1
|
Barti B, Dudok B, Kenesei K, Zöldi M, Miczán V, Balla GY, Zala D, Tasso M, Sagheddu C, Kisfali M, Tóth B, Ledri M, Vizi ES, Melis M, Barna L, Lenkei Z, Soltész I, Katona I. Presynaptic nanoscale components of retrograde synaptic signaling. SCIENCE ADVANCES 2024; 10:eado0077. [PMID: 38809980 PMCID: PMC11135421 DOI: 10.1126/sciadv.ado0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
While our understanding of the nanoscale architecture of anterograde synaptic transmission is rapidly expanding, the qualitative and quantitative molecular principles underlying distinct mechanisms of retrograde synaptic communication remain elusive. We show that a particular form of tonic cannabinoid signaling is essential for setting target cell-dependent synaptic variability. It does not require the activity of the two major endocannabinoid-producing enzymes. Instead, by developing a workflow for physiological, anatomical, and molecular measurements at the same unitary synapse, we demonstrate that the nanoscale stoichiometric ratio of type 1 cannabinoid receptors (CB1Rs) to the release machinery is sufficient to predict synapse-specific release probability. Accordingly, selective decrease of extrasynaptic CB1Rs does not affect synaptic transmission, whereas in vivo exposure to the phytocannabinoid Δ9-tetrahydrocannabinol disrupts the intrasynaptic nanoscale stoichiometry and reduces synaptic variability. These findings imply that synapses leverage the nanoscale stoichiometry of presynaptic receptor coupling to the release machinery to establish synaptic strength in a target cell-dependent manner.
Collapse
Affiliation(s)
- Benjámin Barti
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
| | - Barna Dudok
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- Departments of Neurology and Neuroscience, Baylor College of Medicine, 1 Baylor Plz, Houston, TX 77030, USA
- Department of Neurosurgery, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Kata Kenesei
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| | - Miklós Zöldi
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
| | - Vivien Miczán
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- Synthetic and Systems Biology Unit, HUN-REN Biological Research Center, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Gyula Y. Balla
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
- Translational Behavioral Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| | - Diana Zala
- Université Paris Cité, INSERM, Institute of Psychiatry and Neurosciences of Paris, F-75014 Paris, France
| | - Mariana Tasso
- Institute of Nanosystems, School of Bio and Nanotechnologies, National University of San Martín - CONICET, 25 de Mayo Ave., 1021 San Martín, Argentina
| | - Claudia Sagheddu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Máté Kisfali
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- BiTrial Ltd., Tállya st 23, H-1121 Budapest, Hungary
| | - Blanka Tóth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért square 4, H-1111 Budapest, Hungary
- Department of Molecular Biology, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
| | - Marco Ledri
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- Epilepsy Center, Department of Clinical Sciences, Faculty of Medicine, Lund University, Sölvegatan 17, BMC A11, 221 84 Lund, Sweden
| | - E. Sylvester Vizi
- Molecular Pharmacology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - László Barna
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
| | - Zsolt Lenkei
- Université Paris Cité, INSERM, Institute of Psychiatry and Neurosciences of Paris, F-75014 Paris, France
| | - Iván Soltész
- Department of Neurosurgery, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - István Katona
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| |
Collapse
|
2
|
Wen L, Yang X, Wu Z, Fu S, Zhan Y, Chen Z, Bi D, Shen Y. The complement inhibitor CD59 is required for GABAergic synaptic transmission in the dentate gyrus. Cell Rep 2023; 42:112349. [PMID: 37027303 DOI: 10.1016/j.celrep.2023.112349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Complement-dependent microglia pruning of excitatory synapses has been widely reported in physiological and pathological conditions, with few reports concerning pruning of inhibitory synapses or direct regulation of synaptic transmission by complement components. Here, we report that loss of CD59, an important endogenous inhibitor of the complement system, leads to compromised spatial memory performance. Furthermore, CD59 deficiency impairs GABAergic synaptic transmission in the hippocampal dentate gyrus (DG). This depends on regulation of GABA release triggered by Ca2+ influx through voltage-gated calcium channels (VGCCs) rather than inhibitory synaptic pruning by microglia. Notably, CD59 colocalizes with inhibitory pre-synaptic terminals and regulates SNARE complex assembly. Together, these results demonstrate that the complement regulator CD59 plays an important role in normal hippocampal function.
Collapse
Affiliation(s)
- Lang Wen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoli Yang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zujun Wu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shumei Fu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yaxi Zhan
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zuolong Chen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215000, China
| | - Danlei Bi
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yong Shen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
3
|
Abstract
The public and health care providers are increasingly curious about the potential medical benefits of Cannabis. In vitro and in vivo studies of Cannabis have suggested it has favorable effects on regulating pain, pruritus, and inflammation, making it a potentially attractive therapeutic agent for many dermatologic conditions. The body of literature reporting on the role of cannabinoids in dermatology is in its infancy but growing. We review the current research, possible cutaneous adverse effects, and future directions for cannabinoids and their use in skin cancer, acne, psoriasis, pruritus, dermatitis, scleroderma, dermatomyositis, cutaneous lupus erythematous, epidermolysis bullosa, pain, and wound healing.
Collapse
Affiliation(s)
- Kimberly Shao
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Campbell Stewart
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jane M Grant-Kels
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut, USA.
| |
Collapse
|
4
|
Karlocai MR, Heredi J, Benedek T, Holderith N, Lorincz A, Nusser Z. Variability in the Munc13-1 content of excitatory release sites. eLife 2021; 10:67468. [PMID: 33904397 PMCID: PMC8116053 DOI: 10.7554/elife.67468] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/26/2021] [Indexed: 01/15/2023] Open
Abstract
The molecular mechanisms underlying the diversity of cortical glutamatergic synapses are still incompletely understood. Here, we tested the hypothesis that presynaptic active zones (AZs) are constructed from molecularly uniform, independent release sites (RSs), the number of which scales linearly with the AZ size. Paired recordings between hippocampal CA1 pyramidal cells and fast-spiking interneurons in acute slices from adult mice followed by quantal analysis demonstrate large variability in the number of RSs (N) at these connections. High-resolution molecular analysis of functionally characterized synapses reveals variability in the content of one of the key vesicle priming factors – Munc13-1 – in AZs that possess the same N. Replica immunolabeling also shows a threefold variability in the total Munc13-1 content of AZs of identical size and a fourfold variability in the size and density of Munc13-1 clusters within the AZs. Our results provide evidence for quantitative molecular heterogeneity of RSs and support a model in which the AZ is built up from variable numbers of molecularly heterogeneous, but independent RSs.
Collapse
Affiliation(s)
- Maria Rita Karlocai
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Judit Heredi
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Tünde Benedek
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Noemi Holderith
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Andrea Lorincz
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
5
|
Bird AD, Deters LH, Cuntz H. Excess Neuronal Branching Allows for Local Innervation of Specific Dendritic Compartments in Mature Cortex. Cereb Cortex 2020; 31:1008-1031. [DOI: 10.1093/cercor/bhaa271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
The connectivity of cortical microcircuits is a major determinant of brain function; defining how activity propagates between different cell types is key to scaling our understanding of individual neuronal behavior to encompass functional networks. Furthermore, the integration of synaptic currents within a dendrite depends on the spatial organization of inputs, both excitatory and inhibitory. We identify a simple equation to estimate the number of potential anatomical contacts between neurons; finding a linear increase in potential connectivity with cable length and maximum spine length, and a decrease with overlapping volume. This enables us to predict the mean number of candidate synapses for reconstructed cells, including those realistically arranged. We identify an excess of potential local connections in mature cortical data, with densities of neurite higher than is necessary to reliably ensure the possible implementation of any given axo-dendritic connection. We show that the number of local potential contacts allows specific innervation of distinct dendritic compartments.
Collapse
Affiliation(s)
- A D Bird
- Frankfurt Institute for Advanced Studies, Frankfurt-am-Main 60438, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Frankfurt-am-Main 60528, Germany
| | - L H Deters
- Frankfurt Institute for Advanced Studies, Frankfurt-am-Main 60438, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Frankfurt-am-Main 60528, Germany
| | - H Cuntz
- Frankfurt Institute for Advanced Studies, Frankfurt-am-Main 60438, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Frankfurt-am-Main 60528, Germany
| |
Collapse
|
6
|
Huang S, Kirkwood A. Endocannabinoid Signaling Contributes to Experience-Induced Increase of Synaptic Release Sites From Parvalbumin Interneurons in Mouse Visual Cortex. Front Cell Neurosci 2020; 14:571133. [PMID: 33192316 PMCID: PMC7556304 DOI: 10.3389/fncel.2020.571133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
During postnatal development of the visual cortex between eye-opening to puberty, visual experience promotes a gradual increase in the strength of inhibitory synaptic connections from parvalbumin-positive interneurons (PV-INs) onto layer 2/3 pyramidal cells. However, the detailed connectivity properties and molecular mechanisms underlying these developmental changes are not well understood. Using dual-patch clamp in brain slices from G42 mice, we revealed that both connection probability and the number of synaptic release sites contributed to the enhancement of synaptic strength. The increase of release site number was hindered by dark rearing from eye-opening and rescued by 3-days re-exposure to the normal visual environment. The effect of light re-exposure on restoring synaptic release sites in dark reared mice was mimicked by the agonist of cannabinoid-1 (CB1) receptors and blocked by an antagonist of these receptors, suggesting a role for endocannabinoid signaling in light-induced maturation of inhibitory connectivity from PV-INs to pyramidal cells during postnatal development.
Collapse
Affiliation(s)
- Shiyong Huang
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, United States.,The Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Alfredo Kirkwood
- The Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
7
|
Ecker A, Romani A, Sáray S, Káli S, Migliore M, Falck J, Lange S, Mercer A, Thomson AM, Muller E, Reimann MW, Ramaswamy S. Data-driven integration of hippocampal CA1 synaptic physiology in silico. Hippocampus 2020; 30:1129-1145. [PMID: 32520422 PMCID: PMC7687201 DOI: 10.1002/hipo.23220] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022]
Abstract
The anatomy and physiology of monosynaptic connections in rodent hippocampal CA1 have been extensively studied in recent decades. Yet, the resulting knowledge remains disparate and difficult to reconcile. Here, we present a data‐driven approach to integrate the current state‐of‐the‐art knowledge on the synaptic anatomy and physiology of rodent hippocampal CA1, including axo‐dendritic innervation patterns, number of synapses per connection, quantal conductances, neurotransmitter release probability, and short‐term plasticity into a single coherent resource. First, we undertook an extensive literature review of paired recordings of hippocampal neurons and compiled experimental data on their synaptic anatomy and physiology. The data collected in this manner is sparse and inhomogeneous due to the diversity of experimental techniques used by different groups, which necessitates the need for an integrative framework to unify these data. To this end, we extended a previously developed workflow for the neocortex to constrain a unifying in silico reconstruction of the synaptic physiology of CA1 connections. Our work identifies gaps in the existing knowledge and provides a complementary resource toward a more complete quantification of synaptic anatomy and physiology in the rodent hippocampal CA1 region.
Collapse
Affiliation(s)
- András Ecker
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Campus Biotech, Geneva, Switzerland
| | - Armando Romani
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Campus Biotech, Geneva, Switzerland
| | - Sára Sáray
- Institute of Experimental Medicine, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Szabolcs Káli
- Institute of Experimental Medicine, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Joanne Falck
- UCL School of Pharmacy, University College London, London, UK
| | - Sigrun Lange
- UCL School of Pharmacy, University College London, London, UK.,School of Life Sciences, University of Westminster, London, UK
| | - Audrey Mercer
- UCL School of Pharmacy, University College London, London, UK
| | - Alex M Thomson
- UCL School of Pharmacy, University College London, London, UK
| | - Eilif Muller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Campus Biotech, Geneva, Switzerland
| | - Michael W Reimann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Campus Biotech, Geneva, Switzerland
| | - Srikanth Ramaswamy
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Campus Biotech, Geneva, Switzerland
| |
Collapse
|
8
|
Aubrey KR, Supplisson S. Heterogeneous Signaling at GABA and Glycine Co-releasing Terminals. Front Synaptic Neurosci 2018; 10:40. [PMID: 30524262 PMCID: PMC6232519 DOI: 10.3389/fnsyn.2018.00040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/12/2018] [Indexed: 11/14/2022] Open
Abstract
The corelease of several neurotransmitters from a single synaptic vesicle has been observed at many central synapses. Nevertheless, the signaling synergy offered by cotransmission and the mechanisms that maintain the optimal release and detection of neurotransmitters at mixed synapses remain poorly understood, thus limiting our ability to interpret changes in synaptic signaling and identify molecules important for plasticity. In the brainstem and spinal cord, GABA and glycine cotransmission is facilitated by a shared vesicular transporter VIAAT (also named VGAT), and occurs at many immature inhibitory synapses. As sensory and motor networks mature, GABA/glycine cotransmission is generally replaced by either pure glycinergic or GABAergic transmission, and the functional role for the continued corelease of GABA and glycine is unclear. Whether or not, and how, the GABA/glycine content is balanced in VIAAT-expressing vesicles from the same terminal, and how loading variability effects the strength of inhibitory transmission is not known. Here, we use a combination of loose-patch (LP) and whole-cell (WC) electrophysiology in cultured spinal neurons of GlyT2:eGFP mice to sample miniature inhibitory post synaptic currents (mIPSCs) that originate from individual GABA/glycine co-releasing synapses and develop a modeling approach to illustrate the gradual change in mIPSC phenotypes as glycine replaces GABA in vesicles. As a consistent GABA/glycine balance is predicted if VIAAT has access to both amino-acids, we test whether vesicle exocytosis from a single terminal evokes a homogeneous population of mixed mIPSCs. We recorded mIPSCs from 18 individual synapses and detected glycine-only mIPSCs in 4/18 synapses sampled. The rest (14/18) were co-releasing synapses that had a significant proportion of mixed GABA/glycine mIPSCs with a characteristic biphasic decay. The majority (9/14) of co-releasing synapses did not have a homogenous phenotype, but instead signaled with a combination of mixed and pure mIPSCs, suggesting that there is variability in the loading and/or storage of GABA and glycine at the level of individual vesicles. Our modeling predicts that when glycine replaces GABA in synaptic vesicles, the redistribution between the peak amplitude and charge transfer of mIPSCs acts to maintain the strength of inhibition while increasing the temporal precision of signaling.
Collapse
Affiliation(s)
- Karin R Aubrey
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris Paris, France.,Neurobiology of Pain Laboratory, Kolling Institute, Royal North Shore Hospital St. Leonards, NSW, Australia.,Pain Management Research Institute, Faculty of Medicine and Health, University of Sydney-Northern Clinical School St. Leonards, NSW, Australia
| | - Stéphane Supplisson
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris Paris, France
| |
Collapse
|
9
|
Pulido C, Marty A. Quantal Fluctuations in Central Mammalian Synapses: Functional Role of Vesicular Docking Sites. Physiol Rev 2017; 97:1403-1430. [DOI: 10.1152/physrev.00032.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/23/2022] Open
Abstract
Quantal fluctuations are an integral part of synaptic signaling. At the frog neuromuscular junction, Bernard Katz proposed that quantal fluctuations originate at “reactive sites” where specific structures of the presynaptic membrane interact with synaptic vesicles. However, the physical nature of reactive sites has remained unclear, both at the frog neuromuscular junction and at central synapses. Many central synapses, called simple synapses, are small structures containing a single presynaptic active zone and a single postsynaptic density of receptors. Several lines of evidence indicate that simple synapses may release several synaptic vesicles in response to a single action potential. However, in some synapses at least, each release event activates a significant fraction of the postsynaptic receptors, giving rise to a sublinear relation between vesicular release and postsynaptic current. Partial receptor saturation as well as synaptic jitter gives to simple synapse signaling the appearance of a binary process. Recent investigations of simple synapses indicate that the number of released vesicles follows binomial statistics, with a maximum reflecting the number of docking sites present in the active zone. These results suggest that at central synapses, vesicular docking sites represent the reactive sites proposed by Katz. The macromolecular architecture and molecular composition of docking sites are presently investigated with novel combinations of techniques. It is proposed that variations in docking site numbers are central in defining intersynaptic variability and that docking site occupancy is a key parameter regulating short-term synaptic plasticity.
Collapse
Affiliation(s)
- Camila Pulido
- Laboratory of Brain Physiology, CNRS UMR 8118, Paris Descartes University, Paris, France
| | - Alain Marty
- Laboratory of Brain Physiology, CNRS UMR 8118, Paris Descartes University, Paris, France
| |
Collapse
|
10
|
Younts TJ, Monday HR, Dudok B, Klein ME, Jordan BA, Katona I, Castillo PE. Presynaptic Protein Synthesis Is Required for Long-Term Plasticity of GABA Release. Neuron 2017; 92:479-492. [PMID: 27764673 DOI: 10.1016/j.neuron.2016.09.040] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/29/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022]
Abstract
Long-term changes of neurotransmitter release are critical for proper brain function. However, the molecular mechanisms underlying these changes are poorly understood. While protein synthesis is crucial for the consolidation of postsynaptic plasticity, whether and how protein synthesis regulates presynaptic plasticity in the mature mammalian brain remain unclear. Here, using paired whole-cell recordings in rodent hippocampal slices, we report that presynaptic protein synthesis is required for long-term, but not short-term, plasticity of GABA release from type 1 cannabinoid receptor (CB1)-expressing axons. This long-term depression of inhibitory transmission (iLTD) involves cap-dependent protein synthesis in presynaptic interneuron axons, but not somata. Translation is required during the induction, but not maintenance, of iLTD. Mechanistically, CB1 activation enhances protein synthesis via the mTOR pathway. Furthermore, using super-resolution STORM microscopy, we revealed eukaryotic ribosomes in CB1-expressing axon terminals. These findings suggest that presynaptic local protein synthesis controls neurotransmitter release during long-term plasticity in the mature mammalian brain.
Collapse
Affiliation(s)
- Thomas J Younts
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA.
| | - Hannah R Monday
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Barna Dudok
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1051, Hungary; School of Ph.D. Studies, Semmelweis University, Budapest 1085, Hungary
| | - Matthew E Klein
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1051, Hungary
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
11
|
Rovira-Esteban L, Péterfi Z, Vikór A, Máté Z, Szabó G, Hájos N. Morphological and physiological properties of CCK/CB1R-expressing interneurons in the basal amygdala. Brain Struct Funct 2017; 222:3543-3565. [PMID: 28391401 DOI: 10.1007/s00429-017-1417-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/30/2017] [Indexed: 12/31/2022]
Abstract
Principal neurons in cortical regions including the basal nucleus of the amygdala (BA) are innervated by several types of inhibitory cells, one of which expresses the neuropeptide cholecystokinin (CCK) and the type 1 cannabinoid receptor (CB1R). CCK/CB1R-expressing interneurons may have a profound impact on amygdalar function by controlling its output. However, very little is known about their properties, and therefore their role in circuit operation cannot be predicted. To characterize the CCK/CB1R-expressing interneurons in the BA, we combined in vitro electrophysiological recordings and neuroanatomical techniques in a transgenic mouse that expresses DsRed fluorescent protein under the control of the CCK promoter. We found that the majority of CCK/CB1R-positive interneurons expressed either the type 3 vesicular glutamate transporter (VGluT3) or the Ca2+ binding protein calbindin (Calb). VGluT3+ CCK/CB1R-expressing interneurons targeted the soma of principal neurons more often than Calb+ CCK/CB1R-expressing interneurons, but the dendritic morphology and membrane properties of these two neurochemically distinct interneuron types were not significantly different. The results of paired recordings showed that the unitary IPSC properties of VGluT3+ or Calb+ CCK/CB1R-expressing interneurons recorded in principal neurons were indistinguishable. We verified that endocannabinoids at the output synapses of CCK/CB1R-expressing interneurons could potently reduce the unitary IPSC magnitude. In summary, independent of the neurochemical content, CCK/CB1R-expressing interneurons have similar physiological and morphological properties, providing an endocannabinoid-sensitive synaptic inhibition onto the amygdalar principal neurons.
Collapse
Affiliation(s)
- Laura Rovira-Esteban
- Lendület Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltán Péterfi
- Lendület Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Vikór
- Lendület Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltán Máté
- Division of Medical Gene Technology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Division of Medical Gene Technology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Norbert Hájos
- Lendület Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
12
|
Veres JM, Nagy GA, Hájos N. Perisomatic GABAergic synapses of basket cells effectively control principal neuron activity in amygdala networks. eLife 2017; 6. [PMID: 28060701 PMCID: PMC5218536 DOI: 10.7554/elife.20721] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/16/2016] [Indexed: 12/17/2022] Open
Abstract
Efficient control of principal neuron firing by basket cells is critical for information processing in cortical microcircuits, however, the relative contribution of their perisomatic and dendritic synapses to spike inhibition is still unknown. Using in vitro electrophysiological paired recordings we reveal that in the mouse basal amygdala cholecystokinin- and parvalbumin-containing basket cells provide equally potent control of principal neuron spiking. We performed pharmacological manipulations, light and electron microscopic investigations to show that, although basket cells innervate the entire somato-denditic membrane surface of principal neurons, the spike controlling effect is achieved primarily via the minority of synapses targeting the perisomatic region. As the innervation patterns of individual basket cells on their different postsynaptic partners show high variability, the impact of inhibitory control accomplished by single basket cells is also variable. Our results show that both basket cell types can powerfully regulate the activity in amygdala networks predominantly via their perisomatic synapses. DOI:http://dx.doi.org/10.7554/eLife.20721.001
Collapse
Affiliation(s)
- Judit M Veres
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Gergő A Nagy
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Norbert Hájos
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
13
|
Younts TJ, Monday HR, Dudok B, Klein ME, Jordan BA, Katona I, Castillo PE. Presynaptic Protein Synthesis Is Required for Long-Term Plasticity of GABA Release. Neuron 2016. [PMID: 27764673 DOI: 10.1016/j.neuron.2016.09.040.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Long-term changes of neurotransmitter release are critical for proper brain function. However, the molecular mechanisms underlying these changes are poorly understood. While protein synthesis is crucial for the consolidation of postsynaptic plasticity, whether and how protein synthesis regulates presynaptic plasticity in the mature mammalian brain remain unclear. Here, using paired whole-cell recordings in rodent hippocampal slices, we report that presynaptic protein synthesis is required for long-term, but not short-term, plasticity of GABA release from type 1 cannabinoid receptor (CB1)-expressing axons. This long-term depression of inhibitory transmission (iLTD) involves cap-dependent protein synthesis in presynaptic interneuron axons, but not somata. Translation is required during the induction, but not maintenance, of iLTD. Mechanistically, CB1 activation enhances protein synthesis via the mTOR pathway. Furthermore, using super-resolution STORM microscopy, we revealed eukaryotic ribosomes in CB1-expressing axon terminals. These findings suggest that presynaptic local protein synthesis controls neurotransmitter release during long-term plasticity in the mature mammalian brain.
Collapse
Affiliation(s)
- Thomas J Younts
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA.
| | - Hannah R Monday
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Barna Dudok
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1051, Hungary; School of Ph.D. Studies, Semmelweis University, Budapest 1085, Hungary
| | - Matthew E Klein
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1051, Hungary
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
14
|
Aubrey KR, Drew GM, Jeong HJ, Lau BK, Vaughan CW. Endocannabinoids control vesicle release mode at midbrain periaqueductal grey inhibitory synapses. J Physiol 2016; 595:165-178. [PMID: 27461371 DOI: 10.1113/jp272292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/15/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The midbrain periaqueductal grey (PAG) forms part of an endogenous analgesic system which is tightly regulated by the neurotransmitter GABA. The role of endocannabinoids in regulating GABAergic control of this system was examined in rat PAG slices. Under basal conditions GABAergic neurotransmission onto PAG output neurons was multivesicular. Activation of the endocannabinoid system reduced GABAergic inhibition by reducing the probability of release and by shifting release to a univesicular mode. Blockade of endocannabinoid system unmasked a tonic control over the probability and mode of GABA release. These findings provides a mechanistic foundation for the control of the PAG analgesic system by disinhibition. ABSTRACT The midbrain periaqueductal grey (PAG) has a crucial role in coordinating endogenous analgesic responses to physiological and psychological stressors. Endocannabinoids are thought to mediate a form of stress-induced analgesia within the PAG by relieving GABAergic inhibition of output neurons, a process known as disinhibition. This disinhibition is thought to be achieved by a presynaptic reduction in GABA release probability. We examined whether other mechanisms have a role in endocannabinoid modulation of GABAergic synaptic transmission within the rat PAG. The group I mGluR agonist DHPG ((R,S)-3,5-dihydroxyphenylglycine) inhibited evoked IPSCs and increased their paired pulse ratio in normal external Ca2+ , and when release probability was reduced by lowering Ca2+ . However, the effect of DHPG on the coefficient of variation and kinetics of evoked IPSCs differed between normal and low Ca2+ . Lowering external Ca2+ had a similar effect on evoked IPSCs to that observed for DHPG in normal external Ca2+ . The low affinity GABAA receptor antagonist TPMPA ((1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid) inhibited evoked IPSCs to a greater extent in low than in normal Ca2+ . Together these findings indicate that the normal mode of GABA release is multivesicular within the PAG, and that DHPG and lowering external Ca2+ switch this to a univesicular mode. The effects of DHPG were mediated by mGlu5 receptor engagement of the retrograde endocannabinoid system. Blockade of endocannabinoid breakdown produced a similar shift in the mode of release. We conclude that endocannabinoids control both the mode and the probability of GABA release within the PAG.
Collapse
Affiliation(s)
- Karin R Aubrey
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, The University of Sydney and Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Geoffrey M Drew
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, The University of Sydney and Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Hyo-Jin Jeong
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, The University of Sydney and Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Benjamin K Lau
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, The University of Sydney and Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Christopher W Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, The University of Sydney and Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
15
|
Halassa MM, Acsády L. Thalamic Inhibition: Diverse Sources, Diverse Scales. Trends Neurosci 2016; 39:680-693. [PMID: 27589879 DOI: 10.1016/j.tins.2016.08.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/31/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
The thalamus is the major source of cortical inputs shaping sensation, action, and cognition. Thalamic circuits are targeted by two major inhibitory systems: the thalamic reticular nucleus (TRN) and extrathalamic inhibitory (ETI) inputs. A unifying framework of how these systems operate is currently lacking. Here, we propose that TRN circuits are specialized to exert thalamic control at different spatiotemporal scales. Local inhibition of thalamic spike rates prevails during attentional selection, whereas global inhibition more likely prevails during sleep. In contrast, the ETI (arising from basal ganglia, zona incerta (ZI), anterior pretectum, and pontine reticular formation) provides temporally precise and focal inhibition, impacting spike timing. Together, these inhibitory systems allow graded control of thalamic output, enabling thalamocortical operations to dynamically match ongoing behavioral demands.
Collapse
Affiliation(s)
- Michael M Halassa
- New York University Neuroscience Institute and the Departments of Psychiatry, Neuroscience and Physiology, New York University Langone Medical Center, New York, 10016, USA; Center for Neural Science, New York University, New York, 10016, USA.
| | - László Acsády
- Laboratory of Thalamus Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1083 Hungary.
| |
Collapse
|
16
|
Molnár G, Rózsa M, Baka J, Holderith N, Barzó P, Nusser Z, Tamás G. Human pyramidal to interneuron synapses are mediated by multi-vesicular release and multiple docked vesicles. eLife 2016; 5. [PMID: 27536876 PMCID: PMC4999310 DOI: 10.7554/elife.18167] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/15/2016] [Indexed: 01/08/2023] Open
Abstract
Classic theories link cognitive abilities to synaptic properties and human-specific biophysical features of synapses might contribute to the unparalleled performance of the human cerebral cortex. Paired recordings and multiple probability fluctuation analysis revealed similar quantal sizes, but 4-times more functional release sites in human pyramidal cell to fast-spiking interneuron connections compared to rats. These connections were mediated on average by three synaptic contacts in both species. Each presynaptic active zone (AZ) contains 6.2 release sites in human, but only 1.6 in rats. Electron microscopy (EM) and EM tomography showed that an AZ harbors 4 docked vesicles in human, but only a single one in rats. Consequently, a Katz's functional release site occupies ~0.012 μm(2) in the human presynaptic AZ and ~0.025 μm(2) in the rat. Our results reveal a robust difference in the biophysical properties of a well-defined synaptic connection of the cortical microcircuit of human and rodents.
Collapse
Affiliation(s)
- Gábor Molnár
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Márton Rózsa
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Judith Baka
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Noémi Holderith
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Pál Barzó
- Department of Neurosurgery, University of Szeged, Szeged, Hungary
| | - Zoltan Nusser
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Tamás
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| |
Collapse
|
17
|
Wendling F, Gerber U, Cosandier-Rimele D, Nica A, De Montigny J, Raineteau O, Kalitzin S, Lopes da Silva F, Benquet P. Brain (Hyper)Excitability Revealed by Optimal Electrical Stimulation of GABAergic Interneurons. Brain Stimul 2016; 9:919-932. [PMID: 27576186 DOI: 10.1016/j.brs.2016.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/29/2016] [Accepted: 07/10/2016] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Neurological disorders are often characterized by an excessive and prolonged imbalance between neural excitatory and inhibitory processes. An ubiquitous finding among these disorders is the disrupted function of inhibitory GABAergic interneurons. OBJECTIVE The objective is to propose a novel stimulation procedure able to evaluate the efficacy of inhibition imposed by GABAergic interneurons onto pyramidal cells from evoked responses observed in local field potentials (LFPs). METHODS Using a computational modeling approach combined with in vivo and in vitro electrophysiological recordings, we analyzed the impact of electrical extracellular, local, bipolar stimulation (ELBS) on brain tissue. We implemented the ELBS effects in a neuronal population model in which we can tune the excitation-inhibition ratio and we investigated stimulation-related parameters. Computer simulations led to sharp predictions regarding: i) the shape of evoked responses as observed in local field potentials, ii) the type of cells (pyramidal neurons and interneurons) contributing to these field responses and iii) the optimal tuning of stimulation parameters (intensity and frequency) to evoke meaningful responses. These predictions were tested in vivo (mouse). Neurobiological mechanisms were assessed in vitro (hippocampal slices). RESULTS Appropriately-tuned ELBS allows for preferential activation of GABAergic interneurons. A quantitative neural network excitability index (NNEI) is proposed. It is computed from stimulation-induced responses as reflected in local field potentials. NNEI was used in four patients with focal epilepsy. Results show that it can readily reveal hyperexcitable brain regions. CONCLUSION Well-tuned ELBS and NNEI can be used to locally probe brain regions and quantify the (hyper)excitability of the underlying brain tissue.
Collapse
Affiliation(s)
- F Wendling
- INSERM U1099, LTSI, Rennes, France; Université de Rennes 1, LTSI, Rennes, France.
| | - U Gerber
- Brain Research Institute, Zurich, Switzerland
| | | | - A Nica
- Neurology Department, Functional Explorations Department, Epilepsy Surgery Unit, CHU, Rennes, France
| | - J De Montigny
- INSERM U1099, LTSI, Rennes, France; Université de Rennes 1, LTSI, Rennes, France
| | - O Raineteau
- Brain Research Institute, Zurich, Switzerland
| | - S Kalitzin
- Foundation of Epilepsy Institutions of the Netherlands (SEIN), Heemstede, The Netherlands
| | - F Lopes da Silva
- Center of Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - P Benquet
- INSERM U1099, LTSI, Rennes, France; Université de Rennes 1, LTSI, Rennes, France
| |
Collapse
|
18
|
Valenzuela RA, Micheva KD, Kiraly M, Li D, Madison DV. Array tomography of physiologically-characterized CNS synapses. J Neurosci Methods 2016; 268:43-52. [PMID: 27141856 DOI: 10.1016/j.jneumeth.2016.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND The ability to correlate plastic changes in synaptic physiology with changes in synaptic anatomy has been very limited in the central nervous system because of shortcomings in existing methods for recording the activity of specific CNS synapses and then identifying and studying the same individual synapses on an anatomical level. NEW METHOD We introduce here a novel approach that combines two existing methods: paired neuron electrophysiological recording and array tomography, allowing for the detailed molecular and anatomical study of synapses with known physiological properties. RESULTS The complete mapping of a neuronal pair allows determining the exact number of synapses in the pair and their location. We have found that the majority of close appositions between the presynaptic axon and the postsynaptic dendrite in the pair contain synaptic specializations. The average release probability of the synapses between the two neurons in the pair is low, below 0.2, consistent with previous studies of these connections. Other questions, such as receptor distribution within synapses, can be addressed more efficiently by identifying only a subset of synapses using targeted partial reconstructions. In addition, time sensitive events can be captured with fast chemical fixation. COMPARISON WITH EXISTING METHODS Compared to existing methods, the present approach is the only one that can provide detailed molecular and anatomical information of electrophysiologically-characterized individual synapses. CONCLUSIONS This method will allow for addressing specific questions about the properties of identified CNS synapses, even when they are buried within a cloud of millions of other brain circuit elements.
Collapse
Affiliation(s)
- Ricardo A Valenzuela
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Kristina D Micheva
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Marianna Kiraly
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Dong Li
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Daniel V Madison
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA.
| |
Collapse
|
19
|
Buckmaster PS, Yamawaki R, Thind K. More Docked Vesicles and Larger Active Zones at Basket Cell-to-Granule Cell Synapses in a Rat Model of Temporal Lobe Epilepsy. J Neurosci 2016; 36:3295-308. [PMID: 26985038 PMCID: PMC4792940 DOI: 10.1523/jneurosci.4049-15.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 02/04/2016] [Indexed: 11/21/2022] Open
Abstract
Temporal lobe epilepsy is a common and challenging clinical problem, and its pathophysiological mechanisms remain unclear. One possibility is insufficient inhibition in the hippocampal formation where seizures tend to initiate. Normally, hippocampal basket cells provide strong and reliable synaptic inhibition at principal cell somata. In a rat model of temporal lobe epilepsy, basket cell-to-granule cell (BC→GC) synaptic transmission is more likely to fail, but the underlying cause is unknown. At some synapses, probability of release correlates with bouton size, active zone area, and number of docked vesicles. The present study tested the hypothesis that impaired GABAergic transmission at BC→GC synapses is attributable to ultrastructural changes. Boutons making axosomatic symmetric synapses in the granule cell layer were reconstructed from serial electron micrographs. BC→GC boutons were predicted to be smaller in volume, have fewer and smaller active zones, and contain fewer vesicles, including fewer docked vesicles. Results revealed the opposite. Compared with controls, epileptic pilocarpine-treated rats displayed boutons with over twice the average volume, active zone area, total vesicles, and docked vesicles and with more vesicles closer to active zones. Larger active zones in epileptic rats are consistent with previous reports of larger amplitude miniature IPSCs and larger BC→GC quantal size. Results of this study indicate that transmission failures at BC→GC synapses in epileptic pilocarpine-treated rats are not attributable to smaller boutons or fewer docked vesicles. Instead, processes following vesicle docking, including priming, Ca(2+) entry, or Ca(2+) coupling with exocytosis, might be responsible. SIGNIFICANCE STATEMENT One in 26 people develops epilepsy, and temporal lobe epilepsy is a common form. Up to one-third of patients are resistant to currently available treatments. This study tested a potential underlying mechanism for previously reported impaired inhibition in epileptic animals at basket cell-to-granule cell (BC→GC) synapses, which normally are reliable and strong. Electron microscopy was used to evaluate 3D ultrastructure of BC→GC synapses in a rat model of temporal lobe epilepsy. The hypothesis was that impaired synaptic transmission is attributable to smaller boutons, smaller synapses, and abnormally low numbers of synaptic vesicles. Results revealed the opposite. These findings suggest that impaired transmission at BC→GC synapses in epileptic rats is attributable to later steps in exocytosis following vesicle docking.
Collapse
Affiliation(s)
- Paul S Buckmaster
- Departments of Comparative Medicine and Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| | | | | |
Collapse
|
20
|
Lanore F, Silver RA. Extracting quantal properties of transmission at central synapses. NEUROMETHODS 2016; 113:193-211. [PMID: 30245548 DOI: 10.1007/978-1-4939-3411-9_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemical synapses enable neurons to communicate rapidly, process and filter signals and to store information. However, studying their functional properties is difficult because synaptic connections typically consist of multiple synaptic contacts that release vesicles stochastically and exhibit time-dependent behavior. Moreover, most central synapses are small and inaccessible to direct measurements. Estimation of synaptic properties from responses recorded at the soma is complicated by the presence of nonuniform release probability and nonuniform quantal properties. The presence of multivesicular release and postsynaptic receptor saturation at some synapses can also complicate the interpretation of quantal parameters. Multiple-probability fluctuation analysis (MPFA; also known as variance-mean analysis) is a method that has been developed for estimating synaptic parameters from the variance and mean amplitude of synaptic responses recorded at different release probabilities. This statistical approach, which incorporates nonuniform synaptic properties, has become widely used for studying synaptic transmission. In this chapter, we describe the statistical models used to extract quantal parameters and discuss their interpretation when applying MPFA.
Collapse
Affiliation(s)
- Frederic Lanore
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - R Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
21
|
The ubiquitous nature of multivesicular release. Trends Neurosci 2015; 38:428-38. [PMID: 26100141 DOI: 10.1016/j.tins.2015.05.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/20/2015] [Accepted: 05/24/2015] [Indexed: 11/21/2022]
Abstract
'Simplicity is prerequisite for reliability' (E.W. Dijkstra [1]) Presynaptic action potentials trigger the fusion of vesicles to release neurotransmitter onto postsynaptic neurons. Each release site was originally thought to liberate at most one vesicle per action potential in a probabilistic fashion, rendering synaptic transmission unreliable. However, the simultaneous release of several vesicles, or multivesicular release (MVR), represents a simple mechanism to overcome the intrinsic unreliability of synaptic transmission. MVR was initially identified at specialized synapses but is now known to be common throughout the brain. MVR determines the temporal and spatial dispersion of transmitter, controls the extent of receptor activation, and contributes to adapting synaptic strength during plasticity and neuromodulation. MVR consequently represents a widespread mechanism that extends the dynamic range of synaptic processing.
Collapse
|
22
|
Satake S, Inoue T, Imoto K. Synaptic Multivesicular Release in the Cerebellar Cortex: Its Mechanism and Role in Neural Encoding and Processing. THE CEREBELLUM 2015; 15:201-7. [PMID: 25971904 DOI: 10.1007/s12311-015-0677-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The number of synaptic vesicles released during fast release plays a major role in determining the strength of postsynaptic response. However, it remains unresolved how the number of vesicles released in response to action potentials is controlled at a single synapse. Recent findings suggest that the Cav2.1 subtype (P/Q-type) of voltage-gated calcium channels is responsible for inducing presynaptic multivesicular release (MVR) at rat cerebellar glutamatergic synapses from granule cells to molecular layer interneurons. The topographical distance from Cav2.1 channels to exocytotic Ca(2+) sensors is a critical determinant of MVR. In physiological trains of presynaptic neurons, MVR significantly impacts the excitability of postsynaptic neurons, not only by increasing peak amplitude but also by prolonging decay time of the postsynaptic currents. Therefore, MVR contributes additional complexity to neural encoding and processing in the cerebellar cortex.
Collapse
Affiliation(s)
- Shin'Ichiro Satake
- Department of Information Physiology, National Institute for Physiological Sciences (NIPS), 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan.
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan.
| | - Tsuyoshi Inoue
- Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama, 700-8530, Japan
| | - Keiji Imoto
- Department of Information Physiology, National Institute for Physiological Sciences (NIPS), 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan
| |
Collapse
|
23
|
Qi G, Radnikow G, Feldmeyer D. Electrophysiological and morphological characterization of neuronal microcircuits in acute brain slices using paired patch-clamp recordings. J Vis Exp 2015:52358. [PMID: 25650985 DOI: 10.3791/52358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The combination of patch clamp recordings from two (or more) synaptically coupled neurons (paired recordings) in acute brain slice preparations with simultaneous intracellular biocytin filling allows a correlated analysis of their structural and functional properties. With this method it is possible to identify and characterize both pre- and postsynaptic neurons by their morphology and electrophysiological response pattern. Paired recordings allow studying the connectivity patterns between these neurons as well as the properties of both chemical and electrical synaptic transmission. Here, we give a step-by-step description of the procedures required to obtain reliable paired recordings together with an optimal recovery of the neuron morphology. We will describe how pairs of neurons connected via chemical synapses or gap junctions are identified in brain slice preparations. We will outline how neurons are reconstructed to obtain their 3D morphology of the dendritic and axonal domain and how synaptic contacts are identified and localized. We will also discuss the caveats and limitations of the paired recording technique, in particular those associated with dendritic and axonal truncations during the preparation of brain slices because these strongly affect connectivity estimates. However, because of the versatility of the paired recording approach it will remain a valuable tool in characterizing different aspects of synaptic transmission at identified neuronal microcircuits in the brain.
Collapse
Affiliation(s)
- Guanxiao Qi
- Institute of Neuroscience and Medicine (INM-2), Research Centre Jülich
| | - Gabriele Radnikow
- Institute of Neuroscience and Medicine (INM-2), Research Centre Jülich
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine (INM-2), Research Centre Jülich; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, JARA, RWTH Aachen University;
| |
Collapse
|
24
|
Pulido C, Trigo F, Llano I, Marty A. Vesicular Release Statistics and Unitary Postsynaptic Current at Single GABAergic Synapses. Neuron 2015; 85:159-172. [DOI: 10.1016/j.neuron.2014.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
|
25
|
Abstract
Although Renshaw cells (RCs) were discovered over half a century ago, their precise role in recurrent inhibition and ability to modulate motoneuron excitability have yet to be established. Indirect measurements of recurrent inhibition have suggested only a weak modulatory effect but are limited by the lack of observed motoneuron responses to inputs from single RCs. Here we present dual recordings between connected RC-motoneuron pairs, performed on mouse spinal cord. Motoneuron responses demonstrated that Renshaw synapses elicit large inhibitory conductances and show short-term potentiation. Anatomical reconstruction, combined with a novel method of quantal analysis, showed that the strong inhibitory input from RCs results from the large number of synaptic contacts that they make onto individual motoneurons. We used the NEURON simulation environment to construct realistic electrotonic models, which showed that inhibitory conductances from Renshaw inputs exert considerable shunting effects in motoneurons and reduce the frequency of spikes generated by excitatory inputs. This was confirmed experimentally by showing that excitation of a single RC or selective activation of the recurrent inhibitory pathway to generate equivalent inhibitory conductances both suppress motoneuron firing. We conclude that recurrent inhibition is remarkably effective, in that a single action potential from one RC is sufficient to silence a motoneuron. Although our results may differ from previous indirect observations, they underline a need for a reevaluation of the role that RCs perform in one of the first neuronal circuits to be discovered.
Collapse
|
26
|
Stepanyuk A, Borisyuk A, Belan P. Maximum likelihood estimation of biophysical parameters of synaptic receptors from macroscopic currents. Front Cell Neurosci 2014; 8:303. [PMID: 25324721 PMCID: PMC4183100 DOI: 10.3389/fncel.2014.00303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/09/2014] [Indexed: 11/13/2022] Open
Abstract
Dendritic integration and neuronal firing patterns strongly depend on biophysical properties of synaptic ligand-gated channels. However, precise estimation of biophysical parameters of these channels in their intrinsic environment is complicated and still unresolved problem. Here we describe a novel method based on a maximum likelihood approach that allows to estimate not only the unitary current of synaptic receptor channels but also their multiple conductance levels, kinetic constants, the number of receptors bound with a neurotransmitter, and the peak open probability from experimentally feasible number of postsynaptic currents. The new method also improves the accuracy of evaluation of unitary current as compared to the peak-scaled non-stationary fluctuation analysis, leading to a possibility to precisely estimate this important parameter from a few postsynaptic currents recorded in steady-state conditions. Estimation of unitary current with this method is robust even if postsynaptic currents are generated by receptors having different kinetic parameters, the case when peak-scaled non-stationary fluctuation analysis is not applicable. Thus, with the new method, routinely recorded postsynaptic currents could be used to study the properties of synaptic receptors in their native biochemical environment.
Collapse
Affiliation(s)
- Andrey Stepanyuk
- Laboratory of Molecular Biophysics, Bogomoletz Institute of Physiology Kiev, Ukraine ; State Key Laboratory of Molecular and Cellular Biology, Bogomoletz Institute of Physiology Kiev, Ukraine
| | - Anya Borisyuk
- Laboratory of Molecular Biophysics, Bogomoletz Institute of Physiology Kiev, Ukraine ; State Key Laboratory of Molecular and Cellular Biology, Bogomoletz Institute of Physiology Kiev, Ukraine
| | - Pavel Belan
- Laboratory of Molecular Biophysics, Bogomoletz Institute of Physiology Kiev, Ukraine ; State Key Laboratory of Molecular and Cellular Biology, Bogomoletz Institute of Physiology Kiev, Ukraine
| |
Collapse
|
27
|
Kerekes BP, Tóth K, Kaszás A, Chiovini B, Szadai Z, Szalay G, Pálfi D, Bagó A, Spitzer K, Rózsa B, Ulbert I, Wittner L. Combined two-photon imaging, electrophysiological, and anatomical investigation of the human neocortex in vitro. NEUROPHOTONICS 2014; 1:011013. [PMID: 26157969 PMCID: PMC4478968 DOI: 10.1117/1.nph.1.1.011013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 05/06/2023]
Abstract
Spontaneous synchronous population activity (SPA) can be detected by electrophysiological methods in cortical slices of epileptic patients, maintained in a physiological medium in vitro. In order to gain additional spatial information about the network mechanisms involved in the SPA generation, we combined electrophysiological studies with two-photon imaging. Neocortical slices prepared from postoperative tissue of epileptic and tumor patients were maintained in a dual perfusion chamber in a physiological incubation medium. SPA was recorded with a 24-channel extracellular linear microelectrode covering all neocortical layers. After identifying the electrophysiologically active regions of the slice, bolus loading of neuronal and glial markers was applied on the tissue. SPA-related [Formula: see text] transients were detected in a large population of neighboring neurons with two-photon microscopy, simultaneous with extracellular SPA and intracellular whole-cell patch-clamp recordings. The intracellularly recorded cells were filled for subsequent anatomy. The cells were reconstructed in three dimensions and examined with light- and transmission electron microscopy. Combining high spatial resolution two-photon [Formula: see text] imaging techniques and high temporal resolution extra- and intracellular electrophysiology with cellular anatomy may permit a deeper understanding of the structural and functional properties of the human neocortex.
Collapse
Affiliation(s)
- Bálint Péter Kerekes
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, H-1083 Budapest, Práter utca 50/a, Hungary
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Institute of Cognitive Neuroscience and Psychology, Budapest, Hungary
| | - Kinga Tóth
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Institute of Cognitive Neuroscience and Psychology, Budapest, Hungary
| | - Attila Kaszás
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, H-1083 Budapest, Práter utca 50/a, Hungary
- Two-Photon Imaging Center, Hungarian Academy of Sciences, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Chiovini
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, H-1083 Budapest, Práter utca 50/a, Hungary
- Two-Photon Imaging Center, Hungarian Academy of Sciences, Institute of Experimental Medicine, Budapest, Hungary
| | - Zoltán Szadai
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, H-1083 Budapest, Práter utca 50/a, Hungary
- Two-Photon Imaging Center, Hungarian Academy of Sciences, Institute of Experimental Medicine, Budapest, Hungary
| | - Gergely Szalay
- Two-Photon Imaging Center, Hungarian Academy of Sciences, Institute of Experimental Medicine, Budapest, Hungary
| | - Dénes Pálfi
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, H-1083 Budapest, Práter utca 50/a, Hungary
- Two-Photon Imaging Center, Hungarian Academy of Sciences, Institute of Experimental Medicine, Budapest, Hungary
| | - Attila Bagó
- National Institute of Clinical Neuroscience, Department of Neurooncology, Budapest, Hungary
| | - Klaudia Spitzer
- Two-Photon Imaging Center, Hungarian Academy of Sciences, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Rózsa
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, H-1083 Budapest, Práter utca 50/a, Hungary
- Two-Photon Imaging Center, Hungarian Academy of Sciences, Institute of Experimental Medicine, Budapest, Hungary
| | - István Ulbert
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, H-1083 Budapest, Práter utca 50/a, Hungary
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Institute of Cognitive Neuroscience and Psychology, Budapest, Hungary
- Address all correspondence to: István Ulbert, E-mail:
| | - Lucia Wittner
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Institute of Cognitive Neuroscience and Psychology, Budapest, Hungary
- National Institute of Clinical Neuroscience, Department of Neurooncology, Budapest, Hungary
| |
Collapse
|
28
|
Scimemi A. Plasticity of GABA transporters: an unconventional route to shape inhibitory synaptic transmission. Front Cell Neurosci 2014; 8:128. [PMID: 24860430 PMCID: PMC4026733 DOI: 10.3389/fncel.2014.00128] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/22/2014] [Indexed: 11/13/2022] Open
Abstract
The brain relies on GABAergic neurons to control the ongoing activity of neuronal networks. GABAergic neurons control the firing pattern of excitatory cells, the temporal structure of membrane potential oscillations and the time window for integration of synaptic inputs. These actions require a fine control of the timing of GABA receptor activation which, in turn, depends on the precise timing of GABA release from pre-synaptic terminals and GABA clearance from the extracellular space. Extracellular GABA is not subject to enzymatic breakdown, and its clearance relies entirely on diffusion and uptake by specific transporters. In contrast to glutamate transporters, GABA transporters are abundantly expressed in neuronal pre-synaptic terminals. GABA transporters move laterally within the plasma membrane and are continuously trafficked to/from intracellular compartments. It is hypothesized that due to their proximity to GABA release sites, changes in the concentration and lateral mobility of GABA transporters may have a significant effect on the time course of the GABA concentration profile in and out of the synaptic cleft. To date, this hypothesis remains to be tested. Here we use 3D Monte Carlo reaction-diffusion simulations to analyze how changes in the density of expression and lateral mobility of GABA transporters in the cell membrane affect the extracellular GABA concentration profile and the activation of GABA receptors. Our results indicate that these manipulations mainly alter the GABA concentration profile away from the synaptic cleft. These findings provide novel insights into how the ability of GABA transporters to undergo plastic changes may alter the strength of GABAergic signals and the activity of neuronal networks in the brain.
Collapse
|
29
|
Stepanyuk AR, Borisyuk AL, Tsugorka TM, Belan PV. Different pools of postsynaptic GABAA receptors mediate inhibition evoked by low- and high-frequency presynaptic stimulation at hippocampal synapses. Synapse 2014; 68:344-54. [PMID: 24677449 DOI: 10.1002/syn.21742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/16/2014] [Accepted: 03/21/2014] [Indexed: 11/12/2022]
Abstract
Patterns of short-term synaptic plasticity could considerably differ between synapses of the same axon. This may lead to separation of synaptic receptors transmitting either low- or high-frequency signals and, therefore, may have functional consequences for the information transfer in the brain. Here, we estimated a degree of such separation at hippocampal GABAergic synapses using a use-dependent GABAA receptor antagonist, picrotoxin, to selectively suppress a pool of GABAA receptors monosynaptically activated during the low-frequency stimulation. The relative changes in postsynaptic responses evoked by the high-frequency stimulation before and after such block were used to estimate the contribution of this GABAA receptor pool to synaptic transmission at high frequencies. Using this approach, we have shown that IPSCs evoked by low-frequency (0.2 Hz) stimulation and asynchronous currents evoked by high-frequency (20-40 Hz) stimulation are mediated by different pools of postsynaptic GABAA receptors. Thus, our findings suggest that inhibition produced by a single hippocampal interneuron may be selectively routed to different postsynaptic targets depending on the presynaptic discharge frequency.
Collapse
Affiliation(s)
- Andrey R Stepanyuk
- Department of General Physiology of the Nervous System, Bogomoletz Institute of Physiology, 4 Bogomoletz street, Kiev, 01024, Ukraine; State Key Laboratory of Molecular and Cellular Biology, Bogomoletz Institute of Physiology, 4 Bogomoletz street, Kiev, 01024, Ukraine
| | | | | | | |
Collapse
|
30
|
Takács VT, Szőnyi A, Freund TF, Nyiri G, Gulyás AI. Quantitative ultrastructural analysis of basket and axo-axonic cell terminals in the mouse hippocampus. Brain Struct Funct 2014; 220:919-40. [DOI: 10.1007/s00429-013-0692-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/17/2013] [Indexed: 01/20/2023]
|
31
|
Activation of extrasynaptic NMDARs at individual parallel fiber-molecular layer interneuron synapses in cerebellum. J Neurosci 2013; 33:16323-33. [PMID: 24107963 DOI: 10.1523/jneurosci.1971-13.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
NMDA receptors (NMDARs) expressed by cerebellar molecular layer interneurons (MLIs) are not activated by single exocytotic events but can respond to glutamate spillover following coactivation of adjacent parallel fibers (PFs), indicating that NMDARs are perisynaptic. Several types of synaptic plasticity rely on these receptors but whether they are activated at isolated synapses is not known. Using a combination of electrophysiological and optical recording techniques in acute slices of rat cerebellum, along with modeling, we find that repetitive activation of single PF-MLI synapses can activate NMDARs in MLIs. High-frequency stimulation, multivesicular release (MVR), or asynchronous release can each activate NMDARs. Frequency facilitation was found at all PF-MLI synapses but, while some showed robust MVR with increased release probability, most were limited to univesicular release. Together, these results reveal a functional diversity of PF synapses, which use different mechanisms to activate NMDARs.
Collapse
|
32
|
Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. Neuron 2013; 78:498-509. [PMID: 23583622 DOI: 10.1016/j.neuron.2013.02.036] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2013] [Indexed: 12/13/2022]
Abstract
Neuroligins are postsynaptic cell-adhesion molecules that interact with presynaptic neurexins. Rare mutations in neuroligins and neurexins predispose to autism, including a neuroligin-3 amino acid substitution (R451C) and a neuroligin-3 deletion. Previous analyses showed that neuroligin-3 R451C-knockin mice exhibit robust synaptic phenotypes but failed to uncover major changes in neuroligin-3 knockout mice, questioning the notion that a common synaptic mechanism mediates autism pathogenesis in patients with these mutations. Here, we used paired recordings in mice carrying these mutations to measure synaptic transmission at GABAergic synapses formed by hippocampal parvalbumin- and cholecystokinin-expressing basket cells onto pyramidal neurons. We demonstrate that in addition to unique gain-of-function effects produced by the neuroligin-3 R451C-knockin but not the neuroligin-3 knockout mutation, both mutations dramatically impaired tonic but not phasic endocannabinoid signaling. Our data thus suggest that neuroligin-3 is specifically required for tonic endocannabinoid signaling, raising the possibility that alterations in endocannabinoid signaling may contribute to autism pathophysiology.
Collapse
|
33
|
Mehta B, Snellman J, Chen S, Li W, Zenisek D. Synaptic ribbons influence the size and frequency of miniature-like evoked postsynaptic currents. Neuron 2013; 77:516-27. [PMID: 23395377 DOI: 10.1016/j.neuron.2012.11.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 12/27/2022]
Abstract
Nonspiking cells of several sensory systems respond to stimuli with graded changes in neurotransmitter release and possess specialized synaptic ribbons. Here, we show that manipulations to synaptic ribbons caused dramatic effects on mEPSC-like (mlEPSC) amplitude and frequency. Damage to rod-bipolar cell ribbons using fluorophore-assisted light inactivation resulted in the immediate reduction of mlEPSC amplitude and frequency, whereas the first evoked response after damage remained largely intact. The reduction in amplitude could not be recovered by increasing release frequency after ribbon damage. In parallel experiments, we looked at mlEPSCs from cones of hibernating ground squirrels, which exhibit dramatically smaller ribbons than awake animals. Fewer and smaller mlEPSCs were observed postsynaptic to cones from hibernating animals, although depolarized cones were able to generate larger mlEPSCs. Our results indicate that ribbon size may influence mlEPSC frequency and support a role for ribbons in coordinating multivesicular release.
Collapse
Affiliation(s)
- Bhupesh Mehta
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, Sterling Hall of Medicine, Room B147, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
34
|
Ma Y, Prince DA. Functional alterations in GABAergic fast-spiking interneurons in chronically injured epileptogenic neocortex. Neurobiol Dis 2012; 47:102-13. [PMID: 22484482 DOI: 10.1016/j.nbd.2012.03.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/15/2012] [Accepted: 03/21/2012] [Indexed: 11/29/2022] Open
Abstract
Progress toward developing effective prophylaxis and treatment of posttraumatic epilepsy depends on a detailed understanding of the basic underlying mechanisms. One important factor contributing to epileptogenesis is decreased efficacy of GABAergic inhibition. Here we tested the hypothesis that the output of neocortical fast-spiking (FS) interneurons onto postsynaptic targets would be decreased in the undercut (UC) model of chronic posttraumatic epileptogenesis. Using dual whole-cell recordings in layer IV barrel cortex, we found a marked increase in the failure rate and a very large reduction in the amplitude of unitary inhibitory postsynaptic currents (uIPSCs) from FS cells to excitatory regular spiking (RS) neurons and neighboring FS cells. Assessment of the paired pulse ratio and presumed quantal release showed that there was a significant, but relatively modest, decrease in synaptic release probability and a non-significant reduction in quantal size. A reduced density of boutons on axons of biocytin-filled UC FS cells, together with a higher coefficient of variation of uIPSC amplitude in RS cells, suggested that the number of functional synapses presynaptically formed by FS cells may be reduced. Given the marked reduction in synaptic strength, other defects in the presynaptic vesicle release machinery likely occur, as well.
Collapse
Affiliation(s)
- Yunyong Ma
- Dept. of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| | | |
Collapse
|
35
|
Riebe I, Hanse E. Development of synaptic connectivity onto interneurons in stratum radiatum in the CA1 region of the rat hippocampus. BMC Neurosci 2012; 13:14. [PMID: 22276909 PMCID: PMC3398264 DOI: 10.1186/1471-2202-13-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/25/2012] [Indexed: 11/10/2022] Open
Abstract
Background The impact of a given presynaptic neuron on the firing probability of the postsynaptic neuron critically depends on the number of functional release sites that connect the two neurons. One way of determining the average functional synaptic connectivity onto a postsynaptic neuron is to compare the amplitudes of action potential dependent spontaneous synaptic currents with the amplitude of the synaptic currents that are independent of action potentials ("minis"). With this method it has been found that average synaptic connectivity between glutamatergic CA3 and CA1 pyramidal cells increases from single connections in the neonatal rat, to multiple connections in the young adult rat. On the other hand, γ-aminobutyric acid (GABA)ergic interneurons form multiple connections onto CA1 pyramidal cells already in the neonatal rat, and the degree of multiple GABAergic connectivity is preserved into adulthood. In the present study, we have examined the development of glutamate and GABA connectivity onto GABAergic CA1 stratum radiatum interneurons in the hippocampal slice, and compared this to the connectivity onto CA1 pyramidal neurons. Results In GABAergic interneurons in the CA1 stratum radiatum, irrespective of developmental stage, we found that the average amplitude of action potential dependent spontaneous AMPA receptor-mediated synaptic currents were of the same magnitude as the mini AMPA receptor mediated synaptic currents. This finding indicates that these GABAergic interneurons, in contrast to the CA1 pyramidal neurons, preserve single glutamate connectivity throughout development. For GABA connectivity, on the other hand, we found multiple functional synaptic connections onto the interneurons, as onto the pyramidal cells. Conclusions The results presented here confirm that glutamate and GABA synaptic connectivity develop very differently in the hippocampal CA1 region. Thus, whereas average GABA connectivity is multiple throughout the development, glutamate connectivity is unitary early in development. Our results further suggest that the development of glutamate synaptic connectivity differs markedly between pyramidal cells and GABAergic interneurons in stratum radiatum, such that a given presynaptic glutamatergic cell appears not allowed to increase its connectivity onto the postsynaptic stratum radiatum interneuron, as it may do onto the postsynaptic CA1 pyramidal cell.
Collapse
Affiliation(s)
- Ilse Riebe
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
| | | |
Collapse
|
36
|
Stepanyuk AR, Borisyuk AL, Belan PV. Efficient maximum likelihood estimation of kinetic rate constants from macroscopic currents. PLoS One 2012; 6:e29731. [PMID: 22242142 PMCID: PMC3248447 DOI: 10.1371/journal.pone.0029731] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/03/2011] [Indexed: 01/24/2023] Open
Abstract
A new method is described that accurately estimates kinetic constants, conductance and number of ion channels from macroscopic currents. The method uses both the time course and the strength of correlations between different time points of macroscopic currents and utilizes the property of semiseparability of covariance matrix for computationally efficient estimation of current likelihood and its gradient. The number of calculation steps scales linearly with the number of channel states as opposed to the cubic dependence in a previously described method. Together with the likelihood gradient evaluation, which is almost independent of the number of model parameters, the new approach allows evaluation of kinetic models with very complex topologies. We demonstrate applicability of the method to analysis of synaptic currents by estimating accurately rate constants of a 7-state model used to simulate GABAergic macroscopic currents.
Collapse
Affiliation(s)
- Andrey R. Stepanyuk
- Bogomoletz Institute of Physiology, Kiev, Ukraine
- State Key Laboratory of Molecular and Cellular Biology, Kiev, Ukraine
| | - Anya L. Borisyuk
- Bogomoletz Institute of Physiology, Kiev, Ukraine
- State Key Laboratory of Molecular and Cellular Biology, Kiev, Ukraine
| | - Pavel V. Belan
- Bogomoletz Institute of Physiology, Kiev, Ukraine
- State Key Laboratory of Molecular and Cellular Biology, Kiev, Ukraine
- * E-mail:
| |
Collapse
|
37
|
Nagode DA, Tang AH, Karson MA, Klugmann M, Alger BE. Optogenetic release of ACh induces rhythmic bursts of perisomatic IPSCs in hippocampus. PLoS One 2011; 6:e27691. [PMID: 22110723 PMCID: PMC3218010 DOI: 10.1371/journal.pone.0027691] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/23/2011] [Indexed: 11/17/2022] Open
Abstract
Acetylcholine (ACh) influences a vast array of phenomena in cortical systems. It alters many ionic conductances and neuronal firing behavior, often by regulating membrane potential oscillations in populations of cells. Synaptic inhibition has crucial roles in many forms of oscillation, and cholinergic mechanisms regulate both oscillations and synaptic inhibition. In vitro investigations using bath-application of cholinergic receptor agonists, or bulk tissue electrical stimulation to release endogenous ACh, have led to insights into cholinergic function, but questions remain because of the relative lack of selectivity of these forms of stimulation. To investigate the effects of selective release of ACh on interneurons and oscillations, we used an optogenetic approach in which the light-sensitive non-selective cation channel, Channelrhodopsin2 (ChR2), was virally delivered to cholinergic projection neurons in the medial septum/diagonal band of Broca (MS/DBB) of adult mice expressing Cre-recombinase under the control of the choline-acetyltransferase (ChAT) promoter. Acute hippocampal slices obtained from these animals weeks later revealed ChR2 expression in cholinergic axons. Brief trains of blue light pulses delivered to untreated slices initiated bursts of ACh-evoked, inhibitory post-synaptic currents (L-IPSCs) in CA1 pyramidal cells that lasted for 10's of seconds after the light stimulation ceased. L-IPSC occurred more reliably in slices treated with eserine and a very low concentration of 4-AP, which were therefore used in most experiments. The rhythmic, L-IPSCs were driven primarily by muscarinic ACh receptors (mAChRs), and could be suppressed by endocannabinoid release from pyramidal cells. Finally, low-frequency oscillations (LFOs) of local field potentials (LFPs) were significantly cross-correlated with the L-IPSCs, and reversal of the LFPs near s. pyramidale confirmed that the LFPs were driven by perisomatic inhibition. This optogenetic approach may be a useful complementary technique in future investigations of endogenous ACh effects.
Collapse
Affiliation(s)
- Daniel A. Nagode
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Program in Molecular Medicine, Graduate Program in Life Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Ai-Hui Tang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Program in Neuroscience, Graduate Program in Life Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Miranda A. Karson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Program in Neuroscience, Graduate Program in Life Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Matthias Klugmann
- Translational Neuroscience Facility, University of New South Wales, Sydney, New South Wales, Australia
| | - Bradley E. Alger
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Program in Molecular Medicine, Graduate Program in Life Sciences, University of Maryland, Baltimore, Maryland, United States of America
- Program in Neuroscience, Graduate Program in Life Sciences, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
38
|
Inhibitory synapse dynamics: coordinated presynaptic and postsynaptic mobility and the major contribution of recycled vesicles to new synapse formation. J Neurosci 2011; 31:10481-93. [PMID: 21775594 DOI: 10.1523/jneurosci.6023-10.2011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dynamics of GABAergic synaptic components have been studied previously over milliseconds to minutes, revealing mobility of postsynaptic scaffolds and receptors. Here we image inhibitory synapses containing fluorescently tagged postsynaptic scaffold Gephyrin, together with presynaptic vesicular GABA transporter (VGAT) or postsynaptic GABA(A) receptor γ2 subunit (GABA(A)Rγ2), over seconds to days in cultured rat hippocampal neurons, revealing modes of inhibitory synapse formation and remodeling. Entire synapses were mobile, translocating rapidly within a confined region and exhibiting greater nonstochastic motion over multihour periods. Presynaptic and postsynaptic components moved in unison, maintaining close apposition while translocating distances of several micrometers. An observed flux in the density of synaptic puncta partially resulted from the apparent merging and splitting of preexisting clusters. De novo formation of inhibitory synapses was observed, marked by the appearance of stably apposed Gephyrin and VGAT clusters at sites previously lacking either component. Coclustering of GABA(A)Rγ2 supports the identification of such new clusters as synapses. Nascent synapse formation occurred by gradual accumulation of components over several hours, with VGAT clustering preceding that of Gephyrin and GABA(A)Rγ2. Comparing VGAT labeling by active uptake of a luminal domain antibody with post hoc immunocytochemistry indicated that recycling vesicles from preexisting boutons significantly contribute to vesicle pools at the majority of new inhibitory synapses. Although new synapses formed primarily on dendrite shafts, some also formed on dendritic protrusions, without apparent interconversion. Altogether, the long-term imaging of GABAergic presynaptic and postsynaptic components reveals complex dynamics and perpetual remodeling with implications for mechanisms of assembly and synaptic integration.
Collapse
|
39
|
Rudolph S, Overstreet-Wadiche L, Wadiche JI. Desynchronization of multivesicular release enhances Purkinje cell output. Neuron 2011; 70:991-1004. [PMID: 21658590 DOI: 10.1016/j.neuron.2011.03.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2011] [Indexed: 10/18/2022]
Abstract
The release of neurotransmitter-filled vesicles after action potentials occurs with discrete time courses: submillisecond phasic release that can be desynchronized by activity followed by "delayed release" that persists for tens of milliseconds. Delayed release has a well-established role in synaptic integration, but it is not clear whether desynchronization of phasic release has physiological consequences. At the climbing fiber to Purkinje cell synapse, the synchronous fusion of multiple vesicles is critical for generating complex spikes. Here we show that stimulation at physiological frequencies drives the temporal dispersion of vesicles undergoing multivesicular release, resulting in a slowing of the EPSC on the millisecond timescale. Remarkably, these changes in EPSC kinetics robustly alter the Purkinje cell complex spike in a manner that promotes axonal propagation of individual spikelets. Thus, desynchronization of multivesicular release enhances the precise and efficient information transfer by complex spikes.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Biology, University of Freiburg, 79104 Freiburg, Germany
| | | | | |
Collapse
|
40
|
Grantyn R, Henneberger C, Jüttner R, Meier JC, Kirischuk S. Functional hallmarks of GABAergic synapse maturation and the diverse roles of neurotrophins. Front Cell Neurosci 2011; 5:13. [PMID: 21772813 PMCID: PMC3131524 DOI: 10.3389/fncel.2011.00013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/17/2011] [Indexed: 12/03/2022] Open
Abstract
Functional impairment of the adult brain can result from deficits in the ontogeny of GABAergic synaptic transmission. Gene defects underlying autism spectrum disorders, Rett’s syndrome or some forms of epilepsy, but also a diverse set of syndromes accompanying perinatal trauma, hormonal imbalances, intake of sleep-inducing or mood-improving drugs or, quite common, alcohol intake during pregnancy can alter GABA signaling early in life. The search for therapeutically relevant endogenous molecules or exogenous compounds able to alleviate the consequences of dysfunction of GABAergic transmission in the embryonic or postnatal brain requires a clear understanding of its site- and state-dependent development. At the level of single synapses, it is necessary to discriminate between presynaptic and postsynaptic alterations, and to define parameters that can be regarded as both suitable and accessible for the quantification of developmental changes. Here we focus on the performance of GABAergic synapses in two brain structures, the hippocampus and the superior colliculus, describe some novel aspects of neurotrophin effects during the development of GABAergic synaptic transmission and examine the applicability of the following rules: (1) synaptic transmission starts with GABA, (2) nascent/immature GABAergic synapses operate in a ballistic mode (multivesicular release), (3) immature synaptic terminals release vesicles with higher probability than mature synapses, (4) immature GABAergic synapses are prone to paired pulse and tetanic depression, (5) synapse maturation is characterized by an increasing dominance of synchronous over asynchronous release, (6) in immature neurons GABA acts as a depolarizing transmitter, (7) synapse maturation implies inhibitory postsynaptic current shortening due to an increase in alpha1 subunit expression, (8) extrasynaptic (tonic) conductances can inhibit the development of synaptic (phasic) GABA actions.
Collapse
Affiliation(s)
- Rosemarie Grantyn
- Institute of Neurophysiology, University Medicine Charité Berlin, Germany
| | | | | | | | | |
Collapse
|
41
|
Barberis A, Petrini EM, Mozrzymas JW. Impact of synaptic neurotransmitter concentration time course on the kinetics and pharmacological modulation of inhibitory synaptic currents. Front Cell Neurosci 2011; 5:6. [PMID: 21734864 PMCID: PMC3123770 DOI: 10.3389/fncel.2011.00006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/05/2011] [Indexed: 12/26/2022] Open
Abstract
The time course of synaptic currents is a crucial determinant of rapid signaling between neurons. Traditionally, the mechanisms underlying the shape of synaptic signals are classified as pre- and post-synaptic. Over the last two decades, an extensive body of evidence indicated that synaptic signals are critically shaped by the neurotransmitter time course which encompasses several phenomena including pre- and post-synaptic ones. The agonist transient depends on neurotransmitter release mechanisms, diffusion within the synaptic cleft, spill-over to the extra-synaptic space, uptake, and binding to post-synaptic receptors. Most estimates indicate that the neurotransmitter transient is very brief, lasting between one hundred up to several hundreds of microseconds, implying that post-synaptic activation is characterized by a high degree of non-equilibrium. Moreover, pharmacological studies provide evidence that the kinetics of agonist transient plays a crucial role in setting the susceptibility of synaptic currents to modulation by a variety of compounds of physiological or clinical relevance. More recently, the role of the neurotransmitter time course has been emphasized by studies carried out on brain slice models that revealed a striking, cell-dependent variability of synaptic agonist waveforms ranging from rapid pulses to slow volume transmission. In the present paper we review the advances on studies addressing the impact of synaptic neurotransmitter transient on kinetics and pharmacological modulation of synaptic currents at inhibitory synapses.
Collapse
Affiliation(s)
- Andrea Barberis
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology Genova, Italy
| | | | | |
Collapse
|
42
|
Nadkarni S, Bartol TM, Sejnowski TJ, Levine H. Modelling vesicular release at hippocampal synapses. PLoS Comput Biol 2010; 6:e1000983. [PMID: 21085682 PMCID: PMC2978677 DOI: 10.1371/journal.pcbi.1000983] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 10/01/2010] [Indexed: 01/13/2023] Open
Abstract
We study local calcium dynamics leading to a vesicle fusion in a stochastic, and spatially explicit, biophysical model of the CA3-CA1 presynaptic bouton. The kinetic model for vesicle release has two calcium sensors, a sensor for fast synchronous release that lasts a few tens of milliseconds and a separate sensor for slow asynchronous release that lasts a few hundred milliseconds. A wide range of data can be accounted for consistently only when a refractory period lasting a few milliseconds between releases is included. The inclusion of a second sensor for asynchronous release with a slow unbinding site, and thereby a long memory, affects short-term plasticity by facilitating release. Our simulations also reveal a third time scale of vesicle release that is correlated with the stimulus and is distinct from the fast and the slow releases. In these detailed Monte Carlo simulations all three time scales of vesicle release are insensitive to the spatial details of the synaptic ultrastructure. Furthermore, our simulations allow us to identify features of synaptic transmission that are universal and those that are modulated by structure. Chemical synaptic transmission in neurons takes place when a neurotransmitter released from a nerve terminal of the presynaptic neuron signals to the postsynaptic neuron that an event has occurred. The goal of our research was to model the release at a type of synapse found in the hippocampus, a part of the brain that is involved with learning and memory. The synapse model was simulated in a computer that kept track of all of the important molecules in the nerve terminal. The model led to a better understanding of the extant experimental data including exact conditions that lead to the release of a single packet of neurotransmitter. According to our model, the release of more than one packet can be triggered by a single presynaptic event but the packets are released one at a time. Furthermore, we uncovered the mechanisms underlying an extremely fast form of release that had not been previously studied. The model made predictions for other properties of the synapse that can be tested experimentally. A better understanding of how the normal synapses in the hippocampus work will help us to better understand what goes wrong with synapses in mental disorders such as depression and schizophrenia.
Collapse
Affiliation(s)
- Suhita Nadkarni
- Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California, United States of America
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Thomas M. Bartol
- Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California, United States of America
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Terrence J. Sejnowski
- Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California, United States of America
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, United States of America
- Division of Biological Sciences, University of California at San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Herbert Levine
- Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California, United States of America
| |
Collapse
|
43
|
Szabó GG, Holderith N, Gulyás AI, Freund TF, Hájos N. Distinct synaptic properties of perisomatic inhibitory cell types and their different modulation by cholinergic receptor activation in the CA3 region of the mouse hippocampus. Eur J Neurosci 2010; 31:2234-46. [PMID: 20529124 PMCID: PMC2916217 DOI: 10.1111/j.1460-9568.2010.07292.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/16/2010] [Accepted: 04/23/2010] [Indexed: 01/13/2023]
Abstract
Perisomatic inhibition originates from three types of GABAergic interneurons in cortical structures, including parvalbumin-containing fast-spiking basket cells (FSBCs) and axo-axonic cells (AACs), as well as cholecystokinin-expressing regular-spiking basket cells (RSBCs). These interneurons may have significant impact in various cognitive processes, and are subjects of cholinergic modulation. However, it is largely unknown how cholinergic receptor activation modulates the function of perisomatic inhibitory cells. Therefore, we performed paired recordings from anatomically identified perisomatic interneurons and pyramidal cells in the CA3 region of the mouse hippocampus. We determined the basic properties of unitary inhibitory postsynaptic currents (uIPSCs) and found that they differed among cell types, e.g. GABA released from axon endings of AACs evoked uIPSCs with the largest amplitude and with the longest decay measured at room temperature. RSBCs could also release GABA asynchronously, the magnitude of the release increasing with the discharge frequency of the presynaptic interneuron. Cholinergic receptor activation by carbachol significantly decreased the uIPSC amplitude in all three types of cell pairs, but to different extents. M2-type muscarinic receptors were responsible for the reduction in uIPSC amplitudes in FSBC- and AAC-pyramidal cell pairs, while an antagonist of CB(1) cannabinoid receptors recovered the suppression in RSBC-pyramidal cell pairs. In addition, carbachol suppressed or even eliminated the short-term depression of uIPSCs in FSBC- and AAC-pyramidal cell pairs in a frequency-dependent manner. These findings suggest that not only are the basic synaptic properties of perisomatic inhibitory cells distinct, but acetylcholine can differentially control the impact of perisomatic inhibition from different sources.
Collapse
Affiliation(s)
- Gergely G Szabó
- Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of SciencesH-1083 Budapest, Hungary
| | - Noémi Holderith
- Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of SciencesH-1083 Budapest, Hungary
| | - Attila I Gulyás
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
| | - Tamás F Freund
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
| | - Norbert Hájos
- Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of SciencesH-1083 Budapest, Hungary
| |
Collapse
|
44
|
Faria LC, Prince DA. Presynaptic inhibitory terminals are functionally abnormal in a rat model of posttraumatic epilepsy. J Neurophysiol 2010; 104:280-90. [PMID: 20484536 DOI: 10.1152/jn.00351.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Partially isolated "undercut" neocortex with intact pial circulation is a well-established model of posttraumatic epileptogenesis. Results of previous experiments showed a decreased frequency of miniature inhibitory postsynaptic currents (mIPSCs) in layer V pyramidal (Pyr) neurons of undercuts. We further examined possible functional abnormalities in GABAergic inhibition in rat epileptogenic neocortical slices in vitro by recording whole cell monosynaptic IPSCs in layer V Pyr cells and fast-spiking (FS) GABAergic interneurons using a paired pulse paradigm. Compared with controls, IPSCs in Pyr neurons of injured slices showed increased threshold and decreased peak amplitude at threshold, decreased input/output slopes, increased failure rates, and a shift from paired pulse depression toward paired pulse facilitation (increased paired pulse ratio or PPR). Increasing [Ca(2+)](o) from 2 to 4 mM partially reversed these abnormalities in Pyr cells of the epileptogenic tissue. IPSCs onto FS cells also had an increased PPR and failures. Blockade of GABA(B) receptors did not affect the paired results. These findings suggest that there are functional alterations in GABAergic presynaptic terminals onto both Pyr and FS cells in this model of posttraumatic epileptogenesis.
Collapse
Affiliation(s)
- Leonardo C Faria
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, California 94305-5122, USA
| | | |
Collapse
|
45
|
Endocannabinoids contribute to metabotropic glutamate receptor-mediated inhibition of GABA release onto hippocampal CA3 pyramidal neurons in an isolated neuron/bouton preparation. Neuroscience 2010; 165:1377-89. [DOI: 10.1016/j.neuroscience.2009.11.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 11/11/2009] [Accepted: 11/21/2009] [Indexed: 11/24/2022]
|
46
|
Loebel A, Silberberg G, Helbig D, Markram H, Tsodyks M, Richardson MJE. Multiquantal release underlies the distribution of synaptic efficacies in the neocortex. Front Comput Neurosci 2009; 3:27. [PMID: 19956403 PMCID: PMC2786302 DOI: 10.3389/neuro.10.027.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 11/08/2009] [Indexed: 11/18/2022] Open
Abstract
Inter-pyramidal synaptic connections are characterized by a wide range of EPSP amplitudes. Although repeatedly observed at different brain regions and across layers, little is known about the synaptic characteristics that contribute to this wide range. In particular, the range could potentially be accounted for by differences in all three parameters of the quantal model of synaptic transmission, i.e. the number of release sites, release probability and quantal size. Here, we present a rigorous statistical analysis of the transmission properties of excitatory synaptic connections between layer-5 pyramidal neurons of the somato-sensory cortex. Our central finding is that the EPSP amplitude is strongly correlated with the number of estimated release sites, but not with the release probability or quantal size. In addition, we found that the number of release sites can be more than an order of magnitude higher than the typical number of synaptic contacts for this type of connection. Our findings indicate that transmission at stronger synaptic connections is mediated by multiquantal release from their synaptic contacts. We propose that modulating the number of release sites could be an important mechanism in regulating neocortical synaptic transmission.
Collapse
Affiliation(s)
- Alex Loebel
- Department of Neurobiology, Weizmann Institute of Science Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
47
|
Asynchronous transmitter release from cholecystokinin-containing inhibitory interneurons is widespread and target-cell independent. J Neurosci 2009; 29:11112-22. [PMID: 19741117 DOI: 10.1523/jneurosci.5760-08.2009] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neurotransmitter release at most central synapses is synchronized to the timing of presynaptic action potentials. Here, we show that three classes of depolarization-induced suppression of inhibition-expressing, cholecystokinin (CCK)-containing, hippocampal interneurons show highly asynchronous release in response to trains of action potentials. This asynchrony is correlated to the class of presynaptic interneuron but is unrelated to their postsynaptic cell target. Asynchronous and synchronous release from CCK-containing interneurons show a slightly different calcium dependence, such that the proportion of asynchronous release increases with external calcium concentration, possibly suggesting that the modes of release are mediated by different calcium sensors. Asynchronous IPSCs include very large (up to 500 pA/7nS) amplitude events, which persist in low extracellular calcium and strontium, showing that they result from quantal transmitter release at single release sites. Finally, we show that asynchronous release is prominent in response to trains of presynaptic spikes that mimic natural activity of CCK-containing interneurons. That asynchronous release from CCK-containing interneurons is a widespread phenomenon indicates a fundamental role for these cells within the hippocampal network that is distinct from the phasic inhibition provided by parvalbumin-containing interneurons.
Collapse
|
48
|
Presynaptically expressed long-term potentiation increases multivesicular release at parallel fiber synapses. J Neurosci 2009; 29:10974-8. [PMID: 19726655 DOI: 10.1523/jneurosci.2123-09.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At a number of synapses, long-term potentiation (LTP) can be expressed by an increase in presynaptic strength, but it is unknown whether presynaptic LTP is expressed solely through an increase in the probability that a single vesicle is released or whether it can increase multivesicular release (MVR). Here, we show that presynaptic LTP decreases inhibition of AMPA receptor EPSCs by a low-affinity antagonist at parallel fiber-molecular layer interneuron (PF-MLI) synapses. This indicates that LTP induction results in larger glutamate concentration transients in the synaptic cleft, a result indicative of MVR, and suggests that MVR can be modified by long-term plasticity. A similar decrease in inhibition was observed when release probability (PR) was increased by forskolin, elevated extracellular Ca2+, and paired-pulse facilitation. Furthermore, we show that MVR may occur under baseline physiological conditions, as inhibition increased when P(R) was lowered by reducing extracellular Ca2+ or by activating presynaptic adenosine receptors. These results suggest that at PF-MLI synapses, MVR occurs under control conditions and is increased when PR is elevated by both short- and long-term plasticity mechanisms.
Collapse
|
49
|
Hájos N, Paulsen O. Network mechanisms of gamma oscillations in the CA3 region of the hippocampus. Neural Netw 2009; 22:1113-9. [PMID: 19683412 DOI: 10.1016/j.neunet.2009.07.024] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/22/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
Abstract
Neural networks of the brain display multiple patterns of oscillatory activity. Some of these rhythms are generated intrinsically within the local network, and can therefore be studied in isolated preparations. Here we discuss local-circuit mechanisms involved in hippocampal CA3 gamma oscillations, one of the best understood locally generated network patterns in the mammalian brain. Perisomatic inhibitory cells are crucial players in gamma oscillogenesis. They provide prominent rhythmic inhibition to CA3 pyramidal cells and are themselves synchronized primarily by excitatory synaptic inputs derived from the local collaterals of CA3 pyramidal cells. The recruitment of this recurrent excitatory-inhibitory feedback loop during hippocampal gamma oscillations suggests that local gamma oscillations not only control when, but also how many and which pyramidal cells will fire during each gamma cycle.
Collapse
Affiliation(s)
- Norbert Hájos
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, Budapest, Hungary.
| | | |
Collapse
|
50
|
Abstract
Temporal lobe epilepsy is common and difficult to treat. Reduced inhibition of dentate granule cells may contribute. Basket cells are important inhibitors of granule cells. Excitatory synaptic input to basket cells and unitary IPSCs (uIPSCs) from basket cells to granule cells were evaluated in hippocampal slices from a rat model of temporal lobe epilepsy. Basket cells were identified by electrophysiological and morphological criteria. Excitatory synaptic drive to basket cells, measured by mean charge transfer and frequency of miniature EPSCs, was significantly reduced after pilocarpine-induced status epilepticus and remained low in epileptic rats, despite mossy fiber sprouting. Paired recordings revealed higher failure rates and a trend toward lower amplitude uIPSCs at basket cell-to-granule cell synapses in epileptic rats. Higher failure rates were not attributable to excessive presynaptic inhibition of GABA release by activation of muscarinic acetylcholine or GABA(B) receptors. High-frequency trains of action potentials in basket cells generated uIPSCs in granule cells to evaluate readily releasable pool (RRP) size and resupply rate of recycling vesicles. Recycling rate was similar in control and epileptic rats. However, quantal size at basket cell-to-granule cell synapses was larger and RRP size smaller in epileptic rats. Therefore, in epileptic animals, basket cells receive less excitatory synaptic drive, their pools of readily releasable vesicles are smaller, and transmission failure at basket cell-to-granule cell synapses is increased. These findings suggest dysfunction of the dentate basket cell circuit could contribute to hyperexcitability and seizures.
Collapse
|