1
|
Ciampelli C, Galleri G, Puggioni S, Fais M, Iannotta L, Galioto M, Becciu M, Greggio E, Bernardoni R, Crosio C, Iaccarino C. Inhibition of the Exocyst Complex Attenuates the LRRK2 Pathological Effects. Int J Mol Sci 2023; 24:12656. [PMID: 37628835 PMCID: PMC10454163 DOI: 10.3390/ijms241612656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Pathological mutations in leucine-rich repeat kinase 2 (LRRK2) gene are the major genetic cause of Parkinson's disease (PD). Multiple lines of evidence link LRRK2 to the control of vesicle dynamics through phosphorylation of a subset of RAB proteins. However, the molecular mechanisms underlying these processes are not fully elucidated. We have previously demonstrated that LRRK2 increases the exocyst complex assembly by Sec8 interaction, one of the eight members of the exocyst complex, and that Sec8 over-expression mitigates the LRRK2 pathological effect in PC12 cells. Here, we extend this analysis using LRRK2 drosophila models and show that the LRRK2-dependent exocyst complex assembly increase is downstream of RAB phosphorylation. Moreover, exocyst complex inhibition rescues mutant LRRK2 pathogenic phenotype in cellular and drosophila models. Finally, prolonged exocyst inhibition leads to a significant reduction in the LRRK2 protein level, overall supporting the role of the exocyst complex in the LRRK2 pathway. Taken together, our study suggests that modulation of the exocyst complex may represent a novel therapeutic target for PD.
Collapse
Affiliation(s)
- Cristina Ciampelli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.C.); (G.G.); (S.P.); (M.F.); (M.G.); (M.B.); (C.C.)
| | - Grazia Galleri
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.C.); (G.G.); (S.P.); (M.F.); (M.G.); (M.B.); (C.C.)
| | - Silvia Puggioni
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.C.); (G.G.); (S.P.); (M.F.); (M.G.); (M.B.); (C.C.)
| | - Milena Fais
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.C.); (G.G.); (S.P.); (M.F.); (M.G.); (M.B.); (C.C.)
| | - Lucia Iannotta
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.I.); (E.G.)
| | - Manuela Galioto
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.C.); (G.G.); (S.P.); (M.F.); (M.G.); (M.B.); (C.C.)
| | - Marta Becciu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.C.); (G.G.); (S.P.); (M.F.); (M.G.); (M.B.); (C.C.)
| | - Elisa Greggio
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.I.); (E.G.)
| | - Roberto Bernardoni
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Claudia Crosio
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.C.); (G.G.); (S.P.); (M.F.); (M.G.); (M.B.); (C.C.)
| | - Ciro Iaccarino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.C.); (G.G.); (S.P.); (M.F.); (M.G.); (M.B.); (C.C.)
| |
Collapse
|
2
|
Sramkó B, Földes A, Kádár K, Varga G, Zsembery Á, Pircs K. The Wisdom in Teeth: Neuronal Differentiation of Dental Pulp Cells. Cell Reprogram 2023; 25:32-44. [PMID: 36719998 PMCID: PMC9963504 DOI: 10.1089/cell.2022.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are found in almost all postnatal organs. Under appropriate environmental cues, multipotency enables MSCs to serve as progenitors for several lineage-specific, differentiated cell types. In vitro expansion and differentiation of MSCs give the opportunity to obtain hardly available somatic cells, such as neurons. The neurogenic potential of MSCs makes them a promising, autologous source to restore damaged tissue and as such, they have received much attention in the field of regenerative medicine. Several stem cell pool candidates have been studied thus far, but only a few of them showed neurogenic differentiation potential. Due to their embryonic ontology, stem cells residing in the stroma of the dental pulp chamber are an exciting source for in vitro neural cell differentiation. In this study, we review the key properties of dental pulp stem cells (DPSCs), with a particular focus on their neurogenic potential. Moreover, we summarize the various presently available methods used for neural differentiation of human DPSCs also emphasizing the difficulties in reproducibly high production of such cells. We postulate that because DPSCs are stem cells with very close ontology to neurogenic lineages, they may serve as excellent targets for neuronal differentiation in vitro and even for direct reprogramming.
Collapse
Affiliation(s)
- Bendegúz Sramkó
- HCEMM-SU Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary.,Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Földes
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Kristóf Kádár
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Gábor Varga
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Karolina Pircs
- HCEMM-SU Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary.,Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.,Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Lira M, Zamorano P, Cerpa W. Exo70 intracellular redistribution after repeated mild traumatic brain injury. Biol Res 2021; 54:5. [PMID: 33593425 PMCID: PMC7885507 DOI: 10.1186/s40659-021-00329-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Exo70 is a subunit of the greater exocyst complex, a collection of proteins that oversees cellular membrane addition and polarized exocytosis by acting as a tethering intermediate between the plasma membrane and newly synthesized secretory vesicles. Although Exo70 function has been implicated in several developmental events including cytokinesis and the establishment of cell polarity, its role in neuropathologies is poorly understood. On the other hand, traumatic brain injury is the result of mechanical external force including contusion, fast acceleration, and expansive waves that produce temporal or permanent cognitive damage and triggers physical and psychosocial alterations including headache, memory problems, attention deficits, difficulty thinking, mood swings, and frustration. Traumatic brain injury is a critical health problem on a global scale, constituting a major cause of deaths and disability among young adults. Trauma-related cellular damage includes redistribution of N-methyl-D-aspartate receptors outside of the synaptic compartment triggering detrimental effects to neurons. The exocyst has been related to glutamate receptor constitutive trafficking/delivery towards synapse as well. This work examines whether the exocyst complex subunit Exo70 participates in traumatic brain injury and if it is redistributed among subcellular compartments RESULTS: Our analysis shows that Exo70 expression is not altered upon injury induction. By using subcellular fractionation, we determined that Exo70 is redistributed from microsomes fraction into the synaptic compartment after brain trauma. In the synaptic compartment, we also show that the exocyst complex assembly and its interaction with GluN2B are increased. Finally, we show that the Exo70 pool that is redistributed comes from the plasma membrane. CONCLUSIONS The present findings position Exo70 in the group of proteins that could modulate GluN2B synaptic availability in acute neuropathology like a traumatic brain injury. By acting as a nucleator factor, Exo70 is capable of redirecting the ensembled complex into the synapse. We suggest that this redistribution is part of a compensatory mechanism by which Exo70 is able to maintain GluN2B partially on synapses. Hence, reducing the detrimental effects associated with TBI pathophysiology.
Collapse
Affiliation(s)
- Matías Lira
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O´Higgins 340, Santiago, Chile
| | - Pedro Zamorano
- Departamento Biomédico, Universidad de Antofagasta, Antofagasta, Chile.,Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Waldo Cerpa
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O´Higgins 340, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
4
|
Fais M, Sanna G, Galioto M, Nguyen TTD, Trần MUT, Sini P, Carta F, Turrini F, Xiong Y, Dawson TM, Dawson VL, Crosio C, Iaccarino C. LRRK2 Modulates the Exocyst Complex Assembly by Interacting with Sec8. Cells 2021; 10:203. [PMID: 33498474 PMCID: PMC7909581 DOI: 10.3390/cells10020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Mutations in LRRK2 play a critical role in both familial and sporadic Parkinson's disease (PD). Up to date, the role of LRRK2 in PD onset and progression remains largely unknown. However, experimental evidence highlights a critical role of LRRK2 in the control of vesicle trafficking, likely by Rab phosphorylation, that in turn may regulate different aspects of neuronal physiology. Here we show that LRRK2 interacts with Sec8, one of eight subunits of the exocyst complex. The exocyst complex is an evolutionarily conserved multisubunit protein complex mainly involved in tethering secretory vesicles to the plasma membrane and implicated in the regulation of multiple biological processes modulated by vesicle trafficking. Interestingly, Rabs and exocyst complex belong to the same protein network. Our experimental evidence indicates that LRRK2 kinase activity or the presence of the LRRK2 kinase domain regulate the assembly of exocyst subunits and that the over-expression of Sec8 significantly rescues the LRRK2 G2019S mutant pathological effect. Our findings strongly suggest an interesting molecular mechanism by which LRRK2 could modulate vesicle trafficking and may have important implications to decode the complex role that LRRK2 plays in neuronal physiology.
Collapse
Affiliation(s)
- Milena Fais
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | - Giovanna Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | - Manuela Galioto
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | - Thi Thanh Duyen Nguyen
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | - Mai Uyên Thi Trần
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | - Paola Sini
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | | | - Franco Turrini
- Nurex Srl, 07100 Sassari, Italy; (F.C.); (F.T.)
- Department of Oncology, University of Turin, 10126 Turin, Italy
| | - Yulan Xiong
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.X.); (T.M.D.); (V.L.D.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.X.); (T.M.D.); (V.L.D.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.X.); (T.M.D.); (V.L.D.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Claudia Crosio
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | - Ciro Iaccarino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| |
Collapse
|
5
|
Saccomanno A, Potocký M, Pejchar P, Hála M, Shikata H, Schwechheimer C, Žárský V. Regulation of Exocyst Function in Pollen Tube Growth by Phosphorylation of Exocyst Subunit EXO70C2. FRONTIERS IN PLANT SCIENCE 2021; 11:609600. [PMID: 33519861 PMCID: PMC7840542 DOI: 10.3389/fpls.2020.609600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Exocyst is a heterooctameric protein complex crucial for the tethering of secretory vesicles to the plasma membrane during exocytosis. Compared to other eukaryotes, exocyst subunit EXO70 is represented by many isoforms in land plants whose cell biological and biological roles, as well as modes of regulation remain largely unknown. Here, we present data on the phospho-regulation of exocyst isoform EXO70C2, which we previously identified as a putative negative regulator of exocyst function in pollen tube growth. A comprehensive phosphoproteomic analysis revealed phosphorylation of EXO70C2 at multiple sites. We have now performed localization and functional studies of phospho-dead and phospho-mimetic variants of Arabidopsis EXO70C2 in transiently transformed tobacco pollen tubes and stably transformed Arabidopsis wild type and exo70C2 mutant plants. Our data reveal a dose-dependent effect of AtEXO70C2 overexpression on pollen tube growth rate and cellular architecture. We show that changes of the AtEXO70C2 phosphorylation status lead to distinct outcomes in wild type and exo70c2 mutant cells, suggesting a complex regulatory pattern. On the other side, phosphorylation does not affect the cytoplasmic localization of AtEXO70C2 or its interaction with putative secretion inhibitor ROH1 in the yeast two-hybrid system.
Collapse
Affiliation(s)
- Antonietta Saccomanno
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Potocký
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Přemysl Pejchar
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Michal Hála
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Hiromasa Shikata
- Plant Systems Biology, Technische Universität München, Freising, Germany
| | | | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
6
|
Kozlova I, Sah S, Keable R, Leshchyns'ka I, Janitz M, Sytnyk V. Cell Adhesion Molecules and Protein Synthesis Regulation in Neurons. Front Mol Neurosci 2020; 13:592126. [PMID: 33281551 PMCID: PMC7689008 DOI: 10.3389/fnmol.2020.592126] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022] Open
Abstract
Cell adhesion molecules (CAMs) mediate interactions of neurons with the extracellular environment by forming adhesive bonds with CAMs on adjacent membranes or via binding to proteins of the extracellular matrix. Binding of CAMs to their extracellular ligands results in the activation of intracellular signaling cascades, leading to changes in neuronal structure and the molecular composition and function of neuronal contacts. Ultimately, many of these changes depend on the synthesis of new proteins. In this review, we summarize the evidence showing that CAMs regulate protein synthesis by modulating the activity of transcription factors, gene expression, protein translation, and the structure and distribution of organelles involved in protein synthesis and transport.
Collapse
Affiliation(s)
- Irina Kozlova
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Saroj Sah
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ryan Keable
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
7
|
Li J, Diao S, Yang H, Cao Y, Du J, Yang D. IGFBP5 promotes angiogenic and neurogenic differentiation potential of dental pulp stem cells. Dev Growth Differ 2019; 61:457-465. [PMID: 31599466 DOI: 10.1111/dgd.12632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/29/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022]
Abstract
Dental stem cells for dental pulp regeneration have become a new strategy for pulpitis treatment. Angiogenesis and neurogenesis play a vital role in the pulp-dentin complex regeneration, and appropriate growth factors will promote the process of angiogenesis and neurogenesis. Insulin-like growth factor-binding protein 5 (IGFBP5) is involved in the regulation of tooth growth and development. A previous study showed that IGFBP5 enhanced osteo/odontogenic differentiation of dental stem cells. Our research intends to reveal the function of IGFBP5 in the angiogenic and neurogenic differentiation of human dental stem cells. Human dental pulp stem cells (DPSCs) were used in the present study. Lentiviral IGFBP5 shRNA was used to silence the IGFBP5. Retroviruses expressing Wild-type IGFBP5 were used to over-express IGFBP5. Angiogenic and neurogenic differentiation were carried out by in vitro study. Real-time RT-PCR and western blot results showed that over-expression of IGFBP5 upregulated the expressions of angiogenic markers, including VEGF, PDGFA and ANG-1, and neurogenic markers, including NCAM, TH, Nestin, βIII-tubulin, and TH, in DPSCs. Moreover, microscope observation confirmed that over-expression of IGFBP5 enhanced neurosphere formation in DPSCs in size and amount. Immunofluorescence staining results showed that over-expression of IGFBP5 also prompted the percentage of Nestin and βIII-tubulin positive neurospheres in DPSCs. While depletion of IGFBP5 downregulated the expressions of VEGF, PDGFA, ANG-1, NCAM, TH, Nestin, βIII-tubulin, and TH, it decreased the neurosphere formation and percentage of Nestin and βIII-tubulin positive neurospheres in DPSCs. In conclusion, our results revealed that IGFBP5 promoted angiogenic and neurogenic differentiation potential of DPSCs in vitro and provided the possible potential target for enhancing directed differentiation of dental stem cells and dental pulp-dentin functional regeneration.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology Capital Medical University, Beijing, China.,Department of Preventive Dentistry, Beijing Stomatological Hospital,Capital Medical University, Beijing, China
| | - Shu Diao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology Capital Medical University, Beijing, China.,Department of Pediatric Dentistry, Beijing Stomatological Hospital,Capital Medical University, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology Capital Medical University, Beijing, China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology Capital Medical University, Beijing, China.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, school of Stomatology Capital Medical University, Beijing, China
| | - Dongmei Yang
- Department of Pediatric Dentistry, Beijing Stomatological Hospital,Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Hausott B, Förste A, Zach F, Mangger S, Haugsten EM, Klimaschewski L. Endocytosis and Transport of Growth Factor Receptors in Peripheral Axon Regeneration: Novel Lessons from Neurons Expressing Lysine-Deficient FGF Receptor Type 1 in vitro. Anat Rec (Hoboken) 2019; 302:1268-1275. [PMID: 30950230 PMCID: PMC6767123 DOI: 10.1002/ar.24120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/06/2018] [Accepted: 01/18/2019] [Indexed: 11/13/2022]
Abstract
In the course of peripheral nerve regeneration, axons encounter different extracellular growth factors secreted by non‐neuronal cells at the injury site and retrogradely transported after binding to neuronal membrane receptor tyrosine kinases. The present study reviews the role of receptor transport in peripheral axon outgrowth and provides novel data on trafficking of fibroblast growth factor receptor type 1 (FGFR1). Differences in receptor transport are determined by different numbers of lysine residues acting as ubiquitination sites in the intracellular receptor domain. We previously demonstrated that overexpression of mutant FGFR1‐25R (25 out of 29 intracellular lysines replaced with arginine) results in enhanced receptor recycling as compared to wild‐type FGFR1 followed by strong stimulation of elongative axon growth in vitro. Here, the effects of lysine‐deficient FGFR1 (FGFR1‐29R lacking all 29 cytoplasmic lysine residues) or of only 15 lysine mutations (FGFR1‐15R) on axon outgrowth and concomitant changes in signal pathway activation were investigated by immunocytochemistry and morphometry of cultured primary neurons. Overexpression of FGFR1‐15R in adult sensory neurons resulted in enhanced receptor recycling, which was accompanied by increased axon elongation without stimulating axon branching. By contrast, FGFR1‐29R was neither endocytosed nor axon outgrowth affected. Although overexpression of FGFR1‐15R or FGFR1‐25Ra strongly promoted elongation, we did not detect increased signal pathway activation (ERK, AKT, PLC, or STAT3) in neurons expressing mutant FGFR1 as compared with wild‐type neurons raising the possibility that other signaling pathways or signaling independent mechanisms may be involved in the axon outgrowth effects of recycled FGF receptors. Anat Rec, 302:1268–1275, 2019. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Barbara Hausott
- Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, Medical University Innsbruck, Innsbruck, Austria
| | - Alexandra Förste
- Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, Medical University Innsbruck, Innsbruck, Austria
| | - Fabian Zach
- Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, Medical University Innsbruck, Innsbruck, Austria
| | - Stefan Mangger
- Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, Medical University Innsbruck, Innsbruck, Austria
| | - Ellen Margrethe Haugsten
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lars Klimaschewski
- Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Neuert H, Deing P, Krukkert K, Naffin E, Steffes G, Risse B, Silies M, Klämbt C. The Drosophila NCAM homolog Fas2 signals independent of adhesion. Development 2019; 147:dev.181479. [DOI: 10.1242/dev.181479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
The development of tissues and organs requires close interaction of cells. To do so, cells express adhesion proteins such as the neural cell adhesion molecule (NCAM) or its Drosophila orthologue Fasciclin 2 (Fas2). Both are members of the Ig-domain superfamily of proteins that mediate homophilic adhesion. These proteins are expressed as different isoforms differing in their membrane anchorage and their cytoplasmic domains. To study the function of single isoforms we have conducted a comprehensive genetic analysis of fas2. We reveal the expression pattern of all major Fas2 isoforms, two of which are GPI-anchored. The remaining five isoforms carry transmembrane domains with variable cytoplasmic tails. We generated fas2 mutants expressing only single isoforms. In contrast to the null mutation which causes embryonic lethality, these mutants are viable, indicating redundancy among the different isoforms. Cell type specific rescue experiments showed that glial secreted Fas2 can rescue the fas2 mutant phenotype to viability. This demonstrates cytoplasmic Fas2 domains have no apparent essential functions and indicate that Fas2 has function(s) other than homophilic adhesion. In conclusion, our data propose novel mechanistic aspects of a long studied adhesion protein.
Collapse
Affiliation(s)
- Helen Neuert
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Petra Deing
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Karin Krukkert
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Elke Naffin
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Georg Steffes
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Benjamin Risse
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Marion Silies
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Christian Klämbt
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| |
Collapse
|
10
|
Ros O, Barrecheguren PJ, Cotrufo T, Schaettin M, Roselló-Busquets C, Vílchez-Acosta A, Hernaiz-Llorens M, Martínez-Marmol R, Ulloa F, Stoeckli ET, Araújo SJ, Soriano E. A conserved role for Syntaxin-1 in pre- and post-commissural midline axonal guidance in fly, chick, and mouse. PLoS Genet 2018; 14:e1007432. [PMID: 29912942 PMCID: PMC6029812 DOI: 10.1371/journal.pgen.1007432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 07/03/2018] [Accepted: 05/18/2018] [Indexed: 02/03/2023] Open
Abstract
Axonal growth and guidance rely on correct growth cone responses to guidance cues. Unlike the signaling cascades that link axonal growth to cytoskeletal dynamics, little is known about the crosstalk mechanisms between guidance and membrane dynamics and turnover. Recent studies indicate that whereas axonal attraction requires exocytosis, chemorepulsion relies on endocytosis. Indeed, our own studies have shown that Netrin-1/Deleted in Colorectal Cancer (DCC) signaling triggers exocytosis through the SNARE Syntaxin-1 (STX1). However, limited in vivo evidence is available about the role of SNARE proteins in axonal guidance. To address this issue, here we systematically deleted SNARE genes in three species. We show that loss-of-function of STX1 results in pre- and post-commissural axonal guidance defects in the midline of fly, chick, and mouse embryos. Inactivation of VAMP2, Ti-VAMP, and SNAP25 led to additional abnormalities in axonal guidance. We also confirmed that STX1 loss-of-function results in reduced sensitivity of commissural axons to Slit-2 and Netrin-1. Finally, genetic interaction studies in Drosophila show that STX1 interacts with both the Netrin-1/DCC and Robo/Slit pathways. Our data provide evidence of an evolutionarily conserved role of STX1 and SNARE proteins in midline axonal guidance in vivo, by regulating both pre- and post-commissural guidance mechanisms. Syntaxin-1 is a core factor in tethering synaptic vesicles and mediating their fusion to the cell membrane at the synapse. Thus, Syntaxin-1 mediates neurotransmission in the adult nervous system. Here we show that this protein is also involved in axonal guidance in the CNS of vertebrates and invertebrates during the development of the nervous system: our systematic analysis of the phenotypes in the nervous system midline of fly, chick, and mouse embryos mutant for Syntaxin-1 unveils an evolutionarily conserved role for this protein in midline axonal guidance. Further, we also dissect the contribution of other proteins regulating neuronal exocytosis in axonal development. We propose that the coupling of the guidance molecule machinery to proteins that regulate exocytosis is a general mechanism linking chemotropism to axonal growth.
Collapse
Affiliation(s)
- Oriol Ros
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Pablo José Barrecheguren
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomedica de Barcelona (IRB Barcelona), Parc Cientific de Barcelona, Barcelona, Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Martina Schaettin
- Institute of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Cristina Roselló-Busquets
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Alba Vílchez-Acosta
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Marc Hernaiz-Llorens
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Ramón Martínez-Marmol
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Esther T. Stoeckli
- Institute of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- * E-mail: (ETS); (SJA); (ES)
| | - Sofia J. Araújo
- Institut de Recerca Biomedica de Barcelona (IRB Barcelona), Parc Cientific de Barcelona, Barcelona, Spain
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona, Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- * E-mail: (ETS); (SJA); (ES)
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
- Vall d´Hebron Institute of Research (VHIR), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail: (ETS); (SJA); (ES)
| |
Collapse
|
11
|
Ulloa F, Cotrufo T, Ricolo D, Soriano E, Araújo SJ. SNARE complex in axonal guidance and neuroregeneration. Neural Regen Res 2018; 13:386-392. [PMID: 29623913 PMCID: PMC5900491 DOI: 10.4103/1673-5374.228710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Through complex mechanisms that guide axons to the appropriate routes towards their targets, axonal growth and guidance lead to neuronal system formation. These mechanisms establish the synaptic circuitry necessary for the optimal performance of the nervous system in all organisms. Damage to these networks can be repaired by neuroregenerative processes which in turn can re-establish synapses between injured axons and postsynaptic terminals. Both axonal growth and guidance and the neuroregenerative response rely on correct axonal growth and growth cone responses to guidance cues as well as correct synapses with appropriate targets. With this in mind, parallels can be drawn between axonal regeneration and processes occurring during embryonic nervous system development. However, when studying parallels between axonal development and regeneration many questions still arise; mainly, how do axons grow and synapse with their targets and how do they repair their membranes, grow and orchestrate regenerative responses after injury. Major players in the cellular and molecular processes that lead to growth cone development and movement during embryonic development are the Soluble N-ethylamaleimide Sensitive Factor (NSF) Attachment Protein Receptor (SNARE) proteins, which have been shown to be involved in axonal growth and guidance. Their involvement in axonal growth, guidance and neuroregeneration is of foremost importance, due to their roles in vesicle and membrane trafficking events. Here, we review the recent literature on the involvement of SNARE proteins in axonal growth and guidance during embryonic development and neuroregeneration.
Collapse
Affiliation(s)
- Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, School of Biology, and Institute of Neurosciences, University of Barcelona, Barcelona; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, Physiology and Immunology, School of Biology, and Institute of Neurosciences, University of Barcelona, Barcelona; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Delia Ricolo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona; Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, School of Biology, and Institute of Neurosciences, University of Barcelona, Barcelona; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid; Vall d´Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Sofia J Araújo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona; Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Barrecheguren PJ, Ros O, Cotrufo T, Kunz B, Soriano E, Ulloa F, Stoeckli ET, Araújo SJ. SNARE proteins play a role in motor axon guidance in vertebrates and invertebrates. Dev Neurobiol 2017; 77:963-974. [DOI: 10.1002/dneu.22481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Pablo José Barrecheguren
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Institut de Recerca Biomèdica de Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology; Barcelona 08028 Spain
| | - Oriol Ros
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
| | - Beat Kunz
- Institute of Molecular Life Sciences, University of Zurich; Zurich 8057 Switzerland
| | - Eduardo Soriano
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
- Vall d'Hebron Institute of Research (VHIR); Barcelona 08035 Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona 08010 Spain
| | - Fausto Ulloa
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
| | - Esther T. Stoeckli
- Institute of Molecular Life Sciences, University of Zurich; Zurich 8057 Switzerland
| | - Sofia J. Araújo
- Institut de Recerca Biomèdica de Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology; Barcelona 08028 Spain
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC); Barcelona 08028 Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
| |
Collapse
|
13
|
Tanaka T, Goto K, Iino M. Sec8 modulates TGF-β induced EMT by controlling N-cadherin via regulation of Smad3/4. Cell Signal 2017; 29:115-126. [DOI: 10.1016/j.cellsig.2016.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 10/20/2022]
|
14
|
Tanaka T, Goto K, Iino M. Diverse Functions and Signal Transduction of the Exocyst Complex in Tumor Cells. J Cell Physiol 2016; 232:939-957. [DOI: 10.1002/jcp.25619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Toshiaki Tanaka
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
| | - Mitsuyoshi Iino
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| |
Collapse
|
15
|
Leshchyns'ka I, Sytnyk V. Intracellular transport and cell surface delivery of the neural cell adhesion molecule (NCAM). BIOARCHITECTURE 2016; 5:54-60. [PMID: 26605672 DOI: 10.1080/19490992.2015.1118194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The neural cell adhesion molecule (NCAM) regulates differentiation and functioning of neurons by accumulating at the cell surface where it mediates the interactions of neurons with the extracellular environment. NCAM also induces a number of intracellular signaling cascades, which coordinate interactions at the cell surface with intracellular processes including changes in gene expression, transport and cytoskeleton remodeling. Since NCAM functions at the cell surface, its transport and delivery to the cell surface play a critical role. Here, we review recent advances in our understanding of the molecular mechanisms of the intracellular transport and cell surface delivery of NCAM. We also discuss the data suggesting a possibility of cross talk between activation of NCAM at the cell surface and the intracellular transport and cell surface delivery of NCAM.
Collapse
Affiliation(s)
- Iryna Leshchyns'ka
- a School of Biotechnology and Biomolecular Sciences ; The University of New South Wales ; Sydney , NSW , Australia
| | - Vladimir Sytnyk
- a School of Biotechnology and Biomolecular Sciences ; The University of New South Wales ; Sydney , NSW , Australia
| |
Collapse
|
16
|
Leshchyns'ka I, Sytnyk V. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons. Front Cell Dev Biol 2016; 4:9. [PMID: 26909348 PMCID: PMC4754453 DOI: 10.3389/fcell.2016.00009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/01/2016] [Indexed: 12/04/2022] Open
Abstract
Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail.
Collapse
Affiliation(s)
- Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
17
|
Ebbers L, Satheesh SV, Janz K, Rüttiger L, Blosa M, Hofmann F, Morawski M, Griesemer D, Knipper M, Friauf E, Nothwang HG. L-type Calcium Channel Cav1.2 Is Required for Maintenance of Auditory Brainstem Nuclei. J Biol Chem 2015; 290:23692-710. [PMID: 26242732 DOI: 10.1074/jbc.m115.672675] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Indexed: 12/13/2022] Open
Abstract
Cav1.2 and Cav1.3 are the major L-type voltage-gated Ca(2+) channels in the CNS. Yet, their individual in vivo functions are largely unknown. Both channel subunits are expressed in the auditory brainstem, where Cav1.3 is essential for proper maturation. Here, we investigated the role of Cav1.2 by targeted deletion in the mouse embryonic auditory brainstem. Similar to Cav1.3, loss of Cav1.2 resulted in a significant decrease in the volume and cell number of auditory nuclei. Contrary to the deletion of Cav1.3, the action potentials of lateral superior olive (LSO) neurons were narrower compared with controls, whereas the firing behavior and neurotransmission appeared unchanged. Furthermore, auditory brainstem responses were nearly normal in mice lacking Cav1.2. Perineuronal nets were also unaffected. The medial nucleus of the trapezoid body underwent a rapid cell loss between postnatal days P0 and P4, shortly after circuit formation. Phosphorylated cAMP response element-binding protein (CREB), nuclear NFATc4, and the expression levels of p75NTR, Fas, and FasL did not correlate with cell death. These data demonstrate for the first time that both Cav1.2 and Cav1.3 are necessary for neuronal survival but are differentially required for the biophysical properties of neurons. Thus, they perform common as well as distinct functions in the same tissue.
Collapse
Affiliation(s)
- Lena Ebbers
- From the Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Somisetty V Satheesh
- From the Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Katrin Janz
- the Animal Physiology Group, Department of Biology, University of Kaiserlautern, P. O. Box 3049, 67663 Kaiserslautern, Germany
| | - Lukas Rüttiger
- the Department of Otolaryngology, Hearing Research Centre Tübingen (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede Aulhorn Strasse 5, 72076 Tübingen, Germany
| | - Maren Blosa
- the Paul Flechsig Institute of Brain Research, Faculty of Medicine, University Leipzig, Liebigstrasse 19, 04103 Leipzig, Germany
| | - Franz Hofmann
- the Institut für Pharmakologie und Toxikologie, Technische Universität, Biedersteiner Strasse 29, D-80802 München, and
| | - Markus Morawski
- the Paul Flechsig Institute of Brain Research, Faculty of Medicine, University Leipzig, Liebigstrasse 19, 04103 Leipzig, Germany
| | - Désirée Griesemer
- the Animal Physiology Group, Department of Biology, University of Kaiserlautern, P. O. Box 3049, 67663 Kaiserslautern, Germany
| | - Marlies Knipper
- the Department of Otolaryngology, Hearing Research Centre Tübingen (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede Aulhorn Strasse 5, 72076 Tübingen, Germany
| | - Eckhard Friauf
- the Animal Physiology Group, Department of Biology, University of Kaiserlautern, P. O. Box 3049, 67663 Kaiserslautern, Germany
| | - Hans Gerd Nothwang
- From the Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany, the Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
18
|
Wobst H, Schmitz B, Schachner M, Diestel S, Leshchyns'ka I, Sytnyk V. Kinesin-1 promotes post-Golgi trafficking of NCAM140 and NCAM180 to the cell surface. J Cell Sci 2015; 128:2816-29. [PMID: 26101351 DOI: 10.1242/jcs.169391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/18/2015] [Indexed: 02/05/2023] Open
Abstract
The neural cell adhesion molecule (NCAM, also known as NCAM1) is important during neural development, because it contributes to neurite outgrowth in response to its ligands at the cell surface. In the adult brain, NCAM is involved in regulating synaptic plasticity. The molecular mechanisms underlying delivery of NCAM to the neuronal cell surface remain poorly understood. We used a protein macroarray and identified the kinesin light chain 1 (KLC1), a component of the kinesin-1 motor protein, as a binding partner of the intracellular domains of the two transmembrane isoforms of NCAM, NCAM140 and NCAM180. KLC1 binds to amino acids CGKAGPGA within the intracellular domain of NCAM and colocalizes with kinesin-1 in the Golgi compartment. Delivery of NCAM180 to the cell surface is increased in CHO cells and neurons co-transfected with kinesin-1. We further demonstrate that the p21-activated kinase 1 (PAK1) competes with KLC1 for binding to the intracellular domain of NCAM and contributes to the regulation of the membrane insertion of NCAM. Our results indicate that NCAM is delivered to the cell surface through a kinesin-1-mediated transport mechanism in a PAK1-dependent manner.
Collapse
Affiliation(s)
- Hilke Wobst
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia Institute of Nutrition and Food Science, Department of Human Metabolomics, University of Bonn, Bonn 53115, Germany
| | - Brigitte Schmitz
- Institute of Nutrition and Food Science, Department of Human Metabolomics, University of Bonn, Bonn 53115, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854-8082, USA Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Simone Diestel
- Institute of Nutrition and Food Science, Department of Human Metabolomics, University of Bonn, Bonn 53115, Germany
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
19
|
Abstract
Axonal guidance and synaptic specification depends on specific signaling mechanisms that occur in growth cones. While several signaling pathways implicated in cone navigation have been identified, membrane dynamics in growth cones remains largely unknown. We took advantage of SynaptopHluorin and high-speed optical recordings to monitor the patterns of membrane dynamics in rat hippocampal growth cones. We show that exocytosis occurs both at the peripheral and central domains, including filopodia, and that SynaptopHluorin signals occur as spontaneous patterned peaks. Such transients average approximately two per minute and last ∼30 s. We also demonstrate that the chemoattractant Netrin-1 elicits increases in the frequency and slopes of these transients, with peaks averaging up to six per minute in the peripheral domain. Netrin-1-dependent regulation of exocytotic events requires the activation of the Erk1/2 and SFK pathways. Furthermore, we show that domains with high SynaptopHluorin signals correlate with high local calcium concentrations and that local, spontaneous calcium increases are associated with higher SynaptopHluorin signals. These findings demonstrate highly stereotyped, spontaneous transients of local exocytosis in growth cones and that these transients are positively regulated by chemoattractant molecules such as Netrin-1.
Collapse
|
20
|
Neural cell adhesion molecule 2 promotes the formation of filopodia and neurite branching by inducing submembrane increases in Ca2+ levels. J Neurosci 2015; 35:1739-52. [PMID: 25632147 DOI: 10.1523/jneurosci.1714-14.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Changes in expression of the neural cell adhesion molecule 2 (NCAM2) have been proposed to contribute to neurodevelopmental disorders in humans. The role of NCAM2 in neuronal differentiation remains, however, poorly understood. Using genetically encoded Ca(2+) reporters, we show that clustering of NCAM2 at the cell surface of mouse cortical neurons induces submembrane [Ca(2+)] spikes, which depend on the L-type voltage-dependent Ca(2+) channels (VDCCs) and require activation of the protein tyrosine kinase c-Src. We also demonstrate that clustering of NCAM2 induces L-type VDCC- and c-Src-dependent activation of CaMKII. NCAM2-dependent submembrane [Ca(2+)] spikes colocalize with the bases of filopodia. NCAM2 activation increases the density of filopodia along neurites and neurite branching and outgrowth in an L-type VDCC-, c-Src-, and CaMKII-dependent manner. Our results therefore indicate that NCAM2 promotes the formation of filopodia and neurite branching by inducing Ca(2+) influx and CaMKII activation. Changes in NCAM2 expression in Down syndrome and autistic patients may therefore contribute to abnormal neurite branching observed in these disorders.
Collapse
|
21
|
Ammar MR, Kassas N, Bader MF, Vitale N. Phosphatidic acid in neuronal development: A node for membrane and cytoskeleton rearrangements. Biochimie 2014; 107 Pt A:51-7. [DOI: 10.1016/j.biochi.2014.07.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/30/2014] [Indexed: 12/22/2022]
|
22
|
Mukherjee D, Sen A, Aguilar RC. RhoGTPase-binding proteins, the exocyst complex and polarized vesicle trafficking. Small GTPases 2014; 5:e28453. [PMID: 24691289 DOI: 10.4161/sgtp.28453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell polarity, the asymmetric distribution of proteins and lipids, is essential for a variety of cellular functions. One mechanism orchestrating cell polarity is polarized vesicle trafficking; whereby cargo loaded secretory vesicles are specifically transported to predetermined areas of the cell. The evolutionarily conserved exocyst complex and its small GTPase regulators play crucial roles in spatiotemporal control of polarized vesicle trafficking. In studies on neuronal membrane remodeling and synaptic plasticity, conserved mechanisms of exocyst regulation and cargo recycling during polarized vesicle trafficking are beginning to emerge as well. Recently, our lab demonstrated that RhoGTPase-binding proteins in both yeast (Bem3) and mammals (Ocrl1) are also required for the efficient traffic of secretory vesicles to sites of polarized growth and signaling. Together with our studies, we highlight the evolutionary conservation of the basic elements essential for polarized vesicle traffic across different cellular functions and model systems. In conclusion, we emphasize that studies on RhoGTPase-binding proteins in these processes should be included in the next level of investigation, for a more complete understanding of their hitherto unknown roles in polarized membrane traffic and exocyst regulation.
Collapse
Affiliation(s)
| | - Arpita Sen
- Department of Biological Sciences; Purdue University; West Lafayette, IN USA
| | - R Claudio Aguilar
- Department of Biological Sciences; Purdue University; West Lafayette, IN USA
| |
Collapse
|
23
|
Jones TA, Nikolova LS, Schjelderup A, Metzstein MM. Exocyst-mediated membrane trafficking is required for branch outgrowth in Drosophila tracheal terminal cells. Dev Biol 2014; 390:41-50. [PMID: 24607370 DOI: 10.1016/j.ydbio.2014.02.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 11/16/2022]
Abstract
Branching morphogenesis, the process by which cells or tissues generate tree-like networks that function to increase surface area or in contacting multiple targets, is a common developmental motif in multicellular organisms. We use Drosophila tracheal terminal cells, a component of the insect respiratory system, to investigate branching morphogenesis that occurs at the single cell level. Here, we show that the exocyst, a conserved protein complex that facilitates docking and tethering of vesicles at the plasma membrane, is required for terminal cell branch outgrowth. We find that exocyst-deficient terminal cells have highly truncated branches and show an accumulation of vesicles within their cytoplasm and are also defective in subcellular lumen formation. We also show that vesicle trafficking pathways mediated by the Rab GTPases Rab10 and Rab11 are redundantly required for branch outgrowth. In terminal cells, the PAR-polarity complex is required for branching, and we find that the PAR complex is required for proper membrane localization of the exocyst, thus identifying a molecular link between the branching and outgrowth programs. Together, our results suggest a model where exocyst mediated vesicle trafficking facilitates branch outgrowth, while de novo branching requires cooperation between the PAR and exocyst complexes.
Collapse
Affiliation(s)
- Tiffani A Jones
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Linda S Nikolova
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Ani Schjelderup
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark M Metzstein
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
24
|
Sheng L, Leshchyns'ka I, Sytnyk V. Cell adhesion and intracellular calcium signaling in neurons. Cell Commun Signal 2013; 11:94. [PMID: 24330678 PMCID: PMC3878801 DOI: 10.1186/1478-811x-11-94] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/05/2013] [Indexed: 01/10/2023] Open
Abstract
Cell adhesion molecules (CAMs) play indispensable roles in the developing and mature brain by regulating neuronal migration and differentiation, neurite outgrowth, axonal fasciculation, synapse formation and synaptic plasticity. CAM-mediated changes in neuronal behavior depend on a number of intracellular signaling cascades including changes in various second messengers, among which CAM-dependent changes in intracellular Ca2+ levels play a prominent role. Ca2+ is an essential secondary intracellular signaling molecule that regulates fundamental cellular functions in various cell types, including neurons. We present a systematic review of the studies reporting changes in intracellular Ca2+ levels in response to activation of the immunoglobulin superfamily CAMs, cadherins and integrins in neurons. We also analyze current experimental evidence on the Ca2+ sources and channels involved in intracellular Ca2+ increases mediated by CAMs of these families, and systematically review the role of the voltage-dependent Ca2+ channels (VDCCs) in neurite outgrowth induced by activation of these CAMs. Molecular mechanisms linking CAMs to VDCCs and intracellular Ca2+ stores in neurons are discussed.
Collapse
Affiliation(s)
| | | | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
25
|
Shetty A, Sytnyk V, Leshchyns'ka I, Puchkov D, Haucke V, Schachner M. The neural cell adhesion molecule promotes maturation of the presynaptic endocytotic machinery by switching synaptic vesicle recycling from adaptor protein 3 (AP-3)- to AP-2-dependent mechanisms. J Neurosci 2013; 33:16828-45. [PMID: 24133283 PMCID: PMC6618524 DOI: 10.1523/jneurosci.2192-13.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/27/2013] [Accepted: 09/13/2013] [Indexed: 02/05/2023] Open
Abstract
Newly formed synapses undergo maturation during ontogenetic development via mechanisms that remain poorly understood. We show that maturation of the presynaptic endocytotic machinery in CNS neurons requires substitution of the adaptor protein 3 (AP-3) with AP-2 at the presynaptic plasma membrane. In mature synapses, AP-2 associates with the intracellular domain of the neural cell adhesion molecule (NCAM). NCAM promotes binding of AP-2 over binding of AP-3 to presynaptic membranes, thus favoring the substitution of AP-3 for AP-2 during formation of mature synapses. The presynaptic endocytotic machinery remains immature in adult NCAM-deficient (NCAM-/-) mice accumulating AP-3 instead of AP-2 and its partner protein AP180 in synaptic membranes and vesicles. NCAM deficiency or disruption of the NCAM/AP-2 complex in wild-type (NCAM+/+) neurons by overexpression of AP-2 binding-defective mutant NCAM interferes with efficient retrieval of the synaptic vesicle v-SNARE synaptobrevin 2. Abnormalities in synaptic vesicle endocytosis and recycling may thus contribute to neurological disorders associated with mutations in NCAM.
Collapse
Affiliation(s)
- Aparna Shetty
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
| | - Vladimir Sytnyk
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Iryna Leshchyns'ka
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dmytro Puchkov
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie and Freie Universität Berlin, 13125 Berlin, Germany
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
- Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey 08854-8082, and
- Center for Neuroscience, Shantou University Medical College, Shantou 515041, People's Republic of China
| |
Collapse
|
26
|
Guan Y, Guo J, Li H, Yang Z. Signaling in pollen tube growth: crosstalk, feedback, and missing links. MOLECULAR PLANT 2013; 6:1053-64. [PMID: 23873928 PMCID: PMC3842152 DOI: 10.1093/mp/sst070] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/25/2013] [Indexed: 05/19/2023]
Abstract
Pollen tubes elongate rapidly at their tips through highly polarized cell growth known as tip growth. Tip growth requires intensive exocytosis at the tip, which is supported by a dynamic cytoskeleton and vesicle trafficking. Several signaling pathways have been demonstrated to coordinate pollen tube growth by regulating cellular activities such as actin dynamics, exocytosis, and endocytosis. These signaling pathways crosstalk to form a signaling network that coordinates the cellular processes required for tip growth. The homeostasis of key signaling molecules is critical for the proper elongation of the pollen tube tip, and is commonly fine-tuned by positive and negative regulations. In addition to the major signaling pathways, emerging evidence implies the roles of other signals in the regulation of pollen tube growth. Here we review and discuss how these signaling networks modulate the rapid growth of pollen tubes.
Collapse
Affiliation(s)
- Yuefeng Guan
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | | | | | | |
Collapse
|
27
|
Neural cell adhesion molecule-mediated Fyn activation promotes GABAergic synapse maturation in postnatal mouse cortex. J Neurosci 2013; 33:5957-68. [PMID: 23554477 DOI: 10.1523/jneurosci.1306-12.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
GABAergic basket interneurons form perisomatic synapses, which are essential for regulating neural networks, and their alterations are linked to various cognitive dysfunction. Maturation of basket synapses in postnatal cortex is activity dependent. In particular, activity-dependent downregulation of polysialiac acid carried by the neural cell adhesion molecule (NCAM) regulates the timing of their maturation. Whether and how NCAM per se affects GABAergic synapse development is unknown. Using single-cell genetics to knock out NCAM in individual basket interneurons in mouse cortical slice cultures, at specific developmental time periods, we found that NCAM loss during perisomatic synapse formation impairs the process of basket cell axonal branching and bouton formation. However, loss of NCAM once the synapses are already formed did not show any effect. We further show that NCAM120 and NCAM140, but not the NCAM180 isoform, rescue the phenotype. Finally, we demonstrate that a dominant-negative form of Fyn kinase mimics, whereas a constitutively active form of Fyn kinase rescues, the effects of NCAM knockdown. Altogether, our data suggest that NCAM120/NCAM140-mediated Fyn activation promotes GABAergic synapse maturation in postnatal cortex.
Collapse
|
28
|
The neural cell adhesion molecule (NCAM) associates with and signals through p21-activated kinase 1 (Pak1). J Neurosci 2013; 33:790-803. [PMID: 23303955 DOI: 10.1523/jneurosci.1238-12.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Neural cell adhesion molecule (NCAM) plays an important role in regulation of nervous system development. To expand our understanding of the molecular mechanisms via which NCAM influences differentiation of neurons, we used a yeast two-hybrid screening to search for new binding partners of NCAM and identified p21-activated kinase 1 (Pak1). We show that NCAM interacts with Pak1 in growth cones of neurons. The autophosphorylation and activity of Pak1 were enhanced when isolated growth cones were incubated with NCAM function triggering antibodies, which mimic the interaction between NCAM and its extracellular ligands. The association of Pak1 with cell membranes, the efficiency of Pak1 binding to its activators, and Pak1 activity were inhibited in brains of NCAM-deficient mice. NCAM-dependent Pak1 activation was abolished after lipid raft disruption, suggesting that NCAM promotes Pak1 activation in the lipid raft environment. Phosphorylation of the downstream Pak1 effectors LIMK1 and cofilin was reduced in growth cones from NCAM-deficient neurons, which was accompanied by decreased levels of filamentous actin and inhibited filopodium mobility in the growth cones. Dominant-negative Pak1 inhibited and constitutively active Pak1 enhanced the ability of neurons to increase neurite outgrowth in response to the extracellular ligands of NCAM. Our combined observations thus indicate that NCAM activates Pak1 to drive actin polymerization to promote neuronal differentiation.
Collapse
|
29
|
|
30
|
Tian N, Leshchyns'ka I, Welch JH, Diakowski W, Yang H, Schachner M, Sytnyk V. Lipid raft-dependent endocytosis of close homolog of adhesion molecule L1 (CHL1) promotes neuritogenesis. J Biol Chem 2012; 287:44447-63. [PMID: 23144456 DOI: 10.1074/jbc.m112.394973] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
CHL1 plays a dual role by either promoting or inhibiting neuritogenesis. We report here that neuritogenesis-promoting ligand-dependent cell surface clustering of CHL1 induces palmitoylation and lipid raft-dependent endocytosis of CHL1. We identify βII spectrin as a binding partner of CHL1, and we show that partial disruption of the complex between CHL1 and βII spectrin accompanies CHL1 endocytosis. Inhibition of the association of CHL1 with lipid rafts by pharmacological disruption of lipid rafts or by mutation of cysteine 1102 within the intracellular domain of CHL1 reduces endocytosis of CHL1. Endocytosis of CHL1 is also reduced by nifedipine, an inhibitor of the L-type voltage-dependent Ca(2+) channels. CHL1-dependent neurite outgrowth is reduced by inhibitors of lipid raft assembly, inhibitors of voltage-dependent Ca(2+) channels, and overexpression of CHL1 with mutated cysteine Cys-1102. Our results suggest that ligand-induced and lipid raft-dependent regulation of CHL1 adhesion via Ca(2+)-dependent remodeling of the CHL1-βII spectrin complex and CHL1 endocytosis are required for CHL1-dependent neurite outgrowth.
Collapse
Affiliation(s)
- Nan Tian
- Zentrum für Molekulare Neurobiologie, Universitätskrankenhaus Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Poplawski GHD, Tranziska AK, Leshchyns'ka I, Meier ID, Streichert T, Sytnyk V, Schachner M. L1CAM increases MAP2 expression via the MAPK pathway to promote neurite outgrowth. Mol Cell Neurosci 2012; 50:169-78. [PMID: 22503709 DOI: 10.1016/j.mcn.2012.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 02/21/2012] [Accepted: 03/29/2012] [Indexed: 11/30/2022] Open
Abstract
The neural cell adhesion molecule L1 (L1CAM) promotes neurite outgrowth via mechanisms that are not completely understood, but are known to involve the cytoskeleton. Here, we show that L1 binds directly to the microtubule associated protein 2c (MAP2c). This isoform of MAP2 is predominantly expressed in developing neurons. We found that the mRNA and protein levels of MAP2c, but not of MAP2a/b, are reduced in brains of young adult L1-deficient transgenic mice. We show via ELISA, that MAP2c, but not MAP2a/b, binds directly to the intracellular domain of L1. Remarkably, all these MAP2 isoforms co-immunoprecipitate with L1, suggesting that MAP2a/b associates with L1 via intermediate binding partners. The expression levels of MAP2a/b/c correlate with those of L1 in different brain regions of early postnatal mice, while expression levels of heat shock cognate protein 70 (Hsc70) or actin do not. L1 enhances the expression of MAP2a/b/c in cultured hippocampal neurons depending on activation of the mitogen-activated protein kinase (MAPK) pathway. Deficiency in both L1 and MAP2a/b/c expression results in reduced neurite outgrowth in vitro. We propose that the L1-triggered increase in MAP2a/b/c expression is required to promote neurite outgrowth.
Collapse
Affiliation(s)
- Gunnar Heiko Dirk Poplawski
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Kraev I, Henneberger C, Rossetti C, Conboy L, Kohler LB, Fantin M, Jennings A, Venero C, Popov V, Rusakov D, Stewart MG, Bock E, Berezin V, Sandi C. A peptide mimetic targeting trans-homophilic NCAM binding sites promotes spatial learning and neural plasticity in the hippocampus. PLoS One 2011; 6:e23433. [PMID: 21887252 PMCID: PMC3160849 DOI: 10.1371/journal.pone.0023433] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/17/2011] [Indexed: 01/10/2023] Open
Abstract
The key roles played by the neural cell adhesion molecule (NCAM) in plasticity and cognition underscore this membrane protein as a relevant target to develop cognitive-enhancing drugs. However, NCAM is a structurally and functionally complex molecule with multiple domains engaged in a variety of actions, which raise the question as to which NCAM fragment should be targeted. Synthetic NCAM mimetic peptides that mimic NCAM sequences relevant to specific interactions allow identification of the most promising targets within NCAM. Recently, a decapeptide ligand of NCAM—plannexin, which mimics a homophilic trans-binding site in Ig2 and binds to Ig3—was developed as a tool for studying NCAM's trans-interactions. In this study, we investigated plannexin's ability to affect neural plasticity and memory formation. We found that plannexin facilitates neurite outgrowth in primary hippocampal neuronal cultures and improves spatial learning in rats, both under basal conditions and under conditions involving a deficit in a key plasticity-promoting posttranslational modification of NCAM, its polysialylation. We also found that plannexin enhances excitatory synaptic transmission in hippocampal area CA1, where it also increases the number of mushroom spines and the synaptic expression of the AMPAR subunits GluA1 and GluA2. Altogether, these findings provide compelling evidence that plannexin is an important facilitator of synaptic functional, structural and molecular plasticity in the hippocampal CA1 region, highlighting the fragment in NCAM's Ig3 module where plannexin binds as a novel target for the development of cognition-enhancing drugs.
Collapse
Affiliation(s)
- Igor Kraev
- Department of Life Sciences, The Open University, Milton Keynes, United Kingdom
| | - Christian Henneberger
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London (UCL), London, United Kingdom
| | - Clara Rossetti
- Laboratory of Behavioral Genetics, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Lisa Conboy
- Laboratory of Behavioral Genetics, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Lene B. Kohler
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Martina Fantin
- Laboratory of Behavioral Genetics, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Alistair Jennings
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London (UCL), London, United Kingdom
| | - Cesar Venero
- Department of Psychobiology, UNED, Ciudad Universitaria, Madrid, Spain
| | - Victor Popov
- Department of Life Sciences, The Open University, Milton Keynes, United Kingdom
| | - Dmitri Rusakov
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London (UCL), London, United Kingdom
| | - Michael G. Stewart
- Department of Life Sciences, The Open University, Milton Keynes, United Kingdom
- * E-mail: (CS); (MGS)
| | - Elisabeth Bock
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir Berezin
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, EPFL, Lausanne, Switzerland
- * E-mail: (CS); (MGS)
| |
Collapse
|
33
|
El Maarouf A, Kolesnikov Y, Pasternak G, Rutishauser U. Removal of polysialylated neural cell adhesion molecule increases morphine analgesia and interferes with tolerance in mice. Brain Res 2011; 1404:55-62. [PMID: 21704981 DOI: 10.1016/j.brainres.2011.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 11/20/2022]
Abstract
Neurons that express high levels of polysialylated neural cell adhesion molecule (PSA-NCAM) in adult spinal substantia gelatinosa also express the μ-opioid receptor. While PSA removal from NCAM by spinal intrathecal injection of endoneuraminidase-N (endo-N) did not detectably change opioid receptor expression, morphine-induced analgesia was significantly increased. This analgesic strengthening was detected as early as 15 min after endo-N treatment and persisted for at least 7 days. In addition, the tolerance that develops with chronic morphine treatment was overcome in the absence of PSA. Interestingly, the same effects on analgesia and tolerance were also produced by selective deletion of the NCAM-180 isoform.
Collapse
Affiliation(s)
- Abderrahman El Maarouf
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
34
|
Itofusa R, Kamiguchi H. Polarizing membrane dynamics and adhesion for growth cone navigation. Mol Cell Neurosci 2011; 48:332-8. [PMID: 21459144 DOI: 10.1016/j.mcn.2011.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022] Open
Abstract
Neuronal network formation relies on the motile behavior of growth cones at the tip of navigating axons. Accumulating evidence indicates that growth cone motility requires spatially controlled endocytosis and exocytosis that can redistribute bulk membrane and functional cargos such as cell adhesion molecules. For axon elongation, the growth cone recycles cell adhesion molecules from its rear to its leading front through endosomes, thereby polarizing growth cone adhesiveness along the axis of migration direction. In response to extracellular guidance cues, the growth cone turns by retrieving membrane components from the retractive side or by supplying them to the side facing the new direction. We propose that polarized membrane trafficking creates adhesion gradients along and across the front-to-rear axis of growth cones that are essential for axon elongation and turning, respectively. This review will examine how growth cone adhesiveness can be patterned by spatially coordinated endocytosis and exocytosis of cell adhesion molecules. This article is part of a Special Issue entitled 'Neuronal Function'.
Collapse
Affiliation(s)
- Rurika Itofusa
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, 2–1 Hirosawa, Wako, Saitama 351–0198, Japan
| | | |
Collapse
|