1
|
Choudhury H, Barri M, Osborn K, Rajasekaran M, Popova M, Wells OS, Stevens EB, Murrell-Lagnado RD. Regulation of Kv2.1 Channels by Kv9.1 Variants. Biomedicines 2025; 13:1119. [PMID: 40426946 PMCID: PMC12108608 DOI: 10.3390/biomedicines13051119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Kv2 channels have important conducting and nonconducting functions and are regulated by their co-assembly with 'silent' Kv subunits, including Kv9.1. Kv9.1 is co-expressed with Kv2 channels in sensory neurons, and a common allele that changes Ile489 to Val in human Kv9.1 is associated with pain hypersensitivity in patients. The mechanism responsible for this association remains unknown, but we hypothesise that these two variants differ in their regulation of Kv2.1 properties, and this is what we set out to test. Methods: Expression was carried out using HEK293 cells, OHeLa cells, and primary cultures of hippocampal neurons, and the biophysical and trafficking properties of homomeric and heteromeric channels were assessed by confocal fluorescence microscopy and patch clamp analysis. Results: Both Kv9.1Ile and Kv9.1Val were retained within the endoplasmic reticulum when expressed individually, but when co-expressed with Kv2.1, they co-localised with Kv2.1 within the surface clusters. Both variants reduced the surface expression of Kv2.1 channels and the size of channel clusters, with Kv9.1Val producing a greater reduction in surface expression in both the HeLa cells and neurons. They both caused a similar hyperpolarising shift in the voltage dependence of channel activation and inactivation. Concatamers of Kv2.1 and Kv9.1 suggested that both 3:1 and 2:2 ratios of Kv2.1 to Kv9.1 were permitted, although 2:2 resulted in lower surface expression and function. Conclusions: The Ile489Val substitution in Kv9.1 does not disrupt its ability to co-assemble with Kv2 channels, nor its effects on the voltage-dependence of channel gating, but it did produce a greater reduction in the Kv2.1 surface expression, suggesting that this underlies its association with pain hypersensitivity.
Collapse
Affiliation(s)
- Hedaythul Choudhury
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK (O.S.W.)
| | - Muruj Barri
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK (O.S.W.)
| | - Kay Osborn
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK (O.S.W.)
| | - Mohan Rajasekaran
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK (O.S.W.)
| | - Marina Popova
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK (O.S.W.)
| | - Owen S. Wells
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK (O.S.W.)
| | - Edward B. Stevens
- Metrion Biosciences, Building 2 Granta Centre, Granta Park, Cambridge CB21 6AL, UK;
| | | |
Collapse
|
2
|
Pan C, Liu Y, Wang L, Fan WY, Ni Y, Zhang X, Wu D, Li C, Li J, Li Z, Liu R, Hu C. The Kv2.2 channel mediates the inhibition of prostaglandin E2 on glucose-stimulated insulin secretion in pancreatic β-cells. eLife 2025; 13:RP97234. [PMID: 40028769 PMCID: PMC11875535 DOI: 10.7554/elife.97234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Prostaglandin E2 (PGE2) is an endogenous inhibitor of glucose-stimulated insulin secretion (GSIS) and plays an important role in pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). This study aimed to explore the underlying mechanism by which PGE2 inhibits GSIS. Our results showed that PGE2 inhibited Kv2.2 channels via increasing PKA activity in HEK293T cells overexpressed with Kv2.2 channels. Point mutation analysis demonstrated that S448 residue was responsible for the PKA-dependent modulation of Kv2.2. Furthermore, the inhibitory effect of PGE2 on Kv2.2 was blocked by EP2/4 receptor antagonists, while mimicked by EP2/4 receptor agonists. The immune fluorescence results showed that EP1-4 receptors are expressed in both mouse and human β-cells. In INS-1(832/13) β-cells, PGE2 inhibited voltage-gated potassium currents and electrical activity through EP2/4 receptors and Kv2.2 channels. Knockdown of Kcnb2 reduced the action potential firing frequency and alleviated the inhibition of PGE2 on GSIS in INS-1(832/13) β-cells. PGE2 impaired glucose tolerance in wild-type mice but did not alter glucose tolerance in Kcnb2 knockout mice. Knockout of Kcnb2 reduced electrical activity, GSIS and abrogated the inhibition of PGE2 on GSIS in mouse islets. In conclusion, we have demonstrated that PGE2 inhibits GSIS in pancreatic β-cells through the EP2/4-Kv2.2 signaling pathway. The findings highlight the significant role of Kv2.2 channels in the regulation of β-cell repetitive firing and insulin secretion, and contribute to the understanding of the molecular basis of β-cell dysfunction in diabetes.
Collapse
Affiliation(s)
- Chengfang Pan
- School of Life Sciences, Fudan UniversityShanghaiChina
- International Human Phenome Institute (Shanghai)ShanghaiChina
| | - Ying Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Liangya Wang
- School of Life Sciences, Fudan UniversityShanghaiChina
- International Human Phenome Institute (Shanghai)ShanghaiChina
| | - Wen-Yong Fan
- School of Life Sciences, Fudan UniversityShanghaiChina
| | - Yunzhi Ni
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Xuefeng Zhang
- School of Life Sciences, Fudan UniversityShanghaiChina
| | - Di Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Chenyang Li
- School of Life Sciences, Fudan UniversityShanghaiChina
| | - Jin Li
- School of Life Sciences, Fudan UniversityShanghaiChina
| | - Zhaoyang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Rui Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Changlong Hu
- School of Life Sciences, Fudan UniversityShanghaiChina
- International Human Phenome Institute (Shanghai)ShanghaiChina
| |
Collapse
|
3
|
Alvim FALS, Alvim JC, Hibberd JM, Harvey AR, Blatt MR. A C4 plant K+ channel accelerates stomata to enhance C3 photosynthesis and water use efficiency. PLANT PHYSIOLOGY 2025; 197:kiaf039. [PMID: 39854630 PMCID: PMC11837344 DOI: 10.1093/plphys/kiaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/18/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025]
Abstract
Accelerating stomatal kinetics through synthetic optogenetics and mutations that enhance guard cell K+ flux has proven a viable strategy to improve water use efficiency and biomass production. Stomata of the model C4 species Gynandropsis gynandra, a relative of the C3 plant Arabidopsis thaliana, are similarly fast to open and close. We identified and cloned the guard cell rectifying outward K+ channel (GROK) of Gynandropsis and showed that GROK is preferentially expressed in stomatal guard cells. GROK is homologous to the Arabidopsis guard cell K+ channel GORK and, expressed in oocytes, yields a K+ current consistent with that of Gynandropsis guard cells. Complementing the Arabidopsis gork mutant with GROK promoted K+ channel gating and K+ flux, increasing stomatal kinetics and yielding gains in water use efficiency and biomass with varying light, especially under water limitation. Our findings demonstrate the potential for engineering a C4 K+ channel into guard cells of a C3 species, and they speak to the puzzle of how C4 species have evolved mechanisms that enhance water use efficiency and growth under stress.
Collapse
Affiliation(s)
- Fernanda A L S Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jonas Chaves Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Andrew R Harvey
- Physics & Astronomy, Kelvin Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
4
|
Wan D, Lu T, Li C, Hu C. Glucocorticoids Rapidly Modulate Ca V1.2-Mediated Calcium Signals through Kv2.1 Channel Clusters in Hippocampal Neurons. J Neurosci 2024; 44:e0179242024. [PMID: 39299804 PMCID: PMC11551909 DOI: 10.1523/jneurosci.0179-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/15/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
The precise regulation of Ca2+ signals plays a crucial role in the physiological functions of neurons. Here, we investigated the rapid effect of glucocorticoids on Ca2+ signals in cultured hippocampal neurons from both female and male rats. In cultured hippocampal neurons, glucocorticoids inhibited the spontaneous somatic Ca2+ spikes generated by Kv2.1-organized Ca2+ microdomains. Furthermore, glucocorticoids rapidly reduced the cell surface expressions of Kv2.1 and CaV1.2 channels in hippocampal neurons. In HEK293 cells transfected with Kv2.1 alone, glucocorticoids significantly reduced the surface expression of Kv2.1 with little effect on K+ currents. In HEK293 cells transfected with CaV1.2 alone, glucocorticoids inhibited CaV1.2 currents but had no effect on the cell surface expression of CaV1.2. Notably, in the presence of wild-type Kv2.1, glucocorticoids caused a decrease in the surface expression of CaV1.2 channels in HEK293 cells. However, this effect was not observed in the presence of nonclustering Kv2.1S586A mutant channels. Live-cell imaging showed that glucocorticoids rapidly decreased Kv2.1 clusters on the plasma membrane. Correspondingly, Western blot results indicated a significant increase in the cytoplasmic level of Kv2.1, suggesting the endocytosis of Kv2.1 clusters. Glucocorticoids rapidly decreased the intracellular cAMP concentration and the phosphorylation level of PKA in hippocampal neurons. The PKA inhibitor H89 mimicked the effect of glucocorticoids on Kv2.1, while the PKA agonist forskolin abrogated the effect. In conclusion, glucocorticoids rapidly suppress CaV1.2-mediated Ca2+ signals in hippocampal neurons by promoting the endocytosis of Kv2.1 channel clusters through reducing PKA activity.
Collapse
Affiliation(s)
- Di Wan
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| | - Tongchuang Lu
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| | - Chenyang Li
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| | - Changlong Hu
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China,
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| |
Collapse
|
5
|
Smith CC, Nascimento F, Özyurt MG, Beato M, Brownstone RM. Kv2 channels do not function as canonical delayed rectifiers in spinal motoneurons. iScience 2024; 27:110444. [PMID: 39148717 PMCID: PMC11325356 DOI: 10.1016/j.isci.2024.110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 08/17/2024] Open
Abstract
The increased muscular force output required for some behaviors is achieved via amplification of motoneuron output via cholinergic C-bouton synapses. Work in neonatal mouse motoneurons suggested that modulation of currents mediated by post-synaptically clustered KV2.1 channels is crucial to C-bouton amplification. By focusing on more mature motoneurons, we show that conditional knockout of KV2.1 channels minimally affects either excitability or response to exogenously applied muscarine. Similarly, unlike in neonatal motoneurons or cortical pyramidal neurons, pharmacological blockade of KV2 currents has minimal effect on mature motoneuron firing in vitro. Furthermore, in vivo amplification of electromyography activity and high-force task performance was unchanged following KV2.1 knockout. Finally, we show that KV2.2 is also expressed by spinal motoneurons, colocalizing with KV2.1 opposite C-boutons. We suggest that the primary function of KV2 proteins in motoneurons is non-conducting and that KV2.2 can function in this role in the absence of KV2.1.
Collapse
Affiliation(s)
- Calvin C. Smith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Filipe Nascimento
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - M. Görkem Özyurt
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Marco Beato
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK
| | - Robert M. Brownstone
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
6
|
Munaron L, Chinigò G, Scarpellino G, Ruffinatti FA. The fallacy of functional nomenclature in the kingdom of biological multifunctionality: physiological and evolutionary considerations on ion channels. J Physiol 2024; 602:2367-2381. [PMID: 37635695 DOI: 10.1113/jp284422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Living organisms are multiscale complex systems that have evolved high degrees of multifunctionality and redundancy in the structure-function relationship. A number of factors, only in part determined genetically, affect the jobs of proteins. The overall structural organization confers unique molecular properties that provide the potential to perform a pattern of activities, some of which are co-opted by specific environments. The variety of multifunctional proteins is expanding, but most cases are handled individually and according to the still dominant 'one structure-one function' approach, which relies on the attribution of canonical names typically referring to the first task identified for a given protein. The present topical review focuses on the multifunctionality of ion channels as a paradigmatic example. Mounting evidence reports the ability of many ion channels (including members of voltage-dependent, ligand-gated and transient receptor potential families) to exert biological effects independently of their ion conductivity. 'Functionally based' nomenclature (the practice of naming a protein or family of proteins based on a single purpose) is a conceptual bias for three main reasons: (i) it increases the amount of ambiguity, deceiving our understanding of the multiple contributions of biomolecules that is the heart of the complexity; (ii) it is in stark contrast to protein evolution dynamics, largely based on multidomain arrangement; and (iii) it overlooks the crucial role played by the microenvironment in adjusting the actions of cell structures and in tuning protein isoform diversity to accomplish adaptational requirements. Biological information in protein physiology is distributed among different entwined layers working as the primary 'locus' of natural selection and of evolutionary constraints.
Collapse
Affiliation(s)
- Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Scarpellino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | |
Collapse
|
7
|
Leek AN, Quinn JA, Krapf D, Tamkun MM. GLT-1a glutamate transporter nanocluster localization is associated with astrocytic actin and neuronal Kv2 clusters at sites of neuron-astrocyte contact. Front Cell Dev Biol 2024; 12:1334861. [PMID: 38362041 PMCID: PMC10867268 DOI: 10.3389/fcell.2024.1334861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction: Astrocytic GLT-1 glutamate transporters ensure the fidelity of glutamic neurotransmission by spatially and temporally limiting glutamate signals. The ability to limit neuronal hyperactivity relies on the localization and diffusion of GLT-1 on the astrocytic surface, however, little is known about the underlying mechanisms. We show that two isoforms of GLT-1, GLT-1a and GLT-1b, form nanoclusters on the surface of transfected astrocytes and HEK-293 cells. Methods: We used both fixed and live cell super-resolution imaging of fluorescent protein and epitope tagged proteins in co-cultures of rat astrocytes and neurons. Immunofluorescence techniques were also used. GLT1 diffusion was assessed via single particle tracking and fluorescence recovery after photobleach (FRAP). Results: We found GLT-1a, but not GLT-1b, nanoclusters concentrated adjacent to actin filaments which was maintained after addition of glutamate. GLT-1a nanocluster concentration near actin filaments was prevented by expression of a cytosolic GLT-1a C-terminus, suggesting the C-terminus is involved in the localization adjacent to cortical actin. Using super-resolution imaging, we show that astrocytic GLT-1a and actin co-localize in net-like structures around neuronal Kv2.1 clusters at points of neuron/astrocyte contact. Conclusion: Overall, these data describe a novel relationship between GLT-1a and cortical actin filaments, which localizes GLT-1a near neuronal structures responsive to ischemic insult.
Collapse
Affiliation(s)
- Ashley N. Leek
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, United States
| | - Josiah A. Quinn
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, United States
| | - Michael M. Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, United States
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
8
|
Matsumoto C, O'Dwyer SC, Manning D, Hernandez-Hernandez G, Rhana P, Fong Z, Sato D, Clancy CE, Vierra NC, Trimmer JS, Fernando Santana L. The formation of K V2.1 macro-clusters is required for sex-specific differences in L-type Ca V1.2 clustering and function in arterial myocytes. Commun Biol 2023; 6:1165. [PMID: 37963972 PMCID: PMC10645748 DOI: 10.1038/s42003-023-05527-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
In arterial myocytes, the canonical function of voltage-gated CaV1.2 and KV2.1 channels is to induce myocyte contraction and relaxation through their responses to membrane depolarization, respectively. Paradoxically, KV2.1 also plays a sex-specific role by promoting the clustering and activity of CaV1.2 channels. However, the impact of KV2.1 protein organization on CaV1.2 function remains poorly understood. We discovered that KV2.1 forms micro-clusters, which can transform into large macro-clusters when a critical clustering site (S590) in the channel is phosphorylated in arterial myocytes. Notably, female myocytes exhibit greater phosphorylation of S590, and macro-cluster formation compared to males. Contrary to current models, the activity of KV2.1 channels seems unrelated to density or macro-clustering in arterial myocytes. Disrupting the KV2.1 clustering site (KV2.1S590A) eliminated KV2.1 macro-clustering and sex-specific differences in CaV1.2 cluster size and activity. We propose that the degree of KV2.1 clustering tunes CaV1.2 channel function in a sex-specific manner in arterial myocytes.
Collapse
Affiliation(s)
- Collin Matsumoto
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Samantha C O'Dwyer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Declan Manning
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | | | - Paula Rhana
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Zhihui Fong
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Daisuke Sato
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Nicholas C Vierra
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
9
|
Matsumoto C, O’Dwyer SC, Manning D, Hernandez-Hernandez G, Rhana P, Fong Z, Sato D, Clancy CE, Vierra NC, Trimmer JS, Santana LF. The formation of K V2.1 macro-clusters is required for sex-specific differences in L-type Ca V1.2 clustering and function in arterial myocytes. RESEARCH SQUARE 2023:rs.3.rs-3136085. [PMID: 37502980 PMCID: PMC10371172 DOI: 10.21203/rs.3.rs-3136085/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In arterial myocytes, the canonical function of voltage-gated CaV1.2 and KV2.1 channels is to induce myocyte contraction and relaxation through their responses to membrane depolarization, respectively. Paradoxically, KV2.1 also plays a sex-specific role by promoting the clustering and activity of CaV1.2 channels. However, the impact of KV2.1 protein organization on CaV1.2 function remains poorly understood. We discovered that KV2.1 forms micro-clusters, which can transform into large macro-clusters when a critical clustering site (S590) in the channel is phosphorylated in arterial myocytes. Notably, female myocytes exhibit greater phosphorylation of S590, and macro-cluster formation compared to males. Contrary to current models, the activity of KV2.1 channels seems unrelated to density or macro-clustering in arterial myocytes. Disrupting the KV2.1 clustering site (KV2.1S590A) eliminated KV2.1 macro-clustering and sex-specific differences in CaV1.2 cluster size and activity. We propose that the degree of KV2.1 clustering tunes CaV1.2 channel function in a sex-specific manner in arterial myocytes.
Collapse
Affiliation(s)
| | | | | | | | - Paula Rhana
- Departments of Physiology & Membrane Biology
| | - Zhihui Fong
- Departments of Physiology & Membrane Biology
| | - Daisuke Sato
- Pharmacology, School of Medicine, University of California, Davis
| | | | | | | | | |
Collapse
|
10
|
Chen X, Feng Y, Quinn RJ, Pountney DL, Richardson DR, Mellick GD, Ma L. Potassium Channels in Parkinson's Disease: Potential Roles in Its Pathogenesis and Innovative Molecular Targets for Treatment. Pharmacol Rev 2023; 75:758-788. [PMID: 36918260 DOI: 10.1124/pharmrev.122.000743] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the midbrain. The loss of neurons results in a subsequent reduction of dopamine in the striatum, which underlies the core motor symptoms of PD. To date, there are no effective treatments to stop, slow, or reverse the pathologic progression of dopaminergic neurodegeneration. This unfortunate predicament is because of the current early stages in understanding the biologic targets and pathways involved in PD pathogenesis. Ion channels have become emerging targets for new therapeutic development for PD due to their essential roles in neuronal function and neuroinflammation. Potassium channels are the most prominent ion channel family and have been shown to be critically important in PD pathology because of their roles in modulating neuronal excitability, neurotransmitter release, synaptic transmission, and neuroinflammation. In this review, members of the subfamilies of voltage-gated K+ channels, inward rectifying K+ channels, and Ca2+-activated K+ channels are described. Evidence of the role of these channels in PD etiology is discussed together with the latest views on related pathologic mechanisms and their potential as biologic targets for developing neuroprotective drugs for PD. SIGNIFICANCE STATEMENT: Parkinson's disease (PD) is the second most common neurodegenerative disorder, featuring progressive degeneration of dopaminergic neurons in the midbrain. It is a multifactorial disease involving multiple risk factors and complex pathobiological mechanisms. Mounting evidence suggests that ion channels play vital roles in the pathogenesis and progression of PD by regulating neuronal excitability and immune cell function. Therefore, they have become "hot" biological targets for PD, as demonstrated by multiple clinical trials of drug candidates targeting ion channels for PD therapy.
Collapse
Affiliation(s)
- Xiaoyi Chen
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Yunjiang Feng
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Ronald J Quinn
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Dean L Pountney
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Des R Richardson
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - George D Mellick
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Linlin Ma
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| |
Collapse
|
11
|
Matsumoto C, O'Dwyer SC, Manning D, Hernandez-Hernandez G, Rhana P, Fong Z, Sato D, Clancy CE, Vierra NC, Trimmer JS, Santana LF. The formation of K V 2.1 macro-clusters is required for sex-specific differences in L-type Ca V 1.2 clustering and function in arterial myocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546725. [PMID: 37425816 PMCID: PMC10327069 DOI: 10.1101/2023.06.27.546725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In arterial myocytes, the canonical function of voltage-gated Ca V 1.2 and K V 2.1 channels is to induce myocyte contraction and relaxation through their responses to membrane depolarization, respectively. Paradoxically, K V 2.1 also plays a sex-specific role by promoting the clustering and activity of Ca V 1.2 channels. However, the impact of K V 2.1 protein organization on Ca V 1.2 function remains poorly understood. We discovered that K V 2.1 forms micro-clusters, which can transform into large macro-clusters when a critical clustering site (S590) in the channel is phosphorylated in arterial myocytes. Notably, female myocytes exhibit greater phosphorylation of S590, and macro-cluster formation compared to males. Contrary to current models, the activity of K V 2.1 channels seems unrelated to density or macro-clustering in arterial myocytes. Disrupting the K V 2.1 clustering site (K V 2.1 S590A ) eliminated K V 2.1 macro-clustering and sex-specific differences in Ca V 1.2 cluster size and activity. We propose that the degree of K V 2.1 clustering tunes Ca V 1.2 channel function in a sex-specific manner in arterial myocytes.
Collapse
|
12
|
Vullhorst D, Bloom MS, Akella N, Buonanno A. ER-PM Junctions on GABAergic Interneurons Are Organized by Neuregulin 2/VAP Interactions and Regulated by NMDA Receptors. Int J Mol Sci 2023; 24:2908. [PMID: 36769244 PMCID: PMC9917868 DOI: 10.3390/ijms24032908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Neuregulins (NRGs) signal via ErbB receptors to regulate neural development, excitability, synaptic and network activity, and behaviors relevant to psychiatric disorders. Bidirectional signaling between NRG2/ErbB4 and NMDA receptors is thought to homeostatically regulate GABAergic interneurons in response to increased excitatory neurotransmission or elevated extracellular glutamate levels. Unprocessed proNRG2 forms discrete clusters on cell bodies and proximal dendrites that colocalize with the potassium channel Kv2.1 at specialized endoplasmic reticulum-plasma membrane (ER-PM) junctions, and NMDA receptor activation triggers rapid dissociation from ER-PM junctions and ectodomain shedding by ADAM10. Here, we elucidate the mechanistic basis of proNRG2 clustering at ER-PM junctions and its regulation by NMDA receptors. Importantly, we demonstrate that proNRG2 promotes the formation of ER-PM junctions by directly binding the ER-resident membrane tether VAP, like Kv2.1. The proNRG2 intracellular domain harbors two non-canonical, low-affinity sites that cooperatively mediate VAP binding. One of these is a cryptic and phosphorylation-dependent VAP binding motif that is dephosphorylated following NMDA receptor activation, thus revealing how excitatory neurotransmission promotes the dissociation of proNRG2 from ER-PM junctions. Therefore, proNRG2 and Kv2.1 can independently function as VAP-dependent organizers of neuronal ER-PM junctions. Based on these and prior studies, we propose that proNRG2 and Kv2.1 serve as co-regulated downstream effectors of NMDA receptors to homeostatically regulate GABAergic interneurons.
Collapse
Affiliation(s)
- Detlef Vullhorst
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
13
|
Piccialli I, Sisalli MJ, de Rosa V, Boscia F, Tedeschi V, Secondo A, Pannaccione A. Increased K V2.1 Channel Clustering Underlies the Reduction of Delayed Rectifier K + Currents in Hippocampal Neurons of the Tg2576 Alzheimer's Disease Mouse. Cells 2022; 11:cells11182820. [PMID: 36139395 PMCID: PMC9497218 DOI: 10.3390/cells11182820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive deterioration of cognitive functions. Cortical and hippocampal hyperexcitability intervenes in the pathological derangement of brain activity leading to cognitive decline. As key regulators of neuronal excitability, the voltage-gated K+ channels (KV) might play a crucial role in the AD pathophysiology. Among them, the KV2.1 channel, the main α subunit mediating the delayed rectifier K+ currents (IDR) and controlling the intrinsic excitability of pyramidal neurons, has been poorly examined in AD. In the present study, we investigated the KV2.1 protein expression and activity in hippocampal neurons from the Tg2576 mouse, a widely used transgenic model of AD. To this aim we performed whole-cell patch-clamp recordings, Western blotting, and immunofluorescence analyses. Our Western blotting results reveal that KV2.1 was overexpressed in the hippocampus of 3-month-old Tg2576 mice and in primary hippocampal neurons from Tg2576 mouse embryos compared with the WT counterparts. Electrophysiological experiments unveiled that the whole IDR were reduced in the Tg2576 primary neurons compared with the WT neurons, and that this reduction was due to the loss of the KV2.1 current component. Moreover, we found that the reduction of the KV2.1-mediated currents was due to increased channel clustering, and that glutamate, a stimulus inducing KV2.1 declustering, was able to restore the IDR to levels comparable to those of the WT neurons. These findings add new information about the dysregulation of ionic homeostasis in the Tg2576 AD mouse model and identify KV2.1 as a possible player in the AD-related alterations of neuronal excitability.
Collapse
|
14
|
Marquis MJ, Sack JT. Mechanism of use-dependent Kv2 channel inhibition by RY785. J Gen Physiol 2022; 154:e202112981. [PMID: 35435946 PMCID: PMC9195051 DOI: 10.1085/jgp.202112981] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 03/01/2022] [Accepted: 03/30/2022] [Indexed: 01/21/2023] Open
Abstract
Understanding the mechanism by which ion channel modulators act is critical for interpretation of their physiological effects and can provide insight into mechanisms of ion channel gating. The small molecule RY785 is a potent and selective inhibitor of Kv2 voltage-gated K+ channels that has a use-dependent onset of inhibition. Here, we investigate the mechanism of RY785 inhibition of rat Kv2.1 (Kcnb1) channels heterologously expressed in CHO-K1 cells. We find that 1 µM RY785 block eliminates Kv2.1 current at all physiologically relevant voltages, inhibiting ≥98% of the Kv2.1 conductance. Both onset of and recovery from RY785 inhibition require voltage sensor activation. Intracellular tetraethylammonium, a classic open-channel blocker, competes with RY785 inhibition. However, channel opening itself does not appear to alter RY785 access. Gating current measurements reveal that RY785 inhibits a component of voltage sensor activation and accelerates voltage sensor deactivation. We propose that voltage sensor activation opens a path into the central cavity of Kv2.1 where RY785 binds and promotes voltage sensor deactivation, trapping itself inside. This gated-access mechanism in conjunction with slow kinetics of unblock supports simple interpretation of RY785 effects: channel activation is required for block by RY785 to equilibrate, after which trapped RY785 will simply decrease the Kv2 conductance density.
Collapse
Affiliation(s)
- Matthew James Marquis
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA
| | - Jon T. Sack
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
15
|
Yang HQ, Echeverry FA, ElSheikh A, Gando I, Anez Arredondo S, Samper N, Cardozo T, Delmar M, Shyng SL, Coetzee WA. Subcellular trafficking and endocytic recycling of K ATP channels. Am J Physiol Cell Physiol 2022; 322:C1230-C1247. [PMID: 35508187 PMCID: PMC9169827 DOI: 10.1152/ajpcell.00099.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022]
Abstract
Sarcolemmal/plasmalemmal ATP-sensitive K+ (KATP) channels have key roles in many cell types and tissues. Hundreds of studies have described how the KATP channel activity and ATP sensitivity can be regulated by changes in the cellular metabolic state, by receptor signaling pathways and by pharmacological interventions. These alterations in channel activity directly translate to alterations in cell or tissue function, that can range from modulating secretory responses, such as insulin release from pancreatic β-cells or neurotransmitters from neurons, to modulating contractile behavior of smooth muscle or cardiac cells to elicit alterations in blood flow or cardiac contractility. It is increasingly becoming apparent, however, that KATP channels are regulated beyond changes in their activity. Recent studies have highlighted that KATP channel surface expression is a tightly regulated process with similar implications in health and disease. The surface expression of KATP channels is finely balanced by several trafficking steps including synthesis, assembly, anterograde trafficking, membrane anchoring, endocytosis, endocytic recycling, and degradation. This review aims to summarize the physiological and pathophysiological implications of KATP channel trafficking and mechanisms that regulate KATP channel trafficking. A better understanding of this topic has potential to identify new approaches to develop therapeutically useful drugs to treat KATP channel-related diseases.
Collapse
Affiliation(s)
- Hua-Qian Yang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China
| | | | - Assmaa ElSheikh
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Ivan Gando
- Department of Pathology, NYU School of Medicine, New York, New York
| | | | - Natalie Samper
- Department of Pathology, NYU School of Medicine, New York, New York
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - Mario Delmar
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
- Department of Medicine, NYU School of Medicine, New York, New York
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
| | - William A Coetzee
- Department of Pathology, NYU School of Medicine, New York, New York
- Department of Neuroscience & Physiology, NYU School of Medicine, New York, New York
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
16
|
Maverick EE, Tamkun MM. High spatial density is associated with non-conducting Kv channels from two families. Biophys J 2022; 121:755-768. [PMID: 35101417 PMCID: PMC8943702 DOI: 10.1016/j.bpj.2022.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 11/02/2022] Open
Abstract
Ion channels are well known for their ability to regulate the cell membrane potential. However, many ion channels also have functions that do not involve ion conductance. Kv2 channels are one family of ion channels whose non-conducting functions are central to mammalian cell physiology. Kv2.1 and Kv2.2 channels form stable contact sites between the endoplasmic reticulum and plasma membrane via an interaction with endoplasmic reticulum resident proteins. To perform this structural role, Kv2 channels are expressed at extremely high densities on the plasma membranes of many cell types, including central pyramidal neurons, α-motoneurons, and smooth muscle cells. Research from our lab and others has shown that the majority of these plasma membrane Kv2.1 channels do not conduct potassium in response to depolarization. The mechanism of this channel silencing is unknown but is thought to be dependent on channel density in the membrane. Furthermore, the prevalence of a non-conducting population of Kv2.2 channels has not been directly tested. In this work we make improved measurements of the numbers of conducting and non-conducting Kv2.1 channels expressed in HEK293 cells and expand the investigation of non-conducting channels to three additional Kv α-subunits: Kv2.2, Kv1.4, and Kv1.5. By comparing the numbers of gating and conducting channels in individual HEK293 cells, we found that on average, only 50% of both Kv2.1 and Kv2.2 channels conducted potassium and, as previously suggested, that fraction decreased with increased channel density in the plasma membrane. At the highest spatial densities tested, which are comparable with those found at Kv2 clusters in situ, only 20% of Kv2.1 and Kv2.2 channels conducted potassium. We also show for the first time that Kv1.4 and Kv1.5 exhibit density-dependent silencing, suggesting that this phenomenon has an underlying mechanism that is shared by Kv channels from multiple families.
Collapse
Affiliation(s)
- Emily E. Maverick
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado,Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado
| | - Michael M. Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado,Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado,Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado,Corresponding author
| |
Collapse
|
17
|
Sepela RJ, Stewart RG, Valencia LA, Thapa P, Wang Z, Cohen BE, Sack JT. The AMIGO1 adhesion protein activates Kv2.1 voltage sensors. Biophys J 2022; 121:1395-1416. [PMID: 35314141 PMCID: PMC9072587 DOI: 10.1016/j.bpj.2022.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/11/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Kv2 voltage-gated potassium channels are modulated by amphoterin-induced gene and open reading frame (AMIGO) neuronal adhesion proteins. Here, we identify steps in the conductance activation pathway of Kv2.1 channels that are modulated by AMIGO1 using voltage-clamp recordings and spectroscopy of heterologously expressed Kv2.1 and AMIGO1 in mammalian cell lines. AMIGO1 speeds early voltage-sensor movements and shifts the gating charge-voltage relationship to more negative voltages. The gating charge-voltage relationship indicates that AMIGO1 exerts a larger energetic effect on voltage-sensor movement than is apparent from the midpoint of the conductance-voltage relationship. When voltage sensors are detained at rest by voltage-sensor toxins, AMIGO1 has a greater impact on the conductance-voltage relationship. Fluorescence measurements from voltage-sensor toxins bound to Kv2.1 indicate that with AMIGO1, the voltage sensors enter their earliest resting conformation, yet this conformation is less stable upon voltage stimulation. We conclude that AMIGO1 modulates the Kv2.1 conductance activation pathway by destabilizing the earliest resting state of the voltage sensors.
Collapse
Affiliation(s)
- Rebecka J Sepela
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Robert G Stewart
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Luis A Valencia
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Parashar Thapa
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Zeming Wang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Bruce E Cohen
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California; Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, California; Department of Anesthesiology and Pain Medicine, University of California, Davis, California.
| |
Collapse
|
18
|
Abstract
Motoneurons are the 'final common path' between the central nervous system (that intends, selects, commands, and organises movement) and muscles (that produce the behaviour). Motoneurons are not passive relays, but rather integrate synaptic activity to appropriately tune output (spike trains) and therefore the production of muscle force. In this chapter, we focus on studies of mammalian motoneurons, describing their heterogeneity whilst providing a brief historical account of motoneuron recording techniques. Next, we describe adult motoneurons in terms of their passive, transition, and active (repetitive firing) properties. We then discuss modulation of these properties by somatic (C-boutons) and dendritic (persistent inward currents) mechanisms. Finally, we briefly describe select studies of human motor unit physiology and relate them to findings from animal preparations discussed earlier in the chapter. This interphyletic approach to the study of motoneuron physiology is crucial to progress understanding of how these diverse neurons translate intention into behaviour.
Collapse
|
19
|
Thapa P, Stewart R, Sepela RJ, Vivas O, Parajuli LK, Lillya M, Fletcher-Taylor S, Cohen BE, Zito K, Sack JT. EVAP: A two-photon imaging tool to study conformational changes in endogenous Kv2 channels in live tissues. J Gen Physiol 2021; 153:212666. [PMID: 34581724 PMCID: PMC8480965 DOI: 10.1085/jgp.202012858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022] Open
Abstract
A primary goal of molecular physiology is to understand how conformational changes of proteins affect the function of cells, tissues, and organisms. Here, we describe an imaging method for measuring the conformational changes of the voltage sensors of endogenous ion channel proteins within live tissue, without genetic modification. We synthesized GxTX-594, a variant of the peptidyl tarantula toxin guangxitoxin-1E, conjugated to a fluorophore optimal for two-photon excitation imaging through light-scattering tissue. We term this tool EVAP (Endogenous Voltage-sensor Activity Probe). GxTX-594 targets the voltage sensors of Kv2 proteins, which form potassium channels and plasma membrane–endoplasmic reticulum junctions. GxTX-594 dynamically labels Kv2 proteins on cell surfaces in response to voltage stimulation. To interpret dynamic changes in fluorescence intensity, we developed a statistical thermodynamic model that relates the conformational changes of Kv2 voltage sensors to degree of labeling. We used two-photon excitation imaging of rat brain slices to image Kv2 proteins in neurons. We found puncta of GxTX-594 on hippocampal CA1 neurons that responded to voltage stimulation and retain a voltage response roughly similar to heterologously expressed Kv2.1 protein. Our findings show that EVAP imaging methods enable the identification of conformational changes of endogenous Kv2 voltage sensors in tissue.
Collapse
Affiliation(s)
- Parashar Thapa
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Robert Stewart
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Rebecka J Sepela
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Oscar Vivas
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Laxmi K Parajuli
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Mark Lillya
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Sebastian Fletcher-Taylor
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Bruce E Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA.,Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA.,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
20
|
Yang YS, Choi JH, Rah JC. Hypoxia with inflammation and reperfusion alters membrane resistance by dynamically regulating voltage-gated potassium channels in hippocampal CA1 neurons. Mol Brain 2021; 14:147. [PMID: 34556177 PMCID: PMC8461870 DOI: 10.1186/s13041-021-00857-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 02/01/2023] Open
Abstract
Hypoxia typically accompanies acute inflammatory responses in patients and animal models. However, a limited number of studies have examined the effect of hypoxia in combination with inflammation (Hypo-Inf) on neural function. We previously reported that neuronal excitability in hippocampal CA1 neurons decreased during hypoxia and greatly rebounded upon reoxygenation. We attributed this altered excitability mainly to the dynamic regulation of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels and input resistance. However, the molecular mechanisms underlying input resistance changes by Hypo-Inf and reperfusion remained unclear. In the present study, we found that a change in the density of the delayed rectifier potassium current (IDR) can explain the input resistance variability. Furthermore, voltage-dependent inactivation of A-type potassium (IA) channels shifted in the depolarizing direction during Hypo-Inf and reverted to normal upon reperfusion without a significant alteration in the maximum current density. Our results indicate that changes in the input resistance, and consequently excitability, caused by Hypo-Inf and reperfusion are at least partially regulated by the availability and voltage dependence of KV channels. Moreover, these results suggest that selective KV channel modulators can be used as potential neuroprotective drugs to minimize hypoxia- and reperfusion-induced neuronal damage.
Collapse
Affiliation(s)
- Yoon-Sil Yang
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
| | - Joon Ho Choi
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, 333 Techno Jungang-daero, Dalseong-gun, Daegu, 42988 South Korea
| |
Collapse
|
21
|
Maverick EE, Leek AN, Tamkun MM. Kv2 channel-AMIGO β-subunit assembly modulates both channel function and cell adhesion molecule surface trafficking. J Cell Sci 2021; 134:jcs256339. [PMID: 34137443 PMCID: PMC8255027 DOI: 10.1242/jcs.256339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/17/2021] [Indexed: 11/20/2022] Open
Abstract
The Kv2 channels encode delayed rectifier currents that regulate membrane potential in many tissues. They also have a non-conducting function to form stable junctions between the endoplasmic reticulum and plasma membranes, creating membrane contact sites that mediate functions distinct from membrane excitability. Therefore, proteins that interact with Kv2.1 and Kv2.2 channels can alter conducting and/or non-conducting channel properties. One member of the AMIGO family of proteins is an auxiliary β-subunit for Kv2 channels and modulates Kv2.1 electrical activity. However, the AMIGO family has two additional members of ∼50% similarity that have not yet been characterized as Kv2 β-subunits. In this work, we show that the surface trafficking and localization of all three AMIGOs are controlled by their assembly with both Kv2 channels. Additionally, assembly of each AMIGO with either Kv2.1 or Kv2.2 hyperpolarizes the channel activation midpoint by -10 mV. However, only AMIGO2 significantly slows inactivation and deactivation, leading to a prolonged open state of Kv2 channels. The co-regulatory effects of Kv2s and AMIGOs likely fine-tune both the electrical and non-electrical properties of the cells in which they are expressed.
Collapse
Affiliation(s)
- Emily E. Maverick
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Ashley N. Leek
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael M. Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
22
|
Ecker M, Redpath GMI, Nicovich PR, Rossy J. Quantitative visualization of endocytic trafficking through photoactivation of fluorescent proteins. Mol Biol Cell 2021; 32:892-902. [PMID: 33534630 PMCID: PMC8108533 DOI: 10.1091/mbc.e20-10-0669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Endocytic trafficking controls the density of molecules at the plasma membrane and by doing so, the cell surface profile, which in turn determines how cells interact with their environment. A full apprehension of any cellular process necessitates understanding how proteins associated with the plasma membrane are endocytosed, how they are sorted after internalization, and if and how they are recycled to the plasma membrane. To date, it is still difficult to experimentally gain access to this information, even more to do it in a quantitative way. Here we present a toolset based on photoactivation of fluorescent proteins that enabled us to generate quantitative information on endocytosis, incorporation into sorting and recycling endosomes, delivery from endosomes to the plasma membrane, and on the type of vesicles performing intracellular transport. We illustrate these approaches by revealing striking differences in the endocytic trafficking of T-cell receptor and CD4, which bind to the same molecule at the surface of antigen-presenting cells during T-cell activation.
Collapse
Affiliation(s)
- Manuela Ecker
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gregory M I Redpath
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Jérémie Rossy
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia.,Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
23
|
Deardorff AS, Romer SH, Fyffe RE. Location, location, location: the organization and roles of potassium channels in mammalian motoneurons. J Physiol 2021; 599:1391-1420. [DOI: 10.1113/jp278675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/08/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Adam S. Deardorff
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
- Department of Neurology and Internal Medicine, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
| | - Shannon H. Romer
- Odyssey Systems Environmental Health Effects Laboratory, Navy Medical Research Unit‐Dayton Wright‐Patterson Air Force Base OH 45433 USA
| | - Robert E.W. Fyffe
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
| |
Collapse
|
24
|
Fenyves BG, Arnold A, Gharat VG, Haab C, Tishinov K, Peter F, de Quervain D, Papassotiropoulos A, Stetak A. Dual Role of an mps-2/KCNE-Dependent Pathway in Long-Term Memory and Age-Dependent Memory Decline. Curr Biol 2020; 31:527-539.e7. [PMID: 33259792 DOI: 10.1016/j.cub.2020.10.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/14/2020] [Accepted: 10/21/2020] [Indexed: 01/24/2023]
Abstract
Activity-dependent persistent changes in neuronal intrinsic excitability and synaptic strength are underlying learning and memory. Voltage-gated potassium (Kv) channels are potential regulators of memory and may be linked to age-dependent neuronal disfunction. MinK-related peptides (MiRPs) are conserved transmembrane proteins modulating Kv channels; however, their possible role in the regulation of memory and age-dependent memory decline are unknown. Here, we show that, in C. elegans, mps-2 is the sole member of the MiRP family that controls exclusively long-term associative memory (LTAM) in AVA neuron. In addition, we demonstrate that mps-2 also plays a critical role in age-dependent memory decline. In young adult worms, mps-2 is transcriptionally upregulated by CRH-1/cyclic AMP (cAMP)-response-binding protein (CREB) during LTAM, although the mps-2 baseline expression is CREB independent and instead, during aging, relies on nhr-66, which acts as an age-dependent repressor. Deletion of nhr-66 or its binding element in the mps-2 promoter prevents age-dependent transcriptional repression of mps-2 and memory decline. Finally, MPS-2 acts through the modulation of the Kv2.1/KVS-3 and Kv2.2/KVS-4 heteromeric potassium channels. Altogether, we describe a conserved MPS-2/KVS-3/KVS-4 pathway essential for LTAM and also for a programmed control of physiological age-dependent memory decline.
Collapse
Affiliation(s)
- Bank G Fenyves
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; Division of Molecular Neuroscience, Department of Psychology, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Andreas Arnold
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; Division of Molecular Neuroscience, Department of Psychology, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland
| | - Vaibhav G Gharat
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; Division of Molecular Neuroscience, Department of Psychology, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland
| | - Carmen Haab
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland
| | - Kiril Tishinov
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Fabian Peter
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; Division of Molecular Neuroscience, Department of Psychology, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland
| | - Dominique de Quervain
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; University Psychiatric Clinics, University of Basel, Wilhelm Klein-Strasse 27, 4055 Basel, Switzerland
| | - Andreas Papassotiropoulos
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; Division of Molecular Neuroscience, Department of Psychology, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; Biozentrum, Life Sciences Training Facility, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland; University Psychiatric Clinics, University of Basel, Wilhelm Klein-Strasse 27, 4055 Basel, Switzerland
| | - Attila Stetak
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; Division of Molecular Neuroscience, Department of Psychology, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; University Psychiatric Clinics, University of Basel, Wilhelm Klein-Strasse 27, 4055 Basel, Switzerland.
| |
Collapse
|
25
|
Lewin L, Nsasra E, Golbary E, Hadad U, Orr I, Yifrach O. Molecular and cellular correlates in Kv channel clustering: entropy-based regulation of cluster ion channel density. Sci Rep 2020; 10:11304. [PMID: 32647278 PMCID: PMC7347538 DOI: 10.1038/s41598-020-68003-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/27/2020] [Indexed: 11/25/2022] Open
Abstract
Scaffold protein-mediated ion channel clustering at unique membrane sites is important for electrical signaling. Yet, the mechanism(s) by which scaffold protein-ion channel interactions lead to channel clustering or how cluster ion channel density is regulated is mostly not known. The voltage-activated potassium channel (Kv) represents an excellent model to address these questions as the mechanism underlying its interaction with the post-synaptic density 95 (PSD-95) scaffold protein is known to be controlled by the length of the extended ‘ball and chain’ sequence comprising the C-terminal channel region. Here, using sub-diffraction high-resolution imaging microscopy, we show that Kv channel ‘chain’ length regulates Kv channel density with a ‘bell’-shaped dependence, reflecting a balance between thermodynamic considerations controlling ‘chain’ recruitment by PSD-95 and steric hindrance due to the spatial proximity of multiple channel molecules. Our results thus reveal an entropy-based mode of channel cluster density regulation that mirrors the entropy-based regulation of the Kv channel-PSD-95 interaction. The implications of these findings for electrical signaling are discussed.
Collapse
Affiliation(s)
- Limor Lewin
- Department of Life Sciences and the Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Esraa Nsasra
- Department of Life Sciences and the Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Ella Golbary
- Department of Life Sciences and the Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Irit Orr
- Department of Life Sciences and the Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Ofer Yifrach
- Department of Life Sciences and the Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| |
Collapse
|
26
|
Kv2.1 channels play opposing roles in regulating membrane potential, Ca 2+ channel function, and myogenic tone in arterial smooth muscle. Proc Natl Acad Sci U S A 2020; 117:3858-3866. [PMID: 32015129 PMCID: PMC7035623 DOI: 10.1073/pnas.1917879117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The accepted role of the protein Kv2.1 in arterial smooth muscle cells is to form K+ channels in the sarcolemma. Opening of Kv2.1 channels causes membrane hyperpolarization, which decreases the activity of L-type CaV1.2 channels, lowering intracellular Ca2+ ([Ca2+]i) and causing smooth muscle relaxation. A limitation of this model is that it is based exclusively on data from male arterial myocytes. Here, we used a combination of electrophysiology as well as imaging approaches to investigate the role of Kv2.1 channels in male and female arterial myocytes. We confirmed that Kv2.1 plays a canonical conductive role but found it also has a structural role in arterial myocytes to enhance clustering of CaV1.2 channels. Less than 1% of Kv2.1 channels are conductive and induce membrane hyperpolarization. Paradoxically, by enhancing the structural clustering and probability of CaV1.2-CaV1.2 interactions within these clusters, Kv2.1 increases Ca2+ influx. These functional impacts of Kv2.1 depend on its level of expression, which varies with sex. In female myocytes, where expression of Kv2.1 protein is higher than in male myocytes, Kv2.1 has conductive and structural roles. Female myocytes have larger CaV1.2 clusters, larger [Ca2+]i, and larger myogenic tone than male myocytes. In contrast, in male myocytes, Kv2.1 channels regulate membrane potential but not CaV1.2 channel clustering. We propose a model in which Kv2.1 function varies with sex: in males, Kv2.1 channels control membrane potential but, in female myocytes, Kv2.1 plays dual electrical and CaV1.2 clustering roles. This contributes to sex-specific regulation of excitability, [Ca2+]i, and myogenic tone in arterial myocytes.
Collapse
|
27
|
Nirenberg VA, Yifrach O. Bridging the Molecular-Cellular Gap in Understanding Ion Channel Clustering. Front Pharmacol 2020; 10:1644. [PMID: 32082156 PMCID: PMC7000920 DOI: 10.3389/fphar.2019.01644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/16/2019] [Indexed: 01/07/2023] Open
Abstract
The clustering of many voltage-dependent ion channel molecules at unique neuronal membrane sites such as axon initial segments, nodes of Ranvier, or the post-synaptic density, is an active process mediated by the interaction of ion channels with scaffold proteins and is of immense importance for electrical signaling. Growing evidence indicates that the density of ion channels at such membrane sites may affect action potential conduction properties and synaptic transmission. However, despite the emerging importance of ion channel density for electrical signaling, how ion channel-scaffold protein molecular interactions lead to cellular ion channel clustering, and how this process is regulated are largely unknown. In this review, we emphasize that voltage-dependent ion channel density at native clustering sites not only affects the density of ionic current fluxes but may also affect the conduction properties of the channel and/or the physical properties of the membrane at such locations, all changes that are expected to affect action potential conduction properties. Using the concrete example of the prototypical Shaker voltage-activated potassium channel (Kv) protein, we demonstrate how insight into the regulation of cellular ion channel clustering can be obtained when the molecular mechanism of ion channel-scaffold protein interaction is known. Our review emphasizes that such mechanistic knowledge is essential, and when combined with super-resolution imaging microscopy, can serve to bridge the molecular-cellular gap in understanding the regulation of ion channel clustering. Pressing questions, challenges and future directions in addressing ion channel clustering and its regulation are discussed.
Collapse
Affiliation(s)
| | - Ofer Yifrach
- Department of Life Sciences and the Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| |
Collapse
|
28
|
Kang SK, Vanoye CG, Misra SN, Echevarria DM, Calhoun JD, O'Connor JB, Fabre KL, McKnight D, Demmer L, Goldenberg P, Grote LE, Thiffault I, Saunders C, Strauss KA, Torkamani A, van der Smagt J, van Gassen K, Carson RP, Diaz J, Leon E, Jacher JE, Hannibal MC, Litwin J, Friedman NR, Schreiber A, Lynch B, Poduri A, Marsh ED, Goldberg EM, Millichap JJ, George AL, Kearney JA. Spectrum of K V 2.1 Dysfunction in KCNB1-Associated Neurodevelopmental Disorders. Ann Neurol 2019; 86:899-912. [PMID: 31600826 DOI: 10.1002/ana.25607] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Pathogenic variants in KCNB1, encoding the voltage-gated potassium channel KV 2.1, are associated with developmental and epileptic encephalopathy (DEE). Previous functional studies on a limited number of KCNB1 variants indicated a range of molecular mechanisms by which variants affect channel function, including loss of voltage sensitivity, loss of ion selectivity, and reduced cell-surface expression. METHODS We evaluated a series of 17 KCNB1 variants associated with DEE or other neurodevelopmental disorders (NDDs) to rapidly ascertain channel dysfunction using high-throughput functional assays. Specifically, we investigated the biophysical properties and cell-surface expression of variant KV 2.1 channels expressed in heterologous cells using high-throughput automated electrophysiology and immunocytochemistry-flow cytometry. RESULTS Pathogenic variants exhibited diverse functional defects, including altered current density and shifts in the voltage dependence of activation and/or inactivation, as homotetramers or when coexpressed with wild-type KV 2.1. Quantification of protein expression also identified variants with reduced total KV 2.1 expression or deficient cell-surface expression. INTERPRETATION Our study establishes a platform for rapid screening of KV 2.1 functional defects caused by KCNB1 variants associated with DEE and other NDDs. This will aid in establishing KCNB1 variant pathogenicity and the mechanism of dysfunction, which will enable targeted strategies for therapeutic intervention based on molecular phenotype. ANN NEUROL 2019;86:899-912.
Collapse
Affiliation(s)
- Seok Kyu Kang
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Carlos G Vanoye
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sunita N Misra
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Departments of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Dennis M Echevarria
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jeffrey D Calhoun
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - John B O'Connor
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Katarina L Fabre
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Laurie Demmer
- Department of Pediatrics, Atrium Health's Levine Children's Hospital, Charlotte, NC
| | - Paula Goldenberg
- Medical Genetics, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA
| | - Lauren E Grote
- Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO.,University of Missouri-Kansas City School of Medicine, Kansas City, MO
| | - Isabelle Thiffault
- University of Missouri-Kansas City School of Medicine, Kansas City, MO.,Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO.,Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO
| | - Carol Saunders
- University of Missouri-Kansas City School of Medicine, Kansas City, MO.,Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO.,Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO
| | | | - Ali Torkamani
- Scripps Translational Science Institute and Scripps Research Institute, La Jolla, CA
| | - Jasper van der Smagt
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Koen van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robert P Carson
- Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, TN
| | - Jullianne Diaz
- Rare Disease Institute, Children's National Medical Center, Washington, DC
| | - Eyby Leon
- Rare Disease Institute, Children's National Medical Center, Washington, DC
| | - Joseph E Jacher
- Division of Pediatric Genetics, Metabolism, and Genomic Medicine, University of Michigan, Ann Arbor, MI
| | - Mark C Hannibal
- Division of Pediatric Genetics, Metabolism, and Genomic Medicine, University of Michigan, Ann Arbor, MI
| | - Jessica Litwin
- University of California, San Francisco Benioff Children's Hospital, San Francisco, CA
| | | | | | - Bryan Lynch
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's University Hospital, Dublin, Ireland
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Eric D Marsh
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ethan M Goldberg
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - John J Millichap
- Departments of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL.,Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Alfred L George
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jennifer A Kearney
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
29
|
Fowler PC, Garcia-Pardo ME, Simpson JC, O'Sullivan NC. NeurodegenERation: The Central Role for ER Contacts in Neuronal Function and Axonopathy, Lessons From Hereditary Spastic Paraplegias and Related Diseases. Front Neurosci 2019; 13:1051. [PMID: 31680803 PMCID: PMC6801308 DOI: 10.3389/fnins.2019.01051] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
Abstract
The hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative conditions whose characteristic feature is degeneration of the longest axons within the corticospinal tract which leads to progressive spasticity and weakness of the lower limbs. Though highly genetically heterogeneous, the majority of HSP cases are caused by mutations in genes encoding proteins that are responsible for generating and organizing the tubular endoplasmic reticulum (ER). Despite this, the role of the ER within neurons, particularly the long axons affected in HSP, is not well understood. Throughout axons, ER tubules make extensive contacts with other organelles, the cytoskeleton and the plasma membrane. At these ER contacts, protein complexes work in concert to perform specialized functions including organelle shaping, calcium homeostasis and lipid biogenesis, all of which are vital for neuronal survival and may be disrupted by HSP-causing mutations. In this article we summarize the proteins which mediate ER contacts, review the functions these contacts are known to carry out within neurons, and discuss the potential contribution of disruption of ER contacts to axonopathy in HSP.
Collapse
Affiliation(s)
- Philippa C Fowler
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - M Elena Garcia-Pardo
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Jeremy C Simpson
- UCD School of Biology and Environmental Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Niamh C O'Sullivan
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Johnson B, Leek AN, Tamkun MM. Kv2 channels create endoplasmic reticulum / plasma membrane junctions: a brief history of Kv2 channel subcellular localization. Channels (Austin) 2019; 13:88-101. [PMID: 30712450 PMCID: PMC6380216 DOI: 10.1080/19336950.2019.1568824] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The potassium channels Kv2.1 and Kv2.2 are widely expressed throughout the mammalian brain. Kv2.1 provides the majority of delayed rectifying current in rat hippocampus while both channels are differentially expressed in cortex. Particularly unusual is their neuronal surface localization pattern: while half the channel population is freely-diffusive on the plasma membrane as expected from the generalized Singer & Nicolson fluid mosaic model, the other half localizes into micron-sized clusters on the soma, dendrites, and axon initial segment. These clusters contain hundreds of channels, which for Kv2.1, are largely non-conducting. Competing theories of the mechanism underlying Kv2.1 clustering have included static tethering to being corralled by an actin fence. Now, recent work has demonstrated channel clustering is due to formation of endoplasmic reticulum/plasma membrane (ER/PM) junctions through interaction with ER-resident VAMP-associated proteins (VAPs). Interaction between surface Kv2 channels and ER VAPs groups channels together in clusters. ER/PM junctions play important roles in inter-organelle communication: they regulate ion flux, are involved in lipid transfer, and are sites of endo- and exocytosis. Kv2-induced ER/PM junctions are regulated through phosphorylation of the channel C-terminus which in turn regulates VAP binding, providing a rapid means to create or dismantle these microdomains. In addition, insults such as hypoxia or ischemia disrupt this interaction resulting in ER/PM junction disassembly. Kv2 channels are the only known plasma membrane protein to form regulated, injury sensitive junctions in this manner. Furthermore, it is likely that concentrated VAPs at these microdomains sequester additional interactors whose functions are not yet fully understood.
Collapse
Affiliation(s)
- Ben Johnson
- a Molecular, Cellular and Integrative Neurosciences Graduate Program , Colorado State University , Fort Collins , CO , USA.,b Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA
| | - Ashley N Leek
- a Molecular, Cellular and Integrative Neurosciences Graduate Program , Colorado State University , Fort Collins , CO , USA.,b Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA
| | - Michael M Tamkun
- a Molecular, Cellular and Integrative Neurosciences Graduate Program , Colorado State University , Fort Collins , CO , USA.,b Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA.,c Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , CO , USA
| |
Collapse
|
31
|
Ciotu CI, Tsantoulas C, Meents J, Lampert A, McMahon SB, Ludwig A, Fischer MJM. Noncanonical Ion Channel Behaviour in Pain. Int J Mol Sci 2019; 20:E4572. [PMID: 31540178 PMCID: PMC6770626 DOI: 10.3390/ijms20184572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
Ion channels contribute fundamental properties to cell membranes. Although highly diverse in conductivity, structure, location, and function, many of them can be regulated by common mechanisms, such as voltage or (de-)phosphorylation. Primarily considering ion channels involved in the nociceptive system, this review covers more novel and less known features. Accordingly, we outline noncanonical operation of voltage-gated sodium, potassium, transient receptor potential (TRP), and hyperpolarization-activated cyclic nucleotide (HCN)-gated channels. Noncanonical features discussed include properties as a memory for prior voltage and chemical exposure, alternative ion conduction pathways, cluster formation, and silent subunits. Complementary to this main focus, the intention is also to transfer knowledge between fields, which become inevitably more separate due to their size.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Jannis Meents
- Institute of Physiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Stephen B McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UR, UK
| | - Andreas Ludwig
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
32
|
Romer SH, Deardorff AS, Fyffe REW. A molecular rheostat: Kv2.1 currents maintain or suppress repetitive firing in motoneurons. J Physiol 2019; 597:3769-3786. [DOI: 10.1113/jp277833] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/29/2019] [Indexed: 12/26/2022] Open
Affiliation(s)
- Shannon H. Romer
- Neuroscience, Cell Biology & PhysiologyBoonshoft School of MedicineWright State University Fairborn OH 45435 USA
- Oak Ridge Institute for Science and EducationEnvironmental Health Effects LaboratoryNavy Medical Research Unit‐DaytonWright‐Patterson Air Force Base OH 45433 USA
| | - Adam S. Deardorff
- Neuroscience, Cell Biology & PhysiologyBoonshoft School of MedicineWright State University Fairborn OH 45435 USA
- Neurology, Boonshoft School of MedicineWright State University Dayton OH 45409 USA
| | - Robert E. W. Fyffe
- Neuroscience, Cell Biology & PhysiologyBoonshoft School of MedicineWright State University Fairborn OH 45435 USA
| |
Collapse
|
33
|
Yang L, Ding W, You Z, Yang J, Shen S, Doheny JT, Chen L, Li R, Mao J. Alleviation of trigeminal neuropathic pain by electroacupuncture: the role of hyperpolarization-activated cyclic nucleotide-gated channel protein expression in the Gasserian ganglion. Acupunct Med 2019; 37:192-198. [PMID: 30977667 DOI: 10.1177/0964528419841614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The aim of this study was to examine the effect of electroacupuncture (EA) on trigeminal neuropathic pain in rats and explore the potential mechanism underlying the putative therapeutic effect of EA. METHODS Trigeminal neuropathic pain behavior was induced in rats by unilateral chronic constriction injury of the distal infraorbital nerve (dIoN-CCI). EA was administered at ST2 (Sibai) and Jiachengjiang. A total of 60 Sprague Dawley rats were divided into the following four groups (n = 15 per group) to examine the behavioral outcomes after surgery and/or EA treatment: sham (no ligation); dIoN-CCI (received isoflurane only, without EA treatment); dIoN-CCI+EA-7d (received EA treatment for 7 days); and dIoN-CCI+EA-14d (received EA treatment for 14 days). Both evoked and spontaneous nociceptive behaviors were measured. Of these, 12 rats (n = 4 from sham, dIoN-CCI, and dIoN-CCI+EA-14d groups, respectively) were used to analyze protein expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel in the Gasserian ganglion (GG) by immunohistochemistry. RESULTS dIoN-CCI rats exhibited mechanical allodynia and increased face-grooming activity that lasted at least 35 days. EA treatment reduced mechanical allodynia and face-grooming in dIoN-CCI rats. Overall, 14 days of EA treatment produced a prolonged anti-nociceptive effect as compared to 7-day EA treatment. The counts of HCN1 and HCN2 immunopositive puncta were increased in the ipsilateral GG in dIoN-CCI rats and were reduced by 14 days of EA treatment. DISCUSSION EA treatment relieved trigeminal neuropathic pain in dIoN-CCI rats, and this effect was dependent on the duration of EA treatment. The downregulation of HCN expression may contribute to the anti-nociceptive effect of EA in this rat model of trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Liuyue Yang
- 1 School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,2 MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Weihua Ding
- 2 MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zerong You
- 2 MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jinsheng Yang
- 2 MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shiqian Shen
- 2 MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason T Doheny
- 2 MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucy Chen
- 2 MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruhui Li
- 1 School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianren Mao
- 2 MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Guidelli R, Becucci L. Merging Shaker K+ channel electrophysiology with structural data by a nucleation and growth mechanism. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Lebowitz JJ, Pino JA, Mackie PM, Lin M, Hurst C, Divita K, Collins AT, Koutzoumis DN, Torres GE, Khoshbouei H. Clustered Kv2.1 decreases dopamine transporter activity and internalization. J Biol Chem 2019; 294:6957-6971. [PMID: 30824538 DOI: 10.1074/jbc.ra119.007441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/26/2019] [Indexed: 01/16/2023] Open
Abstract
The dopamine transporter (DAT) regulates dopamine neurotransmission via reuptake of dopamine released into the extracellular space. Interactions with partner proteins alter DAT function and thereby dynamically shape dopaminergic tone important for normal brain function. However, the extent and nature of these interactions are incompletely understood. Here, we describe a novel physical and functional interaction between DAT and the voltage-gated K+ channel Kv2.1 (potassium voltage-gated channel subfamily B member 1 or KCNB1). To examine the functional consequences of this interaction, we employed a combination of immunohistochemistry, immunofluorescence live-cell microscopy, co-immunoprecipitation, and electrophysiological approaches. Consistent with previous reports, we found Kv2.1 is trafficked to membrane-bound clusters observed both in vivo and in vitro in rodent dopamine neurons. Our data provide evidence that clustered Kv2.1 channels decrease DAT's lateral mobility and inhibit its internalization, while also decreasing canonical transporter activity by altering DAT's conformational equilibrium. These results suggest that Kv2.1 clusters exert a spatially discrete homeostatic braking mechanism on DAT by inducing a relative increase in inward-facing transporters. Given recent reports of Kv2.1 dysregulation in neurological disorders, it is possible that alterations in the functional interaction between DAT and Kv2.1 affect dopamine neuron activity.
Collapse
Affiliation(s)
- Joseph J Lebowitz
- From the Departments of Neuroscience and.,T32 in Movement Disorders and Neurorestoration, Fixel Center for Neurological Diseases, UF Health, Gainesville, Florida 32610
| | - Jose A Pino
- Pharmacology and Experimental Therapeutics, College of Medicine, University of Florida, Gainesville, Florida 32610 and
| | | | - Min Lin
- From the Departments of Neuroscience and
| | | | | | | | - Dimitri N Koutzoumis
- Pharmacology and Experimental Therapeutics, College of Medicine, University of Florida, Gainesville, Florida 32610 and
| | - Gonzalo E Torres
- Pharmacology and Experimental Therapeutics, College of Medicine, University of Florida, Gainesville, Florida 32610 and
| | - Habibeh Khoshbouei
- From the Departments of Neuroscience and .,T32 in Movement Disorders and Neurorestoration, Fixel Center for Neurological Diseases, UF Health, Gainesville, Florida 32610
| |
Collapse
|
36
|
Cholesterol-Dependent Gating Effects on Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:167-190. [PMID: 30649760 DOI: 10.1007/978-3-030-04278-3_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biomembranes separate a live cell from its environment and keep it in an off-equilibrium, steady state. They contain both phospholipids and nonphospholipids, depending on whether there are phosphate groups in the headgroup regions. Cholesterol (CHOL) is one type of nonphospholipids, and one of the most abundant lipid molecules in humans. Its content in plasma membranes and intracellular membranes varies and is tightly regulated. Voltage-gated ion channels are universally present in every cell and are fairly diversified in the eukaryotic domain of life. Our lipid-dependent gating hypothesis postulates that the controlled switch of the voltage-sensor domains (VSDs) in a voltage-gated potassium (Kv) channel between the "down" and the "up" state (gating) is sensitive to the ratio of phospholipids:nonphospholipids in the annular layer around the channel. High CHOL content is found to exert strong inhibitory effects on Kv channels. Such effects have been observed in in vitro membranes, cultured cells, and animal models for cholesterol metabolic defects. Thermodynamic analysis of the CHOL-dependent gating suggests that the inhibitory effects of CHOL result from collective interactions between annular CHOL molecules and the channel, which appear to be a more generic principle behind the CHOL effects on other ion channels and transporters. We will review the recent progress in the CHOL-dependent gating of voltage-gated ion channels, discuss the current technical limitations, and then expand briefly the learned principles to other ion channels that are known to be sensitive to the CHOL-channel interactions.
Collapse
|
37
|
Kirmiz M, Palacio S, Thapa P, King AN, Sack JT, Trimmer JS. Remodeling neuronal ER-PM junctions is a conserved nonconducting function of Kv2 plasma membrane ion channels. Mol Biol Cell 2018; 29:2410-2432. [PMID: 30091655 PMCID: PMC6233057 DOI: 10.1091/mbc.e18-05-0337] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endoplasmic reticulum (ER) and plasma membrane (PM) form junctions crucial to ion and lipid signaling and homeostasis. The Kv2.1 ion channel is localized at ER–PM junctions in brain neurons and is unique among PM proteins in its ability to remodel these specialized membrane contact sites. Here, we show that this function is conserved between Kv2.1 and Kv2.2, which differ in their biophysical properties, modulation, and cellular expression. Kv2.2 ER–PM junctions are present at sites deficient in the actin cytoskeleton, and disruption of the actin cytoskeleton affects their spatial organization. Kv2.2-containing ER–PM junctions overlap with those formed by canonical ER–PM tethers. The ability of Kv2 channels to remodel ER–PM junctions is unchanged by point mutations that eliminate their ion conduction but eliminated by point mutations within the Kv2-specific proximal restriction and clustering (PRC) domain that do not impact their ion channel function. The highly conserved PRC domain is sufficient to transfer the ER–PM junction–remodeling function to another PM protein. Last, brain neurons in Kv2 double-knockout mice have altered ER–PM junctions. Together, these findings demonstrate a conserved in vivo function for Kv2 family members in remodeling neuronal ER–PM junctions that is distinct from their canonical role as ion-conducting channels shaping neuronal excitability.
Collapse
Affiliation(s)
- Michael Kirmiz
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616
| | - Stephanie Palacio
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616
| | - Parashar Thapa
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616
| | - Anna N King
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616.,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616
| | - James S Trimmer
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616.,Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
38
|
Cleavage of potassium channel Kv2.1 by BACE2 reduces neuronal apoptosis. Mol Psychiatry 2018; 23:1542-1554. [PMID: 29703946 DOI: 10.1038/s41380-018-0060-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/24/2018] [Accepted: 03/13/2018] [Indexed: 12/20/2022]
Abstract
Potassium channel Kv2.1 regulates potassium current in cortical neurons and potassium efflux is necessary for cell apoptosis. As a major component of delayed rectifier current potassium channels, Kv2.1 forms clusters in the membrane of hippocampal neurons. BACE2 is an aspartyl protease to cleave APP to prevent the generation of Aβ, a central component of neuritic plaques in Alzheimer's brain. We now identified Kv2.1 as a novel substrate of BACE2. We found that BACE2 cleaved Kv2.1 at Thr376, Ala717, and Ser769 sites and disrupted Kv2.1 clustering on cell membrane, resulting in decreased Ik of Kv2.1 and a hyperpolarizing shift in primary neurons. Furthermore, we discovered that the BACE2-cleaved Kv2.1 forms, Kv2.1-1-375, Kv2.1-1-716, and Kv2.1-1-768, depressed the delayed rectifier Ik surge and reduced neuronal apoptosis. Our study suggests that BACE2 plays a neuroprotective role by cleavage of Kv2.1 to prevent the outward potassium currents, a potential new target for Alzheimer's treatment.
Collapse
|
39
|
Kv2 potassium channels form endoplasmic reticulum/plasma membrane junctions via interaction with VAPA and VAPB. Proc Natl Acad Sci U S A 2018; 115:E7331-E7340. [PMID: 29941597 DOI: 10.1073/pnas.1805757115] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kv2.1 exhibits two distinct forms of localization patterns on the neuronal plasma membrane: One population is freely diffusive and regulates electrical activity via voltage-dependent K+ conductance while a second one localizes to micrometer-sized clusters that contain densely packed, but nonconducting, channels. We have previously established that these clusters represent endoplasmic reticulum/plasma membrane (ER/PM) junctions that function as membrane trafficking hubs and that Kv2.1 plays a structural role in forming these membrane contact sites in both primary neuronal cultures and transfected HEK cells. Clustering and the formation of ER/PM contacts are regulated by phosphorylation within the channel C terminus, offering cells fast, dynamic control over the physical relationship between the cortical ER and PM. The present study addresses the mechanisms by which Kv2.1 and the related Kv2.2 channel interact with the ER membrane. Using proximity-based biotinylation techniques in transfected HEK cells we identified ER VAMP-associated proteins (VAPs) as potential Kv2.1 interactors. Confirmation that Kv2.1 and -2.2 bind VAPA and VAPB employed colocalization/redistribution, siRNA knockdown, and Förster resonance energy transfer (FRET)-based assays. CD4 chimeras containing sequence from the Kv2.1 C terminus were used to identify a noncanonical VAP-binding motif. VAPs were first identified as proteins required for neurotransmitter release in Aplysia and are now known to be abundant scaffolding proteins involved in membrane contact site formation throughout the ER. The VAP interactome includes AKAPs, kinases, membrane trafficking machinery, and proteins regulating nonvesicular lipid transport from the ER to the PM. Therefore, the Kv2-induced VAP concentration at ER/PM contact sites is predicted to have wide-ranging effects on neuronal cell biology.
Collapse
|
40
|
Ding W, You Z, Shen S, Yang J, Lim G, Doheny JT, Zhu S, Zhang Y, Chen L, Mao J. Increased HCN Channel Activity in the Gasserian Ganglion Contributes to Trigeminal Neuropathic Pain. THE JOURNAL OF PAIN 2018; 19:626-634. [PMID: 29366880 PMCID: PMC5972061 DOI: 10.1016/j.jpain.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/15/2017] [Accepted: 01/03/2018] [Indexed: 12/27/2022]
Abstract
Orofacial neuropathic pain caused by trigeminal nerve injury is a debilitating condition with limited therapeutic options. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate neuronal excitability and are involved in the development and maintenance of chronic pain. However, the effect of HCN channel activity in the Gasserian ganglion on trigeminal neuropathic pain has not been examined. We evaluated nociceptive behaviors after microinjection of the HCN channel blockers ZD7288 or ivabradine into the Gasserian ganglion in rats with trigeminal nerve injury. Both blockers dose-dependently ameliorated evoked and spontaneous nociceptive behavior in rats with trigeminal neuropathic pain. Moreover, the clinically available HCN channel blocker ivabradine showed a prolonged antinociceptive effect. In the Gasserian ganglion, HCN1 and HCN2 are major HCN isoforms. After trigeminal nerve injury, the counts of HCN1 as well as HCN2 immuno-positive punctae were increased in the ipsilateral Gasserian ganglions. These results indicate that the increased HCN channel activity in the Gasserian ganglion directly contributes to neuropathic pain resulting from trigeminal nerve injury. PERSPECTIVE Trigeminal nerve damage-induced orofacial pain is severe and more resistant to standard pharmacological treatment than other types of neuropathic pain. Our study suggests that targeting HCN channel activities in the Gasserian ganglion may provide an alternative treatment of trigeminal neuropathy including trigeminal neuralgia.
Collapse
Affiliation(s)
- Weihua Ding
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Zerong You
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shiqian Shen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jinsheng Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Grewo Lim
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jason T Doheny
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shengmei Zhu
- The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yi Zhang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lucy Chen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
41
|
Greitzer-Antes D, Xie L, Qin T, Xie H, Zhu D, Dolai S, Liang T, Kang F, Hardy AB, He Y, Kang Y, Gaisano HY. K v2.1 clusters on β-cell plasma membrane act as reservoirs that replenish pools of newcomer insulin granule through their interaction with syntaxin-3. J Biol Chem 2018; 293:6893-6904. [PMID: 29549124 DOI: 10.1074/jbc.ra118.002703] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 03/09/2018] [Indexed: 01/22/2023] Open
Abstract
The voltage-dependent K+ (Kv) channel Kv2.1 is a major delayed rectifier in many secretory cells, including pancreatic β cells. In addition, Kv2.1 has a direct role in exocytosis at an undefined step, involving SNARE proteins, that is independent of its ion-conducting pore function. Here, we elucidated the precise step in exocytosis. We previously reported that syntaxin-3 (Syn-3) is the key syntaxin that mediates exocytosis of newcomer secretory granules that spend minimal residence time on the plasma membrane before fusion. Using high-resolution total internal reflection fluorescence microscopy, we now show that Kv2.1 forms reservoir clusters on the β-cell plasma membrane and binds Syn-3 via its C-terminal C1b domain, which recruits newcomer insulin secretory granules into this large reservoir. Upon glucose stimulation, secretory granules were released from this reservoir to replenish the pool of newcomer secretory granules for subsequent fusion, occurring just adjacent to the plasma membrane Kv2.1 clusters. C1b deletion blocked the aforementioned Kv2.1-Syn-3-mediated events and reduced fusion of newcomer secretory granules. These insights have therapeutic implications, as Kv2.1 overexpression in type-2 diabetes rat islets restored biphasic insulin secretion.
Collapse
Affiliation(s)
- Dafna Greitzer-Antes
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Li Xie
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Tairan Qin
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Huanli Xie
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Dan Zhu
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Subhankar Dolai
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Tao Liang
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Fei Kang
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Alexandre B Hardy
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Yan He
- the Department of Epidemiology and Health Statistics, School of Public Health and Family Medicine, Capital Medical University, Beijing 100050, China
| | - Youhou Kang
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Herbert Y Gaisano
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| |
Collapse
|
42
|
Marini C, Romoli M, Parrini E, Costa C, Mei D, Mari F, Parmeggiani L, Procopio E, Metitieri T, Cellini E, Virdò S, De Vita D, Gentile M, Prontera P, Calabresi P, Guerrini R. Clinical features and outcome of 6 new patients carrying de novo KCNB1 gene mutations. NEUROLOGY-GENETICS 2017; 3:e206. [PMID: 29264397 PMCID: PMC5733250 DOI: 10.1212/nxg.0000000000000206] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 09/07/2017] [Indexed: 01/01/2023]
Abstract
Objective To describe electroclinical features and outcome of 6 patients harboring KCNB1 mutations. Methods Clinical, EEG, neuropsychological, and brain MRI data analysis. Targeted next-generation sequencing of a 95 epilepsy gene panel. Results The mean age at seizure onset was 11 months. The mean follow-up of 11.3 years documented that 4 patients following an infantile phase of frequent seizures became seizure free; the mean age at seizure offset was 4.25 years. Epilepsy phenotypes comprised West syndrome in 2 patients, infantile-onset unspecified generalized epilepsy, myoclonic and photosensitive eyelid myoclonia epilepsy resembling Jeavons syndrome, Lennox-Gastaut syndrome, and focal epilepsy with prolonged occipital or clonic seizures in each and every one. Five patients had developmental delay prior to seizure onset evolving into severe intellectual disability with absent speech and autistic traits in one and stereotypic hand movements with impulse control disorder in another. The patient with Jeavons syndrome evolved into moderate intellectual disability. Mutations were de novo, 4 missense and 2 nonsense, 5 were novel, and 1 resulted from somatic mosaicism. Conclusions KCNB1-related manifestations include a spectrum of infantile-onset generalized or focal seizures whose combination leads to early infantile epileptic encephalopathy including West, Lennox-Gastaut, and Jeavons syndromes. Long-term follow-up highlights that following a stormy phase, seizures subside or cease and treatment may be eased or withdrawn. Cognitive and motor functions are almost always delayed prior to seizure onset and evolve into severe, persistent impairment. Thus, KCNB1 mutations are associated with diffuse brain dysfunction combining seizures, motor, and cognitive impairment.
Collapse
Affiliation(s)
- Carla Marini
- Pediatric Neurology Unit (C.M., E.P., D.M., F.M., T.M., E.C., S.V., D.D.V., R.G.), Neurogenetics and Neurobiology Laboratories, Neuroscience Department, A. Meyer Pediatric Hospital, University of Florence; Neurology Unit (M.R., C.C., P.C.), Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia; Child Neurology Service (L.P.), Hospital of Bolzano; Metabolic Unit (E.P.), A. Meyer Pediatric Hospital, Florence; Medical Genetics Unit (M.G.), Azienda Sanitaria Locale Bari; Neonatology Unit and Prenatal Diagnosis (P.P.), Medical Genetic Unit, Ospedale S. Maria della Misericordia, Perugia; Department of Experimental Neurosciences (P.C.), "Istituto di Ricovero e Cura a Carattere Scientifico," IRCCS Santa Lucia Foundation, Rome; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Michele Romoli
- Pediatric Neurology Unit (C.M., E.P., D.M., F.M., T.M., E.C., S.V., D.D.V., R.G.), Neurogenetics and Neurobiology Laboratories, Neuroscience Department, A. Meyer Pediatric Hospital, University of Florence; Neurology Unit (M.R., C.C., P.C.), Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia; Child Neurology Service (L.P.), Hospital of Bolzano; Metabolic Unit (E.P.), A. Meyer Pediatric Hospital, Florence; Medical Genetics Unit (M.G.), Azienda Sanitaria Locale Bari; Neonatology Unit and Prenatal Diagnosis (P.P.), Medical Genetic Unit, Ospedale S. Maria della Misericordia, Perugia; Department of Experimental Neurosciences (P.C.), "Istituto di Ricovero e Cura a Carattere Scientifico," IRCCS Santa Lucia Foundation, Rome; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Elena Parrini
- Pediatric Neurology Unit (C.M., E.P., D.M., F.M., T.M., E.C., S.V., D.D.V., R.G.), Neurogenetics and Neurobiology Laboratories, Neuroscience Department, A. Meyer Pediatric Hospital, University of Florence; Neurology Unit (M.R., C.C., P.C.), Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia; Child Neurology Service (L.P.), Hospital of Bolzano; Metabolic Unit (E.P.), A. Meyer Pediatric Hospital, Florence; Medical Genetics Unit (M.G.), Azienda Sanitaria Locale Bari; Neonatology Unit and Prenatal Diagnosis (P.P.), Medical Genetic Unit, Ospedale S. Maria della Misericordia, Perugia; Department of Experimental Neurosciences (P.C.), "Istituto di Ricovero e Cura a Carattere Scientifico," IRCCS Santa Lucia Foundation, Rome; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Cinzia Costa
- Pediatric Neurology Unit (C.M., E.P., D.M., F.M., T.M., E.C., S.V., D.D.V., R.G.), Neurogenetics and Neurobiology Laboratories, Neuroscience Department, A. Meyer Pediatric Hospital, University of Florence; Neurology Unit (M.R., C.C., P.C.), Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia; Child Neurology Service (L.P.), Hospital of Bolzano; Metabolic Unit (E.P.), A. Meyer Pediatric Hospital, Florence; Medical Genetics Unit (M.G.), Azienda Sanitaria Locale Bari; Neonatology Unit and Prenatal Diagnosis (P.P.), Medical Genetic Unit, Ospedale S. Maria della Misericordia, Perugia; Department of Experimental Neurosciences (P.C.), "Istituto di Ricovero e Cura a Carattere Scientifico," IRCCS Santa Lucia Foundation, Rome; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Davide Mei
- Pediatric Neurology Unit (C.M., E.P., D.M., F.M., T.M., E.C., S.V., D.D.V., R.G.), Neurogenetics and Neurobiology Laboratories, Neuroscience Department, A. Meyer Pediatric Hospital, University of Florence; Neurology Unit (M.R., C.C., P.C.), Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia; Child Neurology Service (L.P.), Hospital of Bolzano; Metabolic Unit (E.P.), A. Meyer Pediatric Hospital, Florence; Medical Genetics Unit (M.G.), Azienda Sanitaria Locale Bari; Neonatology Unit and Prenatal Diagnosis (P.P.), Medical Genetic Unit, Ospedale S. Maria della Misericordia, Perugia; Department of Experimental Neurosciences (P.C.), "Istituto di Ricovero e Cura a Carattere Scientifico," IRCCS Santa Lucia Foundation, Rome; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Francesco Mari
- Pediatric Neurology Unit (C.M., E.P., D.M., F.M., T.M., E.C., S.V., D.D.V., R.G.), Neurogenetics and Neurobiology Laboratories, Neuroscience Department, A. Meyer Pediatric Hospital, University of Florence; Neurology Unit (M.R., C.C., P.C.), Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia; Child Neurology Service (L.P.), Hospital of Bolzano; Metabolic Unit (E.P.), A. Meyer Pediatric Hospital, Florence; Medical Genetics Unit (M.G.), Azienda Sanitaria Locale Bari; Neonatology Unit and Prenatal Diagnosis (P.P.), Medical Genetic Unit, Ospedale S. Maria della Misericordia, Perugia; Department of Experimental Neurosciences (P.C.), "Istituto di Ricovero e Cura a Carattere Scientifico," IRCCS Santa Lucia Foundation, Rome; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Lucio Parmeggiani
- Pediatric Neurology Unit (C.M., E.P., D.M., F.M., T.M., E.C., S.V., D.D.V., R.G.), Neurogenetics and Neurobiology Laboratories, Neuroscience Department, A. Meyer Pediatric Hospital, University of Florence; Neurology Unit (M.R., C.C., P.C.), Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia; Child Neurology Service (L.P.), Hospital of Bolzano; Metabolic Unit (E.P.), A. Meyer Pediatric Hospital, Florence; Medical Genetics Unit (M.G.), Azienda Sanitaria Locale Bari; Neonatology Unit and Prenatal Diagnosis (P.P.), Medical Genetic Unit, Ospedale S. Maria della Misericordia, Perugia; Department of Experimental Neurosciences (P.C.), "Istituto di Ricovero e Cura a Carattere Scientifico," IRCCS Santa Lucia Foundation, Rome; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Elena Procopio
- Pediatric Neurology Unit (C.M., E.P., D.M., F.M., T.M., E.C., S.V., D.D.V., R.G.), Neurogenetics and Neurobiology Laboratories, Neuroscience Department, A. Meyer Pediatric Hospital, University of Florence; Neurology Unit (M.R., C.C., P.C.), Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia; Child Neurology Service (L.P.), Hospital of Bolzano; Metabolic Unit (E.P.), A. Meyer Pediatric Hospital, Florence; Medical Genetics Unit (M.G.), Azienda Sanitaria Locale Bari; Neonatology Unit and Prenatal Diagnosis (P.P.), Medical Genetic Unit, Ospedale S. Maria della Misericordia, Perugia; Department of Experimental Neurosciences (P.C.), "Istituto di Ricovero e Cura a Carattere Scientifico," IRCCS Santa Lucia Foundation, Rome; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Tiziana Metitieri
- Pediatric Neurology Unit (C.M., E.P., D.M., F.M., T.M., E.C., S.V., D.D.V., R.G.), Neurogenetics and Neurobiology Laboratories, Neuroscience Department, A. Meyer Pediatric Hospital, University of Florence; Neurology Unit (M.R., C.C., P.C.), Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia; Child Neurology Service (L.P.), Hospital of Bolzano; Metabolic Unit (E.P.), A. Meyer Pediatric Hospital, Florence; Medical Genetics Unit (M.G.), Azienda Sanitaria Locale Bari; Neonatology Unit and Prenatal Diagnosis (P.P.), Medical Genetic Unit, Ospedale S. Maria della Misericordia, Perugia; Department of Experimental Neurosciences (P.C.), "Istituto di Ricovero e Cura a Carattere Scientifico," IRCCS Santa Lucia Foundation, Rome; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Elena Cellini
- Pediatric Neurology Unit (C.M., E.P., D.M., F.M., T.M., E.C., S.V., D.D.V., R.G.), Neurogenetics and Neurobiology Laboratories, Neuroscience Department, A. Meyer Pediatric Hospital, University of Florence; Neurology Unit (M.R., C.C., P.C.), Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia; Child Neurology Service (L.P.), Hospital of Bolzano; Metabolic Unit (E.P.), A. Meyer Pediatric Hospital, Florence; Medical Genetics Unit (M.G.), Azienda Sanitaria Locale Bari; Neonatology Unit and Prenatal Diagnosis (P.P.), Medical Genetic Unit, Ospedale S. Maria della Misericordia, Perugia; Department of Experimental Neurosciences (P.C.), "Istituto di Ricovero e Cura a Carattere Scientifico," IRCCS Santa Lucia Foundation, Rome; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Simona Virdò
- Pediatric Neurology Unit (C.M., E.P., D.M., F.M., T.M., E.C., S.V., D.D.V., R.G.), Neurogenetics and Neurobiology Laboratories, Neuroscience Department, A. Meyer Pediatric Hospital, University of Florence; Neurology Unit (M.R., C.C., P.C.), Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia; Child Neurology Service (L.P.), Hospital of Bolzano; Metabolic Unit (E.P.), A. Meyer Pediatric Hospital, Florence; Medical Genetics Unit (M.G.), Azienda Sanitaria Locale Bari; Neonatology Unit and Prenatal Diagnosis (P.P.), Medical Genetic Unit, Ospedale S. Maria della Misericordia, Perugia; Department of Experimental Neurosciences (P.C.), "Istituto di Ricovero e Cura a Carattere Scientifico," IRCCS Santa Lucia Foundation, Rome; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Dalila De Vita
- Pediatric Neurology Unit (C.M., E.P., D.M., F.M., T.M., E.C., S.V., D.D.V., R.G.), Neurogenetics and Neurobiology Laboratories, Neuroscience Department, A. Meyer Pediatric Hospital, University of Florence; Neurology Unit (M.R., C.C., P.C.), Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia; Child Neurology Service (L.P.), Hospital of Bolzano; Metabolic Unit (E.P.), A. Meyer Pediatric Hospital, Florence; Medical Genetics Unit (M.G.), Azienda Sanitaria Locale Bari; Neonatology Unit and Prenatal Diagnosis (P.P.), Medical Genetic Unit, Ospedale S. Maria della Misericordia, Perugia; Department of Experimental Neurosciences (P.C.), "Istituto di Ricovero e Cura a Carattere Scientifico," IRCCS Santa Lucia Foundation, Rome; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Mattia Gentile
- Pediatric Neurology Unit (C.M., E.P., D.M., F.M., T.M., E.C., S.V., D.D.V., R.G.), Neurogenetics and Neurobiology Laboratories, Neuroscience Department, A. Meyer Pediatric Hospital, University of Florence; Neurology Unit (M.R., C.C., P.C.), Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia; Child Neurology Service (L.P.), Hospital of Bolzano; Metabolic Unit (E.P.), A. Meyer Pediatric Hospital, Florence; Medical Genetics Unit (M.G.), Azienda Sanitaria Locale Bari; Neonatology Unit and Prenatal Diagnosis (P.P.), Medical Genetic Unit, Ospedale S. Maria della Misericordia, Perugia; Department of Experimental Neurosciences (P.C.), "Istituto di Ricovero e Cura a Carattere Scientifico," IRCCS Santa Lucia Foundation, Rome; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Paolo Prontera
- Pediatric Neurology Unit (C.M., E.P., D.M., F.M., T.M., E.C., S.V., D.D.V., R.G.), Neurogenetics and Neurobiology Laboratories, Neuroscience Department, A. Meyer Pediatric Hospital, University of Florence; Neurology Unit (M.R., C.C., P.C.), Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia; Child Neurology Service (L.P.), Hospital of Bolzano; Metabolic Unit (E.P.), A. Meyer Pediatric Hospital, Florence; Medical Genetics Unit (M.G.), Azienda Sanitaria Locale Bari; Neonatology Unit and Prenatal Diagnosis (P.P.), Medical Genetic Unit, Ospedale S. Maria della Misericordia, Perugia; Department of Experimental Neurosciences (P.C.), "Istituto di Ricovero e Cura a Carattere Scientifico," IRCCS Santa Lucia Foundation, Rome; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Paolo Calabresi
- Pediatric Neurology Unit (C.M., E.P., D.M., F.M., T.M., E.C., S.V., D.D.V., R.G.), Neurogenetics and Neurobiology Laboratories, Neuroscience Department, A. Meyer Pediatric Hospital, University of Florence; Neurology Unit (M.R., C.C., P.C.), Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia; Child Neurology Service (L.P.), Hospital of Bolzano; Metabolic Unit (E.P.), A. Meyer Pediatric Hospital, Florence; Medical Genetics Unit (M.G.), Azienda Sanitaria Locale Bari; Neonatology Unit and Prenatal Diagnosis (P.P.), Medical Genetic Unit, Ospedale S. Maria della Misericordia, Perugia; Department of Experimental Neurosciences (P.C.), "Istituto di Ricovero e Cura a Carattere Scientifico," IRCCS Santa Lucia Foundation, Rome; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Renzo Guerrini
- Pediatric Neurology Unit (C.M., E.P., D.M., F.M., T.M., E.C., S.V., D.D.V., R.G.), Neurogenetics and Neurobiology Laboratories, Neuroscience Department, A. Meyer Pediatric Hospital, University of Florence; Neurology Unit (M.R., C.C., P.C.), Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia; Child Neurology Service (L.P.), Hospital of Bolzano; Metabolic Unit (E.P.), A. Meyer Pediatric Hospital, Florence; Medical Genetics Unit (M.G.), Azienda Sanitaria Locale Bari; Neonatology Unit and Prenatal Diagnosis (P.P.), Medical Genetic Unit, Ospedale S. Maria della Misericordia, Perugia; Department of Experimental Neurosciences (P.C.), "Istituto di Ricovero e Cura a Carattere Scientifico," IRCCS Santa Lucia Foundation, Rome; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| |
Collapse
|
43
|
Schulien AJ, Justice JA, Di Maio R, Wills ZP, Shah NH, Aizenman E. Zn(2+) -induced Ca(2+) release via ryanodine receptors triggers calcineurin-dependent redistribution of cortical neuronal Kv2.1 K(+) channels. J Physiol 2017; 594:2647-59. [PMID: 26939666 DOI: 10.1113/jp272117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/14/2016] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Increases in intracellular Zn(2+) concentrations are an early, necessary signal for the modulation of Kv2.1 K(+) channel localization and physiological function. Intracellular Zn(2+) -mediated Kv2.1 channel modulation is dependent on calcineurin, a Ca(2+) -activated phosphatase. We show that intracellular Zn(2+) induces a significant increase in ryanodine receptor-dependent cytosolic Ca(2+) transients, which leads to a calcineurin-dependent redistribution of Kv2.1 channels from pre-existing membrane clusters to diffuse localization. As such, the link between Zn(2+) and Ca(2+) signalling in this Kv2.1 modulatory pathway is established. We observe that a sublethal ischaemic preconditioning insult also leads to Kv2.1 redistribution in a ryanodine receptor-dependent fashion. We suggest that Zn(2+) may be an early and ubiquitous signalling molecule mediating Ca(2+) release from the cortical endoplasmic reticulum via ryanodine receptor activation. ABSTRACT Sublethal injurious stimuli in neurons induce transient increases in free intracellular Zn(2+) that are associated with regulating adaptive responses to subsequent lethal injury, including alterations in the function and localization of the delayed-rectifier potassium channel, Kv2.1. However, the link between intracellular Zn(2+) signalling and the observed changes in Kv2.1 remain undefined. In the present study, utilizing exogenous Zn(2+) treatment, along with a selective Zn(2+) ionophore, we show that transient elevations in intracellular Zn(2+) concentrations are sufficient to induce calcineurin-dependent Kv2.1 channel dispersal in rat cortical neurons in vitro, which is accompanied by a relatively small but significant hyperpolarizing shift in the voltage-gated activation kinetics of the channel. Critically, using a molecularly encoded calcium sensor, we found that the calcineurin-dependent changes in Kv2.1 probably occur as a result of Zn(2+) -induced cytosolic Ca(2+) release via activation of neuronal ryanodine receptors. Finally, we couple this mechanism with an established model for in vitro ischaemic preconditioning and show that Kv2.1 channel modulation in this process is also ryanodine receptor-sensitive. Our results strongly suggest that intracellular Zn(2+) -initiated signalling may represent an early and possibly widespread component of Ca(2+) -dependent processes in neurons.
Collapse
Affiliation(s)
- Anthony J Schulien
- Department of Neurobiology.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, PA, USA
| | - Jason A Justice
- Department of Neurobiology.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, PA, USA
| | - Roberto Di Maio
- Department of Neurology.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, PA, USA
| | | | | | - Elias Aizenman
- Department of Neurobiology.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, PA, USA
| |
Collapse
|
44
|
Fu J, Dai X, Plummer G, Suzuki K, Bautista A, Githaka JM, Senior L, Jensen M, Greitzer-Antes D, Manning Fox JE, Gaisano HY, Newgard CB, Touret N, MacDonald PE. Kv2.1 Clustering Contributes to Insulin Exocytosis and Rescues Human β-Cell Dysfunction. Diabetes 2017; 66:1890-1900. [PMID: 28607108 PMCID: PMC5482075 DOI: 10.2337/db16-1170] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/15/2017] [Indexed: 12/12/2022]
Abstract
Insulin exocytosis is regulated by ion channels that control excitability and Ca2+ influx. Channels also play an increasingly appreciated role in microdomain structure. In this study, we examine the mechanism by which the voltage-dependent K+ (Kv) channel Kv2.1 (KCNB1) facilitates depolarization-induced exocytosis in INS 832/13 cells and β-cells from human donors with and without type 2 diabetes (T2D). We find that Kv2.1, but not Kv2.2 (KCNB2), forms clusters of 6-12 tetrameric channels at the plasma membrane and facilitates insulin exocytosis. Knockdown of Kv2.1 expression reduces secretory granule targeting to the plasma membrane. Expression of the full-length channel (Kv2.1-wild-type) supports the glucose-dependent recruitment of secretory granules. However, a truncated channel (Kv2.1-ΔC318) that retains electrical function and syntaxin 1A binding, but lacks the ability to form clusters, does not enhance granule recruitment or exocytosis. Expression of KCNB1 appears reduced in T2D islets, and further knockdown of KCNB1 does not inhibit Kv current in T2D β-cells. Upregulation of Kv2.1-wild-type, but not Kv2.1-ΔC318, rescues the exocytotic phenotype in T2D β-cells and increases insulin secretion from T2D islets. Thus, the ability of Kv2.1 to directly facilitate insulin exocytosis depends on channel clustering. Loss of this structural role for the channel might contribute to impaired insulin secretion in diabetes.
Collapse
Affiliation(s)
- Jianyang Fu
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoqing Dai
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Gregory Plummer
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Kunimasa Suzuki
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Bautista
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - John M Githaka
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Laura Senior
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Mette Jensen
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University, Durham, NC
| | - Dafna Greitzer-Antes
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jocelyn E Manning Fox
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Herbert Y Gaisano
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University, Durham, NC
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
45
|
Duménieu M, Oulé M, Kreutz MR, Lopez-Rojas J. The Segregated Expression of Voltage-Gated Potassium and Sodium Channels in Neuronal Membranes: Functional Implications and Regulatory Mechanisms. Front Cell Neurosci 2017; 11:115. [PMID: 28484374 PMCID: PMC5403416 DOI: 10.3389/fncel.2017.00115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/05/2017] [Indexed: 01/25/2023] Open
Abstract
Neurons are highly polarized cells with apparent functional and morphological differences between dendrites and axon. A critical determinant for the molecular and functional identity of axonal and dendritic segments is the restricted expression of voltage-gated ion channels (VGCs). Several studies show an uneven distribution of ion channels and their differential regulation within dendrites and axons, which is a prerequisite for an appropriate integration of synaptic inputs and the generation of adequate action potential (AP) firing patterns. This review article will focus on the signaling pathways leading to segmented expression of voltage-gated potassium and sodium ion channels at the neuronal plasma membrane and the regulatory mechanisms ensuring segregated functions. We will also discuss the relevance of proper ion channel targeting for neuronal physiology and how alterations in polarized distribution contribute to neuronal pathology.
Collapse
Affiliation(s)
- Maël Duménieu
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Marie Oulé
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function", University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH)Hamburg, Germany
| | - Jeffrey Lopez-Rojas
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| |
Collapse
|
46
|
Casanovas A, Salvany S, Lahoz V, Tarabal O, Piedrafita L, Sabater R, Hernández S, Calderó J, Esquerda JE. Neuregulin 1-ErbB module in C-bouton synapses on somatic motor neurons: molecular compartmentation and response to peripheral nerve injury. Sci Rep 2017; 7:40155. [PMID: 28065942 PMCID: PMC5220293 DOI: 10.1038/srep40155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/02/2016] [Indexed: 12/30/2022] Open
Abstract
The electric activity of lower motor neurons (MNs) appears to play a role in determining cell-vulnerability in MN diseases. MN excitability is modulated by cholinergic inputs through C-type synaptic boutons, which display an endoplasmic reticulum-related subsurface cistern (SSC) adjacent to the postsynaptic membrane. Besides cholinergic molecules, a constellation of proteins involved in different signal-transduction pathways are clustered at C-type synaptic sites (M2 muscarinic receptors, Kv2.1 potassium channels, Ca2+ activated K+ [SK] channels, and sigma-1 receptors [S1R]), but their collective functional significance so far remains unknown. We have previously suggested that neuregulin-1 (NRG1)/ErbBs-based retrograde signalling occurs at this synapse. To better understand signalling through C-boutons, we performed an analysis of the distribution of C-bouton-associated signalling proteins. We show that within SSC, S1R, Kv2.1 and NRG1 are clustered in highly specific, non-overlapping, microdomains, whereas ErbB2 and ErbB4 are present in the adjacent presynaptic compartment. This organization may define highly ordered and spatially restricted sites for different signal-transduction pathways. SSC associated proteins are disrupted in axotomised MNs together with the activation of microglia, which display a positive chemotactism to C-bouton sites. This indicates that C-bouton associated molecules are also involved in neuroinflammatory signalling in diseased MNs, emerging as new potential therapeutic targets.
Collapse
Affiliation(s)
- Anna Casanovas
- Departament de Medicina Experimental, Patologia Neuromuscular Experimental, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Av. Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - Sara Salvany
- Departament de Medicina Experimental, Patologia Neuromuscular Experimental, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Av. Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - Víctor Lahoz
- Departament de Medicina Experimental, Patologia Neuromuscular Experimental, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Av. Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - Olga Tarabal
- Departament de Medicina Experimental, Patologia Neuromuscular Experimental, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Av. Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - Lídia Piedrafita
- Departament de Medicina Experimental, Patologia Neuromuscular Experimental, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Av. Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - Raimundo Sabater
- Departament de Medicina Experimental, Patologia Neuromuscular Experimental, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Av. Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - Sara Hernández
- Departament de Medicina Experimental, Patologia Neuromuscular Experimental, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Av. Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - Jordi Calderó
- Departament de Medicina Experimental, Patologia Neuromuscular Experimental, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Av. Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - Josep E. Esquerda
- Departament de Medicina Experimental, Patologia Neuromuscular Experimental, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Av. Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| |
Collapse
|
47
|
Yu W, Parakramaweera R, Teng S, Gowda M, Sharad Y, Thakker-Varia S, Alder J, Sesti F. Oxidation of KCNB1 Potassium Channels Causes Neurotoxicity and Cognitive Impairment in a Mouse Model of Traumatic Brain Injury. J Neurosci 2016; 36:11084-11096. [PMID: 27798188 PMCID: PMC5098843 DOI: 10.1523/jneurosci.2273-16.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/25/2016] [Accepted: 09/07/2016] [Indexed: 01/08/2023] Open
Abstract
The delayed rectifier potassium (K+) channel KCNB1 (Kv2.1), which conducts a major somatodendritic current in cortex and hippocampus, is known to undergo oxidation in the brain, but whether this can cause neurodegeneration and cognitive impairment is not known. Here, we used transgenic mice harboring human KCNB1 wild-type (Tg-WT) or a nonoxidable C73A mutant (Tg-C73A) in cortex and hippocampus to determine whether oxidized KCNB1 channels affect brain function. Animals were subjected to moderate traumatic brain injury (TBI), a condition characterized by extensive oxidative stress. Dasatinib, a Food and Drug Administration-approved inhibitor of Src tyrosine kinases, was used to impinge on the proapoptotic signaling pathway activated by oxidized KCNB1 channels. Thus, typical lesions of brain injury, namely, inflammation (astrocytosis), neurodegeneration, and cell death, were markedly reduced in Tg-C73A and dasatinib-treated non-Tg animals. Accordingly, Tg-C73A mice and non-Tg mice treated with dasatinib exhibited improved behavioral outcomes in motor (rotarod) and cognitive (Morris water maze) assays compared to controls. Moreover, the activity of Src kinases, along with oxidative stress, were significantly diminished in Tg-C73A brains. Together, these data demonstrate that oxidation of KCNB1 channels is a contributing mechanism to cellular and behavioral deficits in vertebrates and suggest a new therapeutic approach to TBI. SIGNIFICANCE STATEMENT This study provides the first experimental evidence that oxidation of a K+ channel constitutes a mechanism of neuronal and cognitive impairment in vertebrates. Specifically, the interaction of KCNB1 channels with reactive oxygen species plays a major role in the etiology of mouse model of traumatic brain injury (TBI), a condition associated with extensive oxidative stress. In addition, a Food and Drug Administration-approved drug ameliorates the outcome of TBI in mouse, by directly impinging on the toxic pathway activated in response to oxidation of the KCNB1 channel. These findings elucidate a basic mechanism of neurotoxicity in vertebrates and might lead to a new therapeutic approach to TBI in humans, which, despite significant efforts, is a condition that remains without effective pharmacological treatments.
Collapse
Affiliation(s)
- Wei Yu
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Randika Parakramaweera
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Shavonne Teng
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Manasa Gowda
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Yashsavi Sharad
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
48
|
Stas JI, Bocksteins E, Jensen CS, Schmitt N, Snyders DJ. The anticonvulsant retigabine suppresses neuronal K V2-mediated currents. Sci Rep 2016; 6:35080. [PMID: 27734968 PMCID: PMC5062084 DOI: 10.1038/srep35080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/20/2016] [Indexed: 11/09/2022] Open
Abstract
Enhancement of neuronal M-currents, generated through KV7.2-KV7.5 channels, has gained much interest for its potential in developing treatments for hyperexcitability-related disorders such as epilepsy. Retigabine, a KV7 channel opener, has proven to be an effective anticonvulsant and has recently also gained attention due to its neuroprotective properties. In the present study, we found that the auxiliary KCNE2 subunit reduced the KV7.2-KV7.3 retigabine sensitivity approximately 5-fold. In addition, using both mammalian expression systems and cultured hippocampal neurons we determined that low μM retigabine concentrations had ‘off-target’ effects on KV2.1 channels which have recently been implicated in apoptosis. Clinical retigabine concentrations (0.3–3 μM) inhibited KV2.1 channel function upon prolonged exposure. The suppression of the KV2.1 conductance was only partially reversible. Our results identified KV2.1 as a new molecular target for retigabine, thus giving a potential explanation for retigabine’s neuroprotective properties.
Collapse
Affiliation(s)
- Jeroen I Stas
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, 2610 Antwerp, Belgium.,Ion Channel Group, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Elke Bocksteins
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Camilla S Jensen
- Ion Channel Group, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Nicole Schmitt
- Ion Channel Group, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Dirk J Snyders
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
49
|
Thiffault I, Speca DJ, Austin DC, Cobb MM, Eum KS, Safina NP, Grote L, Farrow EG, Miller N, Soden S, Kingsmore SF, Trimmer JS, Saunders CJ, Sack JT. A novel epileptic encephalopathy mutation in KCNB1 disrupts Kv2.1 ion selectivity, expression, and localization. ACTA ACUST UNITED AC 2016; 146:399-410. [PMID: 26503721 PMCID: PMC4621747 DOI: 10.1085/jgp.201511444] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A missense mutation in the pore-forming α subunit of a delayed rectifier Kv channel is associated with epileptic encephalopathy, alters the cation selectivity of voltage-gated currents, and disrupts channel expression and localization. The epileptic encephalopathies are a group of highly heterogeneous genetic disorders. The majority of disease-causing mutations alter genes encoding voltage-gated ion channels, neurotransmitter receptors, or synaptic proteins. We have identified a novel de novo pathogenic K+ channel variant in an idiopathic epileptic encephalopathy family. Here, we report the effects of this mutation on channel function and heterologous expression in cell lines. We present a case report of infantile epileptic encephalopathy in a young girl, and trio-exome sequencing to determine the genetic etiology of her disorder. The patient was heterozygous for a de novo missense variant in the coding region of the KCNB1 gene, c.1133T>C. The variant encodes a V378A mutation in the α subunit of the Kv2.1 voltage-gated K+ channel, which is expressed at high levels in central neurons and is an important regulator of neuronal excitability. We found that expression of the V378A variant results in voltage-activated currents that are sensitive to the selective Kv2 channel blocker guangxitoxin-1E. These voltage-activated Kv2.1 V378A currents were nonselective among monovalent cations. Striking cell background–dependent differences in expression and subcellular localization of the V378A mutation were observed in heterologous cells. Further, coexpression of V378A subunits and wild-type Kv2.1 subunits reciprocally affects their respective trafficking characteristics. A recent study reported epileptic encephalopathy-linked missense variants that render Kv2.1 a tonically activated, nonselective cation channel that is not voltage activated. Our findings strengthen the correlation between mutations that result in loss of Kv2.1 ion selectivity and development of epileptic encephalopathy. However, the strong voltage sensitivity of currents from the V378A mutant indicates that the loss of voltage-sensitive gating seen in all other reported disease mutants is not required for an epileptic encephalopathy phenotype. In addition to electrophysiological differences, we suggest that defects in expression and subcellular localization of Kv2.1 V378A channels could contribute to the pathophysiology of this KCNB1 variant.
Collapse
Affiliation(s)
- Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108
| | - David J Speca
- Department of Neurobiology, Physiology and Behavior, Department of Physiology and Membrane Biology, and Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616
| | - Daniel C Austin
- Department of Neurobiology, Physiology and Behavior, Department of Physiology and Membrane Biology, and Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616
| | - Melanie M Cobb
- Department of Neurobiology, Physiology and Behavior, Department of Physiology and Membrane Biology, and Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616
| | - Kenneth S Eum
- Department of Neurobiology, Physiology and Behavior, Department of Physiology and Membrane Biology, and Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616
| | - Nicole P Safina
- Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108
| | - Lauren Grote
- Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108
| | - Emily G Farrow
- Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108
| | - Neil Miller
- Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108
| | - Sarah Soden
- Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108 Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108 University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108
| | - Stephen F Kingsmore
- Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108 Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108 Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108 University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, Department of Physiology and Membrane Biology, and Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616 Department of Neurobiology, Physiology and Behavior, Department of Physiology and Membrane Biology, and Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616
| | - Carol J Saunders
- Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108 Center for Pediatric Genomic Medicine, Department of Pathology and Laboratory Medicine, and Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108 University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108
| | - Jon T Sack
- Department of Neurobiology, Physiology and Behavior, Department of Physiology and Membrane Biology, and Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616 Department of Neurobiology, Physiology and Behavior, Department of Physiology and Membrane Biology, and Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616
| |
Collapse
|
50
|
Altered Kv2.1 functioning promotes increased excitability in hippocampal neurons of an Alzheimer's disease mouse model. Cell Death Dis 2016; 7:e2100. [PMID: 26890139 PMCID: PMC5399189 DOI: 10.1038/cddis.2016.18] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/28/2015] [Accepted: 01/03/2016] [Indexed: 01/02/2023]
Abstract
Altered neuronal excitability is emerging as an important feature in Alzheimer's disease (AD). Kv2.1 potassium channels are important modulators of neuronal excitability and synaptic activity. We investigated Kv2.1 currents and its relation to the intrinsic synaptic activity of hippocampal neurons from 3xTg-AD (triple transgenic mouse model of Alzheimer's disease) mice, a widely employed preclinical AD model. Synaptic activity was also investigated by analyzing spontaneous [Ca2+]i spikes. Compared with wild-type (Non-Tg (non-transgenic mouse model)) cultures, 3xTg-AD neurons showed enhanced spike frequency and decreased intensity. Compared with Non-Tg cultures, 3xTg-AD hippocampal neurons revealed reduced Kv2.1-dependent Ik current densities as well as normalized conductances. 3xTg-AD cultures also exhibited an overall decrease in the number of functional Kv2.1 channels. Immunofluorescence assay revealed an increase in Kv2.1 channel oligomerization, a condition associated with blockade of channel function. In Non-Tg neurons, pharmacological blockade of Kv2.1 channels reproduced the altered pattern found in the 3xTg-AD cultures. Moreover, compared with untreated sister cultures, pharmacological inhibition of Kv2.1 in 3xTg-AD neurons did not produce any significant modification in Ik current densities. Reactive oxygen species (ROS) promote Kv2.1 oligomerization, thereby acting as negative modulator of the channel activity. Glutamate receptor activation produced higher ROS levels in hippocampal 3xTg-AD cultures compared with Non-Tg neurons. Antioxidant treatment with N-Acetyl-Cysteine was found to rescue Kv2.1-dependent currents and decreased spontaneous hyperexcitability in 3xTg-AD neurons. Analogous results regarding spontaneous synaptic activity were observed in neuronal cultures treated with the antioxidant 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). Our study indicates that AD-related mutations may promote enhanced ROS generation, oxidative-dependent oligomerization, and loss of function of Kv2.1 channels. These processes can be part on the increased neuronal excitability of these neurons. These steps may set a deleterious vicious circle that eventually helps to promote excitotoxic damage found in the AD brain.
Collapse
|