1
|
Varangot A, Lebatard S, Bellemain-Sagnard M, Lebouvier L, Hommet Y, Vivien D. Modulations of the neuronal trafficking of tissue-type plasminogen activator (tPA) influences glutamate release. Cell Death Dis 2023; 14:34. [PMID: 36650132 PMCID: PMC9845363 DOI: 10.1038/s41419-022-05543-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
The discovery of the neuronal expression of the serine protease tissue-type plasminogen activator (tPA) has opened new avenues of research, with important implications in the physiopathology of the central nervous system. For example, the interaction of tPA with synaptic receptors (NMDAR, LRP1, Annexin II, and EGFR) and its role in the maturation of BDNF have been reported to influence synaptic plasticity and neuronal survival. However, the mechanisms regulating the neuronal trafficking of tPA are unknown. Here, using high-resolution live cell imaging and a panel of innovative genetic approaches, we first unmasked the dynamic characteristics of the dendritic and axonal trafficking of tPA-containing vesicles under different paradigms of neuronal activation or inhibition. We then report a constitutive exocytosis of tPA- and VAMP2-positive vesicles, dramatically increased in conditions of neuronal activation, with a pattern which was mainly dendritic and thus post-synaptic. We also observed that the synaptic release of tPA led to an increase of the exocytosis of VGlut1 positive vesicles containing glutamate. Finally, we described alterations of the trafficking and exocytosis of neuronal tPA in cultured cortical neurons prepared from tau-22 transgenic mice (a preclinical model of Alzheimer's disease (AD)). Altogether, these data provide new insights about the neuronal trafficking of tPA, contributing to a better knowledge of the tPA-dependent brain functions and dysfunctions.
Collapse
Affiliation(s)
- Alexandre Varangot
- Normandie Univ, UNICAEN, INSERM U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Simon Lebatard
- Normandie Univ, UNICAEN, INSERM U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Mathys Bellemain-Sagnard
- Normandie Univ, UNICAEN, INSERM U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Laurent Lebouvier
- Normandie Univ, UNICAEN, INSERM U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Yannick Hommet
- Normandie Univ, UNICAEN, INSERM U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France.
- Department of clinical research, Caen-Normandie University Hospital, CHU, Caen, France.
| |
Collapse
|
2
|
Tominaga-Yoshino K, Urakubo T, Ueno Y, Kawaai K, Saito S, Tashiro T, Ogura A. Transient appearance of Ca 2+ -permeable AMPA receptors is crucial for the production of repetitive LTP-induced synaptic enhancement (RISE) in cultured hippocampal slices. Hippocampus 2020; 30:763-769. [PMID: 32320117 DOI: 10.1002/hipo.23206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
We have previously shown that repetitive induction of long-term potentiation (LTP) by glutamate (100 μM, 3 min, three times at 24-hr intervals) provoked long-lasting synaptic enhancement accompanied by synaptogenesis in rat hippocampal slice cultures, a phenomenon termed RISE (repetitive LTP-induced synaptic enhancement). Here, we examined the role of Ca2+ -permeable (CP) AMPA receptors (AMPARs) in the establishment of RISE. We first found a component sensitive to the Joro-spider toxin (JSTX), a blocker of CP-AMPARs, in a field EPSP recorded from CA3-CA1 synapses at 2-3 days after stimulation, but this component was not found for 9-10 days. We also observed that rectification of AMPAR-mediated current appeared only 2-3 days after stimulation, using a whole-cell patch clamp recording from CA1 pyramidal neurons. These findings indicate that CP-AMPAR is transiently expressed in the developing phase of RISE. The blockade of CP-AMPARs by JSTX for 24 hr at this developing phase inhibited RISE establishment, accompanied by the loss of small synapses at the ultrastructural level. These results suggest that transiently induced CP-AMPARs play a critical role in synaptogenesis in the developing phase of long-lasting hippocampal synaptic plasticity, RISE.
Collapse
Affiliation(s)
- Keiko Tominaga-Yoshino
- Department of Neuroscience, Osaka University Graduate School of Frontier Biosciences, Osaka, Japan
| | - Tomoyoshi Urakubo
- Department of Neuroscience, Osaka University Graduate School of Frontier Biosciences, Osaka, Japan
| | - Yukiko Ueno
- Department of Neuroscience, Osaka University Graduate School of Frontier Biosciences, Osaka, Japan
| | - Katsuhiro Kawaai
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama-Gakuin University, Kanagawa, Japan
| | - Shinichi Saito
- Department of Neuroscience, Osaka University Graduate School of Frontier Biosciences, Osaka, Japan
| | - Tomoko Tashiro
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama-Gakuin University, Kanagawa, Japan
| | - Akihiko Ogura
- Department of Neuroscience, Osaka University Graduate School of Frontier Biosciences, Osaka, Japan
| |
Collapse
|
3
|
A Microfluidic Platform for the Characterisation of CNS Active Compounds. Sci Rep 2017; 7:15692. [PMID: 29146949 PMCID: PMC5691080 DOI: 10.1038/s41598-017-15950-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/03/2017] [Indexed: 01/19/2023] Open
Abstract
New in vitro technologies that assess neuronal excitability and the derived synaptic activity within a controlled microenvironment would be beneficial for the characterisation of compounds proposed to affect central nervous system (CNS) function. Here, a microfluidic system with computer controlled compound perfusion is presented that offers a novel methodology for the pharmacological profiling of CNS acting compounds based on calcium imaging readouts. Using this system, multiple applications of the excitatory amino acid glutamate (10 nM–1 mM) elicited reproducible and reversible transient increases in intracellular calcium, allowing the generation of a concentration response curve. In addition, the system allows pharmacological investigations to be performed as evidenced by application of glutamatergic receptor antagonists, reversibly inhibiting glutamate-induced increases in intracellular calcium. Importantly, repeated glutamate applications elicited significant increases in the synaptically driven activation of the adjacent, environmentally isolated neuronal network. Therefore, the proposed new methodology will enable neuropharmacological analysis of CNS active compounds whilst simultaneously determining their effect on synaptic connectivity.
Collapse
|
4
|
Cai S, Fischer QS, He Y, Zhang L, Liu H, Daw NW, Yang Y. GABAB receptor-dependent bidirectional regulation of critical period ocular dominance plasticity in cats. PLoS One 2017; 12:e0180162. [PMID: 28662175 PMCID: PMC5491141 DOI: 10.1371/journal.pone.0180162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/09/2017] [Indexed: 01/05/2023] Open
Abstract
Gama amino butyric acid (GABA) inhibition plays an important role in the onset and offset of the critical period for ocular dominance (OD) plasticity in the primary visual cortex. Previous studies have focused on the involvement of GABAA receptors, while the potential contribution of GABAB receptors to OD plasticity has been neglected. In this study, the GABAB receptor antagonist SCH50911 or agonist baclofen was infused into the primary visual cortex of cats concurrently with a period of monocular deprivation (MD). Using single-unit recordings we found that the OD shift induced by four days of MD during the critical period was impaired by infusion of the antagonist SCH50911, but enhanced by infusion of the agonist baclofen. In contrast, seven days of MD in adult cats did not induce any significant OD shift, even when combined with the infusion of SCH50911 or baclofen. Together, these findings indicate that an endogenous GABAB receptor-mediated inhibition contributes to juvenile, but not adult, OD plasticity.
Collapse
Affiliation(s)
- Shanshan Cai
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Quentin S. Fischer
- Department of Ophthalmology and Visual Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yu He
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Li Zhang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hanxiao Liu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Nigel W. Daw
- Department of Ophthalmology and Visual Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yupeng Yang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Department of Ophthalmology and Visual Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
5
|
A PARP1-ERK2 synergism is required for the induction of LTP. Sci Rep 2016; 6:24950. [PMID: 27121568 PMCID: PMC4848477 DOI: 10.1038/srep24950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Unexpectedly, a post-translational modification of DNA-binding proteins, initiating the cell response to single-strand DNA damage, was also required for long-term memory acquisition in a variety of learning paradigms. Our findings disclose a molecular mechanism based on PARP1-Erk synergism, which may underlie this phenomenon. A stimulation induced PARP1 binding to phosphorylated Erk2 in the chromatin of cerebral neurons caused Erk-induced PARP1 activation, rendering transcription factors and promoters of immediate early genes (IEG) accessible to PARP1-bound phosphorylated Erk2. Thus, Erk-induced PARP1 activation mediated IEG expression implicated in long-term memory. PARP1 inhibition, silencing, or genetic deletion abrogated stimulation-induced Erk-recruitment to IEG promoters, gene expression and LTP generation in hippocampal CA3-CA1-connections. Moreover, a predominant binding of PARP1 to single-strand DNA breaks, occluding its Erk binding sites, suppressed IEG expression and prevented the generation of LTP. These findings outline a PARP1-dependent mechanism required for LTP generation, which may be implicated in long-term memory acquisition and in its deterioration in senescence.
Collapse
|
6
|
Kudryashova IV. The plasticity of inhibitory synapses as a factor of long-term modifications. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Bauer R, Zubler F, Pfister S, Hauri A, Pfeiffer M, Muir DR, Douglas RJ. Developmental self-construction and -configuration of functional neocortical neuronal networks. PLoS Comput Biol 2014; 10:e1003994. [PMID: 25474693 PMCID: PMC4256067 DOI: 10.1371/journal.pcbi.1003994] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/09/2014] [Indexed: 11/20/2022] Open
Abstract
The prenatal development of neural circuits must provide sufficient configuration to support at least a set of core postnatal behaviors. Although knowledge of various genetic and cellular aspects of development is accumulating rapidly, there is less systematic understanding of how these various processes play together in order to construct such functional networks. Here we make some steps toward such understanding by demonstrating through detailed simulations how a competitive co-operative (‘winner-take-all’, WTA) network architecture can arise by development from a single precursor cell. This precursor is granted a simplified gene regulatory network that directs cell mitosis, differentiation, migration, neurite outgrowth and synaptogenesis. Once initial axonal connection patterns are established, their synaptic weights undergo homeostatic unsupervised learning that is shaped by wave-like input patterns. We demonstrate how this autonomous genetically directed developmental sequence can give rise to self-calibrated WTA networks, and compare our simulation results with biological data. Models of learning in artificial neural networks generally assume that the neurons and approximate network are given, and then learning tunes the synaptic weights. By contrast, we address the question of how an entire functional neuronal network containing many differentiated neurons and connections can develop from only a single progenitor cell. We chose a winner-take-all network as the developmental target, because it is a computationally powerful circuit, and a candidate motif of neocortical networks. The key aspect of this challenge is that the developmental mechanisms must be locally autonomous as in Biology: They cannot depend on global knowledge or supervision. We have explored this developmental process by simulating in physical detail the fundamental biological behaviors, such as cell proliferation, neurite growth and synapse formation that give rise to the structural connectivity observed in the superficial layers of the neocortex. These differentiated, approximately connected neurons then adapt their synaptic weights homeostatically to obtain a uniform electrical signaling activity before going on to organize themselves according to the fundamental correlations embedded in a noisy wave-like input signal. In this way the precursor expands itself through development and unsupervised learning into winner-take-all functionality and orientation selectivity in a biologically plausible manner.
Collapse
Affiliation(s)
- Roman Bauer
- Institute of Neuroinformatics, University/ETH Zürich, Zürich, Switzerland
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | - Frédéric Zubler
- Institute of Neuroinformatics, University/ETH Zürich, Zürich, Switzerland
- Department of Neurology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sabina Pfister
- Institute of Neuroinformatics, University/ETH Zürich, Zürich, Switzerland
| | - Andreas Hauri
- Institute of Neuroinformatics, University/ETH Zürich, Zürich, Switzerland
| | - Michael Pfeiffer
- Institute of Neuroinformatics, University/ETH Zürich, Zürich, Switzerland
| | - Dylan R. Muir
- Institute of Neuroinformatics, University/ETH Zürich, Zürich, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Rodney J. Douglas
- Institute of Neuroinformatics, University/ETH Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Abstract
The role of synaptopodin (SP), an actin-binding protein residing in dendritic spines, in synaptic plasticity was studied in dissociated cultures of hippocampus taken from control and SP knock-out (SPKO) mice. Unlike controls, SPKO cultures were unable to express changes in network activity or morphological plasticity after intense activation of their NMDA receptors. SPKO neurons were transfected with SP-GFP, such that the only SP resident in these neurons is the fluorescent species. The localization and intensity of the transfected SP were similar to that of the native one. Because less than half of the spines in the transfected neurons contained SP, comparisons were made between SP-containing (SP(+)) and SP lacking (SP(-)) spines in the same dendritic segments. Synaptic plasticity was induced either in the entire network by facilitation of the activation of the NMDA receptor, or specifically by local flash photolysis of caged glutamate. After activation, spines that were endowed with SP puncta were much more likely to expand than SP(-) spines. The spine expansion was suppressed by thapsigargin, which disables calcium stores. The mechanism through which SP may promote plasticity is indicated by the observations that STIM-1, the sensor of calcium concentration in stores, and Orai-1, the calcium-induced calcium entry channel, are colocalized with SP, in the same dendritic spines. The structural basis of SP is likely to be the spine apparatus, found in control but not in SPKO cells. These results indicate that SP has an essential, calcium store-related role in regulating synaptic plasticity in cultured hippocampal neurons.
Collapse
|
9
|
Kfir A, Ohad-Giwnewer N, Jammal L, Saar D, Golomb D, Barkai E. Learning-induced modulation of the GABAB-mediated inhibitory synaptic transmission: mechanisms and functional significance. J Neurophysiol 2014; 111:2029-38. [DOI: 10.1152/jn.00004.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Complex olfactory-discrimination (OD) learning results in a series of intrinsic and excitatory synaptic modifications in piriform cortex pyramidal neurons that enhance the circuit excitability. Such overexcitation must be balanced to prevent runway activity while maintaining the efficient ability to store memories. We showed previously that OD learning is accompanied by enhancement of the GABAA-mediated inhibition. Here we show that GABAB-mediated inhibition is also enhanced after learning and study the mechanism underlying such enhancement and explore its functional role. We show that presynaptic, GABAB-mediated synaptic inhibition is enhanced after learning. In contrast, the population-average postsynaptic GABAB-mediated synaptic inhibition is unchanged, but its standard deviation is enhanced. Learning-induced reduction in paired pulse facilitation in the glutamatergic synapses interconnecting pyramidal neurons was abolished by application of the GABAB antagonist CGP55845 but not by blocking G protein-gated inwardly rectifying potassium channels only, indicating enhanced suppression of excitatory synaptic release via presynaptic GABAB-receptor activation. In addition, the correlation between the strengths of the early (GABAA-mediated) and late (GABAB-mediated) synaptic inhibition was much stronger for each particular neuron after learning. Consequently, GABAB-mediated inhibition was also more efficient in controlling epileptic-like activity induced by blocking GABAA receptors. We suggest that complex OD learning is accompanied by enhancement of the GABAB-mediated inhibition that enables the cortical network to store memories, while preventing uncontrolled activity.
Collapse
Affiliation(s)
- Adi Kfir
- Departments of Neurobiology and Biology, Faculty of Sciences, University of Haifa, Haifa, Israel; and
| | - Naama Ohad-Giwnewer
- Departments of Neurobiology and Biology, Faculty of Sciences, University of Haifa, Haifa, Israel; and
| | - Luna Jammal
- Departments of Neurobiology and Biology, Faculty of Sciences, University of Haifa, Haifa, Israel; and
| | - Drorit Saar
- Departments of Neurobiology and Biology, Faculty of Sciences, University of Haifa, Haifa, Israel; and
| | - David Golomb
- Department of Physiology and Neurobiology, Faculty of Health Sciences, and the Zlotowski Center for Neuroscience, Ben-Gurion University, BeerSheva, Israel
| | - Edi Barkai
- Departments of Neurobiology and Biology, Faculty of Sciences, University of Haifa, Haifa, Israel; and
| |
Collapse
|
10
|
El Hady A, Afshar G, Bröking K, Schlüter OM, Geisel T, Stühmer W, Wolf F. Optogenetic stimulation effectively enhances intrinsically generated network synchrony. Front Neural Circuits 2013; 7:167. [PMID: 24155695 PMCID: PMC3805139 DOI: 10.3389/fncir.2013.00167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 09/24/2013] [Indexed: 11/20/2022] Open
Abstract
Synchronized bursting is found in many brain areas and has also been implicated in the pathophysiology of neuropsychiatric disorders such as epilepsy, Parkinson’s disease, and schizophrenia. Despite extensive studies of network burst synchronization, it is insufficiently understood how this type of network wide synchronization can be strengthened, reduced, or even abolished. We combined electrical recording using multi-electrode array with optical stimulation of cultured channelrhodopsin-2 transducted hippocampal neurons to study and manipulate network burst synchronization. We found low frequency photo-stimulation protocols that are sufficient to induce potentiation of network bursting, modifying bursting dynamics, and increasing interneuronal synchronization. Surprisingly, slowly fading-in light stimulation, which substantially delayed and reduced light-driven spiking, was at least as effective in reorganizing network dynamics as much stronger pulsed light stimulation. Our study shows that mild stimulation protocols that do not enforce particular activity patterns onto the network can be highly effective inducers of network-level plasticity.
Collapse
Affiliation(s)
- Ahmed El Hady
- Theoretical Neurophysics, Department of Non-linear Dynamics, Max Planck Institute for Dynamics and Self-Organization Göttingen, Germany ; Max Planck Institute of Experimental Medicine Göttingen, Germany ; Bernstein Focus for Neurotechnology Göttingen, Germany ; Bernstein Center for Computational Neuroscience Göttingen, Germany ; The Interdisciplinary Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing" Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Grigoryan G, Segal M. Prenatal stress affects network properties of rat hippocampal neurons. Biol Psychiatry 2013; 73:1095-102. [PMID: 23541001 DOI: 10.1016/j.biopsych.2013.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/24/2013] [Accepted: 02/08/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Long-term effects of stress during pregnancy on brain and behavior have been analyzed extensively in recent years. One major problem with these studies is the inability to separate between the net effects of the prenatal stress (PS) and the effects of the stressed mother and siblings on the newborn animals. METHODS To address these issues, we studied morphological and electrophysiological properties of neurons in dissociated cultures of the hippocampus taken from newborn PS rats. We complemented these studies with experiments on behaving rats and recordings from slices taken from PS rats and their control rats. RESULTS While the density of cultured neurons was not different between PS and control rats, there were fewer glutamic acid decarboxylase-positive neurons in the former cultures. Additionally, cells taken from PS pups developed more extensive dendrites than control animals. These differences were correlated with a higher rate of synchronous activity in the PS cultures and a lower rate of spontaneous miniature inhibitory postsynaptic current activity. There were no differences in the excitatory synaptic currents or the passive and active properties of the recorded neurons in the two groups. Young PS rats were more motile in open field and elevated plus maze than control rats, and they learned faster to navigate in a water maze. Slices taken from hippocampus of PS rats expressed less paired-pulse inhibition than slices from control rats. CONCLUSIONS These results indicate that PS affects network properties of hippocampal neurons, by reducing gamma-aminobutyric acidergic inhibition.
Collapse
Affiliation(s)
- Gayane Grigoryan
- Department of Neurobiology, The Weizmann Institute, Rehovot 75100, Israel
| | | |
Collapse
|
12
|
Sobayo T, Fine AS, Gunnar E, Kazlauskas C, Nicholls D, Mogul DJ. Synchrony Dynamics Across Brain Structures in Limbic Epilepsy Vary Between Initiation and Termination Phases of Seizures. IEEE Trans Biomed Eng 2013; 60:821-9. [DOI: 10.1109/tbme.2012.2189113] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Saar D, Reuveni I, Barkai E. Mechanisms underlying rule learning-induced enhancement of excitatory and inhibitory synaptic transmission. J Neurophysiol 2012; 107:1222-9. [DOI: 10.1152/jn.00356.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Training rats to perform rapidly and efficiently in an olfactory discrimination task results in robust enhancement of excitatory and inhibitory synaptic connectivity in the rat piriform cortex, which is maintained for days after training. To explore the mechanisms by which such synaptic enhancement occurs, we recorded spontaneous miniature excitatory and inhibitory synaptic events in identified piriform cortex neurons from odor-trained, pseudo-trained, and naive rats. We show that olfactory discrimination learning induces profound enhancement in the averaged amplitude of AMPA receptor-mediated miniature synaptic events in piriform cortex pyramidal neurons. Such physiological modifications are apparent at least 4 days after learning completion and outlast learning-induced modifications in the number of spines on these neurons. Also, the averaged amplitude of GABAA receptor-mediated miniature inhibitory synaptic events was significantly enhanced following odor discrimination training. For both excitatory and inhibitory transmission, an increase in miniature postsynaptic current amplitude was evident in most of the recorded neurons; however, some neurons showed an exceptionally great increase in the amplitude of miniature events. For both excitatory and inhibitory transmission, the frequency of spontaneous synaptic events was not modified after learning. These results suggest that olfactory discrimination learning-induced enhancement of synaptic transmission in cortical neurons is mediated by postsynaptic modulation of AMPA receptor-dependent currents and balanced by long-lasting modulation of postsynaptic GABAA receptor-mediated currents.
Collapse
Affiliation(s)
- Drorit Saar
- Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Iris Reuveni
- Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Edi Barkai
- Department of Neurobiology, University of Haifa, Haifa, Israel
| |
Collapse
|
14
|
Korkotian E, Segal M. Synaptopodin regulates release of calcium from stores in dendritic spines of cultured hippocampal neurons. J Physiol 2011; 589:5987-95. [PMID: 22025667 DOI: 10.1113/jphysiol.2011.217315] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The presence of calcium stores and their function in dendritic spines is still unsettled. We have now studied the kinetics of calcium released inside dendritic spines of cultured rat hippocampal neurons by flash photolysis of caged calcium. Photolysis of calcium produced a fast rise in [Ca(2+)](i), followed by a variable decay. We were able to correlate the decay of elevated [Ca(2+)](i) with the presence of synaptopodin (SP), an actin-binding protein, in the spines; spines containing SP generated the same initial [Ca(2+)](i) transient, but their decay time was significantly slower and more complex than that of SP-negative ones. The altered decay kinetics of the flash-elevated [Ca(2+)](i) transient was blocked by thapsigargin or cyclopiazonic acid (CPA), indicating that this kinetic change is due to compartmentalized release of calcium from intracellular stores. Thus, SP plays a pivotal role in the calcium store-associated ability of spines to locally tune calcium kinetics.
Collapse
Affiliation(s)
- Eduard Korkotian
- Department of Neurobiology, The Weizmann Institute, 76100 Rehovot, Israel
| | | |
Collapse
|
15
|
Froemke RC, Martins ARO. Spectrotemporal dynamics of auditory cortical synaptic receptive field plasticity. Hear Res 2011; 279:149-61. [PMID: 21426927 PMCID: PMC3138852 DOI: 10.1016/j.heares.2011.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/07/2011] [Accepted: 03/15/2011] [Indexed: 01/10/2023]
Abstract
The nervous system must dynamically represent sensory information in order for animals to perceive and operate within a complex, changing environment. Receptive field plasticity in the auditory cortex allows cortical networks to organize around salient features of the sensory environment during postnatal development, and then subsequently refine these representations depending on behavioral context later in life. Here we review the major features of auditory cortical receptive field plasticity in young and adult animals, focusing on modifications to frequency tuning of synaptic inputs. Alteration in the patterns of acoustic input, including sensory deprivation and tonal exposure, leads to rapid adjustments of excitatory and inhibitory strengths that collectively determine the suprathreshold tuning curves of cortical neurons. Long-term cortical plasticity also requires co-activation of subcortical neuromodulatory control nuclei such as the cholinergic nucleus basalis, particularly in adults. Regardless of developmental stage, regulation of inhibition seems to be a general mechanism by which changes in sensory experience and neuromodulatory state can remodel cortical receptive fields. We discuss recent findings suggesting that the microdynamics of synaptic receptive field plasticity unfold as a multi-phase set of distinct phenomena, initiated by disrupting the balance between excitation and inhibition, and eventually leading to wide-scale changes to many synapses throughout the cortex. These changes are coordinated to enhance the representations of newly-significant stimuli, possibly for improved signal processing and language learning in humans.
Collapse
Affiliation(s)
- Robert C Froemke
- Molecular Neurobiology Program, The Helen and Martin Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, Department of Otolaryngology, New York University School of Medicine, New York, NY, USA.
| | | |
Collapse
|
16
|
Molnár E. Long-term potentiation in cultured hippocampal neurons. Semin Cell Dev Biol 2011; 22:506-13. [PMID: 21807105 DOI: 10.1016/j.semcdb.2011.07.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/23/2011] [Accepted: 07/01/2011] [Indexed: 10/18/2022]
Abstract
Studies performed on low-density primary neuronal cultures have enabled dissection of molecular and cellular changes during N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP). Various electrophysiological and chemical induction protocols were developed for the persistent enhancement of excitatory synaptic transmission in hippocampal neuronal cultures. The characterisation of these plasticity models confirmed that they share many key properties with the LTP of CA1 neurons, extensively studied in hippocampal slices using electrophysiological techniques. For example, LTP in dissociated hippocampal neuronal cultures is also dependent on Ca(2+) influx through post-synaptic NMDA receptors, subsequent activation and autophosphorylation of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and an increase in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor insertion at the post-synaptic membrane. The availability of models of LTP in cultured hippocampal neurons significantly facilitated the monitoring of changes in endogenous postsynaptic receptor proteins and the investigation of the associated signalling mechanisms that underlie LTP. A central feature of LTP of excitatory synapses is the recruitment of AMPA receptors at the postsynaptic site. Results from the use of cell culture-based models started to establish the mechanism by which synaptic input controls a neuron's ability to modify its synapses in LTP. This review focuses on key features of various LTP induction protocols in dissociated hippocampal neuronal cultures and the applications of these plasticity models for the investigation of activity-induced changes in native AMPA receptors.
Collapse
Affiliation(s)
- Elek Molnár
- MRC Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, UK.
| |
Collapse
|
17
|
Feldt S, Wang JX, Shtrahman E, Dzakpasu R, Olariu E, Zochowski M. Functional clustering in hippocampal cultures: relating network structure and dynamics. Phys Biol 2010; 7:046004. [PMID: 20978314 DOI: 10.1088/1478-3975/7/4/046004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this work we investigate the relationship between gross anatomic structural network properties, neuronal dynamics and the resultant functional structure in dissociated rat hippocampal cultures. Specifically, we studied cultures as they developed under two conditions: the first supporting glial cell growth (high glial group), and the second one inhibiting it (low glial group). We then compared structural network properties and the spatio-temporal activity patterns of the neurons. Differences in dynamics between the two groups could be linked to the impact of the glial network on the neuronal network as the cultures developed. We also implemented a recently developed algorithm called the functional clustering algorithm (FCA) to obtain the resulting functional network structure. We show that this new algorithm is useful for capturing changes in functional network structure as the networks evolve over time. The FCA detects changes in functional structure that are consistent with expected dynamical differences due to the impact of the glial network. Cultures in the high glial group show an increase in global synchronization as the cultures age, while those in the low glial group remain locally synchronized. We additionally use the FCA to quantify the amount of synchronization present in the cultures and show that the total level of synchronization in the high glial group is stronger than in the low glial group. These results indicate an interdependence between the glial and neuronal networks present in dissociated cultures.
Collapse
Affiliation(s)
- S Feldt
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Segal M, Vlachos A, Korkotian E. The Spine Apparatus, Synaptopodin, and Dendritic Spine Plasticity. Neuroscientist 2010; 16:125-31. [DOI: 10.1177/1073858409355829] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The spine apparatus (SA) is an essential component of mature dendritic spines of cortical and hippocampal neurons, yet its functions are still enigmatic. Synaptopodin (SP), an actin-binding protein, colocalizes with the SA. Hippocampal neurons in SP-knockout mice lack SA, and they express lower LTP. SP probably plays a role in synaptic plasticity, but only recently it is being linked mechanistically to synaptic functions. These authors and others have studied endogenous and transfected SP in dendritic spines of cultured hippocampal neurons. They found that spines containing SP generate twice as large responses to flash photolysis of caged glutamate than SP-negative ones. An N-methyl-d-aspartate receptor—mediated chemical LTP caused accumulation of GFP-GluR1 in spine heads of control but not of shRNA transfected, SP-deficient neurons. SP is linked to calcium stores, because their pharmacological blockade eliminated SP-related enhancement of glutamate responses. Furthermore, release of calcium from stores produces an SP-dependent delivery of GluR1 into spines. Thus, SP plays a crucial role in the calcium store-associated ability of neurons to undergo long-term plasticity.
Collapse
Affiliation(s)
- Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel,
| | - Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Eduard Korkotian
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel
| |
Collapse
|
19
|
Abstract
The spine apparatus is an essential component of dendritic spines of cortical and hippocampal neurons, yet its functions are still enigmatic. Synaptopodin (SP), an actin-binding protein, is tightly associated with the spine apparatus and it may play a role in synaptic plasticity, but it has not yet been linked mechanistically to synaptic functions. We studied endogenous and transfected SP in dendritic spines of cultured hippocampal neurons and found that spines containing SP generate larger responses to flash photolysis of caged glutamate than SP-negative ones. An NMDA-receptor-mediated chemical long-term potentiation caused the accumulation of GFP-GluR1 in spine heads of control but not of shRNA-transfected, SP-deficient neurons. SP is linked to calcium stores, because their pharmacological blockade eliminated SP-related enhancement of glutamate responses, and release of calcium from stores produced an SP-dependent increase of GluR1 in spines. Thus, SP plays a crucial role in the calcium store-associated ability of neurons to undergo long-term plasticity.
Collapse
|
20
|
Dasari VR, Veeravalli KK, Saving KL, Gujrati M, Fassett D, Klopfenstein JD, Dinh DH, Rao JS. Neuroprotection by cord blood stem cells against glutamate-induced apoptosis is mediated by Akt pathway. Neurobiol Dis 2008; 32:486-98. [PMID: 18930139 DOI: 10.1016/j.nbd.2008.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 08/14/2008] [Accepted: 09/09/2008] [Indexed: 12/17/2022] Open
Abstract
The neurotransmitter glutamate mediates excitatory synaptic transmission in the brain and spinal cord. In pathological conditions massive glutamate release reaches near millimolar concentrations in the extracellular space and contributes to neuron degeneration and death. In the present study, we demonstrate a neuroprotective role for human umbilical cord blood stem cells (hUCB) against glutamate-induced apoptosis in cultured rat cortical neurons. Microarray analysis shows the upregulation of stress pathway genes after glutamate toxicity of neurons, while in cocultures with hUCB, survival pathway genes were upregulated. Real time-PCR analysis shows the expression of genes for NMDA receptors after glutamate toxicity in neurons. The neuroprotection of hUCB against glutamate toxicity is similar to the application of the glutamate receptor antagonist MK-801. Cocultures of hUCB protected neurons against glutamate-induced apoptosis as revealed by APO-BrdU TUNEL and FACS analyses. Immunoblot analysis shows that apoptosis is mediated by the cleavage of caspase-3 and caspase-7 in glutamate treated neurons. Cocultures with hUCB indicate the upregulation of Akt signaling pathway to protect neurons. Blocking of the Akt pathway by a dominant-negative Akt and using Akt-inhibitor IV, we confirm that the mechanism underlying hUCB neuroprotection involves activation of Akt signaling pathway. These results suggest the neuroprotective potential of hUCB against glutamate-induced apoptosis of cultured cortical neurons.
Collapse
Affiliation(s)
- Venkata Ramesh Dasari
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61656, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ovtscharoff W, Segal M, Goldin M, Helmeke C, Kreher U, Greenberger V, Herzog A, Michaelis B, Braun K. Electron microscopic 3D-reconstruction of dendritic spines in cultured hippocampal neurons undergoing synaptic plasticity. Dev Neurobiol 2008; 68:870-6. [PMID: 18327766 DOI: 10.1002/dneu.20627] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dendritic spines are assumed to constitute the locus of neuronal plasticity, and considerable effort has been focused on attempts to demonstrate that new memories are associated with the formation of new spines. However, few studies that have documented the appearance of spines after exposure to plasticity-producing paradigms could demonstrate that a new spine is touched by a bona fida presynaptic terminal. Thus, the functional significance of plastic dendritic spine changes is not clearly understood. We have used quantitative time lapse confocal imaging of cultured hippocampal neurons before and after their exposure to a conditioning medium which activates synaptic NMDA receptors. Following the experiment the cultures were prepared for 3D electron microscopic reconstruction of visually identified dendritic spines. We found that a majority of new, 1- to 2-h-old spines was touched by presynaptic terminals. Furthermore, when spines disappeared, the parent dendrites were sometime touched by a presynaptic bouton at the site where the previously identified spine had been located. We conclude that new spines are most likely to be functional and that pruned spines can be transformed into shaft synapses and thus maintain their functionality within the neuronal network.
Collapse
Affiliation(s)
- Wladimir Ovtscharoff
- Department of Zoology/Developmental Neurobiology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cohen E, Ivenshitz M, Amor-Baroukh V, Greenberger V, Segal M. Determinants of spontaneous activity in networks of cultured hippocampus. Brain Res 2008; 1235:21-30. [PMID: 18602907 DOI: 10.1016/j.brainres.2008.06.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 05/22/2008] [Accepted: 06/10/2008] [Indexed: 11/25/2022]
Abstract
The brain generates extensive spontaneous network activity patterns, even in the absence of extrinsic afferents. While the cognitive correlates of these complex activities are being unraveled, the rules that govern the generation, synchronization and spread of different patterns of intrinsic network activity in the brain are still enigmatic. Using hippocampal neurons grown in dissociated cultures, we are able to study these rules. Network activity emerges at 3-7 days in-vitro (DIV) independent of either ongoing excitatory or inhibitory synaptic activity. Network activity matures over the following several weeks in culture, when it becomes sensitive to chronic drug treatment. The size of the network determines its properties, such that dense networks have higher rates of less synchronized activity than that of sparse networks, which are more synchronized but rhythm at lower rates. Large networks cannot be triggered to fire by activating a single neuron. Small networks, on the other hand, do not burst spontaneously, but can be made to discharge a network burst by stimulating a single neuron. Thus, the strength of connectivity is inversely correlated with spontaneous activity and synchronicity. In the absence of confirmed 'leader' neurons, synchronous bursting network activity appears to be triggered by at least several local subthreshold synaptic events. We conclude that networks of neurons in culture can produce spontaneous synchronized activity and serve as a viable model system for the analysis of the rules that govern network activity in the brain.
Collapse
Affiliation(s)
- Eyal Cohen
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel
| | | | | | | | | |
Collapse
|
23
|
Marsden KC, Beattie JB, Friedenthal J, Carroll RC. NMDA receptor activation potentiates inhibitory transmission through GABA receptor-associated protein-dependent exocytosis of GABA(A) receptors. J Neurosci 2007; 27:14326-37. [PMID: 18160640 PMCID: PMC6673443 DOI: 10.1523/jneurosci.4433-07.2007] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 11/02/2007] [Accepted: 11/10/2007] [Indexed: 11/21/2022] Open
Abstract
The trafficking of postsynaptic AMPA receptors (AMPARs) is a powerful mechanism for regulating the strength of excitatory synapses. It has become clear that the surface levels of inhibitory GABA(A) receptors (GABA(A)Rs) are also subject to regulation and that GABA(A)R trafficking may contribute to inhibitory plasticity, although the underlying mechanisms are not fully understood. Here, we report that NMDA receptor activation, which has been shown to drive excitatory long-term depression through AMPAR endocytosis, simultaneously increases expression of GABA(A)Rs at the dendritic surface of hippocampal neurons. This NMDA stimulus increases miniature IPSC amplitudes and requires the activity of Ca2+ calmodulin-dependent kinase II and the trafficking proteins N-ethylmaleimide-sensitive factor, GABA receptor-associated protein (GABARAP), and glutamate receptor interacting protein (GRIP). These data demonstrate for the first time that endogenous GABARAP and GRIP contribute to the regulated trafficking of GABA(A)Rs. In addition, they reveal that the bidirectional trafficking of AMPA and GABA(A) receptors can be driven by a single glutamatergic stimulus, providing a potent postsynaptic mechanism for modulating neuronal excitability.
Collapse
Affiliation(s)
- Kurt C. Marsden
- Dominick P. Purpura Department of Neuroscience, Rose Kennedy Center for Mental Retardation, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, and
| | - Jennifer B. Beattie
- Dominick P. Purpura Department of Neuroscience, Rose Kennedy Center for Mental Retardation, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, and
| | - Jenna Friedenthal
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Reed C. Carroll
- Dominick P. Purpura Department of Neuroscience, Rose Kennedy Center for Mental Retardation, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, and
| |
Collapse
|
24
|
Tsukamoto-Yasui M, Sasaki T, Matsumoto W, Hasegawa A, Toyoda T, Usami A, Kubota Y, Ochiai T, Hori T, Matsuki N, Ikegaya Y. Active hippocampal networks undergo spontaneous synaptic modification. PLoS One 2007; 2:e1250. [PMID: 18043757 PMCID: PMC2082078 DOI: 10.1371/journal.pone.0001250] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 11/08/2007] [Indexed: 11/19/2022] Open
Abstract
The brain is self-writable; as the brain voluntarily adapts itself to a changing environment, the neural circuitry rearranges its functional connectivity by referring to its own activity. How the internal activity modifies synaptic weights is largely unknown, however. Here we report that spontaneous activity causes complex reorganization of synaptic connectivity without any external (or artificial) stimuli. Under physiologically relevant ionic conditions, CA3 pyramidal cells in hippocampal slices displayed spontaneous spikes with bistable slow oscillations of membrane potential, alternating between the so-called UP and DOWN states. The generation of slow oscillations did not require fast synaptic transmission, but their patterns were coordinated by local circuit activity. In the course of generating spontaneous activity, individual neurons acquired bidirectional long-lasting synaptic modification. The spontaneous synaptic plasticity depended on a rise in intracellular calcium concentrations of postsynaptic cells, but not on NMDA receptor activity. The direction and amount of the plasticity varied depending on slow oscillation patterns and synapse locations, and thus, they were diverse in a network. Once this global synaptic refinement occurred, the same neurons now displayed different patterns of spontaneous activity, which in turn exhibited different levels of synaptic plasticity. Thus, active networks continuously update their internal states through ongoing synaptic plasticity. With computational simulations, we suggest that with this slow oscillation-induced plasticity, a recurrent network converges on a more specific state, compared to that with spike timing-dependent plasticity alone.
Collapse
Affiliation(s)
- Masako Tsukamoto-Yasui
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Matsumoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ayako Hasegawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeshi Toyoda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Usami
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuichi Kubota
- Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Taku Ochiai
- Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Tomokatsu Hori
- Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Norio Matsuki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Tokyo, Japan
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Korkotian E, Segal M. Morphological constraints on calcium dependent glutamate receptor trafficking into individual dendritic spine. Cell Calcium 2006; 42:41-57. [PMID: 17187855 DOI: 10.1016/j.ceca.2006.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 11/14/2006] [Accepted: 11/16/2006] [Indexed: 11/28/2022]
Abstract
Glutamate receptor trafficking into dendritic spines is a pivotal step in synaptic plasticity, yet the relevance of plasticity-producing rise of [Ca2+]i and of spine morphology to subsequent delivery of glutamate receptors into dendritic spine heads are still not well understood. Following chemical induction of LTP, an increase in eGFP-GluR1 fluorescence in short but not long dendritic spines of cultured hippocampal neurons was found. Repeated flash photolysis of caged calcium, which produced a transient rise of [Ca2+]i inside spine heads caused a selective, actin and protein synthesis dependent increase of eGFP-GluR1 in these spines. Strikingly, GluR1 increase was correlated with the ability of a calcium transient generated in the spine head to diffuse into the parent dendrite, and inversely correlated with the length of the spine: short spines were more likely to raise GluR1 than long ones. These observations link, for the first time, calcium transients in dendritic spines with spine morphology and its ability to undergo synaptic plasticity.
Collapse
Affiliation(s)
- Eduard Korkotian
- Department of Neurobiology, The Weizmann Institute, Rehovot 76100, Israel
| | | |
Collapse
|
26
|
Sapoznik S, Ivenshitz M, Segal M. Age-dependent glutamate induction of synaptic plasticity in cultured hippocampal neurons. Learn Mem 2006; 13:719-27. [PMID: 17101873 PMCID: PMC1783625 DOI: 10.1101/lm.351706] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A common denominator for the induction of morphological and functional plasticity in cultured hippocampal neurons involves the activation of excitatory synapses. We now demonstrate massive morphological plasticity in mature cultured hippocampal neurons caused by a brief exposure to glutamate. This plasticity involves a slow, 70%-80% increase in spine cross-section area associated with a significant reduction in the width of dendrites. These changes are age dependent and expressed only in cells >18 d in vitro (DIV). Activation of both NMDARs and AMPARs as well as a sustained rise of internal calcium levels are necessary for induction of this plasticity. On the other hand, blockade of network activity or mGluRs does not abolish the observed morphological plasticity. Electrophysiologically, a brief exposure to glutamate induces an increase in the magnitude of EPSCs evoked between pairs of neurons, as well as in mEPSC frequency and amplitude, in mature but not young cultures. These results demonstrate an age-dependent, rapid and robust morphological and functional change in cultured central neurons that may contribute to their ability to express long term synaptic plasticity.
Collapse
Affiliation(s)
- Stav Sapoznik
- Department of Neurobiology, the Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miriam Ivenshitz
- Department of Neurobiology, the Weizmann Institute of Science, Rehovot 76100, Israel
- Corresponding author.E-mail ; fax 972-8-9344140
| | - Menahem Segal
- Department of Neurobiology, the Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
27
|
Chin TY, Chueh SH, Tao PL. S-Nitrosoglutathione and glutathione act as NMDA receptor agonists in cultured hippocampal neurons. Acta Pharmacol Sin 2006; 27:853-60. [PMID: 16787569 DOI: 10.1111/j.1745-7254.2006.00379.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To characterize the effect of combined pre- and postnatal morphine exposure on N-methyl-D-aspartate receptor (NMDA) receptor signaling in hippocampal neurons of the offspring of morphine-addicted female rats. METHODS Cultured hippocampal neurons and synaptosomes were prepared from neonatal and 2-week-old offspring, respectively, of control or morphine-addicted female rats. The increase in the cytosolic Ca2+ concentration ([Ca2+]i) of cultured cells was measured using Fura-2, and glutamate release from synaptosomes was measured enzymatically. RESULTS Both glutamate and NMDA caused a dose-dependent increase in the [Ca2+]i. The nitric oxide (NO) donor, S-nitrosoglutathione (GSNO), but not 3-morpholinosydnonimine, sodium nitroprusside, and S-nitroso-N-acetylpenicillamine, also induced a [Ca2+]i increase. GSNO and glutathione caused a dose-dependent increase in the [Ca2+]i with respective EC50 values of 56 and 414 micromol/L. Both effects were inhibited by Mg2+ or an NMDA receptor antagonist and were unaffected by the presence of a glutamate scavenger. The other glutathione derivatives, oxidized glutathione, S-methylglutathione, S-ethylglutathione, S-propylglutathione, and S-butylglutathione, the dipeptides, Glu-Cys and Cys-Gly, and the antioxidants, dithiothreitol and mercaptoethanol, failed to induce a [Ca2+]i increase. In addition, glutathione caused a dose-dependent increase in glutamate release from synaptosomes. The maximal responses and the EC50 values for the glutamate-, NMDA-, GSNO-, and glutathione-induced [Ca2+]i increases and the glutathione-induced glutamate release were indistinguishable in the neurons of the offspring from control and morphine-addicted female rats. CONCLUSION GSNO and glutathione act as NMDA receptor agonists and, in contrast to hippocampal brain slice, combined pre- and postnatal morphine exposure does not modulate NMDA receptor signaling in the cultured hippocampal neurons.
Collapse
Affiliation(s)
- Ting-yu Chin
- Department of Bioscience Technology, Chung-Yuan Christian University, Chung-Li, Taiwan, China
| | | | | |
Collapse
|