1
|
Kelu JJ, Hughes SM. Muscle peripheral circadian clock drives nocturnal protein degradation via raised Ror/Rev-erb balance and prevents premature sarcopenia. Proc Natl Acad Sci U S A 2025; 122:e2422446122. [PMID: 40324095 PMCID: PMC12088385 DOI: 10.1073/pnas.2422446122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/04/2025] [Indexed: 05/07/2025] Open
Abstract
How central and peripheral circadian clocks regulate protein metabolism and affect tissue mass homeostasis has been unclear. Circadian shifts in the balance between anabolism and catabolism control muscle growth rate in young zebrafish independent of behavioral cycles. Here, we show that the ubiquitin-proteasome system (UPS) and autophagy, which mediate muscle protein degradation, are each upregulated at night under the control of the muscle peripheral clock. Perturbation of the muscle transcriptional molecular clock disrupts nocturnal proteolysis, increases muscle growth measured over 12 h, and compromises muscle function. Mechanistically, the shifting circadian balance of Ror and Rev-erb regulates nocturnal UPS, autophagy, and muscle growth through altered TORC1 activity. Although environmental zeitgebers initially mitigate defects, lifelong muscle clock inhibition reduces muscle size and growth rate, accelerating aging-related loss of muscle mass and function. Circadian misalignment such as shift work, sleep deprivation, or dementia may thus unsettle muscle proteostasis, contributing to muscle wasting and sarcopenia.
Collapse
Affiliation(s)
- Jeffrey J. Kelu
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King’s College London, LondonSE1 1UL, United Kingdom
| | - Simon M. Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King’s College London, LondonSE1 1UL, United Kingdom
| |
Collapse
|
2
|
Moldovean-Cioroianu NS. Reviewing the Structure-Function Paradigm in Polyglutamine Disorders: A Synergistic Perspective on Theoretical and Experimental Approaches. Int J Mol Sci 2024; 25:6789. [PMID: 38928495 PMCID: PMC11204371 DOI: 10.3390/ijms25126789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Polyglutamine (polyQ) disorders are a group of neurodegenerative diseases characterized by the excessive expansion of CAG (cytosine, adenine, guanine) repeats within host proteins. The quest to unravel the complex diseases mechanism has led researchers to adopt both theoretical and experimental methods, each offering unique insights into the underlying pathogenesis. This review emphasizes the significance of combining multiple approaches in the study of polyQ disorders, focusing on the structure-function correlations and the relevance of polyQ-related protein dynamics in neurodegeneration. By integrating computational/theoretical predictions with experimental observations, one can establish robust structure-function correlations, aiding in the identification of key molecular targets for therapeutic interventions. PolyQ proteins' dynamics, influenced by their length and interactions with other molecular partners, play a pivotal role in the polyQ-related pathogenic cascade. Moreover, conformational dynamics of polyQ proteins can trigger aggregation, leading to toxic assembles that hinder proper cellular homeostasis. Understanding these intricacies offers new avenues for therapeutic strategies by fine-tuning polyQ kinetics, in order to prevent and control disease progression. Last but not least, this review highlights the importance of integrating multidisciplinary efforts to advancing research in this field, bringing us closer to the ultimate goal of finding effective treatments against polyQ disorders.
Collapse
Affiliation(s)
- Nastasia Sanda Moldovean-Cioroianu
- Institute of Materials Science, Bioinspired Materials and Biosensor Technologies, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany;
- Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Zhang J, Ling L, Xiang L, Li W, Bao P, Yue W. Clinical features of neuronal intranuclear inclusion disease with seizures: a systematic literature review. Front Neurol 2024; 15:1387399. [PMID: 38707999 PMCID: PMC11069311 DOI: 10.3389/fneur.2024.1387399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Background Infant, junior, and adult patients with neuronal intranuclear inclusion disease (NIID) present with various types of seizures. We aimed to conduct a systematic literature review on the clinical characteristics of NIID with seizures to provide novel insight for early diagnosis and treatment and to improve prognosis of these patients. Methods We used keywords to screen articles related to NIID and seizures, and data concerning the clinical characteristics of patients, including demographic features, disease characteristics of the seizures, treatment responses, imaging examinations, and other auxiliary examination results were extracted. Results The included studies comprised 21 patients with NIID with seizures. The most common clinical phenotypes were cognitive impairment (76.20%) and impaired consciousness (57.14%), and generalized onset motor seizures (46.15%) represented the most common type. Compared with infantile and juvenile cases, the use of antiepileptic drugs in adults led to significant seizure control and symptom improvement, in addition to providing a better prognosis. The number of GGC sequence repeats in the NOTCH2NLC gene in six NIID patients with seizures who underwent genetic testing ranged 72-134. Conclusion The most common clinical phenotypes in patients with NIID with seizures were cognitive impairment and consciousness disorders. Patients with NIID presented with various types of seizures, with the most common being generalized onset motor seizures. Adult patients had a better prognosis and were relatively stable. The early diagnosis of NIID with seizures is of great significance for treatment and to improve prognosis.
Collapse
Affiliation(s)
- Jinwei Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ling Ling
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Lei Xiang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Wenxia Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Pengnan Bao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Wei Yue
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
4
|
Ryan L, Rubinsztein DC. The autophagy of stress granules. FEBS Lett 2024; 598:59-72. [PMID: 38101818 DOI: 10.1002/1873-3468.14787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/20/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023]
Abstract
Our understanding of stress granule (SG) biology has deepened considerably in recent years, and with this, increased understanding of links has been made between SGs and numerous neurodegenerative diseases. One of the proposed mechanisms by which SGs and any associated protein aggregates may become pathological is based upon defects in their autophagic clearance, and so the precise processes governing the degradation of SGs are important to understand. Mutations and disease-associated variants implicated in amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease and frontotemporal lobar dementia compromise autophagy, whilst autophagy-inhibiting drugs or knockdown of essential autophagy proteins result in the persistence of SGs. In this review, we will consider the current knowledge regarding the autophagy of SG.
Collapse
Affiliation(s)
- Laura Ryan
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| |
Collapse
|
5
|
Bonavita R, Scerra G, Di Martino R, Nuzzo S, Polishchuk E, Di Gennaro M, Williams SV, Caporaso MG, Caiazza C, Polishchuk R, D’Agostino M, Fleming A, Renna M. The HSPB1-p62/SQSTM1 functional complex regulates the unconventional secretion and transcellular spreading of the HD-associated mutant huntingtin protein. Hum Mol Genet 2023; 32:2269-2291. [PMID: 36971475 PMCID: PMC10321397 DOI: 10.1093/hmg/ddad047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 07/20/2023] Open
Abstract
Conformational diseases, such as Alzheimer, Parkinson and Huntington diseases, are part of a common class of neurological disorders characterized by the aggregation and progressive accumulation of proteins bearing aberrant conformations. Huntington disease (HD) has autosomal dominant inheritance and is caused by mutations leading to an abnormal expansion in the polyglutamine (polyQ) tract of the huntingtin (HTT) protein, leading to the formation of HTT inclusion bodies in neurons of affected patients. Interestingly, recent experimental evidence is challenging the conventional view by which the disease pathogenesis is solely a consequence of the intracellular accumulation of mutant protein aggregates. These studies reveal that transcellular transfer of mutated huntingtin protein is able to seed oligomers involving even the wild-type (WT) forms of the protein. To date, there is still no successful strategy to treat HD. Here, we describe a novel functional role for the HSPB1-p62/SQSTM1 complex, which acts as a cargo loading platform, allowing the unconventional secretion of mutant HTT by extracellular vesicles. HSPB1 interacts preferentially with polyQ-expanded HTT compared with the WT protein and affects its aggregation. Furthermore, HSPB1 levels correlate with the rate of mutant HTT secretion, which is controlled by the activity of the PI3K/AKT/mTOR signalling pathway. Finally, we show that these HTT-containing vesicular structures are biologically active and able to be internalized by recipient cells, therefore providing an additional mechanism to explain the prion-like spreading properties of mutant HTT. These findings might also have implications for the turn-over of other disease-associated, aggregation-prone proteins.
Collapse
Affiliation(s)
| | | | - R Di Martino
- Institute for Endocrinology and Experimental Oncology “G. Salvatore,” National Research Council, 80131 Naples, Italy
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Naples, Italy
| | - S Nuzzo
- IRCCS SYNLAB SDN, 80143 Naples, Italy
| | - E Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - M Di Gennaro
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy
| | - S V Williams
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - M G Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy
| | - C Caiazza
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy
| | - R Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - M D’Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy
| | - A Fleming
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - M Renna
- To whom correspondence should be addressed at: Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, Via S. Pansini, 5, Building 19, Corpi Bassi Sud (I floor), 80131 Naples, Italy. Tel: +39 081/7463623, Fax: +39 081-7463205;
| |
Collapse
|
6
|
Sengupta M, Pluciennik A, Merry DE. The role of ubiquitination in spinal and bulbar muscular atrophy. Front Mol Neurosci 2022; 15:1020143. [PMID: 36277484 PMCID: PMC9583669 DOI: 10.3389/fnmol.2022.1020143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative and neuromuscular genetic disease caused by the expansion of a polyglutamine-encoding CAG tract in the androgen receptor (AR) gene. The AR is an important transcriptional regulator of the nuclear hormone receptor superfamily; its levels are regulated in many ways including by ubiquitin-dependent degradation. Ubiquitination is a post-translational modification (PTM) which plays a key role in both AR transcriptional activity and its degradation. Moreover, the ubiquitin-proteasome system (UPS) is a fundamental component of cellular functioning and has been implicated in diseases of protein misfolding and aggregation, including polyglutamine (polyQ) repeat expansion diseases such as Huntington's disease and SBMA. In this review, we discuss the details of the UPS system, its functions and regulation, and the role of AR ubiquitination and UPS components in SBMA. We also discuss aspects of the UPS that may be manipulated for therapeutic effect in SBMA.
Collapse
Affiliation(s)
| | | | - Diane E. Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Yin P, Bai D, Deng F, Zhang C, Jia Q, Zhu L, Chen L, Li B, Guo X, Ye J, Tan Z, Wang L, Li S, Li XJ. SQSTM1-mediated clearance of cytoplasmic mutant TARDBP/TDP-43 in the monkey brain. Autophagy 2022; 18:1955-1968. [PMID: 34936539 PMCID: PMC9466617 DOI: 10.1080/15548627.2021.2013653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
The cytoplasmic accumulation and aggregates of TARDBP/TDP-43 (TAR DNA binding protein) are a pathological hallmark in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We previously reported that the primate specific cleavage of TARDBP accounts for its cytoplasmic mislocalization in the primate brains, prompting us to further investigate how the cytoplasmic TARDBP mediates neuropathology. Here we reported that cytoplasmic mutant TARDBP reduced SQSTM1 expression selectively in the monkey brain, when compared with the mouse brain, by inducing SQSTM1 mRNA instability via its binding to the unique 3'UTR sequence (GU/UG)n of the primate SQSTM1 transcript. Overexpression of SQSTM1 could diminish the cytoplasmic C-terminal TARDBP accumulation in the monkey brain by augmenting macroautophagy/autophagy activity. Our findings provide additional clues for the pathogenesis of cytoplasmic TARDBP and a potential therapy for mutant TARDBP-mediated neuropathology.
Collapse
Affiliation(s)
- Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Dazhang Bai
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Fuyu Deng
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Chen Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Qingqing Jia
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Longhong Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Bang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Xiangyu Guo
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Jianmeng Ye
- Guangdong Landao Biotechnology Co. Ltd, Guangzhou, China
| | - Zhiqiang Tan
- Department of Medical Imaging, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lu Wang
- Department of Medical Imaging, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Marcelo A, Koppenol R, de Almeida LP, Matos CA, Nóbrega C. Stress granules, RNA-binding proteins and polyglutamine diseases: too much aggregation? Cell Death Dis 2021; 12:592. [PMID: 34103467 PMCID: PMC8187637 DOI: 10.1038/s41419-021-03873-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023]
Abstract
Stress granules (SGs) are membraneless cell compartments formed in response to different stress stimuli, wherein translation factors, mRNAs, RNA-binding proteins (RBPs) and other proteins coalesce together. SGs assembly is crucial for cell survival, since SGs are implicated in the regulation of translation, mRNA storage and stabilization and cell signalling, during stress. One defining feature of SGs is their dynamism, as they are quickly assembled upon stress and then rapidly dispersed after the stress source is no longer present. Recently, SGs dynamics, their components and their functions have begun to be studied in the context of human diseases. Interestingly, the regulated protein self-assembly that mediates SG formation contrasts with the pathological protein aggregation that is a feature of several neurodegenerative diseases. In particular, aberrant protein coalescence is a key feature of polyglutamine (PolyQ) diseases, a group of nine disorders that are caused by an abnormal expansion of PolyQ tract-bearing proteins, which increases the propensity of those proteins to aggregate. Available data concerning the abnormal properties of the mutant PolyQ disease-causing proteins and their involvement in stress response dysregulation strongly suggests an important role for SGs in the pathogenesis of PolyQ disorders. This review aims at discussing the evidence supporting the existence of a link between SGs functionality and PolyQ disorders, by focusing on the biology of SGs and on the way it can be altered in a PolyQ disease context.
Collapse
Affiliation(s)
- Adriana Marcelo
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- PhD Program in Biomedial Sciences, Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Rebekah Koppenol
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- PhD Program in Biomedial Sciences, Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Carlos A Matos
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal.
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal.
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
| |
Collapse
|
9
|
Inhibition of GSK-3 ameliorates the pathogenesis of Huntington's disease. Neurobiol Dis 2021; 154:105336. [PMID: 33753290 DOI: 10.1016/j.nbd.2021.105336] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
In Huntington's disease (HD), the mutant huntingtin (mHtt) accumulates as toxic aggregates in the striatum tissue, with deleterious effects on motor-coordination and cognitive functions. Reducing the levels of mHtt is therefore a promising therapeutic strategy. We have previously reported that GSK-3 is a negative regulator of the autophagy/lysosome pathway, which is responsible for intracellular degradation, and is critically important for maintaining neuronal vitality. Thus, we hypothesized that inhibition of GSK-3 may trigger mHtt clearance thereby reducing mHtt cytotoxicity and improving HD symptoms. Here, we demonstrate that depletion or suppression of autophagy results in a massive accumulation of mHtt aggregates. Accordingly, mHtt aggregates were localized in lysosomes, but, mostly mislocalized from lysosomes in the absence of functional autophagy. Overexpression of GSK-3, particularly the α isozyme, increased the number of mHtt aggregates, while silencing GSK-3α/β, or treatment with a selective GSK-3 inhibitor, L807mts, previously described by us, reduced the amounts of mHtt aggregates. This effect was mediated by increased autophagic and lysosomal activity. Treating R6/2 mouse model of HD with L807mts, reduced striatal mHtt aggregates and elevated autophagic and lysosomal markers. The L807mts treatment also reduced hyperglycemia and improved motor-coordination functions in these mice. In addition, L807mts restored the expression levels of Sirt1, a critical neuroprotective factor in the HD striatum, along with its targets BDNF, DRPP-32, and active Akt, all provide neurotrophic/pro-survival support and typically decline in the HD brain. Our results provide strong evidence for a role for GSK-3 in the regulation of mHtt dynamics, and demonstrate the benefits of GSK-3 inhibition in reducing mHtt toxicity, providing neuroprotective support, and improving HD symptoms.
Collapse
|
10
|
Nozaki M, Otomo A, Mitsui S, Ono S, Shirakawa R, Chen Y, Hama Y, Sato K, Chen X, Suzuki T, Shang HF, Hadano S. SQSTM1 L341V variant that is linked to sporadic ALS exhibits impaired association with MAP1LC3 in cultured cells. eNeurologicalSci 2020; 22:100301. [PMID: 33319079 PMCID: PMC7723791 DOI: 10.1016/j.ensci.2020.100301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/19/2020] [Accepted: 11/27/2020] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are genetically, pathologically and clinically-related progressive neurodegenerative diseases. Thus far, several SQSTM1 variations have been identified in patients with ALS and FTD. However, it remains unclear how SQSTM1 variations lead to neurodegeneration. To address this issue, we investigated the effects of ectopic expression of SQSTM1 variants, which were originally identified in Japanese and Chinese sporadic ALS patients, on the cellular viability, their intracellular distributions and the autophagic activity in cultured cells. Expression of SQSTM1 variants in PC12 cells exerted no observable effects on viabilities under both normal and oxidative-stressed conditions. Further, although expression of SQSTM1 variants in PC12 cells and Sqstm1-deficient mouse embryonic fibroblasts resulted in the formation of numerous granular SQSTM1-positive structures, called SQSTM1-bodies, their intracellular distributions were indistinguishable from those of wild-type SQSTM1. Nonetheless, quantitative colocalization analysis of SQSTM1-bodies with MAP1LC3 demonstrated that among ALS-linked SQSTM1 variants, L341V variant showed the significantly lower level of colocalization. However, there were no consistent effects on the autophagic activities among the variants examined. These results suggest that although some ALS-linked SQSTM1 variations have a discernible effect on the intracellular distribution of SQSTM1-bodies, the impacts of other variations on the cellular homeostasis are rather limited at least under transiently-expressed conditions. Ectopic expression of ALS-linked SQSTM1 variants does not affect cell viability. Ectopic expression of SQSTM1 in cells results in formation of SQSTM1-body. Ectopic expression of SQSTM1 in cells has marginal impacts on the autophagic activity. SQSTM1L341V variant exhibits impaired association with LC3 in cultured cells.
Collapse
Key Words
- ALS, amyotrophic lateral sclerosis
- Amyotrophic lateral sclerosis (ALS)
- Autophagy
- CCCP, carbonyl cyanide 3-chlorophenylhydrazone
- CI, complete protease inhibitor
- CQ, chloroquine
- DAPI, 4′,6-diamidino-2-phenylindole dihydrochloride
- DMEM, Dulbecco's Modified Eagle's medium
- DTT, dithiothreitol
- EBSS, Earle's Balanced Salt Solution
- Frontotemporal dementia (FTD)
- GST, glutathione S-transferase
- HA, hemagglutinin
- HRP, horseradish peroxidase
- IPTG, isopropyl thio-beta-D-galactoside
- MAP1LC3/LC3
- MEF, mouse embryonic fibroblast
- MND, motor neuron disease
- NGS, normal goat serum
- PAGE, polyacrylamide gel electrophoresis
- PBS, phosphate-buffered saline
- PFA, paraformaldehyde
- PVDF, polyvinylidene difluoride
- RT, room temperature
- SBMA, spinal and bulbar muscular atrophy
- SDS, sodium dodecyl sulfate
- SQSTM1
- SQSTM1/p62-body
- WT, wild-type
Collapse
Affiliation(s)
- Masahisa Nozaki
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
- Department of Anesthesiology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Asako Otomo
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Shun Mitsui
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Suzuka Ono
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Ryohei Shirakawa
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - YongPing Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yutaro Hama
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Kai Sato
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - XuePing Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Toshiyasu Suzuki
- Department of Anesthesiology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shinji Hadano
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
- Research Center for Brain and Nervous Diseases, Tokai University Graduate School of Medicine, Isehara, Kanagawa 259-1193, Japan
- Corresponding author at: Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan.
| |
Collapse
|
11
|
Le Guerroué F, Youle RJ. Ubiquitin signaling in neurodegenerative diseases: an autophagy and proteasome perspective. Cell Death Differ 2020; 28:439-454. [PMID: 33208890 DOI: 10.1038/s41418-020-00667-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin signaling is a sequence of events driving the fate of a protein based on the type of ubiquitin modifications attached. In the case of neurodegenerative diseases, ubiquitin signaling is mainly associated with degradation signals to process aberrant proteins, which form aggregates often fatal for the brain cells. This signaling is often perturbed by the aggregates themselves and leads to the accumulation of toxic aggregates and inclusion bodies that are deleterious due to a toxic gain of function. Decrease in quality control pathways is often seen with age and is a critical onset for the development of neurodegeneration. Many aggregates are now thought to propagate in a prion-like manner, where mutated proteins acting like seeds are transitioning from cell to cell, converting normal proteins to toxic aggregates. Modulation of ubiquitin signaling, by stimulating ubiquitin ligase activation, is a potential therapeutic strategy to treat patients with neurodegeneration diseases.
Collapse
Affiliation(s)
- François Le Guerroué
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard J Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Cristofani R, Crippa V, Cicardi ME, Tedesco B, Ferrari V, Chierichetti M, Casarotto E, Piccolella M, Messi E, Galbiati M, Rusmini P, Poletti A. A Crucial Role for the Protein Quality Control System in Motor Neuron Diseases. Front Aging Neurosci 2020; 12:191. [PMID: 32792938 PMCID: PMC7385251 DOI: 10.3389/fnagi.2020.00191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) are fatal diseases characterized by loss of motor neurons in the brain cortex, in the bulbar region, and/or in the anterior horns of the spinal cord. While generally sporadic, inherited forms linked to mutant genes encoding altered RNA/protein products have also been described. Several different mechanisms have been found altered or dysfunctional in MNDs, like the protein quality control (PQC) system. In this review, we will discuss how the PQC system is affected in two MNDs—spinal and bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis (ALS)—and how this affects the clearance of aberrantly folded proteins, which accumulate in motor neurons, inducing dysfunctions and their death. In addition, we will discuss how the PQC system can be targeted to restore proper cell function, enhancing the survival of affected cells in MNDs.
Collapse
Affiliation(s)
- Riccardo Cristofani
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Valeria Crippa
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Maria Elena Cicardi
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy.,Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Barbara Tedesco
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Marta Chierichetti
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Elena Casarotto
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Elio Messi
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Paola Rusmini
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Angelo Poletti
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy.,Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
MBNL1 reverses the proliferation defect of skeletal muscle satellite cells in myotonic dystrophy type 1 by inhibiting autophagy via the mTOR pathway. Cell Death Dis 2020; 11:545. [PMID: 32683410 PMCID: PMC7368861 DOI: 10.1038/s41419-020-02756-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
Skeletal muscle atrophy is one of the clinical symptoms of myotonic dystrophy type 1 (DM1). A decline in skeletal muscle regeneration is an important contributor to muscle atrophy. Skeletal muscle satellite cells (SSCs) drive skeletal muscle regeneration. Increased autophagy can reduce the proliferative capacity of SSCs, which plays an important role in the early regeneration of damaged skeletal muscle in DM1. Discovering new ways to restore SSC proliferation may aid in the identification of new therapeutic targets for the treatment of skeletal muscle atrophy in DM1. In the pathogenesis of DM1, muscleblind-like 1 (MBNL1) protein is generally considered to form nuclear RNA foci and disturb the RNA-splicing function. However, the role of MBNL1 in SSC proliferation in DM1 has not been reported. In this study, we obtained SSCs differentiated from normal DM1-04-induced pluripotent stem cells (iPSCs), DM1-03 iPSCs, and DM1-13-3 iPSCs edited by transcription activator-like (TAL) effector nucleases (TALENs) targeting CTG repeats, and primary SSCs to study the pathogenesis of DM1. DM1 SSC lines and primary SSCs showed decreased MBNL1 expression and elevated autophagy levels. However, DM1 SSCs edited by TALENs showed increased cytoplasmic distribution of MBNL1, reduced levels of autophagy, increased levels of phosphorylated mammalian target of rapamycin (mTOR), and improved proliferation rates. In addition, we confirmed that after MBNL1 overexpression, the proliferative capability of DM1 SSCs and the level of phosphorylated mTOR were enhanced, while the autophagy levels were decreased. Our data also demonstrated that the proliferative capability of DM1 SSCs was enhanced after autophagy was inhibited by overexpressing mTOR. Finally, treatment with rapamycin (an mTOR inhibitor) was shown to abolish the increased proliferation capability of DM1 SSCs due to MBNL1 overexpression. Taken together, these data suggest that MBNL1 reverses the proliferation defect of SSCs in DM1 by inhibiting autophagy via the mTOR pathway.
Collapse
|
14
|
Autophagy in motor neuron diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:157-202. [PMID: 32620242 DOI: 10.1016/bs.pmbts.2020.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Motor neuron diseases (MNDs) are a wide group of neurodegenerative disorders characterized by the degeneration of a specific neuronal type located in the central nervous system, the motor neuron (MN). There are two main types of MNs, spinal and cortical MNs and depending on the type of MND, one or both types are affected. Cortical MNs innervate spinal MNs and these control a variety of cellular targets, being skeletal muscle their main one which is also affected in MNDs. A correct functionality of autophagy is necessary for the survival of all cellular types and it is particularly crucial for neurons, given their postmitotic and highly specialized nature. Numerous studies have identified alterations of autophagy activity in multiple MNDs. The scientific community has been particularly prolific in reporting the role that autophagy plays in the most common adult MND, amyotrophic lateral sclerosis, although many studies have started to identify physiological and pathological functions of this catabolic system in other MNDs, such as spinal muscular atrophy and spinal and bulbar muscular atrophy. The degradation of selective cargo by autophagy and how this process is altered upon the presence of MND-causing mutations is currently also a matter of intense investigation, particularly regarding the selective autophagic clearance of mitochondria. Thorough reviews on this field have been recently published. This chapter will cover the current knowledge on the functionality of autophagy and lysosomal homeostasis in the main MNDs and other autophagy-related topics in the MND field that have risen special interest in the research community.
Collapse
|
15
|
Pytte J, Anderton RS, Flynn LL, Theunissen F, Jiang L, Pitout I, James I, Mastaglia FL, Saunders AM, Bedlack R, Siddique T, Siddique N, Akkari PA. Association of a structural variant within the SQSTM1 gene with amyotrophic lateral sclerosis. Neurol Genet 2020; 6:e406. [PMID: 32185242 PMCID: PMC7061286 DOI: 10.1212/nxg.0000000000000406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/23/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE As structural variations may underpin susceptibility to complex neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), the objective of this study was to investigate a structural variant (SV) within sequestosome 1 (SQSTM1). METHODS A candidate insertion/deletion variant within intron 5 of the SQSTM1 gene was identified using a previously established SV evaluation algorithm and chosen according to its subsequent theoretical effect on gene expression. The variant was systematically assessed through PCR, polyacrylamide gel fractionation, Sanger sequencing, and reverse transcriptase PCR. RESULTS A reliable and robust assay confirmed the polymorphic nature of this variant and that the variant may influence SQSTM1 transcript levels. In a North American cohort of patients with familial ALS (fALS) and sporadic ALS (sALS) (n = 403) and age-matched healthy controls (n = 562), we subsequently showed that the SQSTM1 variant is associated with fALS (p = 0.0036), particularly in familial superoxide dismutase 1 mutation positive patients (p = 0.0005), but not with patients with sALS (p = 0.97). CONCLUSIONS This disease association highlights the importance and implications of further investigation into SVs that may provide new targets for cohort stratification and therapeutic development.
Collapse
Affiliation(s)
- Julia Pytte
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Ryan S Anderton
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Loren L Flynn
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Frances Theunissen
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Leanne Jiang
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Ianthe Pitout
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Ian James
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Frank L Mastaglia
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Ann M Saunders
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Richard Bedlack
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Teepu Siddique
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Nailah Siddique
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - P Anthony Akkari
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| |
Collapse
|
16
|
Foster AD, Rea SL. The role of sequestosome 1/p62 protein in amyotrophic lateral sclerosis and frontotemporal dementia pathogenesis. Neural Regen Res 2020; 15:2186-2194. [PMID: 32594029 PMCID: PMC7749485 DOI: 10.4103/1673-5374.284977] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal lobar degeneration are multifaceted diseases with genotypic, pathological and clinical overlap. One such overlap is the presence of SQSTM1/p62 mutations. While traditionally mutations manifesting in the ubiquitin-associated domain of p62 were associated with Paget’s disease of bone, mutations affecting all functional domains of p62 have now been identified in amyotrophic lateral sclerosis and frontotemporal lobar degeneration patients. p62 is a multifunctional protein that facilitates protein degradation through autophagy and the ubiquitin-proteasome system, and also regulates cell survival via the Nrf2 antioxidant response pathway, the nuclear factor-kappa B signaling pathway and apoptosis. Dysfunction in these signaling and protein degradation pathways have been observed in amyotrophic lateral sclerosis and frontotemporal lobar degeneration, and mutations that affect the role of p62 in these pathways may contribute to disease pathogenesis. In this review we discuss the role of p62 in these pathways, the effects of p62 mutations and the effect of mutations in the p62 modulator TANK-binding kinase 1, in relation to amyotrophic lateral sclerosis-frontotemporal lobar degeneration pathogenesis.
Collapse
Affiliation(s)
- Adriana Delice Foster
- Harry Perkins Institute of Medical Research, University of Western Australia; Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Western Australia, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia
| | - Sarah Lyn Rea
- Harry Perkins Institute of Medical Research, University of Western Australia; Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Western Australia, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
17
|
Kumsta C, Chang JT, Lee R, Tan EP, Yang Y, Loureiro R, Choy EH, Lim SHY, Saez I, Springhorn A, Hoppe T, Vilchez D, Hansen M. The autophagy receptor p62/SQST-1 promotes proteostasis and longevity in C. elegans by inducing autophagy. Nat Commun 2019; 10:5648. [PMID: 31827090 PMCID: PMC6906454 DOI: 10.1038/s41467-019-13540-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy can degrade cargos with the help of selective autophagy receptors such as p62/SQSTM1, which facilitates the degradation of ubiquitinated cargo. While the process of autophagy has been linked to aging, the impact of selective autophagy in lifespan regulation remains unclear. We have recently shown in Caenorhabditis elegans that transcript levels of sqst-1/p62 increase upon a hormetic heat shock, suggesting a role of SQST-1/p62 in stress response and aging. Here, we find that sqst-1/p62 is required for hormetic benefits of heat shock, including longevity, improved neuronal proteostasis, and autophagy induction. Furthermore, overexpression of SQST-1/p62 is sufficient to induce autophagy in distinct tissues, extend lifespan, and improve the fitness of mutants with defects in proteostasis in an autophagy-dependent manner. Collectively, these findings illustrate that increased expression of a selective autophagy receptor is sufficient to induce autophagy, enhance proteostasis and extend longevity, and demonstrate an important role for sqst-1/p62 in proteotoxic stress responses. While the cellular recycling process autophagy has been linked to aging, the impact of selective autophagy on lifespan remains unclear. Here Kumsta et al. show that the autophagy receptor p62/SQSTM1 is required for hormetic benefits and p62/SQSTM1 overexpression is sufficient to extend C. elegans lifespan and improve proteostasis.
Collapse
Affiliation(s)
- Caroline Kumsta
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Jessica T Chang
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Reina Lee
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ee Phie Tan
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yongzhi Yang
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Rute Loureiro
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Elizabeth H Choy
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Shaun H Y Lim
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Isabel Saez
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Alexander Springhorn
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - David Vilchez
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
18
|
Wang Y, Su G, Huang Z, Fan J, Wang Y. Cepharanthine hydrochloride degrades polyglutamine-expanded androgen receptor proteins through an autophagy pathway in neuron cells. Eur J Pharmacol 2019; 861:172534. [DOI: 10.1016/j.ejphar.2019.172534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/01/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
|
19
|
Xu Y, Zhang S, Zheng H. The cargo receptor SQSTM1 ameliorates neurofibrillary tangle pathology and spreading through selective targeting of pathological MAPT (microtubule associated protein tau). Autophagy 2018; 15:583-598. [PMID: 30290707 PMCID: PMC6526869 DOI: 10.1080/15548627.2018.1532258] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that misfolded MAPT (microtubule associated protein tau), the main component of neurofibrillary tangles in tauopathies, is subject to degradation by the autophagy-lysosomal pathway. Selective autophagy is a subtype of macroautophagy that requires cargo receptors, such as OPTN (optineurin) or SQSTM1, to recognize specific targets for their sequestration within the autophagosome and their eventual degradation by the lysosome, although their roles in targeting distinct MAPT species have not been fully investigated. Using cargo receptor knockout cell lines and a seeding-based cellular assay in which neurofibrillary tangle pathology can be modeled in vitro, we reveal that while OPTN primarily targets soluble MAPT expressed in physiological conditions, SQSTM1 predominantly degrades insoluble but not soluble mutant MAPT. Endogenous SQSTM1 colocalizes with misfolded and aggregated MAPT species in vitro and in vivo, and both this colocalization and its function in MAPT clearance require both the LC3-interacting region (LIR) motif and also the PB1 self-polymerization domain of SQSTM1. Further, pathogenic MAPT accumulation reduces basal macroautophagy/autophagy in vitro and is associated with a compensatory upregulation of the lysosomal pathway in vivo. Finally, increased expression of SQSTM1 in MAPT transgenic mouse brains ameliorates MAPT pathology and prion-like spreading. Our results uncover distinct properties of selective autophagy receptors in targeting different MAPT species, implicate compromised autophagy as a potential underlying factor in mutant MAPT deposition, and demonstrate a potent and specific role of SQSTM1 in targeted clearance of pathogenic MAPT, through which it blocks neurofibrillary tangle accumulation and pathological spreading. Abbreviations: AAV: adeno-associated virus; AD: Alzheimer disease; ALP: autophagy-lysosomal pathway; ALS: amyotrophic lateral sclerosis; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; FTD: frontotemporal dementias; HD: Huntington disease; HTT: huntingtin; LIR: LC3-interacting region; NBR1: autophagy cargo receptor; NFE2L2/Nrf2: nuclear factor, erythroid derived 2, like 2; NFTs: neurofibrillary tangles; MAPT: microtubule associated protein tau; OPTN: optineurin; p-MAPT: hyperphosphorylated MAPT; PFA: paraformaldehyde; TARDBP/TDP-43: TAR DNA binding protein; TAX1BP1 Tax1: binding protein 1; ThioS: thioflavin-S; UBA: ubiquitin-associated.
Collapse
Affiliation(s)
- Yin Xu
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sheng Zhang
- The Brown Foundation Institute of Molecular Medicine, Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hui Zheng
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA,CONTACT Hui Zheng Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Abstract
Polyglutamine diseases are hereditary degenerative disorders of the nervous system that have remained, to this date, untreatable. Promisingly, investigation into their molecular etiology and the development of increasingly perfected tools have contributed to the design of novel strategies with therapeutic potential. Encouraging studies have explored gene therapy as a means to counteract cell demise and loss in this context. The current chapter addresses the two main focuses of research in the area: the characteristics of the systems used to deliver nucleic acids to cells and the molecular and cellular actions of the therapeutic agents. Vectors used in gene therapy have to satisfyingly reach the tissues and cell types of interest, while eliciting the lowest toxicity possible. Both viral and non-viral systems have been developed for the delivery of nucleic acids to the central nervous system, each with its respective advantages and shortcomings. Since each polyglutamine disease is caused by mutation of a single gene, many gene therapy strategies have tried to halt degeneration by silencing the corresponding protein products, usually recurring to RNA interference. The potential of small interfering RNAs, short hairpin RNAs and microRNAs has been investigated. Overexpression of protective genes has also been evaluated as a means of decreasing mutant protein toxicity and operate beneficial alterations. Recent gene editing tools promise yet other ways of interfering with the disease-causing genes, at the most upstream points possible. Results obtained in both cell and animal models encourage further delving into this type of therapeutic strategies and support the future use of gene therapy in the treatment of polyglutamine diseases.
Collapse
|
21
|
N-Acyldopamine induces aggresome formation without proteasome inhibition and enhances protein aggregation via p62/SQSTM1 expression. Sci Rep 2018; 8:9585. [PMID: 29941919 PMCID: PMC6018635 DOI: 10.1038/s41598-018-27872-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/11/2018] [Indexed: 12/22/2022] Open
Abstract
Accumulation of ubiquitinated protein aggregates is a common pathology associated with a number of neurodegenerative diseases and selective autophagy plays a critical role in their elimination. Although aging-related decreases in protein degradation properties may enhance protein aggregation, it remains unclear whether proteasome dysfunction is indispensable for ubiquitinated-protein aggregation in neurodegenerative diseases. Here, we show that N-oleoyl-dopamine and N-arachidonyl-dopamine, which are endogenous brain substances and belong to the N-acyldopamine (AcylDA) family, generate cellular inclusions through aggresome formation without proteasome inhibition. Although AcylDA itself does not inhibit proteasome activity in vitro, it activates the rearrangement of vimentin distribution to form a vimentin cage surrounding aggresomes and sequesters ubiquitinated proteins in aggresomes. The gene transcription of p62/SQSTM1 was significantly increased by AcylDAs, whereas the transcription of other ubiquitin-dependent autophagy receptors was unaffected. Genetic depletion of p62 resulted in the loss of ubiquitinated-protein sequestration in aggresomes, indicating that p62 is a critical component of aggresomes. Furthermore, AcylDAs accelerate the aggregation of mutant huntingtin exon 1 proteins. These results suggest that aggresome formation does not require proteasome dysfunction and AcylDA-induced aggresome formation may participate in forming cytoplasmic protein inclusions.
Collapse
|
22
|
Mitsui S, Otomo A, Nozaki M, Ono S, Sato K, Shirakawa R, Adachi H, Aoki M, Sobue G, Shang HF, Hadano S. Systemic overexpression of SQSTM1/p62 accelerates disease onset in a SOD1 H46R-expressing ALS mouse model. Mol Brain 2018; 11:30. [PMID: 29843805 PMCID: PMC5975400 DOI: 10.1186/s13041-018-0373-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/20/2018] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by a selective loss of upper and lower motor neurons. Recent studies have shown that mutations in SQSTM1 are linked to ALS. SQSTM1 encodes SQSTM1/p62 that regulates not only autophagy via the association with MAP1LC3/LC3 and ubiquitinated proteins but also the KEAP1-NFE2L2/Nrf2 anti-oxidative stress pathway by interacting with KEAP1. Previously, we have demonstrated that loss of SQSTM1 exacerbates disease phenotypes in a SOD1H46R-expressing ALS mouse model. To clarify the effects of SQSTM1 overexpression in this model, we generated SQSTM1 and SOD1 H46R double-transgenic (SQSTM1;SOD1 H46R ) mice. SQSTM1;SOD1 H46R mice exhibited earlier disease onset and shorter lifespan than did SOD1 H46R mice. Conversely, disease progression after the onset rather slightly but significantly slowed in SQSTM1;SOD1 H46R mice. However, there were observable differences neither in the number of Nissl positive neurons nor in the distribution of ubiquitin-positive and/or SQSTM1-positive aggregates between SOD1 H46R and SQSTM1;SOD1 H46R mice. It was noted that these protein aggregates were mainly observed in neuropil, and partly localized to astrocytes and/or microglia, but not to MAP2-positive neuronal cell bodies and dendrites at the end-stage of disease. Nonetheless, the biochemically-detectable insoluble SQSTM1 and poly-ubiquitinated proteins were significantly and progressively increased in the spinal cord of SQSTM1;SOD1 H46R mice compared to SOD1 H46R mice. These results suggest that overexpression of SQSTM1 in SOD1 H46R mice accelerates disease onset by compromising the protein degradation pathways.
Collapse
Affiliation(s)
- Shun Mitsui
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Asako Otomo
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan.,The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, 259-1193, Japan.,Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Masahisa Nozaki
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan.,Department of Anesthesiology, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Suzuka Ono
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Kai Sato
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Ryohei Shirakawa
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Fukuoka, 807-0804, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shinji Hadano
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan. .,The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, 259-1193, Japan. .,Research Center for Brain and Nervous Diseases, Tokai University Graduate School of Medicine, Kanagawa, Isehara, 259-1193, Japan.
| |
Collapse
|
23
|
X-Linked Spinal and Bulbar Muscular Atrophy: From Clinical Genetic Features and Molecular Pathology to Mechanisms Underlying Disease Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:103-133. [PMID: 29427100 DOI: 10.1007/978-3-319-71779-1_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal and Bulbar Muscular Atrophy (SBMA) is an inherited neuromuscular disorder caused by a CAG-polyglutamine (polyQ) repeat expansion in the androgen receptor (AR) gene. Unlike other polyQ diseases, where the function of the native causative protein is unknown, the biology of AR is well understood, and this knowledge has informed our understanding of how native AR function interfaces with polyQ-AR dysfunction. Furthermore, ligand-dependent activation of AR has been linked to SBMA disease pathogenesis, and has led to a thorough study of androgen-mediated effects on polyQ-AR stability, degradation, and post-translational modifications, as well as their roles in the disease process. Transcriptional dysregulation, proteostasis dysfunction, and mitochondrial abnormalities are central to polyQ-AR neurotoxicity, most likely via a 'change-of-function' mechanism. Intriguingly, recent work has demonstrated a principal role for skeletal muscle in SBMA disease pathogenesis, indicating that polyQ-AR toxicity initiates in skeletal muscle and results in secondary motor neuron demise. The existence of robust animal models for SBMA has permitted a variety of preclinical trials, driven by recent discoveries of altered cellular processes, and some of this preclinical work has led to human clinical trials. In this chapter, we review SBMA clinical features and disease biology, discuss our current understanding of the cellular and molecular basis of SBMA pathogenesis, and highlight ongoing efforts toward therapy development.
Collapse
|
24
|
Sahashi K, Hashizume A, Sobue G, Katsuno M. Progress toward the development of treatment of spinal and bulbar muscular atrophy. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1329088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kentaro Sahashi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Hashizume
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
25
|
Kino Y, Washizu C, Kurosawa M, Yamada M, Doi H, Takumi T, Adachi H, Katsuno M, Sobue G, Hicks GG, Hattori N, Shimogori T, Nukina N. FUS/TLS acts as an aggregation-dependent modifier of polyglutamine disease model mice. Sci Rep 2016; 6:35236. [PMID: 27739513 PMCID: PMC5064419 DOI: 10.1038/srep35236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
FUS/TLS is an RNA/DNA-binding protein associated with neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Previously, we found that a prion-like domain in the N-terminus of FUS/TLS mediates co-aggregation between FUS/TLS and mutant huntingtin, the gene product of Huntington's disease (HD). Here, we show that heterozygous knockout of FUS/TLS worsened the phenotypes of model mice of (HD, but not spinal and bulbar muscular atrophy (SBMA). This difference was correlated with the degree of pathological association between disease proteins and FUS/TLS. Co-aggregation between FUS/TLS and mutant huntingtin resulted in the depletion of free FUS/TLS protein in HD mice that was detected as a monomer in SDS-PAGE analysis. Recently, we found that FUS/TLS paralogs, TAF15 and EWS, were up-regulated in homozygous FUS/TLS knockout mice. These two proteins were up-regulated in both HD and FUS/TLS heterozygote mice, and were further elevated in HD-TLS+/- double mutant mice, consistent with the functional impairment of FUS/TLS. These results suggest that FUS/TLS sequestration by co-aggregation is a rate-limiting factor of disease phenotypes of HD and that inclusions may have an adverse aspect, rather than being simply benign or protective. In addition, our results highlight inclusions as repositories of potential modifiers of neurodegeneration.
Collapse
Affiliation(s)
- Yoshihiro Kino
- CREST(Core Research for Evolutionary Science and Technology), JST, Saitama, Japan.,Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory for Structural Neuropathology , Brain Science Institute, RIKEN, Saitama, Japan.,Laboratory for Molecular Mechanisms of Thalamus Development, Brain Science Institute, RIKEN, Saitama, Japan.,Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Chika Washizu
- Laboratory for Structural Neuropathology , Brain Science Institute, RIKEN, Saitama, Japan
| | - Masaru Kurosawa
- CREST(Core Research for Evolutionary Science and Technology), JST, Saitama, Japan.,Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory for Structural Neuropathology , Brain Science Institute, RIKEN, Saitama, Japan.,Laboratory for Molecular Mechanisms of Thalamus Development, Brain Science Institute, RIKEN, Saitama, Japan
| | - Mizuki Yamada
- Laboratory for Structural Neuropathology , Brain Science Institute, RIKEN, Saitama, Japan
| | - Hiroshi Doi
- Department of Clinical Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Toru Takumi
- CREST(Core Research for Evolutionary Science and Technology), JST, Saitama, Japan.,Laboratory for Mental Biology, Brain Science Institute, RIKEN, Saitama, Japan.,Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroaki Adachi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Geoffrey G Hicks
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada
| | - Nobutaka Hattori
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Thalamus Development, Brain Science Institute, RIKEN, Saitama, Japan
| | - Nobuyuki Nukina
- CREST(Core Research for Evolutionary Science and Technology), JST, Saitama, Japan.,Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory for Structural Neuropathology , Brain Science Institute, RIKEN, Saitama, Japan.,Laboratory for Molecular Mechanisms of Thalamus Development, Brain Science Institute, RIKEN, Saitama, Japan.,Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan
| |
Collapse
|
26
|
Wang DW, Peng ZJ, Ren GF, Wang GX. The different roles of selective autophagic protein degradation in mammalian cells. Oncotarget 2016; 6:37098-116. [PMID: 26415220 PMCID: PMC4741918 DOI: 10.18632/oncotarget.5776] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023] Open
Abstract
Autophagy is an intracellular pathway for bulk protein degradation and the removal of damaged organelles by lysosomes. Autophagy was previously thought to be unselective; however, studies have increasingly confirmed that autophagy-mediated protein degradation is highly regulated. Abnormal autophagic protein degradation has been associated with multiple human diseases such as cancer, neurological disability and cardiovascular disease; therefore, further elucidation of protein degradation by autophagy may be beneficial for protein-based clinical therapies. Macroautophagy and chaperone-mediated autophagy (CMA) can both participate in selective protein degradation in mammalian cells, but the process is quite different in each case. Here, we summarize the various types of macroautophagy and CMA involved in determining protein degradation. For this summary, we divide the autophagic protein degradation pathways into four categories: the post-translational modification dependent and independent CMA pathways and the ubiquitin dependent and independent macroautophagy pathways, and describe how some non-canonical pathways and modifications such as phosphorylation, acetylation and arginylation can influence protein degradation by the autophagy lysosome system (ALS). Finally, we comment on why autophagy can serve as either diagnostics or therapeutic targets in different human diseases.
Collapse
Affiliation(s)
- Da-wei Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhen-ju Peng
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-fang Ren
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-xin Wang
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
27
|
Abstract
Neurodegenerative diseases (NDDs) are a group of intractable diseases that significantly affect human health. To date, the pathogenesis of NDDs is still poorly understood and effective disease-modifying therapies for NDDs have not been established. NDDs share the common morphological characteristic of the deposition of abnormal proteins in the nervous system, including neurons. Autophagy is one of the major processes by which damaged organelles and abnormal proteins are removed from cells. Impairment of autophagy has been found to be involved in the pathogenesis of NDDs, and the regulation of autophagy may become a therapeutic strategy for NDDs. In recent years, some active compounds from plants have been found to regulate autophagy and exert neuroprotection against NDDs, including Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal and bulbar muscular atrophy, spinocerebellar ataxia 3, and amyotrophic lateral sclerosis, via activating autophagy. In this paper, we review recent advances in the use of active ingredients from plants for the regulation of autophagy and treatment of NDDs.
Collapse
|
28
|
Hadano S, Mitsui S, Pan L, Otomo A, Kubo M, Sato K, Ono S, Onodera W, Abe K, Chen X, Koike M, Uchiyama Y, Aoki M, Warabi E, Yamamoto M, Ishii T, Yanagawa T, Shang HF, Yoshii F. Functional links between SQSTM1 and ALS2 in the pathogenesis of ALS: cumulative impact on the protection against mutant SOD1-mediated motor dysfunction in mice. Hum Mol Genet 2016; 25:3321-3340. [PMID: 27439389 DOI: 10.1093/hmg/ddw180] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by a selective loss of motor neurons in the brain and spinal cord. Multiple toxicity pathways, such as oxidative stress, misfolded protein accumulation, and dysfunctional autophagy, are implicated in the pathogenesis of ALS. However, the molecular basis of the interplay between such multiple factors in vivo remains unclear. Here, we report that two independent ALS-linked autophagy-associated gene products; SQSTM1/p62 and ALS2/alsin, but not antioxidant-related factor; NFE2L2/Nrf2, are implicated in the pathogenesis in mutant SOD1 transgenic ALS models. We generated SOD1H46R mice either on a Nfe2l2-null, Sqstm1-null, or Sqstm1/Als2-double null background. Loss of SQSTM1 but not NFE2L2 exacerbated disease symptoms. A simultaneous inactivation of SQSTM1 and ALS2 further accelerated the onset of disease. Biochemical analyses revealed that loss of SQSTM1 increased the level of insoluble SOD1 at the intermediate stage of the disease, whereas no further elevation occurred at the end-stage. Notably, absence of SQSTM1 rather suppressed the mutant SOD1-dependent accumulation of insoluble polyubiquitinated proteins, while ALS2 loss enhanced it. Histopathological examinations demonstrated that loss of SQSTM1 accelerated motor neuron degeneration with accompanying the preferential accumulation of ubiquitin-positive aggregates in spinal neurons. Since SQSTM1 loss is more detrimental to SOD1H46R mice than lack of ALS2, the selective accumulation of such aggregates in neurons might be more insulting than the biochemically-detectable insoluble proteins. Collectively, two ALS-linked factors, SQSTM1 and ALS2, have distinct but additive protective roles against mutant SOD1-mediated toxicity by modulating neuronal proteostasis possibly through the autophagy-endolysosomal system.
Collapse
Affiliation(s)
- Shinji Hadano
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan .,Research Center for Brain and Nervous Diseases, Tokai University Graduate School of Medicine, Isehara, Kanagawa, Japan.,The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Shun Mitsui
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Lei Pan
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Asako Otomo
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan.,The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan.,Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Mizuki Kubo
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kai Sato
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Suzuka Ono
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Wakana Onodera
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Koichiro Abe
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - XuePing Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yasuo Uchiyama
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Eiji Warabi
- Faculty of Medicine, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tetsuro Ishii
- Faculty of Medicine, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki, Japan
| | - Toru Yanagawa
- Faculty of Medicine, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki, Japan
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fumihito Yoshii
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan.,Department of Neurology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
29
|
Ishibashi D, Nakagaki T, Ishikawa T, Atarashi R, Watanabe K, Cruz FA, Hamada T, Nishida N. Structure-Based Drug Discovery for Prion Disease Using a Novel Binding Simulation. EBioMedicine 2016; 9:238-249. [PMID: 27333028 PMCID: PMC4972544 DOI: 10.1016/j.ebiom.2016.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/25/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022] Open
Abstract
The accumulation of abnormal prion protein (PrP(Sc)) converted from the normal cellular isoform of PrP (PrP(C)) is assumed to induce pathogenesis in prion diseases. Therefore, drug discovery studies for these diseases have focused on the protein conversion process. We used a structure-based drug discovery algorithm (termed Nagasaki University Docking Engine: NUDE) that ran on an intensive supercomputer with a graphic-processing unit to identify several compounds with anti-prion effects. Among the candidates showing a high-binding score, the compounds exhibited direct interaction with recombinant PrP in vitro, and drastically reduced PrP(Sc) and protein-aggresomes in the prion-infected cells. The fragment molecular orbital calculation showed that the van der Waals interaction played a key role in PrP(C) binding as the intermolecular interaction mode. Furthermore, PrP(Sc) accumulation and microgliosis were significantly reduced in the brains of treated mice, suggesting that the drug candidates provided protection from prion disease, although further in vivo tests are needed to confirm these findings. This NUDE-based structure-based drug discovery for normal protein structures is likely useful for the development of drugs to treat other conformational disorders, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Daisuke Ishibashi
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Japan.
| | - Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Takeshi Ishikawa
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Ryuichiro Atarashi
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Japan
| | - Ken Watanabe
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Felipe A Cruz
- Nagasaki Advanced Computing Center, Nagasaki University, Japan
| | - Tsuyoshi Hamada
- Nagasaki Advanced Computing Center, Nagasaki University, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| |
Collapse
|
30
|
Ding Y, Adachi H, Katsuno M, Sahashi K, Kondo N, Iida M, Tohnai G, Nakatsuji H, Sobue G. BIIB021, a synthetic Hsp90 inhibitor, induces mutant ataxin-1 degradation through the activation of heat shock factor 1. Neuroscience 2016; 327:20-31. [PMID: 27058144 DOI: 10.1016/j.neuroscience.2016.03.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/14/2016] [Accepted: 03/30/2016] [Indexed: 12/20/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by the expansion of a polyglutamine (polyQ) tract in ataxin-1 (ATXN1). The pathological hallmarks of SCA1 are the loss of cerebellar Purkinje cells and neurons in the brainstem and the presence of nuclear aggregates containing the polyQ-expanded ATXN1 protein. Heat shock protein 90 (Hsp90) inhibitors have been shown to reduce polyQ-induced toxicity. This study was designed to examine the therapeutic effects of BIIB021, a purine-scaffold Hsp90 inhibitor, on the protein homeostasis of polyQ-expanded mutant ATXN1 in a cell culture model of SCA1. Our results demonstrated that BIIB021 activated heat shock factor 1 (HSF1) and suppressed the abnormal accumulation of ATXN1 and its toxicity. The pharmacological degradation of mutant ATXN1 via activated HSF1 was dependent on both the proteasome and autophagy systems. These findings indicate that HSF1 is a key molecule in the regulation of the protein homeostasis of the polyQ-expanded mutant ATXN1 and that Hsp90 has potential as a novel therapeutic target in patients with SCA1.
Collapse
Affiliation(s)
- Ying Ding
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroaki Adachi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kentaro Sahashi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Naohide Kondo
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Madoka Iida
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Genki Tohnai
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hideaki Nakatsuji
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
31
|
The Role of the Protein Quality Control System in SBMA. J Mol Neurosci 2015; 58:348-64. [PMID: 26572535 DOI: 10.1007/s12031-015-0675-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/01/2015] [Indexed: 12/13/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) or Kennedy's disease is an X-linked disease associated with the expansion of the CAG triplet repeat present in exon 1 of the androgen receptor (AR) gene. This results in the production of a mutant AR containing an elongated polyglutamine tract (polyQ) in its N-terminus. Interestingly, the ARpolyQ becomes toxic only after its activation by the natural androgenic ligands, possibly because of aberrant androgen-induced conformational changes of the ARpolyQ, which generate misfolded species. These misfolded ARpolyQ species must be cleared from motoneurons and muscle cells, and this process is mediated by the protein quality control (PQC) system. Experimental evidence suggested that failure of the PQC pathways occurs in disease, leading to ARpolyQ accumulation and toxicity in the target cells. In this review, we summarized the overall impact of mutant and misfolded ARpolyQ on the PQC system and described how molecular chaperones and the degradative pathways (ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and the unfolded protein response (UPR), which activates the endoplasmic reticulum-associated degradation (ERAD)) are differentially affected in SBMA. We also extensively and critically reviewed several molecular and pharmacological approaches proposed to restore a global intracellular activity of the PQC system. Collectively, these data suggest that the fine and delicate equilibrium existing among the different players of the PQC system could be restored in a therapeutic perspective by the synergic/additive activities of compounds designed to tackle sequential or alternative steps of the intracellular defense mechanisms triggered against proteotoxic misfolded species.
Collapse
|
32
|
Abstract
Maintaining cellular redox status to allow cell signalling to occur requires modulation of both the controlled production of oxidants and the thiol-reducing networks to allow specific regulatory post-translational modification of protein thiols. The oxidative stress hypothesis captured the concept that overproduction of oxidants can be proteotoxic, but failed to predict the recent finding that hyperactivation of the KEAP1-NRF2 system also leads to proteotoxicity. Furthermore, sustained activation of thiol redox networks by KEAP1-NRF2 induces a reductive stress, by decreasing the lifetime of necessary oxidative post-translational modifications required for normal metabolism or cell signalling. In this context, it is now becoming clear why antioxidants or hyperactivation of antioxidant pathways with electrophilic therapeutics can be deleterious. Furthermore, it suggests that the autophagy-lysosomal pathway is particularly important in protecting the cell against redox-stress-induced proteotoxicity, since it can degrade redox-damaged proteins without causing aberrant changes to the redox network needed for metabolism or signalling. In this context, it is important to understand: (i) how NRF2-mediated redox signalling, or (ii) the autophagy-mediated antioxidant/reductant pathways sense cellular damage in the context of cellular pathogenesis. Recent studies indicate that the modification of protein thiols plays an important role in the regulation of both the KEAP1-NRF2 and autophagy pathways. In the present review, we discuss evidence demonstrating that the KEAP1-NRF2 pathway and autophagy act in concert to combat the deleterious effects of proteotoxicity. These findings are discussed with a special emphasis on their impact on cardiovascular disease and neurodegeneration.
Collapse
|
33
|
Abstract
Spinal and bulbar muscular atrophy is an X-linked neuromuscular disease caused by an expanded repeat in the androgen receptor gene. The mutant protein is toxic to motor neurons and muscle. The toxicity is ligand-dependent and likely involves aberrant interaction of the mutant androgen receptor with other nuclear factors leading to transcriptional dysregulation. Various therapeutic strategies have been effective in transgenic animal models, and the challenge now is to translate these strategies into safe and effective treatment in patients.
Collapse
|
34
|
Mitani T, Minami M, Harada N, Ashida H, Yamaji R. Autophagic degradation of the androgen receptor mediated by increased phosphorylation of p62 suppresses apoptosis in hypoxia. Cell Signal 2015; 27:1994-2001. [PMID: 26186973 DOI: 10.1016/j.cellsig.2015.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/25/2022]
Abstract
Prostate cancer grows under hypoxic conditions. Hypoxia decreases androgen receptor (AR) protein levels. However, the molecular mechanism remains unclear. Here, we report that p62-mediated autophagy degrades AR protein and suppresses apoptosis in prostate cancer LNCaP cells in hypoxia. In LNCaP cells, hypoxia decreased AR at the protein level, but not at the mRNA level. Hypoxia-induced AR degradation was inhibited not only by knockdown of LC3, a key component of the autophagy machinery, but also by knockdown of p62. Depletion of p62 enhanced hypoxia-induced poly(ADP-ribose) polymerase cleavage and caspase-3 cleavage, markers of apoptosis, whereas simultaneous knockdown of p62 and AR suppressed hypoxia-induced apoptosis. Hypoxia increased the formation of a cytosolic p62-AR complex and enhanced sequestration of AR from the nucleus. Formation of this complex was promoted by the increased phosphorylation of serine 403 in the ubiquitin-associated domain of p62 during hypoxia. An antioxidant and an AMP-activated protein kinase (AMPK) inhibitor reduced hypoxia-induced p62 phosphorylation at serine 403 and suppressed hypoxia-induced complex formation between AR and p62. These results demonstrate that hypoxia enhances the complex formation between p62 and AR by promoting phosphorylation of p62 at serine 403, probably through activating AMPK, and that p62-mediated autophagy degrades AR protein for cell survival in hypoxia.
Collapse
Affiliation(s)
- Takakazu Mitani
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 5998531, Japan; Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 6578501, Japan
| | - Masato Minami
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 5998531, Japan
| | - Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 5998531, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 6578501, Japan
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 5998531, Japan.
| |
Collapse
|
35
|
Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 2015; 16:345-57. [DOI: 10.1038/nrn3961] [Citation(s) in RCA: 643] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Cortes CJ, La Spada AR. Autophagy in polyglutamine disease: Imposing order on disorder or contributing to the chaos? Mol Cell Neurosci 2015; 66:53-61. [PMID: 25771431 DOI: 10.1016/j.mcn.2015.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/07/2015] [Accepted: 03/09/2015] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an essential, fundamentally important catabolic pathway in which double membrane-bound vesicles form in the cytosol and encircle macromolecules and organelles to permit their degradation after fusion with lysosomes. More than a decade of research has revealed that autophagy is required for normal central nervous system (CNS) function and plays a central role in maintaining protein and organelle quality controls in neurons. Neurodegenerative diseases occur when misfolded proteins accumulate and disrupt normal cellular processes, and autophagy has emerged as a key arbiter of the cell's homeostatic response to this threat. One class of inherited neurodegenerative disease is known as the CAG/polyglutamine repeat disorders, and these diseases all result from the expansion of a CAG repeat tract in the coding regions of distinct genes. Polyglutamine (polyQ) repeat diseases result in the production polyQ-expanded proteins that misfold to form inclusions or aggregates that challenge the main cellular proteostasis system of the cell, the ubiquitin proteasome system (UPS). The UPS cannot efficiently degrade polyQ-expanded disease proteins, and components of the UPS are enriched in polyQ disease aggregate bodies found in degenerating neurons. In addition to components of the UPS, polyQ protein cytosolic aggregates co-localize with key autophagy proteins, even in autophagy deficient cells, suggesting that they probably do not reflect the formation of autophagosomes but rather the sequestration of key autophagy components. Furthermore, recent evidence now implicates polyQ proteins in the regulation of the autophagy pathway itself. Thus, a complex model emerges where polyQ proteins play a dual role as both autophagy substrates and autophagy offenders. In this review, we consider the role of autophagy in polyQ disorders and the therapeutic potential for autophagy modulation in these diseases. This article is part of a Special Issue entitled "Neuronal Protein".
Collapse
Affiliation(s)
- Constanza J Cortes
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92037, USA
| | - Albert R La Spada
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92037, USA; Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Rady Children's Hospital, San Diego, CA 92193, USA.
| |
Collapse
|
37
|
Lim J, Lachenmayer ML, Wu S, Liu W, Kundu M, Wang R, Komatsu M, Oh YJ, Zhao Y, Yue Z. Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLoS Genet 2015; 11:e1004987. [PMID: 25723488 PMCID: PMC4344198 DOI: 10.1371/journal.pgen.1004987] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/05/2015] [Indexed: 11/17/2022] Open
Abstract
Disruption of proteostasis, or protein homeostasis, is often associated with aberrant accumulation of misfolded proteins or protein aggregates. Autophagy offers protection to cells by removing toxic protein aggregates and injured organelles in response to proteotoxic stress. However, the exact mechanism whereby autophagy recognizes and degrades misfolded or aggregated proteins has yet to be elucidated. Mounting evidence demonstrates the selectivity of autophagy, which is mediated through autophagy receptor proteins (e.g. p62/SQSTM1) linking autophagy cargos and autophagosomes. Here we report that proteotoxic stress imposed by the proteasome inhibition or expression of polyglutamine expanded huntingtin (polyQ-Htt) induces p62 phosphorylation at its ubiquitin-association (UBA) domain that regulates its binding to ubiquitinated proteins. We find that autophagy-related kinase ULK1 phosphorylates p62 at a novel phosphorylation site S409 in UBA domain. Interestingly, phosphorylation of p62 by ULK1 does not occur upon nutrient starvation, in spite of its role in canonical autophagy signaling. ULK1 also phosphorylates S405, while S409 phosphorylation critically regulates S405 phosphorylation. We find that S409 phosphorylation destabilizes the UBA dimer interface, and increases binding affinity of p62 to ubiquitin. Furthermore, lack of S409 phosphorylation causes accumulation of p62, aberrant localization of autophagy proteins and inhibition of the clearance of ubiquitinated proteins or polyQ-Htt. Therefore, our data provide mechanistic insights into the regulation of selective autophagy by ULK1 and p62 upon proteotoxic stress. Our study suggests a potential novel drug target in developing autophagy-based therapeutics for the treatment of proteinopathies including Huntington’s disease. Accumulation of misfolded proteins deposited in the form of inclusion bodies is a common pathological hallmark for many human genetic diseases, particularly for the neurodegenerative disorders. The aggregation of the disease related proteins suggests a failure of the cellular machineries that maintain the protein homeostasis or proteostasis. The cellular clearance pathways, e.g. autophagy-lysosomal pathway, may not be of high efficiency in the face of rapid formation of misfolded protein aggregates. Thus, understanding of intrinsic mechanism whereby autophagy offers protection to cells by removing toxic protein aggregates is important. Here we report that a signaling transduction event that chemically modifies autophagy receptor protein p62/SQSTM1 regulates the receptor’s binding affinity to small molecule called ubiquitin(essential for marking the protein for degradation), as well as the selective degradation of targeted proteins. Furthermore, we find that expression of Huntington’s disease (HD) associated protein aggregates (containing polyglutamine or polyQ expansion) triggers the same modification of p62, which is dependent on the length of the polyQ expansion, suggesting a protective response of the cell by activating autophagy toward degradation of toxic aggregates. The modification of p62 also occurs in HD model brains in an age-dependent manner. Our study sheds light on the regulation of selective autophagy and provides a rationale for targeting p62 modification to treat aggregate diseases including HD.
Collapse
Affiliation(s)
- Junghyun Lim
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - M Lenard Lachenmayer
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Shuai Wu
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wenchao Liu
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Mondira Kundu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Rong Wang
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University, Niigata-shi, Japan
| | - Young J Oh
- Department of System Biology, Yonsei University College of Life Science and Biotechnology, Seoul, South Korea
| | - Yanxiang Zhao
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zhenyu Yue
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
38
|
Saitoh Y, Fujikake N, Okamoto Y, Popiel HA, Hatanaka Y, Ueyama M, Suzuki M, Gaumer S, Murata M, Wada K, Nagai Y. p62 plays a protective role in the autophagic degradation of polyglutamine protein oligomers in polyglutamine disease model flies. J Biol Chem 2014; 290:1442-53. [PMID: 25480790 DOI: 10.1074/jbc.m114.590281] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oligomer formation and accumulation of pathogenic proteins are key events in the pathomechanisms of many neurodegenerative diseases, such as Alzheimer disease, ALS, and the polyglutamine (polyQ) diseases. The autophagy-lysosome degradation system may have therapeutic potential against these diseases because it can degrade even large oligomers. Although p62/sequestosome 1 plays a physiological role in selective autophagy of ubiquitinated proteins, whether p62 recognizes and degrades pathogenic proteins in neurodegenerative diseases has remained unclear. In this study, to elucidate the role of p62 in such pathogenic conditions in vivo, we used Drosophila models of neurodegenerative diseases. We found that p62 predominantly co-localizes with cytoplasmic polyQ protein aggregates in the MJDtr-Q78 polyQ disease model flies. Loss of p62 function resulted in significant exacerbation of eye degeneration in these flies. Immunohistochemical analyses revealed enhanced accumulation of cytoplasmic aggregates by p62 knockdown in the MJDtr-Q78 flies, similarly to knockdown of autophagy-related genes (Atgs). Knockdown of both p62 and Atgs did not show any additive effects in the MJDtr-Q78 flies, implying that p62 function is mediated by autophagy. Biochemical analyses showed that loss of p62 function delays the degradation of the MJDtr-Q78 protein, especially its oligomeric species. We also found that loss of p62 function exacerbates eye degeneration in another polyQ disease fly model as well as in ALS model flies. We therefore conclude that p62 plays a protective role against polyQ-induced neurodegeneration, by the autophagic degradation of polyQ protein oligomers in vivo, indicating its therapeutic potential for the polyQ diseases and possibly for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuji Saitoh
- From the Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan, the Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8551, Japan, the Graduate School of Medical and Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, Chiba 260-8670, Japan
| | - Nobuhiro Fujikake
- From the Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Yuma Okamoto
- From the Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - H Akiko Popiel
- From the Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Yusuke Hatanaka
- From the Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Morio Ueyama
- From the Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Mari Suzuki
- From the Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Sébastien Gaumer
- the Laboratoire de Génétique et Biologie Cellulaire, EA4589, Université de Versailles-Saint-Quentin-en-Yvelines, École Pratique des Hautes Etudes, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France, and
| | - Miho Murata
- the Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8551, Japan, the Graduate School of Medical and Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, Chiba 260-8670, Japan
| | - Keiji Wada
- From the Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Yoshitaka Nagai
- From the Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
39
|
Tanji K, Odagiri S, Miki Y, Maruyama A, Nikaido Y, Mimura J, Mori F, Warabi E, Yanagawa T, Ueno S, Itoh K, Wakabayashi K. p62 Deficiency Enhances α-Synuclein Pathology in Mice. Brain Pathol 2014; 25:552-64. [PMID: 25412696 DOI: 10.1111/bpa.12214] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/02/2014] [Indexed: 11/29/2022] Open
Abstract
In Lewy body disease (LBD) such as dementia with LBs and Parkinson's disease, several lines of evidence show that disrupted proteolysis occurs. p62/SQSTM1 (p62) is highly involved with intracellular proteolysis and is a component of ubiquitin-positive inclusions in various neurodegenerative disorders. However, it is not clear whether p62 deficiency affects inclusion formation and abnormal protein accumulation. To answer this question, we used a mouse model of LBD that lacks p62, and found that LB-like inclusions were observed in transgenic mice that overexpressed α-synuclein (Tg mice) with or without the p62 protein. p62 deficiency enhanced α-synuclein pathology with regard to the number of inclusions and staining intensity compared with Tg mice that expressed p62. To further investigate the molecular mechanisms associated with the loss of p62 in Tg mice, we assessed the mRNA and protein levels of several molecules, and found that the neighbor of the brca1 gene (NBr1), which is functionally and structurally similar to p62, is increased in Tg mice without p62 compared with control Tg mice. These findings suggest that p62 and NBR1 affect the pathogenesis of neurodegenerative diseases through the cooperative modulation of α-synuclein aggregation.
Collapse
Affiliation(s)
- Kunikazu Tanji
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Saori Odagiri
- Department of Neuroanatomy, Cell Biology and Histology, University of Tsukuba, Tsukuba, Japan
| | - Yasuo Miki
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Atsushi Maruyama
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoshikazu Nikaido
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Junsei Mimura
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Eiji Warabi
- Majors of Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Toru Yanagawa
- Majors of Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
40
|
Kurosawa M, Matsumoto G, Kino Y, Okuno M, Kurosawa-Yamada M, Washizu C, Taniguchi H, Nakaso K, Yanagawa T, Warabi E, Shimogori T, Sakurai T, Hattori N, Nukina N. Depletion of p62 reduces nuclear inclusions and paradoxically ameliorates disease phenotypes in Huntington's model mice. Hum Mol Genet 2014; 24:1092-105. [PMID: 25305080 DOI: 10.1093/hmg/ddu522] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Huntington's disease (HD) is a dominantly inherited genetic disease caused by mutant huntingtin (htt) protein with expanded polyglutamine (polyQ) tracts. A neuropathological hallmark of HD is the presence of neuronal inclusions of mutant htt. p62 is an important regulatory protein in selective autophagy, a process by which aggregated proteins are degraded, and it is associated with several neurodegenerative disorders including HD. Here, we investigated the effect of p62 depletion in three HD model mice: R6/2, HD190QG and HD120QG mice. We found that loss of p62 in these models led to longer life spans and reduced nuclear inclusions, although cytoplasmic inclusions increased with polyQ length. In mouse embryonic fibroblasts (MEFs) with or without p62, mutant htt with a nuclear localization signal (NLS) showed no difference in nuclear inclusion between the two MEF types. In the case of mutant htt without NLS, however, p62 depletion increased cytoplasmic inclusions. Furthermore, to examine the effect of impaired autophagy in HD model mice, we crossed R6/2 mice with Atg5 conditional knockout mice. These mice also showed decreased nuclear inclusions and increased cytoplasmic inclusions, similar to HD mice lacking p62. These data suggest that the genetic ablation of p62 in HD model mice enhances cytoplasmic inclusion formation by interrupting autophagic clearance of polyQ inclusions. This reduces polyQ nuclear influx and paradoxically ameliorates disease phenotypes by decreasing toxic nuclear inclusions.
Collapse
Affiliation(s)
- Masaru Kurosawa
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan, Laboratory for Structural Neuropathology, Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama 351-0198, Japan, CREST (Core Research for Evolutionary Science and Technology), JST, Tokyo 102-0076, Japan
| | - Gen Matsumoto
- Department of Neuroscience for Neurodegenerative Disorders, Laboratory for Structural Neuropathology, Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama 351-0198, Japan, CREST (Core Research for Evolutionary Science and Technology), JST, Tokyo 102-0076, Japan
| | - Yoshihiro Kino
- Department of Neuroscience for Neurodegenerative Disorders, Laboratory for Structural Neuropathology, Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama 351-0198, Japan, CREST (Core Research for Evolutionary Science and Technology), JST, Tokyo 102-0076, Japan
| | | | | | | | - Harumi Taniguchi
- Department of Neuroscience for Neurodegenerative Disorders, Laboratory for Structural Neuropathology, Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Kazuhiro Nakaso
- Department of Neurology, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Toru Yanagawa
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, Japan and
| | - Eiji Warabi
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, Japan and
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | | | - Nobuyuki Nukina
- Department of Neuroscience for Neurodegenerative Disorders, Laboratory for Structural Neuropathology, Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama 351-0198, Japan, CREST (Core Research for Evolutionary Science and Technology), JST, Tokyo 102-0076, Japan
| |
Collapse
|
41
|
Katsuno M, Watanabe H, Yamamoto M, Sobue G. Potential therapeutic targets in polyglutamine-mediated diseases. Expert Rev Neurother 2014; 14:1215-28. [PMID: 25190502 DOI: 10.1586/14737175.2014.956727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polyglutamine diseases are a group of inherited neurodegenerative disorders that are caused by an abnormal expansion of a trinucleotide CAG repeat, which encodes a polyglutamine tract in the protein-coding region of the respective disease genes. To date, nine polyglutamine diseases are known, including Huntington's disease, spinal and bulbar muscular atrophy, dentatorubral-pallidoluysian atrophy and six forms of spinocerebellar ataxia. These diseases share a salient molecular pathophysiology including the aggregation of the mutant protein followed by the disruption of cellular functions such as transcriptional regulation and axonal transport. The intraneuronal accumulation of mutant protein and resulting cellular dysfunction are the essential targets for the development of disease-modifying therapies, some of which have shown beneficial effects in animal models. In this review, the current status of and perspectives on therapy development for polyglutamine diseases will be discussed.
Collapse
Affiliation(s)
- Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | |
Collapse
|
42
|
Cortes CJ, Miranda HC, Frankowski H, Batlevi Y, Young JE, Le A, Ivanov N, Sopher BL, Carromeu C, Muotri AR, Garden GA, La Spada AR. Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA. Nat Neurosci 2014; 17:1180-9. [PMID: 25108912 PMCID: PMC4180729 DOI: 10.1038/nn.3787] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/16/2014] [Indexed: 12/19/2022]
Abstract
Macroautophagy (hereafter autophagy) is a key pathway in neurodegeneration. Despite protective actions, autophagy may contribute to neuron demise when dysregulated. Here we consider X-linked spinal and bulbar muscular atrophy (SBMA), a repeat disorder caused by polyglutamine-expanded androgen receptor (polyQ-AR). We found that polyQ-AR reduced long-term protein turnover and impaired autophagic flux in motor neuron-like cells. Ultrastructural analysis of SBMA mice revealed a block in autophagy pathway progression. We examined the transcriptional regulation of autophagy and observed a functionally significant physical interaction between transcription factor EB (TFEB) and AR. Normal AR promoted, but polyQ-AR interfered with, TFEB transactivation. To evaluate physiological relevance, we reprogrammed patient fibroblasts to induced pluripotent stem cells and then to neuronal precursor cells (NPCs). We compared multiple SBMA NPC lines and documented the metabolic and autophagic flux defects that could be rescued by TFEB. Our results indicate that polyQ-AR diminishes TFEB function to impair autophagy and promote SBMA pathogenesis.
Collapse
Affiliation(s)
- Constanza J Cortes
- 1] Department of Pediatrics, University of California, San Diego, La Jolla, California, USA. [2]
| | - Helen C Miranda
- 1] Department of Pediatrics, University of California, San Diego, La Jolla, California, USA. [2] Department of Cellular &Molecular Medicine, University of California, San Diego, La Jolla, California, USA. [3]
| | - Harald Frankowski
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Yakup Batlevi
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Jessica E Young
- Department of Cellular &Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Amy Le
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Nishi Ivanov
- 1] Center on Human Development &Disability, University of Washington, Seattle, Washington, USA. [2] Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Bryce L Sopher
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Cassiano Carromeu
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Alysson R Muotri
- 1] Department of Pediatrics, University of California, San Diego, La Jolla, California, USA. [2] Department of Cellular &Molecular Medicine, University of California, San Diego, La Jolla, California, USA. [3] Department of Neurosciences, University of California, San Diego, La Jolla, California, USA. [4] Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA. [5] Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California, USA. [6] Rady Children's Hospital, San Diego, California, USA
| | - Gwenn A Garden
- 1] Center on Human Development &Disability, University of Washington, Seattle, Washington, USA. [2] Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Albert R La Spada
- 1] Department of Pediatrics, University of California, San Diego, La Jolla, California, USA. [2] Department of Cellular &Molecular Medicine, University of California, San Diego, La Jolla, California, USA. [3] Department of Neurosciences, University of California, San Diego, La Jolla, California, USA. [4] Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA. [5] Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California, USA. [6] Rady Children's Hospital, San Diego, California, USA. [7] Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
43
|
Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans 2014; 41:1103-30. [PMID: 24059496 DOI: 10.1042/bst20130134] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is an intracellular degradation pathway essential for cellular and energy homoeostasis. It functions in the clearance of misfolded proteins and damaged organelles, as well as recycling of cytosolic components during starvation to compensate for nutrient deprivation. This process is regulated by mTOR (mammalian target of rapamycin)-dependent and mTOR-independent pathways that are amenable to chemical perturbations. Several small molecules modulating autophagy have been identified that have potential therapeutic application in diverse human diseases, including neurodegeneration. Neurodegeneration-associated aggregation-prone proteins are predominantly degraded by autophagy and therefore stimulating this process with chemical inducers is beneficial in a wide range of transgenic disease models. Emerging evidence indicates that compromised autophagy contributes to the aetiology of various neurodegenerative diseases related to protein conformational disorders by causing the accumulation of mutant proteins and cellular toxicity. Combining the knowledge of autophagy dysfunction and the mechanism of drug action may thus be rational for designing targeted therapy. The present review describes the cellular signalling pathways regulating mammalian autophagy and highlights the potential therapeutic application of autophagy inducers in neurodegenerative disorders.
Collapse
|
44
|
Homma T, Ishibashi D, Nakagaki T, Satoh K, Sano K, Atarashi R, Nishida N. Increased expression of p62/SQSTM1 in prion diseases and its association with pathogenic prion protein. Sci Rep 2014; 4:4504. [PMID: 24675871 PMCID: PMC3968452 DOI: 10.1038/srep04504] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/04/2014] [Indexed: 11/30/2022] Open
Abstract
Prion diseases are neurodegenerative disorders characterized by the aggregation of abnormally folded prion protein (PrPSc). In this study, we focused on the mechanism of clearance of PrPSc, which remains unclear. p62 is a cytosolic protein known to mediate both the formation and degradation of aggregates of abnormal proteins. The levels of p62 protein increased in prion-infected brains and persistently infected cell cultures. Upon proteasome inhibition, p62 co-localized with PrPSc, forming a large aggregate in the perinuclear region, hereafter referred to as PrPSc-aggresome. These aggregates were surrounded with autophagosome marker LC3 and lysosomes in prion-infected cells. Moreover, transient expression of the phosphomimic form of p62, which has enhanced ubiquitin-binding activity, reduced the amount of PrPSc in prion-infected cells, indicating that the activation of p62 could accelerate the clearance of PrPSc. Our findings would thus suggest that p62 could be a target for the therapeutic control of prion diseases.
Collapse
Affiliation(s)
- Takujiro Homma
- Department of Molecular Microbiology and immunology, Graduate School of Biomedical sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Daisuke Ishibashi
- Department of Molecular Microbiology and immunology, Graduate School of Biomedical sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Takehiro Nakagaki
- Department of Molecular Microbiology and immunology, Graduate School of Biomedical sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Katsuya Satoh
- Department of Molecular Microbiology and immunology, Graduate School of Biomedical sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Kazunori Sano
- Department of Molecular Microbiology and immunology, Graduate School of Biomedical sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Ryuichiro Atarashi
- 1] Department of Molecular Microbiology and immunology, Graduate School of Biomedical sciences, Nagasaki University, Nagasaki 852-8523, Japan [2] Nagasaki University Research Centre for Genomic Instability and Carcinogenesis, Nagasaki 852-8523, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and immunology, Graduate School of Biomedical sciences, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
45
|
Tohnai G, Adachi H, Katsuno M, Doi H, Matsumoto S, Kondo N, Miyazaki Y, Iida M, Nakatsuji H, Qiang Q, Ding Y, Watanabe H, Yamamoto M, Ohtsuka K, Sobue G. Paeoniflorin eliminates a mutant AR via NF-YA-dependent proteolysis in spinal and bulbar muscular atrophy. Hum Mol Genet 2014; 23:3552-65. [PMID: 24549037 DOI: 10.1093/hmg/ddu066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The accumulation of abnormal proteins is a common characteristic of neurodegenerative diseases. This accumulation reflects a severe disturbance of cellular homeostasis in pathogenic protein clearance. Here, we demonstrated that the activation of the two major proteolytic machineries, the molecular chaperone-ubiquitin proteasome system (UPS) and the autophagy system, were simultaneously enhanced by paeoniflorin (PF), a major component of Paeonia plants, and exerted therapeutic effects in models of spinal and bulbar muscular atrophy (SBMA). PF significantly increased the expression of nuclear factor-YA (NF-YA), which strongly upregulated the molecules involved in the proteolytic machinery [molecular chaperones, carboxyl terminus of Hsc70-interacting protein and transcription factor EB], which thus mitigated the behavioral and pathological impairments in an SBMA mouse model through the upregulation of pathogenic androgen receptor protein clearance in motor neurons and muscles. These findings demonstrated that PF is able to enhance both the UPS and autophagy systems by upregulating the expression of NF-YA, which promotes therapeutic effects in an SBMA model.
Collapse
Affiliation(s)
- Genki Tohnai
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroaki Adachi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hideki Doi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shinjiro Matsumoto
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Naohide Kondo
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yu Miyazaki
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Madoka Iida
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hideaki Nakatsuji
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Qiang Qiang
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Ying Ding
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masahiko Yamamoto
- Department of Speech Pathology and Audiology, Aichi-Gakuin University School of Health Science, 12 Araike, Iwasaki-cho, Nisshin 470-0195, Japan
| | - Kenzo Ohtsuka
- Laboratory of Cell and Stress Biology, Department of Environmental Biology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
46
|
Liu Q, Luo XY, Jiang H, Yang MH, Yuan GH, Tang Z, Wang H. Hydroxychloroquine facilitates autophagosome formation but not degradation to suppress the proliferation of cervical cancer SiHa cells. Oncol Lett 2014; 7:1057-1062. [PMID: 24944668 PMCID: PMC3961458 DOI: 10.3892/ol.2014.1879] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 01/07/2014] [Indexed: 02/06/2023] Open
Abstract
Hydroxychloroquine (HCQ), the hydroxylated analog of chloroquine, is an antimalarial lysomotropic agent that inhibits autophagy due to lysosomal acidification, and subsequently blocks the fusion of autophagosomes with lysosomes which leads to the accumulation of autophagosomes that may accelerate tumor cell death. Given these hypothesis the aim of this study was to investigate the effects of HCQ in the inhibition of autophagy and the induction of apoptosis in cervical cancer SiHa cells. Cervical cancer SiHa cells were cultured with Hank’s balanced salt solution (HBSS) as positive control of autophagy or treated with HCQ as part of the experimental groups. LC3 and P62/SQSTM1 were detected by quantitative polymerase chain reaction (qPCR) and western blotting, respectively in order to evaluate initially autophagosome formation and their degradation. Specific green fluorescent protein (GFP)-LC3 was subsequently detected by fluorescence microscopy in order to confirm the formation of autophagosomes. MTT and flow cytometry were adopted respectively to assess the proliferation and apoptosis of the SiHa cells. miRNA-9* was also investigated. The results demonstrated that HCQ increased the expressions of LC3 mRNA and LC3II protein and GFP-LC3 signalling but reduced the expression of p62/STSQM1 in cervical cancer SiHa cells. These results indicated HCQ has the ability to inhibit autophagy as incapable of degrading the autophagosome. However, HCQ may promote SiHa cell apoptosis as the MTT, apoptotic assay and miRNA-9* results revealed. HCQ has the ability to inhibit autophagy by blocking the degradation of autophagosomes and subsequently facilitates the apoptosis of cervical cancer SiHa cells.
Collapse
Affiliation(s)
- Qingsong Liu
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Institute of Women and Children's Health, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China ; Department of Clinical Laboratory, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiong Yan Luo
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Hong Jiang
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Ming-Hui Yang
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Guo-Hua Yuan
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Zhong Tang
- Department of Clinical Laboratory, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - He Wang
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Institute of Women and Children's Health, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
47
|
Chua JP, Reddy SL, Merry DE, Adachi H, Katsuno M, Sobue G, Robins DM, Lieberman AP. Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy. Hum Mol Genet 2013; 23:1376-86. [PMID: 24150846 DOI: 10.1093/hmg/ddt527] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spinobulbar muscular atrophy (SBMA) is an inherited neuromuscular disorder caused by the expansion of a CAG repeat encoding a polyglutamine tract in exon 1 of the androgen receptor (AR) gene. SBMA demonstrates androgen-dependent toxicity due to unfolding and aggregation of the mutant protein. There are currently no disease-modifying therapies, but of increasing interest for therapeutic targeting is autophagy, a highly conserved cellular process mediating protein quality control. We have previously shown that genetic manipulations inhibiting autophagy diminish skeletal muscle atrophy and extend the lifespan of AR113Q knock-in mice. In contrast, manipulations inducing autophagy worsen muscle atrophy, suggesting that chronic, aberrant upregulation of autophagy contributes to pathogenesis. Since the degree to which autophagy is altered in SBMA and the mechanisms responsible for such alterations are incompletely defined, we sought to delineate autophagic status in SBMA using both cellular and mouse models. Here, we confirm that autophagy is induced in cellular and knock-in mouse models of SBMA and show that the transcription factors transcription factor EB (TFEB) and ZKSCAN3 operate in opposing roles to underlie these changes. We demonstrate upregulation of TFEB target genes in skeletal muscle from AR113Q male mice and SBMA patients. Furthermore, we observe a greater response in AR113Q mice to physiological stimulation of autophagy by both nutrient starvation and exercise. Taken together, our results indicate that transcriptional signaling contributes to autophagic dysregulation and provides a mechanistic framework for the pathologic increase of autophagic responsiveness in SBMA.
Collapse
|
48
|
Todd TW, Lim J. Aggregation formation in the polyglutamine diseases: protection at a cost? Mol Cells 2013; 36:185-94. [PMID: 23794019 PMCID: PMC3800151 DOI: 10.1007/s10059-013-0167-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/02/2013] [Indexed: 12/30/2022] Open
Abstract
Mutant protein aggregation is a hallmark of many neurodegenerative diseases, including the polyglutamine disorders. Although the correlation between aggregation formation and disease pathology originally suggested that the visible inclusions seen in patient tissue might directly contribute to pathology, additional studies failed to confirm this hypothesis. Current opinion in the field of polyglutamine disease research now favors a model in which large inclusions are cytoprotective and smaller oligomers or misfolded monomers underlie pathogenesis. Nonetheless, therapies aimed at reducing or preventing aggregation show promise. This review outlines the debate about the role of aggregation in the polyglutamine diseases as it has unfolded in the literature and concludes with a brief discussion on the manipulation of aggregation formation and clearance mechanisms as a means of therapeutic intervention.
Collapse
Affiliation(s)
- Tiffany W. Todd
- Department of Genetics, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Janghoo Lim
- Department of Genetics, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|