities have been examined in experimental DPN, several are prominent: loss of structural proteins, neuropeptides, and neurotrophic receptors; upregulation of "stress" and "repair" proteins; elevated nitric oxide synthesis; increased AGE-RAGE signaling, NF-κB and PKC; altered neuron survival pathways; changes of pain-related ion channel investment. There is also a role for abnormalities of direct signaling of neurons by insulin, an important trophic factor for neurons that express its receptors. While evidence implicating each of these pathways has emerged, how they link together and result in neuronal degeneration remains unclear. However, several offer interesting new avenues for more definitive therapy of this condition.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
36
|
Zochodne DW. Sensory Neurodegeneration in Diabetes: Beyond Glucotoxicity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 127:151-80. [PMID: 27133149 DOI: 10.1016/bs.irn.2016.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diabetic polyneuropathy in humans is of gradual, sometimes insidious onset, and is more likely to occur if glucose control is poor. Arguments that the disorder arises chiefly from glucose toxicity however ignore the greater complexity of a unique neurodegenerative disorder. For example, sensory neurons regularly thrive in media with levels of glucose at or exceeding those of poorly controlled diabetic persons. Also, all of the linkages between hyperglycemia and neuropathy develop in the setting of altered insulin availability or sensitivity. Insulin itself is recognized as a potent growth, or trophic factor for adult sensory neurons. Low doses of insulin, insufficient to alter blood glucose levels, reverse features of diabetic neurodegeneration in animal models. Insulin resistance, as occurs in diabetic adipose tissue, liver, and muscle, also develops in sensory neurons, offering a mechanism for neurodegeneration in the setting of normal or elevated insulin levels. Other interventions that "shore up" sensory neurons prevent features of diabetic polyneuropathy from developing despite persistent hyperglycemia. More recently evidence has emerged that a series of subtle molecular changes in sensory neurons can be linked to neurodegeneration including epigenetic changes in the control of gene expression. Understanding the new complexity of sensory neuron degeneration may give rise to therapeutic strategies that have a higher chance of success in the clinical trial arena.
Collapse
Affiliation(s)
- D W Zochodne
- Neuroscience and Mental Health Institute and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
37
|
Kessler JA, Smith AG, Cha BS, Choi SH, Wymer J, Shaibani A, Ajroud-Driss S, Vinik A. Double-blind, placebo-controlled study of HGF gene therapy in diabetic neuropathy. Ann Clin Transl Neurol 2015; 2:465-78. [PMID: 26000320 PMCID: PMC4435702 DOI: 10.1002/acn3.186] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To evaluate the safety and efficacy of a plasmid (VM202) containing two human hepatocyte growth factor isoforms given by intramuscular injections in patients with painful diabetic neuropathy. METHODS In a double-blind, placebo-controlled study, patients were randomized to receive injections of 8 or 16 mg VM202 per leg or placebo. Divided doses were administered on Day 0 and Day 14. The prospective primary outcome was change in the mean pain score measured by a 7 day pain diary. Secondary outcomes included a responder analysis, quality of life and pain measures, and intraepidermal nerve fiber density. RESULTS There were no significant adverse events attributable to VM202. Eighty-four patients completed the study. Patients receiving 8 mg VM202 per leg improved the most in all efficacy measures including a significant (P = 0.03) reduction at 3 months in the mean pain score and continued but not statistically significant reductions in pain at 6 and 9 months. Of these patients, 48.4% experienced a ≥50% reduction in pain compared to 17.6% of placebo patients. There were also significant improvements in the brief pain inventory for patients with diabetic peripheral neuropathy and the questionnaire portion of the Michigan Neuropathy Screening Instrument. Patients not on pregabalin or gabapentin had the largest reductions in pain. INTERPRETATION VM202 was safe, well tolerated and effective indicating the feasibility of a nonviral gene therapy approach to painful diabetic neuropathy. Two days of treatment were sufficient to provide symptomatic relief with improvement in quality of life for 3 months. VM202 may be particularly beneficial for patients not taking gabapentin or pregabalin.
Collapse
Affiliation(s)
| | | | - Bong-Soo Cha
- Yonsei University College of Medicine Severence Hospital Seoul, South Korea
| | - Sung Hee Choi
- Seoul National University Bundang Hospital Seoul, South Korea
| | | | | | | | - Aaron Vinik
- Eastern Virginia Medical School Norfolk, Virginia
| | | |
Collapse
|
38
|
Chen DK, Frizzi KE, Guernsey LS, Ladt K, Mizisin AP, Calcutt NA. Repeated monitoring of corneal nerves by confocal microscopy as an index of peripheral neuropathy in type-1 diabetic rodents and the effects of topical insulin. J Peripher Nerv Syst 2014; 18:306-15. [PMID: 24147903 DOI: 10.1111/jns5.12044] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/07/2013] [Accepted: 10/11/2013] [Indexed: 02/06/2023]
Abstract
We developed a reliable imaging and quantitative analysis method for in vivo corneal confocal microscopy (CCM) in rodents and used it to determine whether models of type 1 diabetes replicate the depletion of corneal nerves reported in diabetic patients. Quantification was reproducible between observers and stable across repeated time points in two rat strains. Longitudinal studies were performed in normal and streptozotocin (STZ)-diabetic rats, with innervation of plantar paw skin quantified using standard histological methods after 40 weeks of diabetes. Diabetic rats showed an initial increase, then a gradual reduction in occupancy of nerves in the sub-basal plexus so that values were significantly lower at week 40 (68 ± 6%) than age-matched controls (80 ± 2%). No significant loss of stromal or intra-epidermal nerves was detected. In a separate study, insulin was applied daily to the eye of control and STZ-diabetic mice and this treatment prevented depletion of nerves of the sub-basal plexus. Longitudinal studies are viable in rodents using CCM and depletion of distal corneal nerves precedes detectable loss of epidermal nerves in the foot, suggesting that diabetic neuropathy is not length dependent. Loss of insulin-derived neurotrophic support may contribute to the pathogenesis of corneal nerve depletion in type 1 diabetes.
Collapse
Affiliation(s)
- Debbie K Chen
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|
39
|
Jimenez F, Poblet E, Izeta A. Reflections on how wound healing-promoting effects of the hair follicle can be translated into clinical practice. Exp Dermatol 2014; 24:91-4. [DOI: 10.1111/exd.12521] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 12/20/2022]
Affiliation(s)
| | - Enrique Poblet
- Department of Pathology; Hospital Universitario Reina Sofía; Murcia Spain
| | - Ander Izeta
- Tissue Engineering Laboratory; Instituto Biodonostia; Hospital Universitario Donostia; San Sebastián Spain
| |
Collapse
|
40
|
Growth and Turning Properties of Adult Glial Cell–Derived Neurotrophic Factor Coreceptor α1 Nonpeptidergic Sensory Neurons. J Neuropathol Exp Neurol 2014; 73:820-36. [DOI: 10.1097/nen.0000000000000101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
41
|
Yuryev M, Molotkov D, Khiroug L. In vivo two-photon microscopy of single nerve endings in skin. J Vis Exp 2014. [PMID: 25178088 DOI: 10.3791/51045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nerve endings in skin are involved in physiological processes such as sensing(1) as well as in pathological processes such as neuropathic pain(2). Their close-to-surface positioning facilitates microscopic imaging of skin nerve endings in living intact animal. Using multiphoton microscopy, it is possible to obtain fine images overcoming the problem of strong light scattering of the skin tissue. Reporter transgenic mice that express EYFP under the control of Thy-1 promoter in neurons (including periphery sensory neurons) are well suited for the longitudinal studies of individual nerve endings over extended periods of time up to several months or even life-long. Furthermore, using the same femtosecond laser as for the imaging, it is possible to produce highly selective lesions of nerve fibers for the studies of the nerve fiber restructuring. Here, we present a simple and reliable protocol for longitudinal multiphoton in vivo imaging and laser-based microsurgery on mouse skin nerve endings.
Collapse
|
42
|
Forrest SL, Osborne PB, Keast JR. Characterization of axons expressing the artemin receptor in the female rat urinary bladder: a comparison with other major neuronal populations. J Comp Neurol 2014; 522:3900-27. [PMID: 25043933 DOI: 10.1002/cne.23648] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 12/12/2022]
Abstract
Artemin is a member of the glial cell line-derived neurotrophic factor (GDNF) family that has been strongly implicated in development and regeneration of autonomic nerves and modulation of nociception. Whereas other members of this family (GDNF and neurturin) primarily target parasympathetic and nonpeptidergic sensory neurons, the artemin receptor (GFRα3) is expressed by sympathetic and peptidergic sensory neurons that are also the primary sites of action of nerve growth factor, a powerful modulator of bladder nerves. Many bladder sensory neurons express GFRα3 but it is not known if they represent a specific functional subclass. Therefore, our initial aim was to map the distribution of GFRα3-immunoreactive (-IR) axons in the female rat bladder, using cryostat sections and whole wall thickness preparations. We found that GFRα3-IR axons innervated the detrusor, vasculature, and urothelium, but only part of this innervation was sensory. Many noradrenergic sympathetic axons innervating the vasculature were GFRα3-IR, but the noradrenergic innervation of the detrusor was GFRα3-negative. We also identified a prominent source of nonneuronal GFRα3-IR that is likely to be glial. Further characterization of bladder nerves revealed specific structural features of chemically distinct classes of axon terminals, and a major autonomic source of axons labeled with neurofilament-200, which is commonly used to identify myelinated sensory axons within organs. Intramural neurons were also characterized and quantified. Together, these studies reveal a diverse range of potential targets by which artemin could influence bladder function, nerve regeneration, and pain, and provide a strong microanatomical framework for understanding bladder physiology and pathophysiology.
Collapse
Affiliation(s)
- Shelley L Forrest
- Pain Management Research Institute and Kolling Institute, University of Sydney at Royal North Shore Hospital, Sydney, NSW, Australia
| | | | | |
Collapse
|
43
|
Singh B, Singh V, Krishnan A, Koshy K, Martinez JA, Cheng C, Almquist C, Zochodne DW. Regeneration of diabetic axons is enhanced by selective knockdown of the PTEN gene. ACTA ACUST UNITED AC 2014; 137:1051-67. [PMID: 24578546 DOI: 10.1093/brain/awu031] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diabetes mellitus renders both widespread and localized irreversible damage to peripheral axons while imposing critical limitations on their ability to regenerate. A major failure of regenerative capacity thereby imposes a 'double hit' in diabetic patients who frequently develop focal neuropathies such as carpal tunnel syndrome in addition to generalized diffuse polyneuropathy. The mechanisms of diabetic neuron regenerative failure have been speculative and few approaches have offered therapeutic opportunities. In this work we identify an unexpected but major role for PTEN upregulation in diabetic peripheral neurons in attenuating axon regrowth. In chronic diabetic neuropathy models in mice, we identified significant PTEN upregulation in peripheral sensory neurons of messenger RNA and protein compared to littermate controls. In vitro, sensory neurons from these mice responded to PTEN knockdown with substantial rises in neurite outgrowth and branching. To test regenerative plasticity in a chronic diabetic model with established neuropathy, we superimposed an additional focal sciatic nerve crush injury and assessed morphological, electrophysiological and behavioural recovery. Knockdown of PTEN in dorsal root ganglia ipsilateral to the side of injury was achieved using a unique form of non-viral short interfering RNA delivery to the ipsilateral nerve injury site and paw. In comparison with scrambled sequence control short interfering RNA, PTEN short interfering RNA improved several facets of regeneration: recovery of compound muscle action potentials, reflecting numbers of reconnected motor axons to endplates, conduction velocities of both motor and sensory axons, reflecting their maturation during regrowth, numbers and calibre of regenerating myelinated axons distal to the injury site, reinnervation of the skin by unmyelinated epidermal axons and recovery of mechanical sensation. Collectively, these findings identify a novel therapeutic approach, potentially applicable to other neurological conditions requiring specific forms of molecular knockdown, and also identify a unique target, PTEN, to treat diabetic neuroregenerative failure.
Collapse
Affiliation(s)
- Bhagat Singh
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cheng C, Singh V, Krishnan A, Kan M, Martinez JA, Zochodne DW. Loss of innervation and axon plasticity accompanies impaired diabetic wound healing. PLoS One 2013; 8:e75877. [PMID: 24098736 PMCID: PMC3786937 DOI: 10.1371/journal.pone.0075877] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/19/2013] [Indexed: 12/26/2022] Open
Abstract
Loss of cutaneous innervation from sensory neuropathy is included among mechanisms for impaired healing of diabetic skin wounds. The relationships between cutaneous axons and their local microenvironment during wound healing are challenged in diabetes. Here, we show that secondary wound closure of the hairy dorsal skin of mice is delayed by diabetes and is associated with not only a pre-existing loss of cutaneous axons but substantial retraction of axons around the wound. At 7d following a 3mm punch wound, a critical period of healing and reinnervation, both intact skin nearby the wound and skin directly at the wound margins had over 30-50% fewer axons and a larger deficit of ingrowing axons in diabetics. These findings contrasted with a pre-existing 10-15% deficit in axons. Moreover, new diabetic ingrowing axons had less evidence of plasticity. Unexpectedly, hair follicles adjacent to the wounds had a 70% reduction in their innervation associated with depleted expression of hair follicular stem cell markers. These impairments were associated with the local upregulation of two established axon regenerative ‘roadblocks’: PTEN and RHOA, potential but thus far unexplored mediators of these changes. The overall findings identify striking and unexpected superimposed cutaneous axon loss or retraction beyond that expected of diabetic neuropathy alone, associated with experimental diabetic skin wounding, a finding that prompts new considerations in diabetic wounds.
Collapse
Affiliation(s)
- Chu Cheng
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Vandana Singh
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anand Krishnan
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Michelle Kan
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jose A. Martinez
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Douglas W. Zochodne
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
45
|
Webber CA, Salame J, Luu GLS, Acharjee S, Ruangkittisakul A, Martinez JA, Jalali H, Watts R, Ballanyi K, Guo GF, Zochodne DW, Power C. Nerve growth factor acts through the TrkA receptor to protect sensory neurons from the damaging effects of the HIV-1 viral protein, Vpr. Neuroscience 2013; 252:512-25. [PMID: 23912036 DOI: 10.1016/j.neuroscience.2013.07.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/30/2013] [Accepted: 07/22/2013] [Indexed: 01/19/2023]
Abstract
Distal sensory polyneuropathy (DSP) with associated neuropathic pain is the most common neurological disorder affecting patients with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Viral protein R (Vpr) is a neurotoxic protein encoded by HIV-1 and secreted by infected macrophages. Vpr reduces neuronal viability, increases cytosolic calcium and membrane excitability of cultured dorsal root ganglion (DRG) sensory neurons, and is associated with mechanical allodynia in vivo. A clinical trial with HIV/AIDS patients demonstrated that nerve growth factor (NGF) reduced the severity of DSP-associated neuropathic pain, a problem linked to damage to small diameter, potentially NGF-responsive fibers. Herein, the actions of NGF were investigated in our Vpr model of DSP and we demonstrated that NGF significantly protected sensory neurons from the effects of Vpr. Footpads of immunodeficient Vpr transgenic (vpr/RAG1(-/-)) mice displayed allodynia (p<0.05), diminished epidermalinnervation (p<0.01) and reduced NGF mRNA expression (p<0.001) compared to immunodeficient (wildtype/RAG1(-/-)) littermate control mice. Compartmented cultures confirmed recombinant Vpr exposure to the DRG neuronal perikarya decreased distal neurite extension (p<0.01), whereas NGF exposure at these distal axons protected the DRG neurons from the Vpr-induced effect on their cell bodies. NGF prevented Vpr-induced attenuation of the phosphorylated glycogen synthase-3 axon extension pathway and tropomyosin-related kinase A (TrkA) receptor expression in DRG neurons (p<0.05) and it directly counteracted the cytosolic calcium burst caused by Vpr exposure to DRG neurons (p<0.01). TrkA receptor agonist indicated that NGFacted through the TrkA receptor to block the Vpr-mediated decrease in axon outgrowth in neonatal and adult rat and fetal human DRG neurons (p<0.05). Similarly, inhibiting the lower affinity NGF receptor, p75, blocked Vpr's effect on DRG neurons. Overall, NGF/TrkA signaling or p75 receptor inhibition protects somatic sensory neurons exposed to Vpr, thus laying the groundwork for potential therapeutic options for HIV/AIDS patients suffering from DSP.
Collapse
Affiliation(s)
- C A Webber
- Division of Anatomy, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Persson AK, Liu S, Faber CG, Merkies ISJ, Black JA, Waxman SG. Neuropathy-associated NaV1.7 variant I228M impairs integrity of dorsal root ganglion neuron axons. Ann Neurol 2012; 73:140-5. [DOI: 10.1002/ana.23725] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/25/2012] [Accepted: 08/03/2012] [Indexed: 02/03/2023]
|
47
|
Cao L, Butler MB, Tan L, Draleau KS, Koh WY. Murine immunodeficiency virus-induced peripheral neuropathy and the associated cytokine responses. THE JOURNAL OF IMMUNOLOGY 2012; 189:3724-33. [PMID: 22956581 DOI: 10.4049/jimmunol.1201313] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Distal symmetrical polyneuropathy is the most common form of HIV infection-associated peripheral neuropathy and is often associated with pain. C57BL/6 (B6) mice infected with LP-BM5, a murine retroviral isolate, develop a severe immunodeficiency syndrome similar to that in humans infected with HIV-1, hence the term murine AIDS. We investigated the induction of peripheral neuropathy after LP-BM5 infection in B6 mice. Infected B6 mice, like HIV-infected humans, exhibited behavioral (increased sensitivity to mechanical and heat stimuli) and pathological (transient loss of intraepidermal nerve fibers) signs of peripheral neuropathy. The levels of viral gag RNA were significantly increased in all tissues tested, including spleen, paw skin, lumbar dorsal root ganglia, and lumbar spinal cord, postinfection (p.i.). Correlated with the development of peripheral neuropathy, the tissue levels of several cytokines, including IFN-γ, IL-1β, IL-6, and IL-12, were significantly elevated p.i. These increases had cytokine-specific and tissue-specific profiles and kinetics. Further, treatment with the antiretroviral agent zidovudine either significantly reduced or completely reversed the aforementioned behavioral, pathologic, and cytokine changes p.i. These data suggest that LP-BM5 infection is a potential mouse model of HIV-associated distal symmetrical polyneuropathy that can be used for investigating the roles of various cytokines in infection-induced neuropathic pain. Further investigation of this model could give a better understanding of, and lead to more effective treatments for, HIV infection-associated painful peripheral neuropathy.
Collapse
Affiliation(s)
- Ling Cao
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA.
| | | | | | | | | |
Collapse
|
48
|
Abstract
This review provides an overview of selected aspects of peripheral nerve regeneration and potential avenues to explore therapeutically. The overall coordinated and orchestrated pattern of recovery from peripheral nerve injury has a beauty of execution and progress that rivals all other forms of neurobiology. It involves changes at the level of the perikaryon, coordination with important peripheral glial partners, the Schwann cells, a controlled inflammatory response, and growth that overcomes surprising intrinsic roadblocks. Both regenerative axon growth and collateral sprouting encompass fascinating aspects of this story. Better understanding of peripheral nerve regeneration may also lead to enhanced central nervous system recovery.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
49
|
Abstract
This is a brief review of several novel strategies for therapeutic approaches to axonal damage in peripheral neuropathies. Although not comprehensive, the review addresses the challenges in axonal regrowth, newly identified roadblocks to regeneration and the concept of collateral reinnervation to restore lost neurological function.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Department of Clinical Neurosciences, The Hotchkiss Brain Institute, University of Calgary, AB, Canada.
| |
Collapse
|
50
|
The Canadian Diabetes Association Invests More than $7 Million in Research. Can J Diabetes 2012. [DOI: 10.1016/j.jcjd.2012.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|