1
|
Joëls M, Karst H, Tasker JG. The emerging role of rapid corticosteroid actions on excitatory and inhibitory synaptic signaling in the brain. Front Neuroendocrinol 2024; 74:101146. [PMID: 39004314 DOI: 10.1016/j.yfrne.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Over the past two decades, there has been increasing evidence for the importance of rapid-onset actions of corticosteroid hormones in the brain. Here, we highlight the distinct rapid corticosteroid actions that regulate excitatory and inhibitory synaptic transmission in the hypothalamus, the hippocampus, basolateral amygdala, and prefrontal cortex. The receptors that mediate rapid corticosteroid actions are located at or close to the plasma membrane, though many of the receptor characteristics remain unresolved. Rapid-onset corticosteroid effects play a role in fast neuroendocrine feedback as well as in higher brain functions, including increased aggression and anxiety, and impaired memory retrieval. The rapid non-genomic corticosteroid actions precede and complement slow-onset, long-lasting transcriptional actions of the steroids. Both rapid and slow corticosteroid actions appear to be indispensable to adapt to a continuously changing environment, and their imbalance can increase an individual's susceptibility to psychopathology.
Collapse
Affiliation(s)
- Marian Joëls
- University Medical Center Groningen, University of Groningen, the Netherlands; University Medical Center Utrecht, Utrecht University, the Netherlands.
| | - Henk Karst
- University Medical Center Utrecht, Utrecht University, the Netherlands; SILS-CNS. University of Amsterdam, the Netherlands.
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, and Southeast Louisiana Veterans Affairs Healthcare System, New Orleans, USA.
| |
Collapse
|
2
|
Rein JL, Mackie K, Kleyman TR, Satlin LM. Cannabinoid receptor type 1 activation causes a water diuresis by inducing an acute central diabetes insipidus in mice. Am J Physiol Renal Physiol 2024; 326:F917-F930. [PMID: 38634131 PMCID: PMC12040313 DOI: 10.1152/ajprenal.00320.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Cannabis and synthetic cannabinoid consumption are increasing worldwide. Cannabis contains numerous phytocannabinoids that act on the G protein-coupled cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 expressed throughout the body, including the kidney. Essentially every organ, including the kidney, produces endocannabinoids, which are endogenous ligands to these receptors. Cannabinoids acutely increase urine output in rodents and humans, thus potentially influencing total body water and electrolyte homeostasis. As the kidney collecting duct (CD) regulates total body water, acid/base, and electrolyte balance through specific functions of principal cells (PCs) and intercalated cells (ICs), we examined the cell-specific immunolocalization of CB1R in the mouse CD. Antibodies against either the C-terminus or N-terminus of CB1R consistently labeled aquaporin 2 (AQP2)-negative cells in the cortical and medullary CD and thus presumably ICs. Given the well-established role of ICs in urinary acidification, we used a clearance approach in mice that were acid loaded with 280 mM NH4Cl for 7 days and nonacid-loaded mice treated with the cannabinoid receptor agonist WIN55,212-2 (WIN) or a vehicle control. Although WIN had no effect on urinary acidification, these WIN-treated mice had less apical + subapical AQP2 expression in PCs compared with controls and developed acute diabetes insipidus associated with the excretion of large volumes of dilute urine. Mice maximally concentrated their urine when WIN and 1-desamino-8-d-arginine vasopressin [desmopressin (DDAVP)] were coadministered, consistent with central rather than nephrogenic diabetes insipidus. Although ICs express CB1R, the physiological role of CB1R in this cell type remains to be determined.NEW & NOTEWORTHY The CB1R agonist WIN55,212-2 induces central diabetes insipidus in mice. This research integrates existing knowledge regarding the diuretic effects of cannabinoids and the influence of CB1R on vasopressin secretion while adding new mechanistic insights about total body water homeostasis. Our findings provide a deeper understanding about the potential clinical impact of cannabinoids on human physiology and may help identify targets for novel therapeutics to treat water and electrolyte disorders such as hyponatremia and volume overload.
Collapse
Affiliation(s)
- Joshua L Rein
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Ken Mackie
- Gill Center for Biomolecular Medicine, Indiana University, Bloomington, Indiana, United States
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
3
|
dos-Santos RC, Sweeten BLW, Stelly CE, Tasker JG. The Neuroendocrine Impact of Acute Stress on Synaptic Plasticity. Endocrinology 2023; 164:bqad149. [PMID: 37788632 PMCID: PMC11046011 DOI: 10.1210/endocr/bqad149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Stress induces changes in nervous system function on different signaling levels, from molecular signaling to synaptic transmission to neural circuits to behavior-and on different time scales, from rapid onset and transient to delayed and long-lasting. The principal effectors of stress plasticity are glucocorticoids, steroid hormones that act with a broad range of signaling competency due to the expression of multiple nuclear and membrane receptor subtypes in virtually every tissue of the organism. Glucocorticoid and mineralocorticoid receptors are localized to each of the cellular compartments of the receptor-expressing cells-the membrane, cytosol, and nucleus. In this review, we cover the neuroendocrine effects of stress, focusing mainly on the rapid actions of acute stress-induced glucocorticoids that effect changes in synaptic transmission and neuronal excitability by modulating synaptic and intrinsic neuronal properties via activation of presumed membrane glucocorticoid and mineralocorticoid receptors. We describe the synaptic plasticity that occurs in 4 stress-associated brain structures, the hypothalamus, hippocampus, amygdala, and prefrontal cortex, in response to single or short-term stress exposure. The rapid transformative impact of glucocorticoids makes this stress signal a particularly potent effector of acute neuronal plasticity.
Collapse
Affiliation(s)
- Raoni Conceição dos-Santos
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Brook L W Sweeten
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Claire E Stelly
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
4
|
Noriega‐Prieto JA, Kofuji P, Araque A. Endocannabinoid signaling in synaptic function. Glia 2023; 71:36-43. [PMID: 36408881 PMCID: PMC9679333 DOI: 10.1002/glia.24256] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/02/2022] [Accepted: 07/25/2022] [Indexed: 01/09/2023]
Abstract
In the last decades, astrocytes have emerged as important regulatory cells actively involved in brain function by exchanging signaling with neurons. The endocannabinoid (eCB) signaling is widely present in many brain areas, being crucially involved in multiple brain functions and animal behaviors. The present review presents and discusses current evidence demonstrating that astrocytes sense eCBs released during neuronal activity and subsequently release gliotransmitters that regulate synaptic transmission and plasticity. The eCB signaling to astrocytes and the synaptic regulation mediated by astrocytes activated by eCBs are complex phenomena that exhibit exquisite spatial and temporal properties, a wide variety of downstream signaling mechanisms, and a large diversity of functional synaptic outcomes. Studies investigating this topic have revealed novel regulatory processes of synaptic function, like the lateral regulation of synaptic transmission and the active involvement of astrocytes in the spike-timing dependent plasticity, originally thought to be exclusively mediated by the coincident activity of pre- and postsynaptic neurons, following Hebbian rules for associative learning. Finally, the critical influence of astrocyte-mediated eCB signaling on animal behavior is also discussed.
Collapse
Affiliation(s)
| | - Paulo Kofuji
- Department of NeuroscienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Alfonso Araque
- Department of NeuroscienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
5
|
De Laurentiis A, Correa F, Fernandez Solari J. Endocannabinoid System in the Neuroendocrine Response to Lipopolysaccharide-induced Immune Challenge. J Endocr Soc 2022; 6:bvac120. [PMID: 36042978 PMCID: PMC9419496 DOI: 10.1210/jendso/bvac120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/19/2022] Open
Abstract
The endocannabinoid system plays a key role in the intersection of the nervous, endocrine, and immune systems, regulating not only their functions but also how they interplay with each other. Endogenous ligands, named endocannabinoids, are produced "on demand" to finely regulate the synthesis and secretion of hormones and neurotransmitters, as well as to regulate the production of cytokines and other proinflammatory mediators. It is well known that immune challenges, such as exposure to lipopolysaccharide, the main component of the Gram-negative bacteria cell wall, disrupt not only the hypothalamic-pituitary-adrenal axis but also affects other endocrine systems such as the hypothalamic-pituitary-gonadal axis and the release of oxytocin from the neurohypophysis. Here we explore which actors and molecular mechanisms are involved in these processes.
Collapse
Affiliation(s)
- Andrea De Laurentiis
- Universidad de Buenos Aires (UBA), Facultad de Odontología, Cátedra de Fisiología, Buenos Aires, Argentina
- Centro de Estudios Farmacológicos y Botánicos, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (UBA/CONICET), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Fernando Correa
- Centro de Estudios Farmacológicos y Botánicos, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (UBA/CONICET), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Javier Fernandez Solari
- Universidad de Buenos Aires (UBA), Facultad de Odontología, Cátedra de Fisiología, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Harrison LM, Tasker JG. Multiplexed Membrane Signaling by Glucocorticoids. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 26:100390. [PMID: 38075196 PMCID: PMC10703063 DOI: 10.1016/j.coemr.2022.100390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Glucocorticoids exert pleiotropic effects either by a relatively slow mechanism involving binding to cytosolic/nuclear receptors and regulation of gene expression or by rapid activation of a putative membrane receptor and membrane signal transduction. Rapid glucocorticoid actions are initiated at the membrane and recruit intracellular signaling pathways that engage multiple downstream cellular targets, including lipid and gas intercellular messengers, membrane neurotransmitter receptor trafficking, nuclear glucocorticoid receptor activation and trafficking, and more. Thus, membrane glucocorticoid signaling diverges into a multiplexed array of signaling pathways to simultaneously regulate highly diverse cellular functions, giving these steroid hormones a broad range of rapid regulatory capabilities. In this review, we provide a brief overview of the growing body of knowledge of the cell signaling mechanisms of rapid glucocorticoid actions in the brain.
Collapse
Affiliation(s)
- Laura M Harrison
- Department of Cell and Molecular Biology, Tulane Brain Institute, Tulane University, New Orleans, LA 70118
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology, Tulane Brain Institute, Tulane University, New Orleans, LA 70118
| |
Collapse
|
7
|
Winters BL, Vaughan CW. Mechanisms of endocannabinoid control of synaptic plasticity. Neuropharmacology 2021; 197:108736. [PMID: 34343612 DOI: 10.1016/j.neuropharm.2021.108736] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023]
Abstract
The endogenous cannabinoid transmitter system regulates synaptic transmission throughout the nervous system. Unlike conventional transmitters, specific stimuli induce synthesis of endocannabinoids (eCBs) in the postsynaptic neuron, and these travel backwards to modulate presynaptic inputs. In doing so, eCBs can induce short-term changes in synaptic strength and longer-term plasticity. While this eCB regulation is near ubiquitous, it displays major regional and synapse specific variations with different synapse specific forms of short-versus long-term plasticity throughout the brain. These differences are due to the plethora of pre- and postsynaptic mechanisms which have been implicated in eCB signalling, the intricacies of which are only just being realised. In this review, we shall describe the current understanding and highlight new advances in this area, with a focus on the retrograde action of eCBs at CB1 receptors (CB1Rs).
Collapse
Affiliation(s)
- Bryony Laura Winters
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia.
| | - Christopher Walter Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| |
Collapse
|
8
|
Chen C, Jiang Z, Fu X, Yu D, Huang H, Tasker JG. Astrocytes Amplify Neuronal Dendritic Volume Transmission Stimulated by Norepinephrine. Cell Rep 2020; 29:4349-4361.e4. [PMID: 31875545 PMCID: PMC7010232 DOI: 10.1016/j.celrep.2019.11.092] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/10/2019] [Accepted: 11/22/2019] [Indexed: 11/03/2022] Open
Abstract
In addition to their support role in neurotransmitter and ion buffering, astrocytes directly regulate neurotransmission at synapses via local bidirectional signaling with neurons. Here, we reveal a form of neuronal-astrocytic signaling that transmits retrograde dendritic signals to distal upstream neurons in order to activate recurrent synaptic circuits. Norepinephrine activates α1 adrenoreceptors in hypothalamic corticotropin-releasing hormone (CRH) neurons to stimulate dendritic release, which triggers an astrocytic calcium response and release of ATP; ATP stimulates action potentials in upstream glutamate and GABA neurons to activate recurrent excitatory and inhibitory synaptic circuits to the CRH neurons. Thus, norepinephrine activates a retrograde signaling mechanism in CRH neurons that engages astrocytes in order to extend dendritic volume transmission to reach distal presynaptic glutamate and GABA neurons, thereby amplifying volume transmission mediated by dendritic release.
Collapse
Affiliation(s)
- Chun Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - ZhiYing Jiang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Xin Fu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Diankun Yu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Hai Huang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
9
|
Brown CH, Ludwig M, Tasker JG, Stern JE. Somato-dendritic vasopressin and oxytocin secretion in endocrine and autonomic regulation. J Neuroendocrinol 2020; 32:e12856. [PMID: 32406599 PMCID: PMC9134751 DOI: 10.1111/jne.12856] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/29/2020] [Accepted: 04/11/2020] [Indexed: 12/29/2022]
Abstract
Somato-dendritic secretion was first demonstrated over 30 years ago. However, although its existence has become widely accepted, the function of somato-dendritic secretion is still not completely understood. Hypothalamic magnocellular neurosecretory cells were among the first neuronal phenotypes in which somato-dendritic secretion was demonstrated and are among the neurones for which the functions of somato-dendritic secretion are best characterised. These neurones secrete the neuropeptides, vasopressin and oxytocin, in an orthograde manner from their axons in the posterior pituitary gland into the blood circulation to regulate body fluid balance and reproductive physiology. Retrograde somato-dendritic secretion of vasopressin and oxytocin modulates the activity of the neurones from which they are secreted, as well as the activity of neighbouring populations of neurones, to provide intra- and inter-population signals that coordinate the endocrine and autonomic responses for the control of peripheral physiology. Somato-dendritic vasopressin and oxytocin have also been proposed to act as hormone-like signals in the brain. There is some evidence that somato-dendritic secretion from magnocellular neurosecretory cells modulates the activity of neurones beyond their local environment where there are no vasopressin- or oxytocin-containing axons but, to date, there is no conclusive evidence for, or against, hormone-like signalling throughout the brain, although it is difficult to imagine that the levels of vasopressin found throughout the brain could be underpinned by release from relatively sparse axon terminal fields. The generation of data to resolve this issue remains a priority for the field.
Collapse
Affiliation(s)
- Colin H. Brown
- Department of Physiology, Brain Health Research Centre, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Mike Ludwig
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Department of Immunology, Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa
| | - Jeffrey G. Tasker
- Department of Cell and Molecular Biology, Brain Institute, Tulane University, New Orleans, LA, USA
| | - Javier E. Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
10
|
Remote CB1 receptor antagonist administration reveals multiple sites of tonic and phasic endocannabinoid neuroendocrine regulation. Psychoneuroendocrinology 2020; 113:104549. [PMID: 31884322 PMCID: PMC7566018 DOI: 10.1016/j.psyneuen.2019.104549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/21/2019] [Accepted: 12/13/2019] [Indexed: 11/23/2022]
Abstract
Endogenous cannabinoids (endocannabinoids, eCB) are expressed throughout the body and contribute to regulation of the hypothalamo-pituitary-adrenal (HPA) axis and general stress reactivity. This study assessed the contributions of CB1 receptors (CB1R) in the modulation of basal and stress-induced neural and HPA axis activities. Catheterized adult male rats were placed in chambers to acclimate overnight, with their catheters connected and exteriorized from the chambers for relatively stress-free remote injections. The next morning, the CB1R antagonist AM251 (1 or 2 mg/kg) or vehicle was administered, and 30 min later, rats were exposed to loud noise stress (30 min) or no noise (basal condition). Blood, brains, pituitary and adrenal glands were collected immediately after the procedures for analysis of c-fos and CB1R mRNAs, corticosterone (CORT) and adrenocorticotropin hormone (ACTH) plasma levels. Basally, CB1R antagonism induced c-fos mRNA in the basolateral amygdala (BLA) and auditory cortex (AUD) and elevated plasma CORT, indicating disruption of eCB-mediated constitutive inhibition of activity. CB1R blockade also potentiated stress-induced hormone levels and c-fos mRNA in several regions such as the bed nucleus of the stria terminalis (BST), lateral septum (LS), and basolateral amygdala (BLA) and the paraventricular nucleus of the hypothalamus (PVN). CB1R mRNA was detected in all central tissues investigated, and the adrenal cortex, but at very low levels in the anterior pituitary gland. Interestingly, CB1R mRNA was rapidly and bidirectionally regulated in response to stress and/or antagonist treatment in some regions. eCBs therefore modulate the HPA axis by regulating both constitutive and activity-dependent inhibition at multiple levels.
Collapse
|
11
|
Cannabinoid Signaling Recruits Astrocytes to Modulate Presynaptic Function in the Suprachiasmatic Nucleus. eNeuro 2020; 7:ENEURO.0081-19.2020. [PMID: 31964686 PMCID: PMC7029187 DOI: 10.1523/eneuro.0081-19.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/21/2022] Open
Abstract
Circadian rhythms are 24-h cycles in physiology regulated by the suprachiasmatic nucleus (SCN) in the brain, where daily cues act on SCN neurons to alter clock timing. Cannabinoid signaling modulates SCN neuronal activity, although the mechanism remains unclear. We propose that neuronal activity generates endocannabinoid release, activating astrocyte Ca2+ signaling, which releases adenosine and activates adenosine-1 receptors (A1Rs) on the presynaptic axon terminals, decreasing GABA release. We demonstrated, in mice, that activation of cannabinoid-1 receptors (CB1R) with the agonist WIN 55,212-2 (WIN) reduced the miniature GABA receptor-mediated postsynaptic current (mGPSC) frequency by a mechanism that requires astrocytes and A1R. WIN activated an intracellular Ca2+ signaling pathway in astrocytes. Activating this intracellular Ca2+ pathway with designer receptors exclusively activated by designer drugs (DREADDs) also decreased the mGPSC frequency and required A1R activation. The frequency of spontaneous Ca2+ events, including those induced by depolarization of a postsynaptic SCN neuron, was reduced by blocking CB1R activation with AM251, demonstrating neuronal endocannabinoid signaling modulates astrocytic Ca2+ signaling in the SCN. Finally, daytime application of WIN or adenosine phase advanced the molecular circadian clock, indicating that this cannabinoid signaling pathway is vital for the timing of circadian rhythms.
Collapse
|
12
|
MacDonald AJ, Robb JL, Morrissey NA, Beall C, Ellacott KLJ. Astrocytes in neuroendocrine systems: An overview. J Neuroendocrinol 2019; 31:e12726. [PMID: 31050045 DOI: 10.1111/jne.12726] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/11/2022]
Abstract
A class of glial cell, astrocytes, is highly abundant in the central nervous system (CNS). In addition to maintaining tissue homeostasis, astrocytes regulate neuronal communication and synaptic plasticity. There is an ever-increasing appreciation that astrocytes are involved in the regulation of physiology and behaviour in normal and pathological states, including within neuroendocrine systems. Indeed, astrocytes are direct targets of hormone action in the CNS, via receptors expressed on their surface, and are also a source of regulatory neuropeptides, neurotransmitters and gliotransmitters. Furthermore, as part of the neurovascular unit, astrocytes can regulate hormone entry into the CNS. This review is intended to provide an overview of how astrocytes are impacted by and contribute to the regulation of a diverse range of neuroendocrine systems: energy homeostasis and metabolism, reproduction, fluid homeostasis, the stress response and circadian rhythms.
Collapse
Affiliation(s)
- Alastair J MacDonald
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Josephine L Robb
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Nicole A Morrissey
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Craig Beall
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Kate L J Ellacott
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
13
|
Harris C, Weiss GL, Di S, Tasker JG. Cell signaling dependence of rapid glucocorticoid-induced endocannabinoid synthesis in hypothalamic neuroendocrine cells. Neurobiol Stress 2019; 10:100158. [PMID: 31193551 PMCID: PMC6535624 DOI: 10.1016/j.ynstr.2019.100158] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/01/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoids induce a rapid synthesis of endocannabinoid in hypothalamic neuroendocrine cells by activation of a putative membrane receptor. Somato-dendritically released endocannabinoid acts as a retrograde messenger to suppress excitatory synaptic inputs to corticotropin-releasing hormone-, oxytocin-, and vasopressin-secreting cells. The non-genomic signaling mechanism responsible for rapid endocannabinoid synthesis by glucocorticoids has yet to be fully characterized. Here we manipulated cell signaling molecules pharmacologically using an intracellular approach to elucidate the signaling pathway activated by the membrane glucocorticoid receptor in hypothalamic neuroendocrine cells. We found that rapid glucocorticoid-induced endocannabinoid synthesis in magnocellular neuroendocrine cells requires the sequential activation of multiple kinases, phospholipase C, and intracellular calcium mobilization. While there remain gaps in our understanding, our findings reveal many of the critical players in the rapid glucocorticoid signaling that culminates in the retrograde endocannabinoid modulation of excitatory synaptic transmission.
Collapse
Affiliation(s)
- Christina Harris
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Grant L Weiss
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Shi Di
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA.,Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| |
Collapse
|
14
|
Modulation of the endocannabinoid system by sex hormones: Implications for posttraumatic stress disorder. Neurosci Biobehav Rev 2018; 94:302-320. [DOI: 10.1016/j.neubiorev.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
|
15
|
Russell AL, Tasker JG, Lucion AB, Fiedler J, Munhoz CD, Wu TYJ, Deak T. Factors promoting vulnerability to dysregulated stress reactivity and stress-related disease. J Neuroendocrinol 2018; 30:e12641. [PMID: 30144202 PMCID: PMC6181794 DOI: 10.1111/jne.12641] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/07/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
Effective coordination of the biological stress response is integral for the behavioural well-being of an organism. Stress reactivity is coordinated by an interplay of the neuroendocrine system and the sympathetic nervous system. The hypothalamic-pituitary-adrenal (HPA) axis plays a key role in orchestrating the bodily responses to stress, and the activity of the axis can be modified by a wide range of experiential events. This review focuses on several factors that influence subsequent HPA axis reactivity. Some of these factors include early-life adversity, exposure to chronic stress, immune activation and traumatic brain injury. The central premise is that each of these experiences serves as a general vulnerability factor that accelerates future HPA axis reactivity in ways that make individuals more sensitive to stress challenges, therefore feeding forward into the exacerbation of ongoing (or greater susceptibility toward) future stress-related disease states, especially as they pertain to negative affect and overall brain health.
Collapse
Affiliation(s)
- Ashley L Russell
- Program in Neuroscience, Uniformed Services University, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Los Angeles
| | - Aldo B Lucion
- Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jenny Fiedler
- Department of Biochemistry and Molecular Biology, Chemical and Pharmaceutical Sciences Faculty, Universidad de Chile, Santiago, Chile
| | - Carolina D Munhoz
- Deparment of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Tao-Yiao John Wu
- Program in Neuroscience, Uniformed Services University, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, New York
| |
Collapse
|
16
|
Flôr AFL, de Brito Alves JL, França-Silva MS, Balarini CM, Elias LLK, Ruginsk SG, Antunes-Rodrigues J, Braga VA, Cruz JC. Glial Cells Are Involved in ANG-II-Induced Vasopressin Release and Sodium Intake in Awake Rats. Front Physiol 2018; 9:430. [PMID: 29765330 PMCID: PMC5938358 DOI: 10.3389/fphys.2018.00430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/06/2018] [Indexed: 01/28/2023] Open
Abstract
It is known that circulating angiotensin II (ANG-II) acts on the circumventricular organs (CVOs), which partially lack a normal blood-brain barrier, to stimulate pressor responses, vasopressin (AVP), and oxytocin (OT) secretion, as well as sodium and water intake. Although ANG-II type 1 receptors (AT1R) are expressed in neurons and astrocytes, the involvement of CVOs glial cells in the neuroendocrine, cardiovascular and behavioral responses induced by central ANG II remains to be further elucidated. To address this question, we performed a set of experiments combining in vitro studies in primary hypothalamic astrocyte cells (HACc) and in vivo intracerebroventricular (icv) microinjections into the lateral ventricle of awake rats. Our results showed that ANG-II decreased glutamate uptake in HACc. In addition, in vivo studies showed that fluorocitrate (FCt), a reversible glial inhibitor, increased OT secretion and mean arterial pressure (MAP) and decreased breathing at rest. Furthermore, previous FCt decreased AVP secretion and sodium intake induced by central ANG-II. Together, our findings support that CVOs glial cells are important in mediating neuroendocrine and cardiorespiratory functions, as well as central ANG-II-induced AVP release and salt-intake behavior in awake rats. In the light of our in vitro studies, we propose that these mechanisms are, at least in part, by ANG-II-induced astrocyte mediate reduction in glutamate extracellular clearance.
Collapse
Affiliation(s)
- Atalia F L Flôr
- Departamento de Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - José L de Brito Alves
- Departamento de Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Maria S França-Silva
- Departamento de Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Camille M Balarini
- Departamento de Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil.,Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Lucila L K Elias
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Silvia G Ruginsk
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - José Antunes-Rodrigues
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Valdir A Braga
- Departamento de Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Josiane C Cruz
- Departamento de Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
17
|
Clasadonte J, Prevot V. The special relationship: glia-neuron interactions in the neuroendocrine hypothalamus. Nat Rev Endocrinol 2018; 14:25-44. [PMID: 29076504 DOI: 10.1038/nrendo.2017.124] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural fluctuations in physiological conditions require adaptive responses involving rapid and reversible structural and functional changes in the hypothalamic neuroendocrine circuits that control homeostasis. Here, we discuss the data that implicate hypothalamic glia in the control of hypothalamic neuroendocrine circuits, specifically neuron-glia interactions in the regulation of neurosecretion as well as neuronal excitability. Mechanistically, the morphological plasticity displayed by distal processes of astrocytes, pituicytes and tanycytes modifies the geometry and diffusion properties of the extracellular space. These changes alter the relationship between glial cells of the hypothalamus and adjacent neuronal elements, especially at specialized intersections such as synapses and neurohaemal junctions. The structural alterations in turn lead to functional plasticity that alters the release and spread of neurotransmitters, neuromodulators and gliotransmitters, as well as the activity of discrete glial signalling pathways that mediate feedback by peripheral signals to the hypothalamus. An understanding of the contributions of these and other non-neuronal cell types to hypothalamic neuroendocrine function is thus critical both to understand physiological processes such as puberty, the maintenance of bodily homeostasis and ageing and to develop novel therapeutic strategies for dysfunctions of these processes, such as infertility and metabolic disorders.
Collapse
Affiliation(s)
- Jerome Clasadonte
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, Bâtiment Biserte, 1 Place de Verdun, 59045, Lille, Cedex, France
- University of Lille, FHU 1000 days for Health, School of Medicine, Lille 59000, France
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, Bâtiment Biserte, 1 Place de Verdun, 59045, Lille, Cedex, France
- University of Lille, FHU 1000 days for Health, School of Medicine, Lille 59000, France
| |
Collapse
|
18
|
Nongenomic Glucocorticoid Suppression of a Postsynaptic Potassium Current via Emergent Autocrine Endocannabinoid Signaling in Hypothalamic Neuroendocrine Cells following Chronic Dehydration. eNeuro 2017; 4:eN-NWR-0216-17. [PMID: 28966975 PMCID: PMC5617081 DOI: 10.1523/eneuro.0216-17.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/19/2017] [Accepted: 08/22/2017] [Indexed: 11/21/2022] Open
Abstract
Glucocorticoids rapidly stimulate endocannabinoid synthesis and modulation of synaptic transmission in hypothalamic neuroendocrine cells via a nongenomic signaling mechanism. The endocannabinoid actions are synapse-constrained by astrocyte restriction of extracellular spatial domains. Exogenous cannabinoids have been shown to modulate postsynaptic potassium currents, including the A-type potassium current (IA), in different cell types. The activity of magnocellular neuroendocrine cells is shaped by a prominent IA. We tested for a rapid glucocorticoid modulation of the postsynaptic IK and IA in magnocellular neuroendocrine cells of the hypothalamic paraventricular nucleus (PVN) using whole-cell recordings in rat brain slices. Application of the synthetic glucocorticoid dexamethasone (Dex) had no rapid effect on the IK or IA amplitude, voltage dependence, or kinetics in magnocellular neurons in slices from untreated rats. In magnocellular neurons from salt-loaded rats, however, Dex application caused a rapid suppression of the IA and a depolarizing shift in IA voltage dependence. Exogenously applied endocannabinoids mimicked the rapid Dex modulation of the IA, and CB1 receptor antagonists and agonists blocked and occluded the Dex-induced changes in the IA, respectively, suggesting an endocannabinoid dependence of the rapid glucocorticoid effect. Preincubation of control slices in a gliotoxin resulted in the partial recapitulation of the glucocorticoid-induced rapid suppression of the IA. These findings demonstrate a glucocorticoid suppression of the postsynaptic IA in PVN magnocellular neurons via an autocrine endocannabinoid-dependent mechanism following chronic dehydration, and suggest a possible role for astrocytes in the control of the autocrine endocannabinoid actions.
Collapse
|
19
|
Acute Stress Suppresses Synaptic Inhibition and Increases Anxiety via Endocannabinoid Release in the Basolateral Amygdala. J Neurosci 2017; 36:8461-70. [PMID: 27511017 DOI: 10.1523/jneurosci.2279-15.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/25/2016] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Stress and glucocorticoids stimulate the rapid mobilization of endocannabinoids in the basolateral amygdala (BLA). Cannabinoid receptors in the BLA contribute to anxiogenesis and fear-memory formation. We tested for rapid glucocorticoid-induced endocannabinoid regulation of synaptic inhibition in the rat BLA. Glucocorticoid application to amygdala slices elicited a rapid, nonreversible suppression of spontaneous, but not evoked, GABAergic synaptic currents in BLA principal neurons; the effect was also seen with a membrane-impermeant glucocorticoid, but not with intracellular glucocorticoid application, implicating a membrane-associated glucocorticoid receptor. The glucocorticoid suppression of GABA currents was not blocked by antagonists of nuclear corticosteroid receptors, or by inhibitors of gene transcription or protein synthesis, but was blocked by inhibiting postsynaptic G-protein activity, suggesting a postsynaptic nongenomic steroid signaling mechanism that stimulates the release of a retrograde messenger. The rapid glucocorticoid-induced suppression of inhibition was prevented by blocking CB1 receptors and 2-arachidonoylglycerol (2-AG) synthesis, and it was mimicked and occluded by CB1 receptor agonists, indicating it was mediated by the retrograde release of the endocannabinoid 2-AG. The rapid glucocorticoid effect in BLA neurons in vitro was occluded by prior in vivo acute stress-induced, or prior in vitro glucocorticoid-induced, release of endocannabinoid. Acute stress also caused an increase in anxiety-like behavior that was attenuated by blocking CB1 receptor activation and inhibiting 2-AG synthesis in the BLA. Together, these findings suggest that acute stress causes a long-lasting suppression of synaptic inhibition in BLA neurons via a membrane glucocorticoid receptor-induced release of 2-AG at GABA synapses, which contributes to stress-induced anxiogenesis. SIGNIFICANCE STATEMENT We provide a cellular mechanism in the basolateral amygdala (BLA) for the rapid stress regulation of anxiogenesis in rats. We demonstrate a nongenomic glucocorticoid induction of long-lasting suppression of synaptic inhibition that is mediated by retrograde endocannabinoid release at GABA synapses. The rapid glucocorticoid-induced endocannabinoid suppression of synaptic inhibition is initiated by a membrane-associated glucocorticoid receptor in BLA principal neurons. We show that acute stress increases anxiety-like behavior via an endocannabinoid-dependent mechanism centered in the BLA. The stress-induced endocannabinoid modulation of synaptic transmission in the BLA contributes, therefore, to the stress regulation of anxiety, and may play a role in anxiety disorders of the amygdala.
Collapse
|
20
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
21
|
Abstract
The posterior pituitary gland secretes oxytocin and vasopressin (the antidiuretic hormone) into the blood system. Oxytocin is required for normal delivery of the young and for delivery of milk to the young during lactation. Vasopressin increases water reabsorption in the kidney to maintain body fluid balance and causes vasoconstriction to increase blood pressure. Oxytocin and vasopressin secretion occurs from the axon terminals of magnocellular neurons whose cell bodies are principally found in the hypothalamic supraoptic nucleus and paraventricular nucleus. The physiological functions of oxytocin and vasopressin depend on their secretion, which is principally determined by the pattern of action potentials initiated at the cell bodies. Appropriate secretion of oxytocin and vasopressin to meet the challenges of changing physiological conditions relies mainly on integration of afferent information on reproductive, osmotic, and cardiovascular status with local regulation of magnocellular neurons by glia as well as intrinsic regulation by the magnocellular neurons themselves. This review focuses on the control of magnocellular neuron activity with a particular emphasis on their regulation by reproductive function, body fluid balance, and cardiovascular status. © 2016 American Physiological Society. Compr Physiol 6:1701-1741, 2016.
Collapse
Affiliation(s)
- Colin H Brown
- Brain Health Research Centre, Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Xia S, Zhou Z, Leung C, Zhu Y, Pan X, Qi J, Morena M, Hill MN, Xie W, Jia Z. p21-activated kinase 1 restricts tonic endocannabinoid signaling in the hippocampus. eLife 2016; 5. [PMID: 27296803 PMCID: PMC4907698 DOI: 10.7554/elife.14653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/13/2016] [Indexed: 12/16/2022] Open
Abstract
PAK1 inhibitors are known to markedly improve social and cognitive function in several animal models of brain disorders, including autism, but the underlying mechanisms remain elusive. We show here that disruption of PAK1 in mice suppresses inhibitory neurotransmission through an increase in tonic, but not phasic, secretion of endocannabinoids (eCB). Consistently, we found elevated levels of anandamide (AEA), but not 2-arachidonoylglycerol (2-AG) following PAK1 disruption. This increased tonic AEA signaling is mediated by reduced cyclooxygenase-2 (COX-2), and COX-2 inhibitors recapitulate the effect of PAK1 deletion on GABAergic transmission in a CB1 receptor-dependent manner. These results establish a novel signaling process whereby PAK1 upregulates COX-2, reduces AEA and restricts tonic eCB-mediated processes. Because PAK1 and eCB are both critically involved in many other organ systems in addition to the brain, our findings may provide a unified mechanism by which PAK1 regulates these systems and their dysfunctions including cancers, inflammations and allergies. DOI:http://dx.doi.org/10.7554/eLife.14653.001 Brain cells communicate by sending chemical signals that activate or excite neighbouring cells. However, too much signalling can be harmful. As such the brain has systems in place to inhibit brain signals, and healthy brain activity relies striking a proper balance between excitation and inhibition. In some brain mental health conditions, like autism or schizophrenia, the balance is skewed which has an impact on the brain’s activity. A chemical produced by brain cells called endocannabinoid helps maintain the appropriate balance in brain excitation and inhibition. Endocannabinoid is similar to a chemical found in cannabis, but little is known about how it works and which proteins interact with endocannabinoid. A family of proteins called p21-activated kinases (PAKs) has been implicated in autism and other disorders like Huntingtin disease and Alzheimer disease, but it is not fully understood how these proteins interact with endocannabinoid. Now, Xia, Zhou et al. show that one member of this protein family called PAK1 plays a key role in controlling endocannabinoid activity. The experiments showed that mice genetically engineered to lack the PAK1 protein have higher levels of endocannabinoids and, as a consequence, the chemical signals that inhibit brain cells are affected more. The experiments also revealed that PAK1 does not interact directly with endocannabinoids. Instead PAK1 boosts levels of another protein called COX-2 and reduces levels of a molecule called anandamide, which together restrict endocannabinoid’s inhibitory effects. Scientists are currently interested in developing drugs that target the endocannabinoids and their regulators in the brain as a way to treat anxiety, pain and sleep problems. Drugs that block PAK1 are already being studied. Future studies are needed to determine if such PAK1-targeting drugs could be useful for restoring excitatory and inhibitory balance in brain diseases or for treating other diseases involving the PAK proteins. DOI:http://dx.doi.org/10.7554/eLife.14653.002
Collapse
Affiliation(s)
- Shuting Xia
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, China
| | - Zikai Zhou
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, China.,Institute of Life Sciences, Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, China
| | - Celeste Leung
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Yuehua Zhu
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, China
| | - Xingxiu Pan
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, China
| | - Junxia Qi
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, China
| | - Maria Morena
- Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, Canada.,Department of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, Canada.,Department of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, Canada
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, China.,Institute of Life Sciences, Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, China
| | - Zhengping Jia
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Franco AJ, Chen C, Scullen T, Zsombok A, Salahudeen AA, Di S, Herman JP, Tasker JG. Sensitization of the Hypothalamic-Pituitary-Adrenal Axis in a Male Rat Chronic Stress Model. Endocrinology 2016; 157:2346-55. [PMID: 27054552 PMCID: PMC4891782 DOI: 10.1210/en.2015-1641] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stress activation of the hypothalamic-pituitary-adrenal (HPA) axis is regulated by rapid glucocorticoid negative feedback. Chronic unpredictable stress animal models recapitulate certain aspects of major depression in humans, which have been attributed to impaired glucocorticoid negative feedback. We tested for an attenuated HPA sensitivity to fast glucocorticoid feedback inhibition in male rats exposed to a chronic variable stress (CVS) paradigm. In vitro, parvocellular neuroendocrine cells of the hypothalamic paraventricular nucleus recorded in slices from CVS rats showed an increase in basal excitatory synaptic inputs and a decrease in basal inhibitory synaptic inputs compared with neurons from control rats. There was no difference between control and CVS-treated rats in the rapid glucocorticoid suppression of excitatory synaptic inputs, a fast feedback mechanism. In vivo, CVS-treated rats showed an increase in ACTH secretion at baseline and after both iv CRH and acute stress and no impairment of the corticosterone suppression of the ACTH response, compared with controls. In an in vitro pituitary preparation, an increase in basal ACTH release, a small increase in CRH-induced ACTH release, and no decrement in the glucocorticoid suppression of ACTH release were seen in pituitaries from CVS rats. Thus, CVS does not suppress rapid glucocorticoid negative feedback at the hypothalamus or pituitary, but increases the synaptic excitability of paraventricular nucleus CRH neurons and the CRH sensitivity of the pituitary. Therefore, increased HPA activity in chronically stressed male rats is due to sensitization of the HPA axis, rather than to desensitization to rapid glucocorticoid feedback.
Collapse
Affiliation(s)
- Alier J Franco
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Chun Chen
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Tyler Scullen
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Andrea Zsombok
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Ahmed A Salahudeen
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Shi Di
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - James P Herman
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| |
Collapse
|
24
|
Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, Scheimann J, Myers B. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr Physiol 2016; 6:603-21. [PMID: 27065163 DOI: 10.1002/cphy.c150015] [Citation(s) in RCA: 1127] [Impact Index Per Article: 125.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hypothalamo-pituitary-adrenocortical (HPA) axis is required for stress adaptation. Activation of the HPA axis causes secretion of glucocorticoids, which act on multiple organ systems to redirect energy resources to meet real or anticipated demand. The HPA stress response is driven primarily by neural mechanisms, invoking corticotrophin releasing hormone (CRH) release from hypothalamic paraventricular nucleus (PVN) neurons. Pathways activating CRH release are stressor dependent: reactive responses to homeostatic disruption frequently involve direct noradrenergic or peptidergic drive of PVN neurons by sensory relays, whereas anticipatory responses use oligosynaptic pathways originating in upstream limbic structures. Anticipatory responses are driven largely by disinhibition, mediated by trans-synaptic silencing of tonic PVN inhibition via GABAergic neurons in the amygdala. Stress responses are inhibited by negative feedback mechanisms, whereby glucocorticoids act to diminish drive (brainstem) and promote transsynaptic inhibition by limbic structures (e.g., hippocampus). Glucocorticoids also act at the PVN to rapidly inhibit CRH neuronal activity via membrane glucocorticoid receptors. Chronic stress-induced activation of the HPA axis takes many forms (chronic basal hypersecretion, sensitized stress responses, and even adrenal exhaustion), with manifestation dependent upon factors such as stressor chronicity, intensity, frequency, and modality. Neural mechanisms driving chronic stress responses can be distinct from those controlling acute reactions, including recruitment of novel limbic, hypothalamic, and brainstem circuits. Importantly, an individual's response to acute or chronic stress is determined by numerous factors, including genetics, early life experience, environmental conditions, sex, and age. The context in which stressors occur will determine whether an individual's acute or chronic stress responses are adaptive or maladaptive (pathological).
Collapse
Affiliation(s)
- James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jessica M McKlveen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sriparna Ghosal
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Brittany Kopp
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Aynara Wulsin
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ryan Makinson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jessie Scheimann
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Brent Myers
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
25
|
Tasker JG, Chen C, Fisher MO, Fu X, Rainville JR, Weiss GL. Endocannabinoid Regulation of Neuroendocrine Systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:163-201. [PMID: 26638767 DOI: 10.1016/bs.irn.2015.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The hypothalamus is a part of the brain that is critical for sustaining life through its homeostatic control and integrative regulation of the autonomic nervous system and neuroendocrine systems. Neuroendocrine function in mammals is mediated mainly through the control of pituitary hormone secretion by diverse neuroendocrine cell groups in the hypothalamus. Cannabinoid receptors are expressed throughout the hypothalamus, and endocannabinoids have been found to exert pronounced regulatory effects on neuroendocrine function via modulation of the outputs of several neuroendocrine systems. Here, we review the physiological regulation of neuroendocrine function by endocannabinoids, focusing on the role of endocannabinoids in the neuroendocrine regulation of the stress response, food intake, fluid homeostasis, and reproductive function. Cannabis sativa (marijuana) has a long history of recreational and/or medicinal use dating back to ancient times. It was used as an analgesic, anesthetic, and antianxiety herb as early as 2600 B.C. The hedonic, anxiolytic, and mood-elevating properties of cannabis have also been cited in ancient records from different cultures. However, it was not until 1964 that the psychoactive constituent of cannabis, Δ(9)-tetrahydrocannabinol, was isolated and its chemical structure determined (Gaoni & Mechoulam, 1964).
Collapse
Affiliation(s)
- Jeffrey G Tasker
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA; Neuroscience Program, Tulane University, New Orleans, Louisiana, USA.
| | - Chun Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | - Marc O Fisher
- Neuroscience Program, Tulane University, New Orleans, Louisiana, USA
| | - Xin Fu
- Neuroscience Program, Tulane University, New Orleans, Louisiana, USA
| | - Jennifer R Rainville
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | - Grant L Weiss
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
26
|
Nahar J, Haam J, Chen C, Jiang Z, Glatzer NR, Muglia LJ, Dohanich GP, Herman JP, Tasker JG. Rapid Nongenomic Glucocorticoid Actions in Male Mouse Hypothalamic Neuroendocrine Cells Are Dependent on the Nuclear Glucocorticoid Receptor. Endocrinology 2015; 156:2831-42. [PMID: 26061727 PMCID: PMC4511129 DOI: 10.1210/en.2015-1273] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Corticosteroids act classically via cognate nuclear receptors to regulate gene transcription; however, increasing evidence supports rapid, nontranscriptional corticosteroid actions via activation of membrane receptors. Using whole-cell patch clamp recordings in hypothalamic slices from male mouse genetic models, we tested for nongenomic glucocorticoid actions at glutamate and gamma aminobutyric acid (GABA) synapses in hypothalamic neuroendocrine cells, and for their dependence on the nuclear glucocorticoid receptor (GR). In enhanced green fluorescent protein-expressing CRH neurons of the paraventricular nucleus (PVN) and in magnocellular neurons of the PVN and supraoptic nucleus (SON), dexamethasone activated postsynaptic membrane-associated receptors and G protein signaling to elicit a rapid suppression of excitatory postsynaptic inputs, which was blocked by genetic deletion of type I cannabinoid receptors and a type I cannabinoid receptor antagonist. In magnocellular neurons, dexamethasone also elicited a rapid nitric oxide-dependent increase in inhibitory postsynaptic inputs. These data indicate a rapid, synapse-specific glucocorticoid-induced retrograde endocannabinoid signaling at glutamate synapses and nitric oxide signaling at GABA synapses. Unexpectedly, the rapid glucocorticoid effects on both excitatory and inhibitory synaptic transmission were lost with conditional deletion of GR in the PVN and SON in slices from a single minded-1-cre-directed conditional GR knockout mouse. Thus, the nongenomic glucocorticoid actions at glutamate and GABA synapses on PVN and SON neuroendocrine cells are dependent on the nuclear GR. The nuclear GR, therefore, is responsible for transducing the rapid steroid response at the membrane, or is either a critical component in the signaling cascade or regulates a critical component of the signaling cascade of a distinct membrane GR.
Collapse
Affiliation(s)
- Jebun Nahar
- Departments of Cell and Molecular Biology (J.N., J.H., C.C., Z.J., N.R.G., J.G.T.) and Psychology (G.P.D.), and Neuroscience Program (G.P.D., J.G.T.), Tulane University, New Orleans, Louisiana 70118; and Departments of Pediatrics (L.J.M.) and Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Juhee Haam
- Departments of Cell and Molecular Biology (J.N., J.H., C.C., Z.J., N.R.G., J.G.T.) and Psychology (G.P.D.), and Neuroscience Program (G.P.D., J.G.T.), Tulane University, New Orleans, Louisiana 70118; and Departments of Pediatrics (L.J.M.) and Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Chun Chen
- Departments of Cell and Molecular Biology (J.N., J.H., C.C., Z.J., N.R.G., J.G.T.) and Psychology (G.P.D.), and Neuroscience Program (G.P.D., J.G.T.), Tulane University, New Orleans, Louisiana 70118; and Departments of Pediatrics (L.J.M.) and Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Zhiying Jiang
- Departments of Cell and Molecular Biology (J.N., J.H., C.C., Z.J., N.R.G., J.G.T.) and Psychology (G.P.D.), and Neuroscience Program (G.P.D., J.G.T.), Tulane University, New Orleans, Louisiana 70118; and Departments of Pediatrics (L.J.M.) and Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Nicholas R Glatzer
- Departments of Cell and Molecular Biology (J.N., J.H., C.C., Z.J., N.R.G., J.G.T.) and Psychology (G.P.D.), and Neuroscience Program (G.P.D., J.G.T.), Tulane University, New Orleans, Louisiana 70118; and Departments of Pediatrics (L.J.M.) and Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Louis J Muglia
- Departments of Cell and Molecular Biology (J.N., J.H., C.C., Z.J., N.R.G., J.G.T.) and Psychology (G.P.D.), and Neuroscience Program (G.P.D., J.G.T.), Tulane University, New Orleans, Louisiana 70118; and Departments of Pediatrics (L.J.M.) and Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Gary P Dohanich
- Departments of Cell and Molecular Biology (J.N., J.H., C.C., Z.J., N.R.G., J.G.T.) and Psychology (G.P.D.), and Neuroscience Program (G.P.D., J.G.T.), Tulane University, New Orleans, Louisiana 70118; and Departments of Pediatrics (L.J.M.) and Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - James P Herman
- Departments of Cell and Molecular Biology (J.N., J.H., C.C., Z.J., N.R.G., J.G.T.) and Psychology (G.P.D.), and Neuroscience Program (G.P.D., J.G.T.), Tulane University, New Orleans, Louisiana 70118; and Departments of Pediatrics (L.J.M.) and Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Jeffrey G Tasker
- Departments of Cell and Molecular Biology (J.N., J.H., C.C., Z.J., N.R.G., J.G.T.) and Psychology (G.P.D.), and Neuroscience Program (G.P.D., J.G.T.), Tulane University, New Orleans, Louisiana 70118; and Departments of Pediatrics (L.J.M.) and Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| |
Collapse
|
27
|
Solomon MB, Loftspring M, de Kloet AD, Ghosal S, Jankord R, Flak JN, Wulsin AC, Krause EG, Zhang R, Rice T, McKlveen J, Myers B, Tasker JG, Herman JP. Neuroendocrine Function After Hypothalamic Depletion of Glucocorticoid Receptors in Male and Female Mice. Endocrinology 2015; 156:2843-53. [PMID: 26046806 PMCID: PMC4511133 DOI: 10.1210/en.2015-1276] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glucocorticoids act rapidly at the paraventricular nucleus (PVN) to inhibit stress-excitatory neurons and limit excessive glucocorticoid secretion. The signaling mechanism underlying rapid feedback inhibition remains to be determined. The present study was designed to test the hypothesis that the canonical glucocorticoid receptors (GRs) is required for appropriate hypothalamic-pituitary-adrenal (HPA) axis regulation. Local PVN GR knockdown (KD) was achieved by breeding homozygous floxed GR mice with Sim1-cre recombinase transgenic mice. This genetic approach created mice with a KD of GR primarily confined to hypothalamic cell groups, including the PVN, sparing GR expression in other HPA axis limbic regulatory regions, and the pituitary. There were no differences in circadian nadir and peak corticosterone concentrations between male PVN GR KD mice and male littermate controls. However, reduction of PVN GR increased ACTH and corticosterone responses to acute, but not chronic stress, indicating that PVN GR is critical for limiting neuroendocrine responses to acute stress in males. Loss of PVN GR induced an opposite neuroendocrine phenotype in females, characterized by increased circadian nadir corticosterone levels and suppressed ACTH responses to acute restraint stress, without a concomitant change in corticosterone responses under acute or chronic stress conditions. PVN GR deletion had no effect on depression-like behavior in either sex in the forced swim test. Overall, these findings reveal pronounced sex differences in the PVN GR dependence of acute stress feedback regulation of HPA axis function. In addition, these data further indicate that glucocorticoid control of HPA axis responses after chronic stress operates via a PVN-independent mechanism.
Collapse
|
28
|
de Kloet AD, Liu M, Rodríguez V, Krause EG, Sumners C. Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control. Am J Physiol Regul Integr Comp Physiol 2015; 309:R444-58. [PMID: 26084692 DOI: 10.1152/ajpregu.00078.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/15/2015] [Indexed: 02/07/2023]
Abstract
Despite tremendous research efforts, hypertension remains an epidemic health concern, leading often to the development of cardiovascular disease. It is well established that in many instances, the brain plays an important role in the onset and progression of hypertension via activation of the sympathetic nervous system. Further, the activity of the renin-angiotensin system (RAS) and of glial cell-mediated proinflammatory processes have independently been linked to this neural control and are, as a consequence, both attractive targets for the development of antihypertensive therapeutics. Although it is clear that the predominant effector peptide of the RAS, ANG II, activates its type-1 receptor on neurons to mediate some of its hypertensive actions, additional nuances of this brain RAS control of blood pressure are constantly being uncovered. One of these complexities is that the RAS is now thought to impact cardiovascular control, in part, via facilitating a glial cell-dependent proinflammatory milieu within cardiovascular control centers. Another complexity is that the newly characterized antihypertensive limbs of the RAS are now recognized to, in many cases, antagonize the prohypertensive ANG II type 1 receptor (AT1R)-mediated effects. That being said, the mechanism by which the RAS, glia, and neurons interact to regulate blood pressure is an active area of ongoing research. Here, we review the current understanding of these interactions and present a hypothetical model of how these exchanges may ultimately regulate cardiovascular function.
Collapse
Affiliation(s)
- Annette D de Kloet
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| | - Meng Liu
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| | - Vermalí Rodríguez
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| | - Eric G Krause
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida
| | - Colin Sumners
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| |
Collapse
|
29
|
Abstract
Some of the earliest reports of the effects of cannabis consumption on humans were related to endocrine system changes. In this review, the effects of cannabinoids and the role of the CB1 cannabinoid receptor in the regulation of the following endocrine systems are discussed: the hypothalamic-pituitary-gonadal axis, prolactin and oxytocin, thyroid hormone and growth hormone, and the hypothalamic-pituitary-adrenal axis. Preclinical and human study results are presented.
Collapse
Affiliation(s)
- Cecilia J Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
30
|
Ohbuchi T, Haam J, Tasker JG. Regulation of Neuronal Activity in Hypothalamic Vasopressin Neurons. ACTA ACUST UNITED AC 2015; 21:225-234. [PMID: 28035187 DOI: 10.4036/iis.2015.b.07] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vasopressin is a peptide hormone secreted from the posterior pituitary gland in response to various physiological and/or pathological stimuli, including changes in body fluid volume and osmolality and stress exposure. Vasopressin secretion is controlled by the electrical activity of the vasopressinergic magnocellular neurosecretory cells located in the hypothalamic supraoptic nucleus and paraventricular nucleus. Vasopressin release can occur somatodendritically in the hypothalamus or at the level of pituitary axon terminals. The electrical activity of the vasopressin neurons assumes specific patterns of electrical discharge that are under the control of several factors, including the intrinsic properties of the neuronal membrane and synaptic and hormonal inputs. It is increasingly clear that glial cells perform critical signaling functions that contribute to signal transmission in neural circuits. Astrocytes contribute to neuronal signaling by regulating synaptic and extrasynaptic neurotransmission, as well as by mediating bidirectional neuronal-glial transmission. We recently discovered a novel form of neuronal-glial signaling that exploits the full spatial domain of astrocytes to transmit dendritic retrograde signals from vasopressin neurons to distal upstream neuronal targets. This retrograde trans-neuronal-glial transmission allows the vasopressin neurons to regulate their synaptic inputs by controlling upstream presynaptic neuron firing, thus providing a powerful means of controlling hormonal output.
Collapse
Affiliation(s)
- Toyoaki Ohbuchi
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Juhee Haam
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
31
|
Nutritional state-dependent ghrelin activation of vasopressin neurons via retrograde trans-neuronal-glial stimulation of excitatory GABA circuits. J Neurosci 2014; 34:6201-13. [PMID: 24790191 DOI: 10.1523/jneurosci.3178-13.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Behavioral and physiological coupling between energy balance and fluid homeostasis is critical for survival. The orexigenic hormone ghrelin has been shown to stimulate the secretion of the osmoregulatory hormone vasopressin (VP), linking nutritional status to the control of blood osmolality, although the mechanism of this systemic crosstalk is unknown. Here, we show using electrophysiological recordings and calcium imaging in rat brain slices that ghrelin stimulates VP neurons in the hypothalamic paraventricular nucleus (PVN) in a nutritional state-dependent manner by activating an excitatory GABAergic synaptic input via a retrograde neuronal-glial circuit. In slices from fasted rats, ghrelin activation of a postsynaptic ghrelin receptor, the growth hormone secretagogue receptor type 1a (GHS-R1a), in VP neurons caused the dendritic release of VP, which stimulated astrocytes to release the gliotransmitter adenosine triphosphate (ATP). ATP activation of P2X receptors excited presynaptic GABA neurons to increase GABA release, which was excitatory to the VP neurons. This trans-neuronal-glial retrograde circuit activated by ghrelin provides an alternative means of stimulation of VP release and represents a novel mechanism of neuronal control by local neuronal-glial circuits. It also provides a potential cellular mechanism for the physiological integration of energy and fluid homeostasis.
Collapse
|
32
|
Dócs K, Hegyi Z, Holló K, Kis G, Hegedűs K, Antal M. Selective axonal and glial distribution of monoacylglycerol lipase immunoreactivity in the superficial spinal dorsal horn of rodents. Brain Struct Funct 2014; 220:2625-37. [PMID: 24942136 DOI: 10.1007/s00429-014-0813-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 05/27/2014] [Indexed: 11/29/2022]
Abstract
The importance of 2-AG-mediated endogenous cannabinoid signaling in spinal pain control has recently been well substantiated. Although the degradation of 2-AG seems to be essential in cannabinoid-mediated spinal nociceptive information processing, no experimental data are available about the cellular distribution of monoacylglycerol lipase (MGL), the main degrading enzyme of 2-AG in the spinal dorsal horn. Thus, here we investigated the cellular distribution of MGL in laminae I-II of the spinal gray matter with immunocytochemical methods and revealed an abundant immunoreactivity for MGL in the rodent superficial spinal dorsal horn. We addressed the co-localization of MGL with markers of peptidergic and non-peptidergic primary afferents, axon terminals of putative glutamatergic and GABAergic spinal neurons, as well as astrocytic and microglial profiles, and we found that nearly 17 % of the peptidergic (immunoreactive for CGRP), a bit more than 10 % of the axon terminals of putative glutamatergic spinal neurons (immunoreactive for VGLUT2), and approximately 20 % of the astrocytic (immunoreactive for GFAP) profiles were immunolabeled for MGL. On the other hand, however, axon terminals of non-peptidergic (binding isolectin-B4) nociceptive primary afferents and putative inhibitory spinal neurons (immunoreactive for VGAT) as well as microglial (immunoreactive for CD11b) profiles showed negligible immunostaining for MGL. The results suggest that only nociceptive inputs arriving through a population of CGRP immunoreactive fibers are modulated by the spinal DGLα-MGL pathway. We also postulate that the DGLα-MGL signaling pathway may modulate spinal excitatory but not inhibitory neural circuits.
Collapse
Affiliation(s)
- Klaudia Dócs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Nagyerdei krt 98, Debrecen, 4032, Hungary
| | | | | | | | | | | |
Collapse
|
33
|
Ruginsk SG, Vechiato FMV, Elias LLK, Antunes-Rodrigues J. The endocannabinoid system and the neuroendocrine control of hydromineral balance. J Neuroendocrinol 2014; 26:370-6. [PMID: 24750469 DOI: 10.1111/jne.12158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/06/2014] [Accepted: 04/12/2014] [Indexed: 12/25/2022]
Abstract
Endocannabinoids (ECBs) are ubiquitous lipophilic agents, and this characteristic is consistent with the wide range of homeostatic functions attributed to the ECB system. There is an increasing number of studies showing that the ECB system affects neurotransmission within the hypothalamic neurohypophyseal system. We provide an overview of the primary roles of ECBs in the modulation of neuroendocrine function and, specifically, in the control of hydromineral homeostasis. Accordingly, the general aspects of ECB-mediated signalling, as well as the specific contributions of the central component of the ECB system to the integration of behavioural and endocrine responses that control body fluid homeostasis, are discussed.
Collapse
Affiliation(s)
- S G Ruginsk
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
34
|
Younts TJ, Castillo PE. Endogenous cannabinoid signaling at inhibitory interneurons. Curr Opin Neurobiol 2013; 26:42-50. [PMID: 24650503 DOI: 10.1016/j.conb.2013.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/02/2013] [Accepted: 12/04/2013] [Indexed: 11/15/2022]
Abstract
Significant progress has been made in our understanding of how endogenous cannabinoids (eCBs) signal at excitatory and inhibitory synapses in the central nervous system (CNS). This review discusses how eCBs regulate inhibitory interneurons, their synapses, and the networks in which they are embedded. eCB signaling plays a pivotal role in brain physiology by means of their synaptic signal transduction, spatiotemporal signaling profile, routing of information through inhibitory microcircuits, and experience-dependent plasticity. Understanding the normal processes underlying eCB signaling is beginning to shed light on how their dysregulation contributes to disease.
Collapse
Affiliation(s)
- Thomas J Younts
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|