1
|
Chong YS, Ang SR, Sajikumar S. Beyond boundaries: extended temporal flexibility in synaptic tagging and capture. Commun Biol 2025; 8:553. [PMID: 40181131 PMCID: PMC11968991 DOI: 10.1038/s42003-025-07998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/25/2025] [Indexed: 04/05/2025] Open
Abstract
Synaptic tagging and capture (STC) is a mechanism that enables the formation of associative synaptic plasticity by marking activated synapses with "tags" to capture plasticity-related products (PRPs) essential for plasticity stabilization. Experimental evidence using long-term potentiation (LTP), a widely studied cellular correlate of memory, shows that the duration of synaptic tags varies, lasting up to 90 minutes in ex vivo hippocampal slices but shorter in in vivo conditions, likely due to higher metabolic activity. In this study, we investigate the time window for tag-PRP interactions in STC using a strong-before-weak paradigm, where protein synthesis-dependent late-LTP precedes protein synthesis-independent early-LTP at various intervals. Surprisingly, successful STC is observed even with a 9-hour interval in the strong-before-weak paradigm, suggesting a broader temporal flexibility for tag-PRP interactions than previously understood. This unexpected finding offers alternative explanations for associative memory formation by cataloguing memory events, allowing weaker memories to be strengthened when preceded by stronger ones.
Collapse
Affiliation(s)
- Yee Song Chong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Sheila Ruixia Ang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore, Singapore.
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Ageta-Ishihara N, Fukazawa Y, Arima-Yoshida F, Okuno H, Ishii Y, Takao K, Konno K, Fujishima K, Ageta H, Hioki H, Tsuchida K, Sato Y, Kengaku M, Watanabe M, Watabe AM, Manabe T, Miyakawa T, Inokuchi K, Bito H, Kinoshita M. Septin 3 regulates memory and L-LTP-dependent extension of endoplasmic reticulum into spines. Cell Rep 2025; 44:115352. [PMID: 40023151 DOI: 10.1016/j.celrep.2025.115352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/11/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025] Open
Abstract
Transient memories are converted to persistent memories at the synapse and circuit/systems levels. The synapse-level consolidation parallels electrophysiological transition from early- to late-phase long-term potentiation of synaptic transmission (E-/L-LTP). While glutamate signaling upregulations coupled with dendritic spine enlargement are common underpinnings of E-LTP and L-LTP, synaptic mechanisms conferring persistence on L-LTP remain unclear. Here, we show that L-LTP induced at the perforant path-hippocampal dentate gyrus (DG) synapses accompanies cytoskeletal remodeling that involves actin and the septin subunit SEPT3. L-LTP in DG neurons causes fast spine enlargement, followed by SEPT3-dependent smooth endoplasmic reticulum (sER) extension into enlarged spines. Spines containing sER show greater Ca2+ responses upon synaptic input and local synaptic activity. Consistently, Sept3 knockout in mice (Sept3-/-) impairs memory consolidation and causes a scarcity of sER-containing spines. These findings indicate a concept that sER extension into active spines serves as a synaptic basis of memory consolidation.
Collapse
Affiliation(s)
- Natsumi Ageta-Ishihara
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan; Department of Molecular Biology, Division of Biological Sciences, Nagoya University Graduate School of Science, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Fumiko Arima-Yoshida
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Kashiwa, Chiba 277-8567, Japan
| | - Hiroyuki Okuno
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yuichiro Ishii
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Kazuto Fujishima
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study (KUIAS-iCeMS), Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Hiroshi Ageta
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mineko Kengaku
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study (KUIAS-iCeMS), Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Ayako M Watabe
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Kashiwa, Chiba 277-8567, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Kaoru Inokuchi
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Makoto Kinoshita
- Department of Molecular Biology, Division of Biological Sciences, Nagoya University Graduate School of Science, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
3
|
Moldwin T, Azran LS, Segev I. A generalized mathematical framework for the calcium control hypothesis describes weight-dependent synaptic plasticity. J Comput Neurosci 2025:10.1007/s10827-025-00894-6. [PMID: 40100329 DOI: 10.1007/s10827-025-00894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 03/20/2025]
Abstract
The brain modifies synaptic strengths to store new information via long-term potentiation (LTP) and long-term depression (LTD). Evidence has mounted that long-term synaptic plasticity is controlled via concentrations of calcium ([Ca2+]) in postsynaptic dendritic spines. Several mathematical models describe this phenomenon, including those of Shouval, Bear, and Cooper (SBC) (Shouval et al., 2002, 2010) and Graupner and Brunel (GB) (Graupner & Brunel, 2012). Here we suggest a generalized version of the SBC and GB models, the fixed point - learning rate (FPLR) framework, where the synaptic [Ca2+] specifies a fixed point toward which the synaptic weight approaches asymptotically at a [Ca2+]-dependent rate. The FPLR framework offers a straightforward phenomenological interpretation of calcium-based plasticity: the calcium concentration tells the synaptic weight where it is going and how quickly it goes there. The FPLR framework can flexibly incorporate various experimental findings, including the existence of multiple regions of [Ca2+] where no plasticity occurs, or plasticity observed experimentally in cerebellar Purkinje cells, where the directionality of calcium-based synaptic changes is reversed relative to cortical and hippocampal neurons. We also suggest a modeling approach that captures the dependency of late-phase plasticity stabilization on protein synthesis. We demonstrate that due to the asymptotic nature of synaptic changes in the FPLR rule, the plastic changes induced by frequency- and spike-timing-dependent plasticity protocols are weight-dependent. Finally, we show how the FPLR framework can explain the weight-dependence observed in behavioral time scale plasticity (BTSP).
Collapse
Affiliation(s)
- Toviah Moldwin
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Li Shay Azran
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Segev
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
Jones TA, Nemchek V, Fracassi M. Experience-driven competition in neural reorganization after stroke. J Physiol 2025; 603:737-757. [PMID: 39476290 PMCID: PMC11785499 DOI: 10.1113/jp285565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/27/2024] [Indexed: 02/01/2025] Open
Abstract
Behavioural experiences interact with regenerative responses to shape patterns of neural reorganization after stroke. This review is focused on the competitive nature of these behavioural experience effects. Interactions between learning-related plasticity and regenerative reactions have been found to underlie the establishment of new compensatory behaviours and the efficacy of motor rehabilitative training in rodent stroke models. Learning in intact brains depends on competitive and cooperative mechanisms of synaptic plasticity. Synapses are added in response to learning and selectively maintained and strengthened via activity-dependent competition. Long-term memories for experiences that occur closely in time can be weakened or enhanced by competitive or cooperative interactions in the time-dependent process of stabilizing synaptic changes. Rodent stroke model findings suggest that compensatory reliance on the non-paretic hand after stroke can shape and stabilize synaptic reorganization patterns in both hemispheres, to compete with the capacity for experiences of the paretic side to do so. However, the competitive edge of the non-paretic side can be countered by overlapping experiences of the paretic hand, and might even be shifted in a cooperative direction with skilfully coordinated bimanual experience. Advances in the basic understanding of learning-related synaptic competition are helping to inform the basis of experience-dependent variations in stroke outcome.
Collapse
Affiliation(s)
- Theresa A. Jones
- Psychology Department & Institute for Neuroscience, University of Texas at Austin
| | - Victoria Nemchek
- Psychology Department & Institute for Neuroscience, University of Texas at Austin
| | - Michela Fracassi
- Psychology Department & Institute for Neuroscience, University of Texas at Austin
| |
Collapse
|
5
|
Liu W, Chen QY, Li XH, Zhou Z, Zhuo M. Cortical Tagged Synaptic Long-Term Depression in the Anterior Cingulate Cortex of Adult Mice. J Neurosci 2024; 44:e0028242024. [PMID: 39054067 PMCID: PMC11358531 DOI: 10.1523/jneurosci.0028-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
The anterior cingulate cortex (ACC) is a key cortical region for pain perception and emotion. Different forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), have been reported in the ACC. Synaptic tagging of LTP plays an important role in hippocampus-related associative memory. In this study, we demonstrate that synaptic tagging of LTD is detected in the ACC of adult male and female mice. This form of tagged LTD requires the activation of metabotropic glutamate receptor subtype 1 (mGluR1). The induction of tagged LTD is time-related with the strongest tagged LTD appearing when the interval between two independent stimuli is 30 min. Inhibitors of mGluR1 blocked the induction of tagged LTD; however, blocking N-methyl-d-aspartate receptors did not affect the induction of tagged LTD. Nimodipine, an inhibitor of L-type voltage-gated calcium channels, also blocked tagged LTD. In an animal model of amputation, we found that tagged LTD was either reduced or completely blocked. Together with our previous report of tagged LTP in the ACC, this study strongly suggests that excitatory synapses in the adult ACC are highly plastic. The biphasic tagging of synaptic transmission provides a new form of heterosynaptic plasticity in the ACC which has functional and pathophysiological significance in phantom pain.
Collapse
Affiliation(s)
- Weiqi Liu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Zhuomin Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
| | - Qi-Yu Chen
- Zhuomin Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Zhuomin Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
| | - Zhaoxiang Zhou
- Zhuomin Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Department of Exercise & Health Science, Xi'an Physical Education University, Xi'an 710068, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Zhuomin Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
6
|
Sun Y, Zhang H, Liu R, Wang Y, Zhang X, Huang R, Zhu B, Wu H. Zexieyin formula alleviates Alzheimer's disease via post-synaptic CaMKII modulating AMPA receptor: Involved in promoting neurogenesis to strengthen synaptic plasticity in mice hippocampus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155802. [PMID: 38852473 DOI: 10.1016/j.phymed.2024.155802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a serious neurodegenerative disease and brings a serious burden to society and families. Due to lack of effective drugs for the treatment of AD, it's urgent to develop new and effective drug for the treatment of AD. PURPOSE The study aimed to investigate the potential of Zexieyin formula (ZXYF), a Chinese medicine formula, for the treatment of AD and its potential mechanism of action. METHODS We used chronic scopolamine (SCOP) induction mice model and APP/PS1 mice to reveal and confirm ZXYF for the treatment of AD with donepezil (DON) as a positive reference. The learning and memory function were detected by morris water maze test (MWM) and y-maze test. Moreover, western blot and immunofluorescence were used to detect the molecular mechanism of ZXYF for the alleviation of AD in hippocampus. Lastly, pharmacological technology was applied to evaluate AMPA receptor involved in the role of ZXYF in the treatment of AD. RESULTS The results showed that ZXYF could improve memory and learning deficits both in two AD models including scopolamine (SCOP)-induced mice model and APP/PS1mice. Moreover, ZXYF or not DON increased expressions of BrdU/DCX and Ki67 positive cells in dentate gyrus (DG), up-regulated the levels of AMPA subunit type (GluA1) and PKA in hippocampus in SCOP-induced mice model, although ZXYF and DON activated CaMKII, CaMKII-phosphorylation, CREB, CREB-phosphorylation and PSD95 in hippocampus in SCOP-induced mice model. ZXYF also activated CaMKII, CaMKII-phosphorylation and GluA1 in HT22 cells. Furthermore, transient inhibiting AMPA receptor was capable of blocking the effects of ZXYF to treat AD in MWM and suppressing the number of BrdU/DCX positive cells increased by ZXYF in DG in SCOP-induced mice model, but had no effect on the alteration of Ki67 positive cells. CONCLUSION ZXYF had the therapeutic effects on AD-treatment, which activated CaMKII to promote AMPA receptor (GluA1) and subsequently up-regulated PKA/CREB signaling to facilitate neurogenesis to achieve enhanced postsynaptic protein.
Collapse
Affiliation(s)
- Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China
| | - Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, PR China.
| | - Ruiyi Liu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China; Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, PR China
| | - Yanqing Wang
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China
| | - Xiangrui Zhang
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China
| | - Rumin Huang
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China
| | - Boran Zhu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China.
| | - Haoxin Wu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
7
|
Koek LA, Sanderson TM, Georgiou J, Collingridge GL. The role of calcium stores in long-term potentiation and synaptic tagging and capture in mouse hippocampus. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230241. [PMID: 38853556 PMCID: PMC11343308 DOI: 10.1098/rstb.2023.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
The roles of Ca2+-induced calcium release in synaptic plasticity and metaplasticity are poorly understood. The present study has addressed the role of intracellular Ca2+ stores in long-term potentiation (LTP) and a form of heterosynaptic metaplasticity known as synaptic tagging and capture (STC) at CA1 synapses in mouse hippocampal slices. The effects of two compounds, ryanodine and cyclopiazonic acid (CPA), were examined on LTP induced by three distinct induction protocols: weak (w), compressed (c) and spaced (s) theta-burst stimulation (TBS). These compounds did not significantly affect LTP induced by the wTBS (one episode of TBS; 25 stimuli) or cTBS (three such episodes with a 10 s inter-episode interval (IEI); 75 stimuli) but substantially inhibited LTP induced by a sTBS (10 min IEI; 75 stimuli). Ryanodine and CPA also prevented a small heterosynaptic potentiation that was observed with the sTBS protocol. Interestingly, these compounds also prevented STC when present during either the sTBS or the subsequent wTBS, applied to an independent input. All of these effects of ryanodine and CPA were similar to that of a calcium-permeable AMPA receptor blocker. In conclusion, Ca2+ stores provide one way in which signals are propagated between synaptic inputs and, by virtue of their role in STC, may be involved in associative long-term memories. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Laura A. Koek
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Thomas M. Sanderson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Graham L. Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| |
Collapse
|
8
|
Nunes M, Madeira N, Fonseca R. Cdc42 activation is necessary for heterosynaptic cooperation and competition. Mol Cell Neurosci 2024; 129:103921. [PMID: 38428552 DOI: 10.1016/j.mcn.2024.103921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
Synapses change their weights in response to neuronal activity and in turn, neuronal networks alter their response properties and ultimately allow the brain to store information as memories. As for memories, not all events are maintained over time. Maintenance of synaptic plasticity depends on the interplay between functional changes at synapses and the synthesis of plasticity-related proteins that are involved in stabilizing the initial functional changes. Different forms of synaptic plasticity coexist in time and across the neuronal dendritic area. Thus, homosynaptic plasticity refers to activity-dependent synaptic modifications that are input-specific, whereas heterosynaptic plasticity relates to changes in non-activated synapses. Heterosynaptic forms of plasticity, such as synaptic cooperation and competition allow neurons to integrate events that occur separated by relatively large time windows, up to one hour. Here, we show that activation of Cdc42, a Rho GTPase that regulates actin cytoskeleton dynamics, is necessary for the maintenance of long-term potentiation (LTP) in a time-dependent manner. Inhibiting Cdc42 activation does not alter the time-course of LTP induction and its initial expression but blocks its late maintenance. We show that Cdc42 activation is involved in the phosphorylation of cofilin, a protein involved in modulating actin filaments and that weak and strong synaptic activation leads to similar levels on cofilin phosphorylation, despite different levels of LTP expression. We show that Cdc42 activation is required for synapses to interact by cooperation or competition, supporting the hypothesis that modulation of the actin cytoskeleton provides an activity-dependent and time-restricted permissive state of synapses allowing synaptic plasticity to occur. We found that under competition, the sequence in which synapses are activated determines the degree of LTP destabilization, demonstrating that competition is an active destabilization process. Taken together, we show that modulation of actin cytoskeleton by Cdc42 activation is necessary for the expression of homosynaptic and heterosynaptic forms of plasticity. Determining the temporal and spatial rules that determine whether synapses cooperate or compete will allow us to understand how memories are associated.
Collapse
Affiliation(s)
- Mariana Nunes
- Cellular and Systems Neurobiology, NOVA Medical Research, NOVA Medical School, Universidade NOVA de Lisboa, Portugal
| | - Natália Madeira
- Cellular and Systems Neurobiology, NOVA Medical Research, NOVA Medical School, Universidade NOVA de Lisboa, Portugal
| | - Rosalina Fonseca
- Cellular and Systems Neurobiology, NOVA Medical Research, NOVA Medical School, Universidade NOVA de Lisboa, Portugal.
| |
Collapse
|
9
|
Lazarov O, Gupta M, Kumar P, Morrissey Z, Phan T. Memory circuits in dementia: The engram, hippocampal neurogenesis and Alzheimer's disease. Prog Neurobiol 2024; 236:102601. [PMID: 38570083 PMCID: PMC11221328 DOI: 10.1016/j.pneurobio.2024.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Here, we provide an in-depth consideration of our current understanding of engrams, spanning from molecular to network levels, and hippocampal neurogenesis, in health and Alzheimer's disease (AD). This review highlights novel findings in these emerging research fields and future research directions for novel therapeutic avenues for memory failure in dementia. Engrams, memory in AD, and hippocampal neurogenesis have each been extensively studied. The integration of these topics, however, has been relatively less deliberated, and is the focus of this review. We primarily focus on the dentate gyrus (DG) of the hippocampus, which is a key area of episodic memory formation. Episodic memory is significantly impaired in AD, and is also the site of adult hippocampal neurogenesis. Advancements in technology, especially opto- and chemogenetics, have made sophisticated manipulations of engram cells possible. Furthermore, innovative methods have emerged for monitoring neurons, even specific neuronal populations, in vivo while animals engage in tasks, such as calcium imaging. In vivo calcium imaging contributes to a more comprehensive understanding of engram cells. Critically, studies of the engram in the DG using these technologies have shown the important contribution of hippocampal neurogenesis for memory in both health and AD. Together, the discussion of these topics provides a holistic perspective that motivates questions for future research.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pavan Kumar
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zachery Morrissey
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Trongha Phan
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Park H, Kaang BK. Memory allocation at the neuronal and synaptic levels. BMB Rep 2024; 57:176-181. [PMID: 37964638 PMCID: PMC11058361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/05/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023] Open
Abstract
Memory allocation, which determines where memories are stored in specific neurons or synapses, has consistently been demonstrated to occur via specific mechanisms. Neuronal allocation studies have focused on the activated population of neurons and have shown that increased excitability via cAMP response element-binding protein (CREB) induces a bias toward memoryencoding neurons. Synaptic allocation suggests that synaptic tagging enables memory to be mediated through different synaptic strengthening mechanisms, even within a single neuron. In this review, we summarize the fundamental concepts of memory allocation at the neuronal and synaptic levels and discuss their potential interrelationships. [BMB Reports 2024; 57(4): 176-181].
Collapse
Affiliation(s)
- HyoJin Park
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
- Department of Biological Science, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| |
Collapse
|
11
|
Schroeder MN, Fullio CL, Ballarini F, Moncada D. Modulation of memory reconsolidation by adjacent novel tasks: timing defines the nature of change. Commun Biol 2023; 6:1288. [PMID: 38114781 PMCID: PMC10730840 DOI: 10.1038/s42003-023-05666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Reconsolidation turns memories into a responsive state that allows their modulation until they stabilize again. This phenomenon attracted remarkable attention due to its potential impact on therapeutics and education. Recent evidence revealed that different memories undergo reconsolidation via a behavioral tagging process. Thus, their re-stabilization involves setting "reconsolidation-tags" and synthesizing plasticity-related proteins for their capture at the tagged sites. Here, we studied the possibility of affecting these fundamental mechanisms to modulate reconsolidation. Our findings, in laboratory rats, indicate that exploring a novel environment 60 min before or after memory reactivation improves spatial object recognition memory by promoting protein synthesis. Conversely, experiencing novelty immediately after reactivation impairs the reconsolidation by affecting the tags. Similar effects, but with a different optimal time window for improvement, occur in inhibitory avoidance memory. These results highlight the possibility of modulating existing memories using non-invasive interventions that selectively affect the fundamental mechanisms of behavioral tagging during their reconsolidation.
Collapse
Affiliation(s)
- Matías Nicolás Schroeder
- Laboratorio de Neurofisiología de la Memoria, Instituto de Biología Celular y Neurociencia, Facultad de Medicina (UBA/CONICET) - Instituto Tecnológico de Buenos Aires (ITBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Camila L Fullio
- Laboratorio de Neurofisiología de la Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fabricio Ballarini
- Laboratorio de neurociencia translacional, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires, Av. Madero 399, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego Moncada
- Laboratorio de Neurofisiología de la Memoria, Instituto de Biología Celular y Neurociencia, Facultad de Medicina (UBA/CONICET) - Instituto Tecnológico de Buenos Aires (ITBA), Ciudad Autónoma de Buenos Aires, Argentina.
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
12
|
Tse D, Privitera L, Norton AC, Gobbo F, Spooner P, Takeuchi T, Martin SJ, Morris RGM. Cell-type-specific optogenetic stimulation of the locus coeruleus induces slow-onset potentiation and enhances everyday memory in rats. Proc Natl Acad Sci U S A 2023; 120:e2307275120. [PMID: 37931094 PMCID: PMC10655220 DOI: 10.1073/pnas.2307275120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023] Open
Abstract
Memory formation is typically divided into phases associated with encoding, storage, consolidation, and retrieval. The neural determinants of these phases are thought to differ. This study first investigated the impact of the experience of novelty in rats incurred at a different time, before or after, the precise moment of memory encoding. Memory retention was enhanced. Optogenetic activation of the locus coeruleus mimicked this enhancement induced by novelty, both when given before and after the moment of encoding. Optogenetic activation of the locus coeruleus also induced a slow-onset potentiation of field potentials in area CA1 of the hippocampus evoked by CA3 stimulation. Despite the locus coeruleus being considered a primarily noradrenergic area, both effects of such stimulation were blocked by the dopamine D1/D5 receptor antagonist SCH 23390. These findings substantiate and enrich the evidence implicating the locus coeruleus in cellular aspects of memory consolidation in hippocampus.
Collapse
Affiliation(s)
- Dorothy Tse
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, EdinburghEH8 9JZ, United Kingdom
- Department of Psychology, Edge Hill University, OmskirkL39 4QP, United Kingdom
| | - Lucia Privitera
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, EdinburghEH8 9JZ, United Kingdom
- School of Systems Medicine, University of Dundee, DundeeDD1 4HN, United Kingdom
- Barts and the London School of Medicine, Institute of Health Sciences Education, Queen Mary University of London Malta Campus, VictoriaVCT 2570, Malta
| | - Anna C. Norton
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, EdinburghEH8 9JZ, United Kingdom
| | - Francesco Gobbo
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, EdinburghEH8 9JZ, United Kingdom
| | - Patrick Spooner
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, EdinburghEH8 9JZ, United Kingdom
| | - Tomonori Takeuchi
- Danish Research Institute of Translational Neuroscience, Nordic-European Molecular Biology Laboratory Partnership for Molecular Medicine, Aarhus University, Aarhus8000, Denmark
- Center for Proteins in Memory, Danish National Research Foundation, Department of Biomedicine, Aarhus University, Aarhus8000, Denmark
| | - Stephen J. Martin
- School of Systems Medicine, University of Dundee, DundeeDD1 4HN, United Kingdom
| | - Richard G. M. Morris
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, EdinburghEH8 9JZ, United Kingdom
| |
Collapse
|
13
|
Ma H, Khaled HG, Wang X, Mandelberg NJ, Cohen SM, He X, Tsien RW. Excitation-transcription coupling, neuronal gene expression and synaptic plasticity. Nat Rev Neurosci 2023; 24:672-692. [PMID: 37773070 PMCID: PMC12024187 DOI: 10.1038/s41583-023-00742-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Excitation-transcription coupling (E-TC) links synaptic and cellular activity to nuclear gene transcription. It is generally accepted that E-TC makes a crucial contribution to learning and memory through its role in underpinning long-lasting synaptic enhancement in late-phase long-term potentiation and has more recently been linked to late-phase long-term depression: both processes require de novo gene transcription, mRNA translation and protein synthesis. E-TC begins with the activation of glutamate-gated N-methyl-D-aspartate-type receptors and voltage-gated L-type Ca2+ channels at the membrane and culminates in the activation of transcription factors in the nucleus. These receptors and ion channels mediate E-TC through mechanisms that include long-range signalling from the synapse to the nucleus and local interactions within dendritic spines, among other possibilities. Growing experimental evidence links these E-TC mechanisms to late-phase long-term potentiation and learning and memory. These advances in our understanding of the molecular mechanisms of E-TC mean that future efforts can focus on understanding its mesoscale functions and how it regulates neuronal network activity and behaviour in physiological and pathological conditions.
Collapse
Affiliation(s)
- Huan Ma
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China.
| | - Houda G Khaled
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Xiaohan Wang
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Nataniel J Mandelberg
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Samuel M Cohen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Xingzhi He
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China
| | - Richard W Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
14
|
Eggl MF, Chater TE, Petkovic J, Goda Y, Tchumatchenko T. Linking spontaneous and stimulated spine dynamics. Commun Biol 2023; 6:930. [PMID: 37696988 PMCID: PMC10495434 DOI: 10.1038/s42003-023-05303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023] Open
Abstract
Our brains continuously acquire and store memories through synaptic plasticity. However, spontaneous synaptic changes can also occur and pose a challenge for maintaining stable memories. Despite fluctuations in synapse size, recent studies have shown that key population-level synaptic properties remain stable over time. This raises the question of how local synaptic plasticity affects the global population-level synaptic size distribution and whether individual synapses undergoing plasticity escape the stable distribution to encode specific memories. To address this question, we (i) studied spontaneously evolving spines and (ii) induced synaptic potentiation at selected sites while observing the spine distribution pre- and post-stimulation. We designed a stochastic model to describe how the current size of a synapse affects its future size under baseline and stimulation conditions and how these local effects give rise to population-level synaptic shifts. Our study offers insights into how seemingly spontaneous synaptic fluctuations and local plasticity both contribute to population-level synaptic dynamics.
Collapse
Affiliation(s)
- Maximilian F Eggl
- University of Mainz Medical Center, Anselm-Franz-von-Bentzel-Weg 3, 55128, Mainz, Germany
| | - Thomas E Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Janko Petkovic
- University of Mainz Medical Center, Anselm-Franz-von-Bentzel-Weg 3, 55128, Mainz, Germany
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
- Synapse Biology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Tatjana Tchumatchenko
- University of Mainz Medical Center, Anselm-Franz-von-Bentzel-Weg 3, 55128, Mainz, Germany.
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
15
|
Budriesi P, Tintorelli R, Correa J, Villar ME, Marchal P, Giurfa M, Viola H. A behavioral tagging account of kinase contribution to memory formation after spaced aversive training. iScience 2023; 26:107278. [PMID: 37520708 PMCID: PMC10372744 DOI: 10.1016/j.isci.2023.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/14/2022] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Long-term memory (LTM) can be induced by repeated spaced training trials. Using the weak inhibitory avoidance (wIA) task, we showed that one wIA session does not lead to a 24-h LTM, whereas two identical wIA sessions spaced by 15 min to 6 h induce a 24-h LTM. This LTM promotion depends both on hippocampal protein synthesis and the activity of several kinases. In agreement with the behavioral tagging (BT) hypothesis, our results suggest that the two training sessions induce transient learning tags and lead, via a cooperative effect, to the synthesis of plasticity-related proteins (PRPs) that become available and captured by the tag from the second session. Although ERKs1/2 are needed for PRPs synthesis and CaMKs are required for tag setting, PKA participates in both processes. We conclude that the BT mechanism accounts for the molecular constraints underlying the classic effect of spaced learning on LTM formation.
Collapse
Affiliation(s)
- Pablo Budriesi
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ramiro Tintorelli
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julieta Correa
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Eugenia Villar
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain
| | - Paul Marchal
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Poe Lab, Integrative Biology and Physiology department, University of California Los Angeles, Los Angeles, CA, USA
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse cedex 9, France
- Institut Universitaire de France (IUF), Paris, France
| | - Haydee Viola
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular “Dr. Héctor Maldonado” (FBMC), Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
16
|
Adel SS, Clarke VRJ, Evans-Strong A, Maguire J, Paradis S. Semaphorin 4D induced inhibitory synaptogenesis decreases epileptiform activity and alters progression to Status Epilepticus in mice. Epilepsy Res 2023; 193:107156. [PMID: 37163910 PMCID: PMC10247425 DOI: 10.1016/j.eplepsyres.2023.107156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Previously we demonstrated that intra-hippocampal infusion of purified, Semaphorin 4D (Sema4D) extracellular domain (ECD) into the mouse hippocampus rapidly promotes formation of GABAergic synapses and decreases seizure susceptibility in mice. Given the relatively fast action of Sema4D treatment revealed by these studies, we sought to determine the time course of Sema4D treatment on hippocampal network activity using an acute hippocampal slice preparation. We performed long-term extracellular recordings from area CA1 encompassing a 2-hour application of Sema4D and found that hippocampal excitation is suppressed for hours following treatment. We also asked if Sema4D treatment could ameliorate seizures in an acute seizure model: the kainic acid (KA) mouse model. We demonstrate that Sema4D treatment delays and suppresses ictal activity, delays the transition to Status Epilepticus (SE), and lessens the severity of SE. Lastly, we sought to explore alternative methods of Sema4D delivery to hippocampus and thus created an Adeno Associated Virus expressing the ECD of Sema4D. Our data reveal that virally delivered, chronically overexpressed Sema4D-ECD promotes GABAergic synapse formation and suppresses ictal activity and progression to SE. These results provide proof of concept that viral delivery of Sema4D is an efficacious and promising delivery method to abate epileptiform activity and progression to SE.
Collapse
Affiliation(s)
- Susannah S Adel
- Department of Biology and Volen Center for Complex Systems, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Vernon R J Clarke
- Department of Biology and Volen Center for Complex Systems, Brandeis University, 415 South St., Waltham, MA 02453, USA.
| | - Aidan Evans-Strong
- Neuroscience Department, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | - Jamie Maguire
- Neuroscience Department, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, 415 South St., Waltham, MA 02453, USA.
| |
Collapse
|
17
|
Moldwin T, Kalmenson M, Segev I. Asymmetric Voltage Attenuation in Dendrites Can Enable Hierarchical Heterosynaptic Plasticity. eNeuro 2023; 10:ENEURO.0014-23.2023. [PMID: 37414554 PMCID: PMC10354808 DOI: 10.1523/eneuro.0014-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/16/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023] Open
Abstract
Long-term synaptic plasticity is mediated via cytosolic calcium concentrations ([Ca2+]). Using a synaptic model that implements calcium-based long-term plasticity via two sources of Ca2+ - NMDA receptors and voltage-gated calcium channels (VGCCs) - we show in dendritic cable simulations that the interplay between these two calcium sources can result in a diverse array of heterosynaptic effects. When spatially clustered synaptic input produces a local NMDA spike, the resulting dendritic depolarization can activate VGCCs at nonactivated spines, resulting in heterosynaptic plasticity. NMDA spike activation at a given dendritic location will tend to depolarize dendritic regions that are located distally to the input site more than dendritic sites that are proximal to it. This asymmetry can produce a hierarchical effect in branching dendrites, where an NMDA spike at a proximal branch can induce heterosynaptic plasticity primarily at branches that are distal to it. We also explored how simultaneously activated synaptic clusters located at different dendritic locations synergistically affect the plasticity at the active synapses, as well as the heterosynaptic plasticity of an inactive synapse "sandwiched" between them. We conclude that the inherent electrical asymmetry of dendritic trees enables sophisticated schemes for spatially targeted supervision of heterosynaptic plasticity.
Collapse
Affiliation(s)
| | - Menachem Kalmenson
- Department of Neurobiology, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Idan Segev
- Edmond and Lily Safra Center for Brain Sciences
- Department of Neurobiology, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
18
|
Gros A, Wang SH. Cognitive rescue in aging through prior training in rats. Aging (Albany NY) 2023; 15:5990-6010. [PMID: 37338529 PMCID: PMC10373978 DOI: 10.18632/aging.204808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Cognitive decline in spatial memory is seen in aging. Understanding affected processes in aging is vital for developing methods to improve wellbeing. Daily memory persistence can be influenced by events around the time of learning or by prior experiences in early life. Fading memories in young can last longer if a novel event is introduced around encoding, a process called behavioral tagging. Based on this principle, we asked what processes are affected in aging and if prior training can rescue them. Two groups of aged rats received training in an appetitive delayed matching-to-place task. One of the groups additionally received prior training of the same task in young and in mid-life, constituting a longitudinal study. The results showed long-term memory decline in late aging without prior training. This would reflect affected encoding and consolidation. On the other hand, short-term memory was preserved and novelty at memory reactivation and reconsolidation enabled memory maintenance in aging. Prior training improved cognition through facilitating task performance, strengthening short-term memory and intermediate memory, and enabling encoding-boosted long-term memory. Implication of these findings in understanding brain mechanisms in cognitive aging and in beneficial effects of prior training is discussed.
Collapse
Affiliation(s)
- Alexandra Gros
- Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, Edinburgh, Scotland, UK
| | - Szu-Han Wang
- Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, Edinburgh, Scotland, UK
| |
Collapse
|
19
|
Luckey AM, McLeod LS, Huang Y, Mohan A, Vanneste S. Making memories last using the peripheral effect of direct current stimulation. eLife 2023; 12:e75586. [PMID: 37204308 PMCID: PMC10241520 DOI: 10.7554/elife.75586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/18/2023] [Indexed: 05/20/2023] Open
Abstract
Most memories that are formed are forgotten, while others are retained longer and are subject to memory stabilization. We show that non-invasive transcutaneous electrical stimulation of the greater occipital nerve (NITESGON) using direct current during learning elicited a long-term memory effect. However, it did not trigger an immediate effect on learning. A neurobiological model of long-term memory proposes a mechanism by which memories that are initially unstable can be strengthened through subsequent novel experiences. In a series of studies, we demonstrate NITESGON's capability to boost the retention of memories when applied shortly before, during, or shortly after the time of learning by enhancing memory consolidation via activation and communication in and between the locus coeruleus pathway and hippocampus by plausibly modulating dopaminergic input. These findings may have a significant impact for neurocognitive disorders that inhibit memory consolidation such as Alzheimer's disease.
Collapse
Affiliation(s)
- Alison M Luckey
- Global Brain Health Institute and Institute of Neuroscience, Trinity College DublinDublinIreland
| | - Lauren S McLeod
- School of Medicine, Texas Tech School of MedicineLubbockUnited States
| | - Yuefeng Huang
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anusha Mohan
- Global Brain Health Institute and Institute of Neuroscience, Trinity College DublinDublinIreland
| | - Sven Vanneste
- Global Brain Health Institute and Institute of Neuroscience, Trinity College DublinDublinIreland
| |
Collapse
|
20
|
Khan R, Kulasiri D, Samarasinghe S. A multifarious exploration of synaptic tagging and capture hypothesis in synaptic plasticity: Development of an integrated mathematical model and computational experiments. J Theor Biol 2023; 556:111326. [PMID: 36279957 DOI: 10.1016/j.jtbi.2022.111326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/25/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
The synaptic tagging and capture (STC) hypothesis not only explain the integration and association of synaptic activities, but also the formation of learning and memory. The synaptic pathways involved in the synaptic tagging and capture phenomenon are called STC pathways. The STC hypothesis provides a potential explanation of the neuronal and synaptic processes underlying the synaptic consolidation of memories. Several mechanisms and molecules have been proposed to explain the process of memory allocation and synaptic tags, respectively. However, a clear link between the STC hypothesis and memory allocation is still missing because the encoding of memories in neural circuits is mainly associated with strongly recurrently connected groups of neurons. To explore the mechanisms of potential synaptic tagging candidates and their involvement in the process of memory allocation, we develop a mathematical model for a single dendritic spine based on five essential criteria of a synaptic tag. By developing a mathematical model, we attempt to understand the roles of the potentially critical molecular networks underlying the STC and the essential attributes of a synaptic tag. We include essential memory molecules in the STC model that have been identified in earlier studies as crucial for STC pathways. CaMKII activation is critical for the setting of the initial tag; however, coordinated activities with other kinases and the biochemical pathways are necessary for the tag to be stable. PKA modulates NMDAR-mediated Ca2+ signalling. Similarly, PKA and ERK crosstalk is essential for Ca2+ - mediated protein synthesis during l-LTP. Our theoretical model explains the quantitative contribution of Tags and protein synthesis during l-LTP in synaptic strength.
Collapse
Affiliation(s)
- Raheel Khan
- Centre for Advanced Computational Solutions (C-fACS), Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - D Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand.
| | - S Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
21
|
Chong YS, Wong LW, Gaunt J, Lee YJ, Goh CS, Morris RGM, Ch'ng TH, Sajikumar S. Distinct contributions of ventral CA1/amygdala co-activation to the induction and maintenance of synaptic plasticity. Cereb Cortex 2023; 33:676-690. [PMID: 35253866 DOI: 10.1093/cercor/bhac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/03/2023] Open
Abstract
The amygdala is known to modulate hippocampal synaptic plasticity. One role could be an immediate effect of basolateral amygdala (BLA) in priming synaptic plasticity in the hippocampus. Another role could be through associative synaptic co-operation and competition that triggers events involved in the maintenance of synaptic potentiation. We present evidence that the timing and activity level of BLA stimulation are important factors for the induction and maintenance of long-term potentiation (LTP) in ventral hippocampal area CA1. A 100 Hz BLA co-stimulation facilitated the induction of LTP, whereas 200 Hz co-stimulation attenuated induction. A 100 Hz BLA co-stimulation also caused enhanced persistence, sufficient to prevent synaptic competition. This maintenance effect is likely through translational mechanisms, as mRNA expression of primary response genes was unaffected, whereas protein level of plasticity-related products was increased. Further understanding of the neural mechanisms of amygdala modulation on hippocampus could provide insights into the mechanisms of emotional disorders.
Collapse
Affiliation(s)
- Yee Song Chong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SIngapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Lik-Wei Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SIngapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Jessica Gaunt
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Yan Jun Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.,Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637335, Singapore
| | - Cai Shan Goh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SIngapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Richard G M Morris
- Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh EH8 9JZ, Scotland
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SIngapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
22
|
Scott DN, Frank MJ. Adaptive control of synaptic plasticity integrates micro- and macroscopic network function. Neuropsychopharmacology 2023; 48:121-144. [PMID: 36038780 PMCID: PMC9700774 DOI: 10.1038/s41386-022-01374-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Synaptic plasticity configures interactions between neurons and is therefore likely to be a primary driver of behavioral learning and development. How this microscopic-macroscopic interaction occurs is poorly understood, as researchers frequently examine models within particular ranges of abstraction and scale. Computational neuroscience and machine learning models offer theoretically powerful analyses of plasticity in neural networks, but results are often siloed and only coarsely linked to biology. In this review, we examine connections between these areas, asking how network computations change as a function of diverse features of plasticity and vice versa. We review how plasticity can be controlled at synapses by calcium dynamics and neuromodulatory signals, the manifestation of these changes in networks, and their impacts in specialized circuits. We conclude that metaplasticity-defined broadly as the adaptive control of plasticity-forges connections across scales by governing what groups of synapses can and can't learn about, when, and to what ends. The metaplasticity we discuss acts by co-opting Hebbian mechanisms, shifting network properties, and routing activity within and across brain systems. Asking how these operations can go awry should also be useful for understanding pathology, which we address in the context of autism, schizophrenia and Parkinson's disease.
Collapse
Affiliation(s)
- Daniel N Scott
- Cognitive Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | - Michael J Frank
- Cognitive Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
23
|
Zernov N, Bezprozvanny I, Popugaeva E. CaMKIIβ knockdown decreases store-operated calcium entry in hippocampal dendritic spines. IBRO Neurosci Rep 2022; 12:90-97. [PMID: 35079728 PMCID: PMC8777283 DOI: 10.1016/j.ibneur.2022.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/13/2023] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) and neuronal store-operated calcium entry (nSOCE) have been implicated in the development of Alzheimer's disease (AD). nSOCE is involved in regulation of dendritic spine shape, particularly in stability of mushroom spines that play role in formation of strong synapses. CaMKII is involved in regulation of induction of long-term potentiation, that is needed for shaping of memory. In the present study, we demonstrated that inhibition of kinase activity of CaMKII by KN-62 decreases nSOCE amplitude in soma of primary hippocampal neurons. We have shown that knockdown of CaMKIIβ leads to the downregulation of nSOCE in dendritic spines. In agreement with previously published data, we have also observed that CaMKIIβ knockdown causes mushroom spine loss in primary hippocampal culture. The effect of CaMKIIβ knockdown on the nSOCE may be associated with a decrease of dendritic spine head size.
Collapse
Affiliation(s)
- Nikita Zernov
- Peter the Great St.Petersburg Polytechnic University, Laboratory of Molecular Neurodegeneration, St.Petersburg, Russia
| | - Ilya Bezprozvanny
- Peter the Great St.Petersburg Polytechnic University, Laboratory of Molecular Neurodegeneration, St.Petersburg, Russia
- UT Southwestern Medical Center, Department of Physiology, Dallas, USA
| | - Elena Popugaeva
- Peter the Great St.Petersburg Polytechnic University, Laboratory of Molecular Neurodegeneration, St.Petersburg, Russia
- Corresponding author.
| |
Collapse
|
24
|
Chater TE, Goda Y. The Shaping of AMPA Receptor Surface Distribution by Neuronal Activity. Front Synaptic Neurosci 2022; 14:833782. [PMID: 35387308 PMCID: PMC8979068 DOI: 10.3389/fnsyn.2022.833782] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/25/2022] [Indexed: 12/29/2022] Open
Abstract
Neurotransmission is critically dependent on the number, position, and composition of receptor proteins on the postsynaptic neuron. Of these, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are responsible for the majority of postsynaptic depolarization at excitatory mammalian synapses following glutamate release. AMPARs are continually trafficked to and from the cell surface, and once at the surface, AMPARs laterally diffuse in and out of synaptic domains. Moreover, the subcellular distribution of AMPARs is shaped by patterns of activity, as classically demonstrated by the synaptic insertion or removal of AMPARs following the induction of long-term potentiation (LTP) and long-term depression (LTD), respectively. Crucially, there are many subtleties in the regulation of AMPARs, and exactly how local and global synaptic activity drives the trafficking and retention of synaptic AMPARs of different subtypes continues to attract attention. Here we will review how activity can have differential effects on AMPAR distribution and trafficking along with its subunit composition and phosphorylation state, and we highlight some of the controversies and remaining questions. As the AMPAR field is extensive, to say the least, this review will focus primarily on cellular and molecular studies in the hippocampus. We apologise to authors whose work could not be cited directly owing to space limitations.
Collapse
|
25
|
Fading memories in aging and neurodegeneration: Is p75 neurotrophin receptor a culprit? Ageing Res Rev 2022; 75:101567. [PMID: 35051645 DOI: 10.1016/j.arr.2022.101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/12/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
Aging and age-related neurodegenerative diseases have become one of the major concerns in modern times as cognitive abilities tend to decline when we get older. It is well known that the main cause of this age-related cognitive deficit is due to aberrant changes in cellular, molecular circuitry and signaling pathways underlying synaptic plasticity and neuronal connections. The p75 neurotrophin receptor (p75NTR) is one of the important mediators regulating the fate of the neurons in the nervous system. Its importance in neuronal apoptosis is well documented. However, the mechanisms involving the regulation of p75NTR in synaptic plasticity and cognitive function remain obscure, although cognitive impairment has been associated with a higher expression of p75NTR in neurons. In this review, we discuss the current understanding of how neurons are influenced by p75NTR function to maintain normal neuronal synaptic strength and connectivity, particularly to support learning and memory in the hippocampus. We then discuss the age-associated alterations in neurophysiological mechanisms of synaptic plasticity and cognitive function. Furthermore, we also describe current evidence that has begun to elucidate how p75NTR regulates synaptic changes in aging and age-related neurodegenerative diseases, focusing on the hippocampus. Elucidating the role that p75NTR signaling plays in regulating synaptic plasticity will contribute to a better understanding of cognitive processes and pathological conditions. This will in turn provide novel approaches to improve therapies for the treatment of neurological diseases in which p75NTR dysfunction has been demonstrated.
Collapse
|
26
|
Miningou Zobon NT, Jędrzejewska-Szmek J, Blackwell KT. Temporal pattern and synergy influence activity of ERK signaling pathways during L-LTP induction. eLife 2021; 10:e64644. [PMID: 34374340 PMCID: PMC8363267 DOI: 10.7554/elife.64644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/03/2021] [Indexed: 01/21/2023] Open
Abstract
Long-lasting long-term potentiation (L-LTP) is a cellular mechanism of learning and memory storage. Studies have demonstrated a requirement for extracellular signal-regulated kinase (ERK) activation in L-LTP produced by a diversity of temporal stimulation patterns. Multiple signaling pathways converge to activate ERK, with different pathways being required for different stimulation patterns. To answer whether and how different temporal patterns select different signaling pathways for ERK activation, we developed a computational model of five signaling pathways (including two novel pathways) leading to ERK activation during L-LTP induction. We show that calcium and cAMP work synergistically to activate ERK and that stimuli given with large intertrial intervals activate more ERK than shorter intervals. Furthermore, these pathways contribute to different dynamics of ERK activation. These results suggest that signaling pathways with different temporal sensitivities facilitate ERK activation to diversity of temporal patterns.
Collapse
Affiliation(s)
| | - Joanna Jędrzejewska-Szmek
- Laboratory of Neuroinformatic, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Kim T Blackwell
- Interdisciplinary Program in Neuroscience, Bioengineering Department, George Mason UniversityFairfaxUnited States
- Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
| |
Collapse
|
27
|
Bin Ibrahim MZ, Benoy A, Sajikumar S. Long-term plasticity in the hippocampus: maintaining within and 'tagging' between synapses. FEBS J 2021; 289:2176-2201. [PMID: 34109726 DOI: 10.1111/febs.16065] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Synapses between neurons are malleable biochemical structures, strengthening and diminishing over time dependent on the type of information they receive. This phenomenon known as synaptic plasticity underlies learning and memory, and its different forms, long-term potentiation (LTP) and long-term depression (LTD), perform varied cognitive roles in reinforcement, relearning and associating memories. Moreover, both LTP and LTD can exist in an early transient form (early-LTP/LTD) or a late persistent form (late-LTP/LTD), which are triggered by different induction protocols, and also differ in their dependence on protein synthesis and the involvement of key molecular players. Beyond homosynaptic modifications, synapses can also interact with one another. This is encapsulated in the synaptic tagging and capture hypothesis (STC), where synapses expressing early-LTP/LTD present a 'tag' that can capture the protein synthesis products generated during a temporally proximal late-LTP/LTD induction. This 'tagging' phenomenon forms the framework of synaptic interactions in various conditions and accounts for the cellular basis of the time-dependent associativity of short-lasting and long-lasting memories. All these synaptic modifications take place under controlled neuronal conditions, regulated by subcellular elements such as epigenetic regulation, proteasomal degradation and neuromodulatory signals. Here, we review current understanding of the different forms of synaptic plasticity and its regulatory mechanisms in the hippocampus, a brain region critical for memory formation. We also discuss expression of plasticity in hippocampal CA2 area, a long-overlooked narrow hippocampal subfield and the behavioural correlate of STC. Lastly, we put forth perspectives for an integrated view of memory representation in synapses.
Collapse
Affiliation(s)
- Mohammad Zaki Bin Ibrahim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| | - Amrita Benoy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
28
|
Gisabella B, Babu J, Valeri J, Rexrode L, Pantazopoulos H. Sleep and Memory Consolidation Dysfunction in Psychiatric Disorders: Evidence for the Involvement of Extracellular Matrix Molecules. Front Neurosci 2021; 15:646678. [PMID: 34054408 PMCID: PMC8160443 DOI: 10.3389/fnins.2021.646678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbances and memory dysfunction are key characteristics across psychiatric disorders. Recent advances have revealed insight into the role of sleep in memory consolidation, pointing to key overlap between memory consolidation processes and structural and molecular abnormalities in psychiatric disorders. Ongoing research regarding the molecular mechanisms involved in memory consolidation has the potential to identify therapeutic targets for memory dysfunction in psychiatric disorders and aging. Recent evidence from our group and others points to extracellular matrix molecules, including chondroitin sulfate proteoglycans and their endogenous proteases, as molecules that may underlie synaptic dysfunction in psychiatric disorders and memory consolidation during sleep. These molecules may provide a therapeutic targets for decreasing strength of reward memories in addiction and traumatic memories in PTSD, as well as restoring deficits in memory consolidation in schizophrenia and aging. We review the evidence for sleep and memory consolidation dysfunction in psychiatric disorders and aging in the context of current evidence pointing to the involvement of extracellular matrix molecules in these processes.
Collapse
Affiliation(s)
| | | | | | | | - Harry Pantazopoulos
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
29
|
Lopes da Cunha P, Tintorelli R, Correa J, Budriesi P, Viola H. Behavioral tagging as a mechanism for aversive-memory formation under acute stress. Eur J Neurosci 2021; 55:2651-2665. [PMID: 33914357 DOI: 10.1111/ejn.15249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023]
Abstract
The behavioral tagging (BT) hypothesis postulates that a weak learning experience, which only induces short-term memory, may benefit from another event that provides plasticity-related proteins (PRPs) to establish a long-lasting memory. According to BT, the weak experience sets a transient learning tag at specific activated sites, and its temporal and spatial convergence with the PRPs allows the long-term memory (LTM) formation. In this work, rats were subjected to a weak inhibitory avoidance (IAw) training and we observed that acute stress (elevated platform, EP) experienced 1 hr before IAw promoted IA-LTM formation. This effect was dependent on glucocorticoid-receptor activity as well as protein synthesis in the dorsal hippocampus. However, the same stress has negative effects on IA-LTM formation when training is strong, probably by competing for necessary PRPs. Furthermore, our experiments showed that EP immediately after training did not impair the setting of the learning tag and even facilitated IA-LTM formation. These findings reveal different impacts of a given acute stressful experience on the formation of an aversive memory that could be explained by BT processes.
Collapse
Affiliation(s)
- Pamela Lopes da Cunha
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ramiro Tintorelli
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Correa
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Budriesi
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Haydee Viola
- Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular "Dr. Hector Maldonado" (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
30
|
Suzuki Y, Yoda Y, Ishikawa Y. Neuropsin-dependent and -independent behavioral tagging. Neuropsychopharmacol Rep 2021; 41:215-222. [PMID: 33773089 PMCID: PMC8340819 DOI: 10.1002/npr2.12177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 11/11/2022] Open
Abstract
Aim The consolidation of short‐term memories into long‐term memories is promoted by associations with novel environmental stimuli. This phenomenon is known as behavioral tagging. Neuropsin, a plasticity‐related serine protease in the hippocampus and amygdala, is involved in memory formation. This study investigated how neuropsin affects associative long‐term memory. Methods Short‐term and long‐term memory were assessed in control and neuropsin‐deficient mice by investigating their performance in inhibitory avoidance and spatial object recognition tasks. The effect of exposure to novelty on the conversion of short‐term memory to associative long‐term memory was also examined. Results The consolidation of task‐related short‐term memories into long‐term memories was facilitated by exposing the animals to a novel environment 1 hour before training. However, this long‐term memory conversion was impaired in neuropsin‐deficient mice performing the inhibitory avoidance task but not the spatial object recognition task. Conclusion Behavioral tagging occurs via neuropsin‐dependent and neuropsin‐independent processes for different behavioral tasks. The consolidation of task‐related short‐term memories into long‐term memories was facilitated by exposing the animals to a novel environment 1 hour before training. However, this long‐term memory conversion was impaired in neuropsin‐deficient mice performing the inhibitory avoidance task but not the spatial object recognition task. Behavioral tagging occurs via neuropsin‐dependent and neuropsin‐independent processes for different behavioral tasks.![]()
Collapse
Affiliation(s)
- Yuka Suzuki
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi, Gunma, Japan
| | - Yuya Yoda
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi, Gunma, Japan
| | - Yasuyuki Ishikawa
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi, Gunma, Japan
| |
Collapse
|
31
|
Smolen P, Baxter DA, Byrne JH. Comparing Theories for the Maintenance of Late LTP and Long-Term Memory: Computational Analysis of the Roles of Kinase Feedback Pathways and Synaptic Reactivation. Front Comput Neurosci 2020; 14:569349. [PMID: 33390922 PMCID: PMC7772319 DOI: 10.3389/fncom.2020.569349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/16/2020] [Indexed: 11/26/2022] Open
Abstract
A fundamental neuroscience question is how memories are maintained from days to a lifetime, given turnover of proteins that underlie expression of long-term synaptic potentiation (LTP) or “tag” synapses as eligible for LTP. A likely solution relies on synaptic positive feedback loops, prominently including persistent activation of Ca2+/calmodulin kinase II (CaMKII) and self-activated synthesis of protein kinase M ζ (PKMζ). Data also suggest positive feedback based on recurrent synaptic reactivation within neuron assemblies, or engrams, is necessary to maintain memories. The relative importance of these mechanisms is controversial. To explore the likelihood that each mechanism is necessary or sufficient to maintain memory, we simulated maintenance of LTP with a simplified model incorporating persistent kinase activation, synaptic tagging, and preferential reactivation of strong synapses, and analyzed implications of recent data. We simulated three model variants, each maintaining LTP with one feedback loop: autonomous, self-activated PKMζ synthesis (model variant I); self-activated CamKII (model variant II); and recurrent reactivation of strengthened synapses (model variant III). Variant I predicts that, for successful maintenance of LTP, either 1) PKMζ contributes to synaptic tagging, or 2) a low constitutive tag level persists during maintenance independent of PKMζ, or 3) maintenance of LTP is independent of tagging. Variant II maintains LTP and suggests persistent CaMKII activation could maintain PKMζ activity, a feedforward interaction not previously considered. However, we note data challenging the CaMKII feedback loop. In Variant III synaptic reactivation drives, and thus predicts, recurrent or persistent activation of CamKII and other necessary kinases, plausibly contributing to persistent elevation of PKMζ levels. Reactivation is thus predicted to sustain recurrent rounds of synaptic tagging and incorporation of plasticity-related proteins. We also suggest (model variant IV) that synaptic reactivation and autonomous kinase activation could synergistically maintain LTP. We propose experiments that could discriminate these maintenance mechanisms.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States.,Engineering and Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
32
|
Okuda K, Højgaard K, Privitera L, Bayraktar G, Takeuchi T. Initial memory consolidation and the synaptic tagging and capture hypothesis. Eur J Neurosci 2020; 54:6826-6849. [PMID: 32649022 DOI: 10.1111/ejn.14902] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 01/05/2023]
Abstract
Everyday memories are retained automatically in the hippocampus and then decay very rapidly. Memory retention can be boosted when novel experiences occur shortly before or shortly after the time of memory encoding via a memory stabilization process called "initial memory consolidation." The dopamine release and new protein synthesis in the hippocampus during a novel experience are crucial for this novelty-induced memory boost. The mechanisms underlying initial memory consolidation are not well-understood, but the synaptic tagging and capture (STC) hypothesis provides a conceptual basis of synaptic plasticity events occurring during initial memory consolidation. In this review, we provide an overview of the STC hypothesis and its relevance to dopaminergic signalling, in order to explore the cellular and molecular mechanisms underlying initial memory consolidation in the hippocampus. We summarize electrophysiological STC processes based on the evidence from two-pathway experiments and a behavioural tagging hypothesis, which translates the STC hypothesis into a related behavioural hypothesis. We also discuss the function of two types of molecules, "synaptic tags" and "plasticity-related proteins," which have a crucial role in the STC process and initial memory consolidation. We describe candidate molecules for the roles of synaptic tag and plasticity-related proteins and interpret their candidacy based on evidence from two-pathway experiments ex vivo, behavioural tagging experiments in vivo and recent cutting-edge optical imaging experiments. Lastly, we discuss the direction of future studies to advance our understanding of molecular mechanisms underlying the STC process, which are critical for initial memory consolidation in the hippocampus.
Collapse
Affiliation(s)
- Kosuke Okuda
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Kristoffer Højgaard
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Lucia Privitera
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - Gülberk Bayraktar
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,Institut für Klinische Neurobiologie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Tomonori Takeuchi
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
33
|
Molecular Mechanisms in Hippocampus Involved on Object Recognition Memory Consolidation and Reconsolidation. Neuroscience 2020; 435:112-123. [PMID: 32272151 DOI: 10.1016/j.neuroscience.2020.03.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/01/2020] [Accepted: 03/31/2020] [Indexed: 11/20/2022]
Abstract
Acquired information is stabilized into long-term memory through a process known as consolidation. Though, after consolidation, when stored information is retrieved they can be again susceptible, allowing modification, updating and strengthening and to be re-stabilized they need a new process referred to as memory reconsolidation. However, the molecular mechanisms of recognition memory consolidation and reconsolidation are not fully understood. Also, considering that the study of the link between synaptic proteins is key to understanding of memory processes, we investigated, in male Wistar rats, molecular mechanisms in the hippocampus involved on object recognition memory (ORM) consolidation and reconsolidation. We verified that the blockade of AMPA receptors (AMPAr) and L-VDCCs calcium channels impaired ORM consolidation and reconsolidation when administered into CA1 immediately after sample phase or reactivation phase and that these impairments were blocked by the administration of AMPAr agonist and of neurotrophin BDNF. Also, the blockade of CaMKII impaired ORM consolidation when administered 3 h after sample phase but had no effect on ORM reconsolidation and its effect was blocked by the administration of BDNF, but not of AMPAr agonist. So, this study provides new evidence of the molecular mechanisms involved on the consolidation and reconsolidation of ORM, demonstrating that AMPAr and L-VDCCs are necessary for the consolidation and reconsolidation of ORM while CaMKII is necessary only for the consolidation and also that there is a link between BDNF and AMPAr, L-VDCCs and CaMKII as well as a link between AMPAr and L-VDCCs on ORM consolidation and reconsolidation.
Collapse
|
34
|
Liu H, Yang H, Fang Y, Li K, Tian L, Liu X, Zhang W, Tan Y, Lai W, Bian L, Lin B, Xi Z. Neurotoxicity and biomarkers of zinc oxide nanoparticles in main functional brain regions and dopaminergic neurons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135809. [PMID: 31829301 DOI: 10.1016/j.scitotenv.2019.135809] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Manufactured zinc oxide nanoparticles (Nano-ZnO) are being used increasingly in many fields owing to their excellent physicochemical properties. Consequently, biosecurity has become a growing concern for human health and the environment. In the present study, Nano-ZnO neurotoxicity was investigated in vivo and in vitro. In vivo results showed that Nano-ZnO particles delivered through intranasal instillation were translocated to the brain, specifically deposited in the olfactory bulb, hippocampus, striatum, and cerebral cortex, and caused ultrastructural changes, oxidative damage, inflammatory responses, and histopathological damages there, which may be important for inducing Nano-ZnO neurotoxicity. Further in vitro studies on PC12 cell line illustrated that exposure to Nano-ZnO for 6 h affected cell morphology, decreased cell viability, increased lactate dehydrogenase and oxidative stress activity levels, impaired mitochondrial function, and disturbed the cell cycle. In addition, Nano-ZnO could destroy neuronal structure by affecting cytoskeleton proteins (tubulin-α, tubulin-β and NF-H), resulting in the interruption of connection between nerve cells, which lead to nervous system function damage. Meanwhile, Nano-ZnO could induce neuronal repair and regeneration disorders by affecting the growth-related protein GAP-43 and delayed neurotoxicity by affecting the calcium/calcium-regulated kinase (CAMK2A/CAMK2B protein) signaling pathway.
Collapse
Affiliation(s)
- Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Honglian Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Yanjun Fang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Wei Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Yizhe Tan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
35
|
Pinho J, Marcut C, Fonseca R. Actin remodeling, the synaptic tag and the maintenance of synaptic plasticity. IUBMB Life 2020; 72:577-589. [DOI: 10.1002/iub.2261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/06/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Júlia Pinho
- Cellular and Systems Neurobiology, Chronic Disease Research CenterNOVA Medical School Lisbon Portugal
| | - Cristina Marcut
- Cellular and Systems Neurobiology, Chronic Disease Research CenterNOVA Medical School Lisbon Portugal
| | - Rosalina Fonseca
- Cellular and Systems Neurobiology, Chronic Disease Research CenterNOVA Medical School Lisbon Portugal
| |
Collapse
|
36
|
Spatial-Memory Formation After Spaced Learning Involves ERKs1/2 Activation Through a Behavioral-Tagging Process. Sci Rep 2020; 10:98. [PMID: 31919427 PMCID: PMC6952433 DOI: 10.1038/s41598-019-57007-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022] Open
Abstract
The superiority of spaced over massed learning is an established fact in the formation of long-term memories (LTM). Here we addressed the cellular processes and the temporal demands of this phenomenon using a weak spatial object recognition (wSOR) training, which induces short-term memories (STM) but not LTM. We observed SOR-LTM promotion when two identical wSOR training sessions were spaced by an inter-trial interval (ITI) ranging from 15 min to 7 h, consistently with spaced training. The promoting effect was dependent on neural activity, protein synthesis and ERKs1/2 activity in the hippocampus. Based on the “behavioral tagging” hypothesis, which postulates that learning induces a neural tag that requires proteins to induce LTM formation, we propose that retraining will mainly retag the sites initially labeled by the prior training. Thus, when weak, consecutive training sessions are experienced within an appropriate spacing, the intracellular mechanisms triggered by each session would add, thereby reaching the threshold for protein synthesis required for memory consolidation. Our results suggest in addition that ERKs1/2 kinases play a dual role in SOR-LTM formation after spaced learning, both inducing protein synthesis and setting the SOR learning-tag. Overall, our findings bring new light to the mechanisms underlying the promoting effect of spaced trials on LTM formation.
Collapse
|
37
|
Multi-input Synapses, but Not LTP-Strengthened Synapses, Correlate with Hippocampal Memory Storage in Aged Mice. Curr Biol 2019; 29:3600-3610.e4. [PMID: 31630953 PMCID: PMC6839404 DOI: 10.1016/j.cub.2019.08.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/05/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022]
Abstract
Long-lasting changes at synapses enable memory storage in the brain. Although aging is associated with impaired memory formation, it is not known whether the synaptic underpinnings of memory storage differ with age. Using a training schedule that results in the same behavioral memory formation in young and aged mice, we examined synapse ultrastructure and molecular signaling in the hippocampus after contextual fear conditioning. Only in young, but not old mice, contextual fear memory formation was associated with synaptic changes that characterize well-known, long-term potentiation, a strengthening of existing synapses with one input. Instead, old-age memory was correlated with generation of multi-innervated dendritic spines (MISs), which are predominantly two-input synapses formed by the attraction of an additional excitatory, presynaptic terminal onto an existing synapse. Accordingly, a blocker used to inhibit MIS generation impaired contextual fear memory only in old mice. Our results reveal how the synaptic basis of hippocampal memory storage changes with age and suggest that these distinct memory-storing mechanisms may explain impaired updating in old age. Aged mice form contextual memory like young mice, but reconsolidation is impaired Only in young mice is contextual memory formation associated with structural LTP In aged mice, contextual memory formation correlates with multi-innervated spines Inhibition of multi-innervated spines impairs memory in aged but not young mice
Collapse
|
38
|
Runyan JD, Moore AN, Dash PK. Coordinating what we’ve learned about memory consolidation: Revisiting a unified theory. Neurosci Biobehav Rev 2019; 100:77-84. [DOI: 10.1016/j.neubiorev.2019.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 02/08/2019] [Accepted: 02/16/2019] [Indexed: 10/27/2022]
|
39
|
Kudryashova IV. The Molecular Basis of Destabilization of Synapses as a Factor of Structural Plasticity. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Nanoscale imaging reveals miRNA-mediated control of functional states of dendritic spines. Proc Natl Acad Sci U S A 2019; 116:9616-9621. [PMID: 31019087 DOI: 10.1073/pnas.1819374116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dendritic spines are major loci of excitatory inputs and undergo activity-dependent structural changes that contribute to synaptic plasticity and memory formation. Despite the existence of various classification types of spines, how they arise and which molecular components trigger their structural plasticity remain elusive. microRNAs (miRNAs) have emerged as critical regulators of synapse development and plasticity via their control of gene expression. Brain-specific miR-134s likely regulate the morphological maturation of spines, but their subcellular distributions and functional impacts have rarely been assessed. Here, we exploited atomic force microscopy to visualize in situ miR-134s, which indicated that they are mainly distributed at nearby dendritic shafts and necks of spines. The abundance of miR-134s varied between morphologically and functionally distinct spine types, and their amounts were inversely correlated with their postulated maturation stages. Moreover, spines exhibited reduced contents of miR-134s when selectively stimulated with beads containing brain-derived neurotropic factor (BDNF). Taken together, in situ visualizations of miRNAs provided unprecedented insights into the "inverse synaptic-tagging" roles of miR-134s that are selective to inactive/irrelevant synapses and potentially a molecular means for modifying synaptic connectivity via structural alteration.
Collapse
|
41
|
Smolen P, Baxter DA, Byrne JH. How can memories last for days, years, or a lifetime? Proposed mechanisms for maintaining synaptic potentiation and memory. ACTA ACUST UNITED AC 2019; 26:133-150. [PMID: 30992383 PMCID: PMC6478248 DOI: 10.1101/lm.049395.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/12/2019] [Indexed: 01/24/2023]
Abstract
With memory encoding reliant on persistent changes in the properties of synapses, a key question is how can memories be maintained from days to months or a lifetime given molecular turnover? It is likely that positive feedback loops are necessary to persistently maintain the strength of synapses that participate in encoding. Such feedback may occur within signal-transduction cascades and/or the regulation of translation, and it may occur within specific subcellular compartments or within neuronal networks. Not surprisingly, numerous positive feedback loops have been proposed. Some posited loops operate at the level of biochemical signal-transduction cascades, such as persistent activation of Ca2+/calmodulin kinase II (CaMKII) or protein kinase Mζ. Another level consists of feedback loops involving transcriptional, epigenetic and translational pathways, and autocrine actions of growth factors such as BDNF. Finally, at the neuronal network level, recurrent reactivation of cell assemblies encoding memories is likely to be essential for late maintenance of memory. These levels are not isolated, but linked by shared components of feedback loops. Here, we review characteristics of some commonly discussed feedback loops proposed to underlie the maintenance of memory and long-term synaptic plasticity, assess evidence for and against their necessity, and suggest experiments that could further delineate the dynamics of these feedback loops. We also discuss crosstalk between proposed loops, and ways in which such interaction can facilitate the rapidity and robustness of memory formation and storage.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
42
|
Park P, Kang H, Sanderson TM, Bortolotto ZA, Georgiou J, Zhuo M, Kaang BK, Collingridge GL. On the Role of Calcium-Permeable AMPARs in Long-Term Potentiation and Synaptic Tagging in the Rodent Hippocampus. Front Synaptic Neurosci 2019; 11:4. [PMID: 30923499 PMCID: PMC6426746 DOI: 10.3389/fnsyn.2019.00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Classically, long-term potentiation (LTP) at hippocampal CA1 synapses is triggered by the synaptic activation of NMDA receptors (NMDARs). More recently, it has been shown that calcium-permeable (CP)-AMPARs can also trigger synaptic plasticity at these synapses. Specifically, their activation is required for the PKA and protein synthesis dependent component of LTP that is typically induced by delivery of spaced trains of high frequency stimulation. Here we present new data that build upon these ideas, including the requirement for low frequency synaptic activation and NMDAR dependence. We also show that a spaced theta burst stimulation (sTBS) protocol induces a heterosynaptic potentiation of baseline responses via activation of CP-AMPARs. Finally, we present data that implicate CP-AMPARs in synaptic tagging and capture, a fundamental process that is associated with the protein synthesis-dependent component of LTP. We have studied how a sTBS can augment the level of LTP generated by a weak TBS (wTBS), delivered 30 min later to an independent input. We show that inhibition of CP-AMPARs during the sTBS eliminates, and that inhibition of CP-AMPARs during the wTBS reduces, this facilitation of LTP. These data suggest that CP-AMPARs are crucial for the protein synthesis-dependent component of LTP and its heterosynaptic nature.
Collapse
Affiliation(s)
- Pojeong Park
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Heather Kang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Thomas M Sanderson
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Zuner A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Min Zhuo
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Graham L Collingridge
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
43
|
Seibt J, Frank MG. Primed to Sleep: The Dynamics of Synaptic Plasticity Across Brain States. Front Syst Neurosci 2019; 13:2. [PMID: 30774586 PMCID: PMC6367653 DOI: 10.3389/fnsys.2019.00002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/09/2019] [Indexed: 11/13/2022] Open
Abstract
It is commonly accepted that brain plasticity occurs in wakefulness and sleep. However, how these different brain states work in concert to create long-lasting changes in brain circuitry is unclear. Considering that wakefulness and sleep are profoundly different brain states on multiple levels (e.g., cellular, molecular and network activation), it is unlikely that they operate exactly the same way. Rather it is probable that they engage different, but coordinated, mechanisms. In this article we discuss how plasticity may be divided across the sleep-wake cycle, and how synaptic changes in each brain state are linked. Our working model proposes that waking experience triggers short-lived synaptic events that are necessary for transient plastic changes and mark (i.e., 'prime') circuits and synapses for further processing in sleep. During sleep, synaptic protein synthesis at primed synapses leads to structural changes necessary for long-term information storage.
Collapse
Affiliation(s)
- Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
| | - Marcos G. Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, United States
| |
Collapse
|
44
|
From membrane receptors to protein synthesis and actin cytoskeleton: Mechanisms underlying long lasting forms of synaptic plasticity. Semin Cell Dev Biol 2019; 95:120-129. [PMID: 30634048 DOI: 10.1016/j.semcdb.2019.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
Abstract
Synaptic plasticity, the activity dependent change in synaptic strength, forms the molecular foundation of learning and memory. Synaptic plasticity includes structural changes, with spines changing their size to accomodate insertion and removal of postynaptic receptors, which are correlated with functional changes. Of particular relevance for memory storage are the long lasting forms of synaptic plasticity which are protein synthesis dependent. Due to the importance of spine structural plasticity and protein synthesis, this review focuses on the signaling pathways that connect synaptic stimulation with regulation of protein synthesis and remodeling of the actin cytoskeleton. We also review computational models that implement novel aspects of molecular signaling in synaptic plasticity, such as the role of neuromodulators and spatial microdomains, as well as highlight the need for computational models that connect activation of memory kinases with spine actin dynamics.
Collapse
|
45
|
Zalcman G, Federman N, Romano A. CaMKII Isoforms in Learning and Memory: Localization and Function. Front Mol Neurosci 2018; 11:445. [PMID: 30564099 PMCID: PMC6288437 DOI: 10.3389/fnmol.2018.00445] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a key protein kinase in neural plasticity and memory, as have been shown in several studies since the first evidence in long-term potentiation (LTP) 30 years ago. However, most of the studies were focused mainly in one of the four isoforms of this protein kinase, the CaMKIIα. Here we review the characteristics and the role of each of the four isoforms in learning, memory and neural plasticity, considering the well known local role of α and β isoforms in dendritic terminals as well as recent findings about the γ isoform as calcium signals transducers from synapse to nucleus and δ isoform as a kinase required for a more persistent memory trace.
Collapse
Affiliation(s)
- Gisela Zalcman
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Noel Federman
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Arturo Romano
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
46
|
Vigil FA, Giese KP. Calcium/calmodulin-dependent kinase II and memory destabilization: a new role in memory maintenance. J Neurochem 2018; 147:12-23. [PMID: 29704430 PMCID: PMC6221169 DOI: 10.1111/jnc.14454] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 02/03/2023]
Abstract
In this review, we discuss the poorly explored role of calcium/calmodulin-dependent protein kinase II (CaMKII) in memory maintenance, and its influence on memory destabilization. After a brief review on CaMKII and memory destabilization, we present critical pieces of evidence suggesting that CaMKII activity increases retrieval-induced memory destabilization. We then proceed to propose two potential molecular pathways to explain the association between CaMKII activation and increased memory destabilization. This review will pinpoint gaps in our knowledge and discuss some 'controversial' observations, establishing the basis for new experiments on the role of CaMKII in memory reconsolidation. The role of CaMKII in memory destabilization is of great clinical relevance. Still, because of the lack of scientific literature on the subject, more basic science research is necessary to pursue this pathway as a clinical tool.
Collapse
Affiliation(s)
- Fabio Antonio Vigil
- Department of Cell and Integrative PhysiologyThe University of Texas Health San Antonio8403, Floyd Curl DriveSan AntonioTX 78229USA
| | - Karl Peter Giese
- Department of Basic and Clinical NeuroscienceKing's College London125 Coldharbour LaneLondonSE5 9NUUK
| |
Collapse
|
47
|
Frank MG, Seibt J. Sleep and plasticity: Waking from a fevered dream. Sleep Med Rev 2018; 39:1-2. [DOI: 10.1016/j.smrv.2017.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022]
|
48
|
Sossin WS. Memory Synapses Are Defined by Distinct Molecular Complexes: A Proposal. Front Synaptic Neurosci 2018; 10:5. [PMID: 29695960 PMCID: PMC5904272 DOI: 10.3389/fnsyn.2018.00005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
Synapses are diverse in form and function. While there are strong evidential and theoretical reasons for believing that memories are stored at synapses, the concept of a specialized “memory synapse” is rarely discussed. Here, we review the evidence that memories are stored at the synapse and consider the opposing possibilities. We argue that if memories are stored in an active fashion at synapses, then these memory synapses must have distinct molecular complexes that distinguish them from other synapses. In particular, examples from Aplysia sensory-motor neuron synapses and synapses on defined engram neurons in rodent models are discussed. Specific hypotheses for molecular complexes that define memory synapses are presented, including persistently active kinases, transmitter receptor complexes and trans-synaptic adhesion proteins.
Collapse
Affiliation(s)
- Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
49
|
Pfeiffer BE. The content of hippocampal "replay". Hippocampus 2018; 30:6-18. [PMID: 29266510 PMCID: PMC7027863 DOI: 10.1002/hipo.22824] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 11/07/2022]
Abstract
One of the most striking features of the hippocampal network is its ability to self-generate neuronal sequences representing temporally compressed, spatially coherent paths. These brief events, often termed "replay" in the scientific literature, are largely confined to non-exploratory states such as sleep or quiet rest. Early studies examining the content of replay noted a strong correlation between the encoded spatial information and the animal's prior behavior; thus, replay was initially hypothesized to play a role in memory formation and/or systems-level consolidation via "off-line" reactivation of previous experiences. However, recent findings indicate that replay may also serve as a memory retrieval mechanism to guide future behavior or may be an incidental reflection of pre-existing network assemblies. Here, I will review what is known regarding the content of replay events and their correlation with past and future actions, and I will discuss how this knowledge might inform or constrain models which seek to explain the circuit-level mechanisms underlying these events and their role in mnemonic processes.
Collapse
Affiliation(s)
- Brad E Pfeiffer
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
50
|
Weng W, Li D, Peng C, Behnisch T. Recording Synaptic Plasticity in Acute Hippocampal Slices Maintained in a Small-volume Recycling-, Perfusion-, and Submersion-type Chamber System. J Vis Exp 2018. [PMID: 29364264 DOI: 10.3791/55936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Even though experiments on brain slices have been in use since 1951, problems remain that reduce the probability of achieving a stable and successful analysis of synaptic transmission modulation when performing field potential or intracellular recordings. This manuscript describes methodological aspects that might be helpful in improving experimental conditions for the maintenance of acute brain slices and for recording field excitatory postsynaptic potentials in a commercially available submersion chamber with an outflow-carbogenation unit. The outflow-carbogenation helps to stabilize the oxygen level in experiments that rely on the recycling of a small buffer reservoir to enhance the cost-efficiency of drug experiments. In addition, the manuscript presents representative experiments that examine the effects of different carbogenation modes and stimulation paradigms on the activity-dependent synaptic plasticity of synaptic transmission.
Collapse
Affiliation(s)
- Weiguang Weng
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, the Collaborative Innovation Center for Brain Science, Fudan University
| | - Dongxue Li
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, the Collaborative Innovation Center for Brain Science, Fudan University
| | - Cheng Peng
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, the Collaborative Innovation Center for Brain Science, Fudan University
| | - Thomas Behnisch
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, the Collaborative Innovation Center for Brain Science, Fudan University;
| |
Collapse
|