1
|
Hewitt LT, Marron AM, Brager DH. Higher hyperpolarization-activated current in a subpopulation of interneurons in stratum oriens of area CA1 in the hippocampus of fragile X mice. J Neurophysiol 2025; 133:1558-1571. [PMID: 40247608 DOI: 10.1152/jn.00510.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/17/2024] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
Fragile X syndrome is the most common inherited form of intellectual disability and the leading monogenetic cause of autism. Studies in mouse models of autism spectrum disorders, including the Fmr1 knockout (FX) mouse, suggest that abnormal inhibition in hippocampal circuits contributes to behavioral phenotypes. In FX mice, changes in multiple voltage-gated ion channels occur in excitatory pyramidal neurons of the hippocampus. Whether there are also changes in the intrinsic properties of hippocampal inhibitory interneurons, however, remains largely unknown. We made whole cell current clamp recordings from both fast-spiking (FS) and low threshold spiking (LTS) interneurons in the stratum oriens region of the hippocampus. We found that LTS, but not FS, interneurons in FX mice had lower input resistance and action potential firing compared with the wild type. When we subdivided LTS interneurons into low-threshold high hyperpolarization-activated current (Ih) (LTH) and putative oreins-lacunosum moleculare (OLM) cells (Hewitt et al. Physiol Rep 9: e14848, 2021), we found that it was the LTH subgroup that had significantly lower input resistance in FX mice. The difference in input resistance between wild-type and FX LTH interneurons was absent in the presence of the h-channel blocker ZD7288, suggesting a greater contribution of Ih in FX LTH interneurons. Voltage clamp recordings found that indeed, Ih was significantly higher in FX LTH interneurons compared with wild type. Our results suggest that altered inhibition in the hippocampus of FX mice may be due in part to changes in the intrinsic excitability of LTH inhibitory interneurons.NEW & NOTEWORTHY In this paper, we use physiological and biochemical approaches to investigate the intrinsic excitability of inhibitory interneurons in hippocampal area CA1 of the fragile X mouse. We found that higher Ih lowers the intrinsic excitability of one specific type of interneuron. This study highlights how changes to voltage-gated ion channels in specific neuronal populations may contribute to the altered excitatory/inhibitory balance in fragile X syndrome.
Collapse
Affiliation(s)
- Lauren T Hewitt
- Department of Neuroscience, Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States
| | - Alyssa M Marron
- Department of Neuroscience, Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada, United States
| | - Darrin H Brager
- Department of Neuroscience, Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada, United States
- Interdisciplinary Neuroscience Program, University of Nevada at Las Vegas, Las Vegas, Nevada, United States
| |
Collapse
|
2
|
Donahue MM, Robson E, Colgin LL. Hippocampal Place Cell Sequences Are Impaired in a Rat Model of Fragile X Syndrome. J Neurosci 2025; 45:e1978242025. [PMID: 40032522 PMCID: PMC11984088 DOI: 10.1523/jneurosci.1978-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder that can cause impairments in spatial cognition and memory. The hippocampus is thought to support spatial cognition through the activity of place cells, neurons with spatial receptive fields. Coordinated firing of place cell populations is organized by different oscillatory patterns in the hippocampus during specific behavioral states. Theta rhythms organize place cell populations during awake exploration. Sharp wave-ripples organize place cell population reactivation during waking rest. Here, we examined the coordination of CA1 place cell populations during active behavior and subsequent rest in a rat model of FXS (Fmr1 knock-out rats). While the organization of individual place cells by the theta rhythm was normal, the coordinated activation of sequences of place cells during individual theta cycles was impaired in Fmr1 knock-out rats. Furthermore, the subsequent replay of place cell sequences was impaired during waking rest following active exploration. Together, these results expand our understanding of how genetic modifications that model those observed in FXS affect hippocampal physiology and suggest a potential mechanism underlying impaired spatial cognition in FXS.
Collapse
Affiliation(s)
- Margaret M Donahue
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas 78712
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas 78712
| | - Emma Robson
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712
| | - Laura Lee Colgin
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas 78712
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
3
|
Papatheodoropoulos C. Compensatory Regulation of Excitation/Inhibition Balance in the Ventral Hippocampus: Insights from Fragile X Syndrome. BIOLOGY 2025; 14:363. [PMID: 40282228 PMCID: PMC12025323 DOI: 10.3390/biology14040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
The excitation/inhibition (E/I) balance is a critical feature of neural circuits, which is crucial for maintaining optimal brain function by ensuring network stability and preventing neural hyperexcitability. The hippocampus exhibits the particularly interesting characteristics of having different functions and E/I profiles between its dorsal and ventral segments. Furthermore, the hippocampus is particularly vulnerable to epilepsy and implicated in Fragile X Syndrome (FXS), disorders associated with heightened E/I balance and possible deficits in GABA-mediated inhibition. In epilepsy, the ventral hippocampus shows heightened susceptibility to seizures, while in FXS, recent evidence suggests differential alterations in excitability and inhibition between dorsal and ventral regions. This article explores the mechanisms underlying E/I balance regulation, focusing on the hippocampus in epilepsy and FXS, and emphasizing the possible mechanisms that may confer homeostatic flexibility to the ventral hippocampus in maintaining E/I balance. Notably, the ventral hippocampus in adult FXS models shows enhanced GABAergic inhibition, resistance to epileptiform activity, and physiological network pattern (sharp wave-ripples, SWRs), potentially representing a homeostatic adaptation. In contrast, the dorsal hippocampus in these FXS models is more vulnerable to aberrant discharges and displays altered SWRs. These findings highlight the complex, region-specific nature of E/I balance disruptions in neurological disorders and suggest that the ventral hippocampus may possess unique compensatory mechanisms. Specifically, it is proposed that the ventral hippocampus, the brain region most prone to hyperexcitability, may have unique adaptive capabilities at the cellular and network levels that maintain the E/I balance within a normal range to prevent the transition to hyperexcitability and preserve normal function. Investigating the mechanisms underlying these compensatory responses in the ventral hippocampus and their developmental trajectories may offer novel insights into strategies for mitigating E/I imbalances in epilepsy, FXS, and potentially other neuropsychiatric and neurodevelopmental disorders.
Collapse
|
4
|
Donahue MM, Robson E, Colgin LL. Hippocampal place cell sequences are impaired in a rat model of Fragile X Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.18.619112. [PMID: 39553951 PMCID: PMC11566021 DOI: 10.1101/2024.10.18.619112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Fragile X Syndrome (FXS) is a neurodevelopmental disorder that can cause impairments in spatial cognition and memory. The hippocampus is thought to support spatial cognition through the activity of place cells, neurons with spatial receptive fields. Coordinated firing of place cell populations is organized by different oscillatory patterns in the hippocampus during specific behavioral states. Theta rhythms organize place cell populations during awake exploration. Sharp wave-ripples organize place cell population reactivation during waking rest. Here, we examined the coordination of CA1 place cell populations during active behavior and subsequent rest in a rat model of FXS (Fmr1 knockout rats). While the organization of individual place cells by the theta rhythm was normal, the coordinated activation of sequences of place cells during individual theta cycles was impaired in Fmr1 knockout rats. Further, the subsequent replay of place cell sequences was impaired during waking rest following active exploration. Together, these results expand our understanding of how genetic modifications that model those observed in FXS affect hippocampal physiology and suggest a potential mechanism underlying impaired spatial cognition in FXS.
Collapse
Affiliation(s)
- Margaret M. Donahue
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Emma Robson
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Laura Lee Colgin
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
5
|
Luque MA, Morcuende S, Torres B, Herrero L. Kv7/M channel dysfunction produces hyperexcitability in hippocampal CA1 pyramidal cells of Fmr1 knockout mice. J Physiol 2024; 602:3769-3791. [PMID: 38976504 DOI: 10.1113/jp285244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Fragile X syndrome (FXS), the most frequent monogenic form of intellectual disability, is caused by transcriptional silencing of the FMR1 gene that could render neuronal hyperexcitability. Here we show that pyramidal cells (PCs) in the dorsal CA1 region of the hippocampus elicited a larger action potential (AP) number in response to suprathreshold stimulation in juvenile Fmr1 knockout (KO) than wild-type (WT) mice. Because Kv7/M channels modulate CA1 PC excitability in rats, we investigated if their dysfunction produces neuronal hyperexcitability in Fmr1 KO mice. Immunohistochemical and western blot analyses showed no differences in the expression of Kv7.2 and Kv7.3 channel subunits between genotypes; however, the current mediated by Kv7/M channels was reduced in Fmr1 KO mice. In both genotypes, bath application of XE991 (10 μM), a blocker of Kv7/M channels: produced an increased AP number, produced an increased input resistance, produced a decreased AP voltage threshold and shaped AP medium afterhyperpolarization by increasing mean velocities. Retigabine (10 μM), an opener of Kv7/M channels, produced opposite effects to XE991. Both XE991 and retigabine abolished differences in all these parameters found in control conditions between genotypes. Furthermore, a low concentration of retigabine (2.5 μM) normalized CA1 PC excitability of Fmr1 KO mice. Finally, ex vivo seizure-like events evoked by 4-aminopyiridine (200 μM) in the dorsal CA1 region were more frequent in Fmr1 KO mice, and were abolished by retigabine (5-10 μM). We conclude that CA1 PCs of Fmr1 KO mice exhibit hyperexcitability, caused by Kv7/M channel dysfunction, and increased epileptiform activity, which were abolished by retigabine. KEY POINTS: Dorsal pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice exhibit hyperexcitability. Kv7/M channel activity, but not expression, is reduced in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice. Kv7/M channel dysfunction causes hyperexcitability in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice by increasing input resistance, decreasing AP voltage threshold and shaping medium afterhyperpolarization. A Kv7/M channel opener normalizes neuronal excitability in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice. Ex vivo seizure-like events evoked in the dorsal CA1 region were more frequent in Fmr1 KO mice, and such an epileptiform activity was abolished by a Kv7/M channel opener depending on drug concentration. Kv7/M channels may represent a therapeutic target for treating symptoms associated with hippocampal alterations in fragile X syndrome.
Collapse
Affiliation(s)
- M Angeles Luque
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Sara Morcuende
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Blas Torres
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Luis Herrero
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
6
|
Volianskis R, Lundbye CJ, Petroff GN, Jane DE, Georgiou J, Collingridge GL. Cage effects on synaptic plasticity and its modulation in a mouse model of fragile X syndrome. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230484. [PMID: 38853552 PMCID: PMC11343313 DOI: 10.1098/rstb.2023.0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
Fragile X syndrome (FXS) is characterized by impairments in executive function including different types of learning and memory. Long-term potentiation (LTP), thought to underlie the formation of memories, has been studied in the Fmr1 mouse model of FXS. However, there have been many discrepancies in the literature with inconsistent use of littermate and non-littermate Fmr1 knockout (KO) and wild-type (WT) control mice. Here, the influence of the breeding strategy (cage effect) on short-term potentiation (STP), LTP, contextual fear conditioning (CFC), expression of N-methyl-d-aspartate receptor (NMDAR) subunits and the modulation of NMDARs, were examined. The largest deficits in STP, LTP and CFC were found in KO mice compared with non-littermate WT. However, the expression of NMDAR subunits was unchanged in this comparison. Rather, NMDAR subunit (GluN1, 2A, 2B) expression was sensitive to the cage effect, with decreased expression in both WT and KO littermates compared with non-littermates. Interestingly, an NMDAR-positive allosteric modulator, UBP714, was only effective in potentiating the induction of LTP in non-littermate KO mice and not the littermate KO mice. These results suggest that commonly studied phenotypes in Fmr1 KOs are sensitive to the cage effect and therefore the breeding strategy may contribute to discrepancies in the literature.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Rasa Volianskis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Camilla J. Lundbye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Gillian N. Petroff
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - David. E. Jane
- Hello Bio Limited, Cabot Park, Avonmouth, BristolBS11 0QL, UK
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Graham L. Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| |
Collapse
|
7
|
Leontiadis LJ, Trompoukis G, Tsotsokou G, Miliou A, Felemegkas P, Papatheodoropoulos C. Rescue of sharp wave-ripples and prevention of network hyperexcitability in the ventral but not the dorsal hippocampus of a rat model of fragile X syndrome. Front Cell Neurosci 2023; 17:1296235. [PMID: 38107412 PMCID: PMC10722241 DOI: 10.3389/fncel.2023.1296235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder characterized by intellectual disability and is related to autism. FXS is caused by mutations of the fragile X messenger ribonucleoprotein 1 gene (Fmr1) and is associated with alterations in neuronal network excitability in several brain areas including hippocampus. The loss of fragile X protein affects brain oscillations, however, the effects of FXS on hippocampal sharp wave-ripples (SWRs), an endogenous hippocampal pattern contributing to memory consolidation have not been sufficiently clarified. In addition, it is still not known whether dorsal and ventral hippocampus are similarly affected by FXS. We used a Fmr1 knock-out (KO) rat model of FXS and electrophysiological recordings from the CA1 area of adult rat hippocampal slices to assess spontaneous and evoked neural activity. We find that SWRs and associated multiunit activity are affected in the dorsal but not the ventral KO hippocampus, while complex spike bursts remain normal in both segments of the KO hippocampus. Local network excitability increases in the dorsal KO hippocampus. Furthermore, specifically in the ventral hippocampus of KO rats we found an increased effectiveness of inhibition in suppressing excitation and an upregulation of α1GABAA receptor subtype. These changes in the ventral KO hippocampus are accompanied by a striking reduction in its susceptibility to induced epileptiform activity. We propose that the neuronal network specifically in the ventral segment of the hippocampus is reorganized in adult Fmr1-KO rats by means of balanced changes between excitability and inhibition to ensure normal generation of SWRs and preventing at the same time derailment of the neural activity toward hyperexcitability.
Collapse
|
8
|
Nomura T, Taniguchi S, Wang YZ, Yeh NH, Wilen AP, Castillon CCM, Foote KM, Xu J, Armstrong JN, Savas JN, Swanson GT, Contractor A. A Pathogenic Missense Mutation in Kainate Receptors Elevates Dendritic Excitability and Synaptic Integration through Dysregulation of SK Channels. J Neurosci 2023; 43:7913-7928. [PMID: 37802657 PMCID: PMC10669804 DOI: 10.1523/jneurosci.1259-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 10/08/2023] Open
Abstract
Numerous rare variants that cause neurodevelopmental disorders (NDDs) occur within genes encoding synaptic proteins, including ionotropic glutamate receptors. However, in many cases, it remains unclear how damaging missense variants affect brain function. We determined the physiological consequences of an NDD causing missense mutation in the GRIK2 kainate receptor (KAR) gene, that results in a single amino acid change p.Ala657Thr in the GluK2 receptor subunit. We engineered this mutation in the mouse Grik2 gene, yielding a GluK2(A657T) mouse, and studied mice of both sexes to determine how hippocampal neuronal function is disrupted. Synaptic KAR currents in hippocampal CA3 pyramidal neurons from heterozygous A657T mice exhibited slow decay kinetics, consistent with incorporation of the mutant subunit into functional receptors. Unexpectedly, CA3 neurons demonstrated elevated action potential spiking because of downregulation of the small-conductance Ca2+ activated K+ channel (SK), which mediates the post-spike afterhyperpolarization. The reduction in SK activity resulted in increased CA3 dendritic excitability, increased EPSP-spike coupling, and lowered the threshold for the induction of LTP of the associational-commissural synapses in CA3 neurons. Pharmacological inhibition of SK channels in WT mice increased dendritic excitability and EPSP-spike coupling, mimicking the phenotype in A657T mice and suggesting a causative role for attenuated SK activity in aberrant excitability observed in the mutant mice. These findings demonstrate that a disease-associated missense mutation in GRIK2 leads to altered signaling through neuronal KARs, pleiotropic effects on neuronal and dendritic excitability, and implicate these processes in neuropathology in patients with genetic NDDs.SIGNIFICANCE STATEMENT Damaging mutations in genes encoding synaptic proteins have been identified in various neurodevelopmental disorders, but the functional consequences at the cellular and circuit level remain elusive. By generating a novel knock-in mutant mouse, this study examined the role of a pathogenic mutation in the GluK2 kainate receptor (KAR) subunit, a subclass of ionotropic glutamate receptors. Analyses of hippocampal CA3 pyramidal neurons determined elevated action potential firing because of an increase in dendritic excitability. Increased dendritic excitability was attributable to reduced activity of a Ca2+ activated K+ channel. These results indicate that a pathogenic KAR mutation results in dysregulation of dendritic K+ channels, which leads to an increase in synaptic integration and backpropagation of action potentials into distal dendrites.
Collapse
Affiliation(s)
- Toshihiro Nomura
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Sakiko Taniguchi
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yi-Zhi Wang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Nai-Hsing Yeh
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Anika P Wilen
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Charlotte C M Castillon
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Kendall M Foote
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jian Xu
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - John N Armstrong
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Geoffrey T Swanson
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Neurobiology, Weinberg College of Arts and Sciences Northwestern University, Chicago, Illinois 60611
| | - Anis Contractor
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Psychiatry and Behavioral Sciences Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Neurobiology, Weinberg College of Arts and Sciences Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
9
|
Kelley C, Antic SD, Carnevale NT, Kubie JL, Lytton WW. Simulations predict differing phase responses to excitation vs. inhibition in theta-resonant pyramidal neurons. J Neurophysiol 2023; 130:910-924. [PMID: 37609720 PMCID: PMC10648938 DOI: 10.1152/jn.00160.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023] Open
Abstract
Rhythmic activity is ubiquitous in neural systems, with theta-resonant pyramidal neurons integrating rhythmic inputs in many cortical structures. Impedance analysis has been widely used to examine frequency-dependent responses of neuronal membranes to rhythmic inputs, but it assumes that the neuronal membrane is a linear system, requiring the use of small signals to stay in a near-linear regime. However, postsynaptic potentials are often large and trigger nonlinear mechanisms (voltage-gated ion channels). The goals of this work were to 1) develop an analysis method to evaluate membrane responses in this nonlinear domain and 2) explore phase relationships between rhythmic stimuli and subthreshold and spiking membrane potential (Vmemb) responses in models of theta-resonant pyramidal neurons. Responses in these output regimes were asymmetrical, with different phase shifts during hyperpolarizing and depolarizing half-cycles. Suprathreshold theta-rhythmic stimuli produced nonstationary Vmemb responses. Sinusoidal inputs produced "phase retreat": action potentials occurred progressively later in cycles of the input stimulus, resulting from adaptation. Sinusoidal current with increasing amplitude over cycles produced "phase advance": action potentials occurred progressively earlier. Phase retreat, phase advance, and subthreshold phase shifts were modulated by multiple ion channel conductances. Our results suggest differential responses of cortical neurons depending on the frequency of oscillatory input, which will play a role in neuronal responses to shifts in network state. We hypothesize that intrinsic cellular properties complement network properties and contribute to in vivo phase-shift phenomena such as phase precession, seen in place and grid cells, and phase roll, also observed in hippocampal CA1 neurons.NEW & NOTEWORTHY We augmented electrical impedance analysis to characterize phase shifts between large-amplitude current stimuli and nonlinear, asymmetric membrane potential responses. We predict different frequency-dependent phase shifts in response excitation vs. inhibition, as well as shifts in spike timing over multiple input cycles, in theta-resonant pyramidal neurons. We hypothesize that these effects contribute to navigation-related phenomena such as phase precession and phase roll. Our neuron-level hypothesis complements, rather than falsifies, prior network-level explanations of these phenomena.
Collapse
Affiliation(s)
- Craig Kelley
- Program in Biomedical Engineering, SUNY Downstate Health Sciences University and NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Srdjan D Antic
- Institute of Systems Genomics, Neuroscience Department, University of Connecticut Health, Farmington, Connecticut, United States
| | - Nicholas T Carnevale
- Department of Neuroscience, Yale University, New Haven, Connecticut, United States
| | - John L Kubie
- The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
| | - William W Lytton
- Program in Biomedical Engineering, SUNY Downstate Health Sciences University and NYU Tandon School of Engineering, Brooklyn, New York, United States
- The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
- Department of Neurology, Kings County Hospital Center, Brooklyn, New York, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, United States
| |
Collapse
|
10
|
Brandalise F, Kalmbach BE, Cook EP, Brager DH. Impaired dendritic spike generation in the Fragile X prefrontal cortex is due to loss of dendritic sodium channels. J Physiol 2023; 601:831-845. [PMID: 36625320 PMCID: PMC9970745 DOI: 10.1113/jp283311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Patients with Fragile X syndrome, the leading monogenetic cause of autism, suffer from impairments related to the prefrontal cortex, including working memory and attention. Synaptic inputs to the distal dendrites of layer 5 pyramidal neurons in the prefrontal cortex have a weak influence on the somatic membrane potential. To overcome this filtering, distal inputs are transformed into local dendritic Na+ spikes, which propagate to the soma and trigger action potential output. Layer 5 extratelencephalic (ET) prefrontal cortex (PFC) neurons project to the brainstem and various thalamic nuclei and are therefore well positioned to integrate task-relevant sensory signals and guide motor actions. We used current clamp and outside-out patch clamp recording to investigate dendritic spike generation in ET neurons from male wild-type and Fmr1 knockout (FX) mice. The threshold for dendritic spikes was more depolarized in FX neurons compared to wild-type. Analysis of voltage responses to simulated in vivo 'noisy' current injections showed that a larger dendritic input stimulus was required to elicit dendritic spikes in FX ET dendrites compared to wild-type. Patch clamp recordings revealed that the dendritic Na+ conductance was significantly smaller in FX ET dendrites. Taken together, our results suggest that the generation of Na+ -dependent dendritic spikes is impaired in ET neurons of the PFC in FX mice. Considering our prior findings that somatic D-type K+ and dendritic hyperpolarization-activated cyclic nucleotide-gated-channel function is reduced in ET neurons, we suggest that dendritic integration by PFC circuits is fundamentally altered in Fragile X syndrome. KEY POINTS: Dendritic spike threshold is depolarized in layer 5 prefrontal cortex neurons in Fmr1 knockout (FX) mice. Simultaneous somatic and dendritic recording with white noise current injections revealed that larger dendritic stimuli were required to elicit dendritic spikes in FX extratelencephalic (ET) neurons. Outside-out patch clamp recording revealed that dendritic sodium conductance density was lower in FX ET neurons.
Collapse
Affiliation(s)
- Federico Brandalise
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712 USA
- Department of Neuroscience University of Texas at Austin, Austin, TX 78712 USA
- Current address: Department of Biosciences, University of Milan, Milano Italy
| | - Brian E. Kalmbach
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712 USA
- Department of Neuroscience University of Texas at Austin, Austin, TX 78712 USA
- Current address: Allen Institute for Brain Science, Seattle, WA and Department of Physiology and Biophysics, University of Washington
| | - Erik P. Cook
- Department of Physiology, McGill University, Montreal QC, Canada
| | - Darrin H. Brager
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712 USA
- Department of Neuroscience University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
11
|
Griego E, Segura-Villalobos D, Lamas M, Galván EJ. Maternal immune activation increases excitability via downregulation of A-type potassium channels and reduces dendritic complexity of hippocampal neurons of the offspring. Brain Behav Immun 2022; 105:67-81. [PMID: 35803480 DOI: 10.1016/j.bbi.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/29/2022] Open
Abstract
The epidemiological association between bacterial or viral maternal infections during pregnancy and increased risk for developing psychiatric disorders in offspring is well documented. Numerous rodent and non-human primate studies of viral- or, to a lesser extent, bacterial-induced maternal immune activation (MIA) have documented a series of neurological alterations that may contribute to understanding the pathophysiology of schizophrenia and autism spectrum disorders. Long-term neuronal and behavioral alterations are now ascribed to the effect of maternal proinflammatory cytokines rather than the infection itself. However, detailed electrophysiological alterations in brain areas relevant to psychiatric disorders, such as the dorsal hippocampus, are lacking in response to bacterial-induced MIA. This study determined if electrophysiological and morphological alterations converge in CA1 pyramidal cells (CA1 PC) from the dorsal hippocampus in bacterial-induced MIA offspring. A series of changes in the functional expression of K+ and Na+ ion channels altered the passive and active membrane properties and triggered hyperexcitability of CA1 PC. Contributing to the hyperexcitability, the somatic A-type potassium current (IA) was decreased in MIA CA1 PC. Likewise, the spontaneous glutamatergic and GABAergic inputs were dysregulated and biased toward increased excitation, thereby reshaping the excitation-inhibition balance. Consistent with these findings, the dendritic branching complexity of MIA CA1 PC was reduced. Together, these morphophysiological alterations modify CA1 PC computational capabilities and contribute to explaining cellular alterations that may underlie the cognitive symptoms of MIA-associated psychiatric disorders.
Collapse
Affiliation(s)
- Ernesto Griego
- Departamento de Farmacobiología, CINVESTAV Unidad Sur, Ciudad de México, Mexico
| | | | - Mónica Lamas
- Departamento de Farmacobiología, CINVESTAV Unidad Sur, Ciudad de México, Mexico
| | - Emilio J Galván
- Departamento de Farmacobiología, CINVESTAV Unidad Sur, Ciudad de México, Mexico.
| |
Collapse
|
12
|
Bülow P, Segal M, Bassell GJ. Mechanisms Driving the Emergence of Neuronal Hyperexcitability in Fragile X Syndrome. Int J Mol Sci 2022; 23:ijms23116315. [PMID: 35682993 PMCID: PMC9181819 DOI: 10.3390/ijms23116315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperexcitability is a shared neurophysiological phenotype across various genetic neurodevelopmental disorders, including Fragile X syndrome (FXS). Several patient symptoms are associated with hyperexcitability, but a puzzling feature is that their onset is often delayed until their second and third year of life. It remains unclear how and why hyperexcitability emerges in neurodevelopmental disorders. FXS is caused by the loss of FMRP, an RNA-binding protein which has many critical roles including protein synthesis-dependent and independent regulation of ion channels and receptors, as well as global regulation of protein synthesis. Here, we discussed recent literature uncovering novel mechanisms that may drive the progressive onset of hyperexcitability in the FXS brain. We discussed in detail how recent publications have highlighted defects in homeostatic plasticity, providing new insight on the FXS brain and suggest pharmacotherapeutic strategies in FXS and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Pernille Bülow
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (P.B.); (G.J.B.)
| | - Menahem Segal
- Department of Brain Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (P.B.); (G.J.B.)
| |
Collapse
|
13
|
Liu X, Kumar V, Tsai NP, Auerbach BD. Hyperexcitability and Homeostasis in Fragile X Syndrome. Front Mol Neurosci 2022; 14:805929. [PMID: 35069112 PMCID: PMC8770333 DOI: 10.3389/fnmol.2021.805929] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Fragile X Syndrome (FXS) is a leading inherited cause of autism and intellectual disability, resulting from a mutation in the FMR1 gene and subsequent loss of its protein product FMRP. Despite this simple genetic origin, FXS is a phenotypically complex disorder with a range of physical and neurocognitive disruptions. While numerous molecular and cellular pathways are affected by FMRP loss, there is growing evidence that circuit hyperexcitability may be a common convergence point that can account for many of the wide-ranging phenotypes seen in FXS. The mechanisms for hyperexcitability in FXS include alterations to excitatory synaptic function and connectivity, reduced inhibitory neuron activity, as well as changes to ion channel expression and conductance. However, understanding the impact of FMR1 mutation on circuit function is complicated by the inherent plasticity in neural circuits, which display an array of homeostatic mechanisms to maintain activity near set levels. FMRP is also an important regulator of activity-dependent plasticity in the brain, meaning that dysregulated plasticity can be both a cause and consequence of hyperexcitable networks in FXS. This makes it difficult to separate the direct effects of FMR1 mutation from the myriad and pleiotropic compensatory changes associated with it, both of which are likely to contribute to FXS pathophysiology. Here we will: (1) review evidence for hyperexcitability and homeostatic plasticity phenotypes in FXS models, focusing on similarities/differences across brain regions, cell-types, and developmental time points; (2) examine how excitability and plasticity disruptions interact with each other to ultimately contribute to circuit dysfunction in FXS; and (3) discuss how these synaptic and circuit deficits contribute to disease-relevant behavioral phenotypes like epilepsy and sensory hypersensitivity. Through this discussion of where the current field stands, we aim to introduce perspectives moving forward in FXS research.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vipendra Kumar
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nien-Pei Tsai
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Benjamin D. Auerbach
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Benjamin D. Auerbach
| |
Collapse
|
14
|
Griego E, Hernández-Frausto M, Márquez LA, Lara-Valderrabano L, López Rubalcava C, Galván EJ. Activation of D1/D5 Receptors Ameliorates Decreased Intrinsic Excitability of Hippocampal Neurons Induced by Neonatal Blockade of NMDA Receptors. Br J Pharmacol 2021; 179:1695-1715. [PMID: 34791647 DOI: 10.1111/bph.15735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Dysregulation of dopaminergic transmission combined with transient hypofunction of N-methyl-D-aspartate receptors (NMDARs) is a key mechanism that may underlie cognitive symptoms of schizophrenia. EXPERIMENTAL APPROACH Therefore, we aimed to identify electrophysiologic alterations in animals neonatally treated with the NMDA receptor antagonist, MK-801 or with saline solution. KEY RESULTS Patch-clamp whole-cell recordings from MK-801-treated animals revealed altered passive and active electrophysiologic properties compared with CA1 pyramidal cells from saline-treated animals, including upregulation of the K+ inward-rectifier conductance and fast-inactivating and slow/non-inactivating K+ currents. Upregulation of these membrane ionic currents reduced the overall excitability and altered the firing properties of CA1 pyramidal cells. We also explored the capability of cells treated with MK-801 to express intrinsic excitability potentiation, a non-synaptic form of hippocampal plasticity associated with cognition and memory formation. CA1 pyramidal cells from animals treated with MK-801 were unable to convey intrinsic excitability potentiation and had blunted synaptic potentiation. Furthermore, MK-801-treated animals also exhibited reduced cognitive performance in the Barnes maze task. Notably, activation of D1/D5 receptors with SKF-38, 393 partially restored electrophysiologic alterations caused by neonatal treatment with MK-801. CONCLUSION AND IMPLICATIONS Our results offer a molecular and mechanistic explanation based on dysregulation of glutamatergic in addition to dopaminergic transmission that may contribute to the understanding of the cognitive deterioration associated with schizophrenia.
Collapse
Affiliation(s)
- Ernesto Griego
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Melissa Hernández-Frausto
- Current address: Department of Neuroscience and Physiology, NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Luis A Márquez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Leonardo Lara-Valderrabano
- Current address: A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Carolina López Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Emilio J Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| |
Collapse
|
15
|
Mishra P, Narayanan R. Stable continual learning through structured multiscale plasticity manifolds. Curr Opin Neurobiol 2021; 70:51-63. [PMID: 34416674 PMCID: PMC7611638 DOI: 10.1016/j.conb.2021.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Biological plasticity is ubiquitous. How does the brain navigate this complex plasticity space, where any component can seemingly change, in adapting to an ever-changing environment? We build a systematic case that stable continuous learning is achieved by structured rules that enforce multiple, but not all, components to change together in specific directions. This rule-based low-dimensional plasticity manifold of permitted plasticity combinations emerges from cell type-specific molecular signaling and triggers cascading impacts that span multiple scales. These multiscale plasticity manifolds form the basis for behavioral learning and are dynamic entities that are altered by neuromodulation, metaplasticity, and pathology. We explore the strong links between heterogeneities, degeneracy, and plasticity manifolds and emphasize the need to incorporate plasticity manifolds into learning-theoretical frameworks and experimental designs.
Collapse
Affiliation(s)
- Poonam Mishra
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
16
|
Sinha M, Narayanan R. Active Dendrites and Local Field Potentials: Biophysical Mechanisms and Computational Explorations. Neuroscience 2021; 489:111-142. [PMID: 34506834 PMCID: PMC7612676 DOI: 10.1016/j.neuroscience.2021.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/27/2022]
Abstract
Neurons and glial cells are endowed with membranes that express a rich repertoire of ion channels, transporters, and receptors. The constant flux of ions across the neuronal and glial membranes results in voltage fluctuations that can be recorded from the extracellular matrix. The high frequency components of this voltage signal contain information about the spiking activity, reflecting the output from the neurons surrounding the recording location. The low frequency components of the signal, referred to as the local field potential (LFP), have been traditionally thought to provide information about the synaptic inputs that impinge on the large dendritic trees of various neurons. In this review, we discuss recent computational and experimental studies pointing to a critical role of several active dendritic mechanisms that can influence the genesis and the location-dependent spectro-temporal dynamics of LFPs, spanning different brain regions. We strongly emphasize the need to account for the several fast and slow dendritic events and associated active mechanisms - including gradients in their expression profiles, inter- and intra-cellular spatio-temporal interactions spanning neurons and glia, heterogeneities and degeneracy across scales, neuromodulatory influences, and activitydependent plasticity - towards gaining important insights about the origins of LFP under different behavioral states in health and disease. We provide simple but essential guidelines on how to model LFPs taking into account these dendritic mechanisms, with detailed methodology on how to account for various heterogeneities and electrophysiological properties of neurons and synapses while studying LFPs.
Collapse
Affiliation(s)
- Manisha Sinha
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
17
|
Ordemann GJ, Apgar CJ, Chitwood RA, Brager DH. Altered A-Type Potassium Channel Function Impairs Dendritic Spike Initiation and Temporoammonic Long-Term Potentiation in Fragile X Syndrome. J Neurosci 2021; 41:5947-5962. [PMID: 34083256 PMCID: PMC8265803 DOI: 10.1523/jneurosci.0082-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 01/14/2023] Open
Abstract
Fragile X syndrome (FXS) is the leading monogenetic cause of cognitive impairment and autism spectrum disorder. Area CA1 of the hippocampus receives current information about the external world from the entorhinal cortex via the temporoammonic (TA) pathway. Given its role in learning and memory, it is surprising that little is known about TA long-term potentiation (TA-LTP) in FXS. We found that TA-LTP was impaired in male fmr1 KO mice. Although there were no significant differences in basal synaptic transmission, synaptically evoked dendritic calcium signals were smaller in KO neurons. Using dendritic recording, we found no difference in complex spikes or pharmacologically isolated Ca2+ spikes; however, the threshold for fast, Na+-dependent dendritic spikes was depolarized in fmr1 KO mice. Cell-attached patch-clamp recordings found no difference in Na+ channels between wild-type and fmr1 KO CA1 dendrites. Dendritic spike threshold and TA-LTP were restored by blocking A-type K+ channels with either 150 µm Ba2+ or the more specific toxin AmmTx3. The impairment of TA-LTP shown here, coupled with previously described enhanced Schaffer collateral LTP, may contribute to spatial memory alterations in FXS. Furthermore, as both of these LTP phenotypes are attributed to changes in A-type K+ channels in FXS, our findings provide a potential therapeutic target to treat cognitive impairments in FXS.SIGNIFICANCE STATEMENT Alterations in synaptic function and plasticity are likely contributors to learning and memory impairments in many neurologic disorders. Fragile X syndrome is marked by dysfunctional learning and memory and changes in synaptic structure and function. This study shows a lack of LTP at temporoammonic synapses in CA1 neurons associated with biophysical differences in A-type K+ channels in fmr1 KO CA1 neurons. Our results, along with previous findings on A-type K+ channel effects on Schaffer collateral LTP, reveal differential effects of a single ion channelopathy on LTP at the two major excitatory pathways of CA1 pyramidal neurons. These findings expand our understanding of memory deficits in FXS and provide a potential therapeutic target for the treatment of memory dysfunction in FXS.
Collapse
Affiliation(s)
- Gregory J Ordemann
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| | - Christopher J Apgar
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| | - Raymond A Chitwood
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| | - Darrin H Brager
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
18
|
Booker SA, Kind PC. Mechanisms regulating input-output function and plasticity of neurons in the absence of FMRP. Brain Res Bull 2021; 175:69-80. [PMID: 34245842 DOI: 10.1016/j.brainresbull.2021.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/13/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
The function of brain circuits relies on high-fidelity information transfer within neurons. Synaptic inputs arrive primarily at dendrites, where they undergo integration and summation throughout the somatodendritic domain, ultimately leading to the generation of precise patterns of action potentials. Emerging evidence suggests that the ability of neurons to transfer synaptic information and modulate their output is impaired in a number of neurodevelopmental disorders including Fragile X Syndrome. In this review we summarise recent findings that have revealed the pathophysiological and plasticity mechanisms that alter the ability of neurons in sensory and limbic circuits to reliably code information in the absence of FMRP. We examine which aspects of this transform may result directly from the loss of FMRP and those that a result from compensatory or homeostatic alterations to neuronal function. Dissection of the mechanisms leading to altered input-output function of neurons in the absence of FMRP and their effects on regulating neuronal plasticity throughout development could have important implications for potential therapies for Fragile X Syndrome, including directing the timing and duration of different treatment options.
Collapse
Affiliation(s)
- Sam A Booker
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK; Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Peter C Kind
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK; Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK; National Centre for Biological Sciences (NCBS), Bangalore, India.
| |
Collapse
|
19
|
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and the leading monogenic cause of autism. The condition stems from loss of fragile X mental retardation protein (FMRP), which regulates a wide range of ion channels via translational control, protein-protein interactions and second messenger pathways. Rapidly increasing evidence demonstrates that loss of FMRP leads to numerous ion channel dysfunctions (that is, channelopathies), which in turn contribute significantly to FXS pathophysiology. Consistent with this, pharmacological or genetic interventions that target dysregulated ion channels effectively restore neuronal excitability, synaptic function and behavioural phenotypes in FXS animal models. Recent studies further support a role for direct and rapid FMRP-channel interactions in regulating ion channel function. This Review lays out the current state of knowledge in the field regarding channelopathies and the pathogenesis of FXS, including promising therapeutic implications.
Collapse
|
20
|
Abstract
Potassium channels play an important role regulating transmembrane electrical activity in essentially all cell types. We were especially interested in those that determine the intrinsic electrical properties of mammalian central neurons. Over 30 different potassium channels have been molecularly identified in brain neurons, but there often is not a clear distinction between molecular structure and the function of a particular channel in the cell. Using patch-clamp methods to search for single potassium channels in excised inside-out (ISO) somatic patches with symmetrical potassium, we found that nearly all patches contained non-voltage-inactivating channels with a single-channel conductance of 100-200 pS. This conductance range is consistent with the family of sodium-activated potassium channels (Slo2.1, Slo2.2, or collectively, KNa). The activity of these channels was positively correlated with a low cytoplasmic Na+ concentration (2-20 mM). Cell-attached recordings from intact neurons, however, showed little or no activity of this K+ channel. Attempts to increase channel activity by increasing intracellular sodium concentration ([Na+]i) with bursts of action potentials or direct perfusion of Na+ through a whole cell pipette had little effect on KNa channel activity. Furthermore, excised outside-out (OSO) patches across a range of intracellular [Na+] showed less channel activity than we had seen with excised ISO patches. Blocking the Na+/K+ pump with ouabain increased the activity of the KNa channels in excised OSO patches to levels comparable with ISO-excised patches. Our results suggest that despite their apparent high levels of expression, the activity of somatic KNa channels is tightly regulated by the activity of the Na+/K+ pump.NEW & NOTEWORTHY We studied KNa channels in mouse hippocampal CA1 neurons. Excised inside-out patches showed the channels to be prevalent and active in most patches in the presence of Na+. Cell-attached recordings from intact neurons, however, showed little channel activity. Increasing cytoplasmic sodium in intact cells showed a small effect on channel activity compared with that seen in inside-out excised patches. Blockade of the Na+/K+ pump with ouabain, however, restored the activity of the channels to that seen in inside-out patches.
Collapse
Affiliation(s)
- Richard Gray
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Daniel Johnston
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas
| |
Collapse
|
21
|
Tiwari D, Schaefer TL, Schroeder-Carter LM, Krzeski JC, Bunk AT, Parkins EV, Snider A, Danzer R, Williams MT, Vorhees CV, Danzer SC, Gross C. The potassium channel Kv4.2 regulates dendritic spine morphology, electroencephalographic characteristics and seizure susceptibility in mice. Exp Neurol 2020; 334:113437. [PMID: 32822706 PMCID: PMC7642025 DOI: 10.1016/j.expneurol.2020.113437] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/21/2023]
Abstract
The voltage-gated potassium channel Kv4.2 is a critical regulator of dendritic excitability in the hippocampus and is crucial for dendritic signal integration. Kv4.2 mRNA and protein expression as well as function are reduced in several genetic and pharmacologically induced rodent models of epilepsy and autism. It is not known, however, whether reduced Kv4.2 is just an epiphenomenon or a disease-contributing cause of neuronal hyperexcitability and behavioral impairments in these neurological disorders. To address this question, we used male and female mice heterozygous for a Kv.2 deletion and adult-onset manipulation of hippocampal Kv4.2 expression in male mice to assess the role of Kv4.2 in regulating neuronal network excitability, morphology and anxiety-related behaviors. We observed a reduction in dendritic spine density and reduced proportions of thin and stubby spines but no changes in anxiety, overall activity, or retention of conditioned freezing memory in Kv4.2 heterozygous mice compared with wildtype littermates. Using EEG analyses, we showed elevated theta power and increased spike frequency in Kv4.2 heterozygous mice under basal conditions. In addition, the latency to onset of kainic acid-induced seizures was significantly shortened in Kv4.2 heterozygous mice compared with wildtype littermates, which was accompanied by a significant increase in theta power. By contrast, overexpressing Kv4.2 in wildtype mice through intrahippocampal injection of Kv4.2-expressing lentivirus delayed seizure onset and reduced EEG power. These results suggest that Kv4.2 is an important regulator of neuronal network excitability and dendritic spine morphology, but not anxiety-related behaviors. In the future, manipulation of Kv4.2 expression could be used to alter seizure susceptibility in epilepsy.
Collapse
Affiliation(s)
- Durgesh Tiwari
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Tori L Schaefer
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Joseph C Krzeski
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alexander T Bunk
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Emma V Parkins
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrew Snider
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Reese Danzer
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael T Williams
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Charles V Vorhees
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Steve C Danzer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
22
|
Kalmbach BE, Brager DH. Fragile X mental retardation protein modulates somatic D-type K + channels and action potential threshold in the mouse prefrontal cortex. J Neurophysiol 2020; 124:1766-1773. [PMID: 32997566 DOI: 10.1152/jn.00494.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Axo-somatic K+ channels control action potential output in part by acting in concert with voltage-gated Na+ channels to set action potential threshold. Slowly inactivating, D-type K+ channels are enriched at the axo-somatic region of cortical pyramidal neurons of the prefrontal cortex, where they regulate action potential firing. We previously demonstrated that D-type K+ channels are downregulated in extratelencephalic-projecting (ET) L5 neurons in the medial prefrontal cortex (mPFC) of the Fmr1-knockout mouse model of fragile X syndrome (FX mice), resulting in a hyperpolarized action potential threshold. To test whether K+ channel alterations are regulated in a cell-autonomous manner in FXS, we used a virus-mediated approach to restore expression of fragile X mental retardation protein (FMRP) in a small population of prefrontal neurons in male FX mice. Outside-out voltage-clamp recordings revealed a higher D-type K+ conductance in FMRP-positive ET neurons compared with nearby FMRP-negative ET neurons. FMRP did not affect either rapidly inactivating A-type or noninactivating K+ conductance. ET neuron patches recorded with FMRP1-298, a truncated form of FMRP that lacks mRNA binding domains, included in the pipette solution had larger D-type K+ conductance compared with heat-inactivated controls. Viral expression of FMRP in FX mice depolarized action potential threshold to near-wild-type levels in ET neurons. These results suggest that FMRP influences the excitability of ET neurons in the mPFC by regulating somatic D-type K+ channels in a cell-autonomous, protein-protein-dependent manner.NEW & NOTEWORTHY We demonstrate that fragile X mental retardation protein (FMRP), which is absent in fragile X syndrome (FXS), regulates D-type potassium channels in prefrontal cortex L5 pyramidal neurons with subcerebral projections but not in neighboring pyramidal neurons without subcerebral projections. FMRP regulates D-type potassium channels in a protein-protein-dependent manner and rescues action potential threshold in a mouse model of FXS. These findings have implications for how changes in voltage-gated channels contribute to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Brian E Kalmbach
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas.,Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Darrin H Brager
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas.,Department of Neuroscience, University of Texas at Austin, Austin, Texas
| |
Collapse
|
23
|
Utami KH, Skotte NH, Colaço AR, Yusof NABM, Sim B, Yeo XY, Bae HG, Garcia-Miralles M, Radulescu CI, Chen Q, Chaldaiopoulou G, Liany H, Nama S, Peteri UKA, Sampath P, Castrén ML, Jung S, Mann M, Pouladi MA. Integrative Analysis Identifies Key Molecular Signatures Underlying Neurodevelopmental Deficits in Fragile X Syndrome. Biol Psychiatry 2020; 88:500-511. [PMID: 32653109 DOI: 10.1016/j.biopsych.2020.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 03/26/2020] [Accepted: 05/02/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by epigenetic silencing of FMR1 and loss of FMRP expression. Efforts to understand the molecular underpinnings of the disease have been largely performed in rodent or nonisogenic settings. A detailed examination of the impact of FMRP loss on cellular processes and neuronal properties in the context of isogenic human neurons remains lacking. METHODS Using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 to introduce indels in exon 3 of FMR1, we generated an isogenic human pluripotent stem cell model of FXS that shows complete loss of FMRP expression. We generated neuronal cultures and performed genome-wide transcriptome and proteome profiling followed by functional validation of key dysregulated processes. We further analyzed neurodevelopmental and neuronal properties, including neurite length and neuronal activity, using multielectrode arrays and patch clamp electrophysiology. RESULTS We showed that the transcriptome and proteome profiles of isogenic FMRP-deficient neurons demonstrate perturbations in synaptic transmission, neuron differentiation, cell proliferation and ion transmembrane transporter activity pathways, and autism spectrum disorder-associated gene sets. We uncovered key deficits in FMRP-deficient cells demonstrating abnormal neural rosette formation and neural progenitor cell proliferation. We further showed that FMRP-deficient neurons exhibit a number of additional phenotypic abnormalities, including neurite outgrowth and branching deficits and impaired electrophysiological network activity. These FMRP-deficient related impairments have also been validated in additional FXS patient-derived human-induced pluripotent stem cell neural cells. CONCLUSIONS Using isogenic human pluripotent stem cells as a model to investigate the pathophysiology of FXS in human neurons, we reveal key neural abnormalities arising from the loss of FMRP.
Collapse
Affiliation(s)
- Kagistia Hana Utami
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore
| | - Niels H Skotte
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen N, Denmark
| | - Ana R Colaço
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen N, Denmark
| | | | - Bernice Sim
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore
| | - Xin Yi Yeo
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Han-Gyu Bae
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore
| | - Marta Garcia-Miralles
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore
| | - Carola I Radulescu
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore; UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Qiyu Chen
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore
| | - Georgia Chaldaiopoulou
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore
| | - Herty Liany
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore
| | - Srikanth Nama
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore
| | - Ulla-Kaisa A Peteri
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Prabha Sampath
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sangyong Jung
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen N, Denmark
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
24
|
Motanis H, Buonomano D. Decreased reproducibility and abnormal experience-dependent plasticity of network dynamics in Fragile X circuits. Sci Rep 2020; 10:14535. [PMID: 32884028 PMCID: PMC7471942 DOI: 10.1038/s41598-020-71333-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome is a neurodevelopmental disorder associated with a broad range of neural phenotypes. Interpreting these findings has proven challenging because some phenotypes may reflect compensatory mechanisms or normal forms of plasticity differentially engaged by experiential differences. To help minimize compensatory and experiential influences, we used an ex vivo approach to study network dynamics and plasticity of cortical microcircuits. In Fmr1-/y circuits, the spatiotemporal structure of Up-states was less reproducible, suggesting alterations in the plasticity mechanisms governing network activity. Chronic optical stimulation revealed normal homeostatic plasticity of Up-states, however, Fmr1-/y circuits exhibited abnormal experience-dependent plasticity as they did not adapt to chronically presented temporal patterns in an interval-specific manner. These results, suggest that while homeostatic plasticity is normal, Fmr1-/y circuits exhibit deficits in the ability to orchestrate multiple forms of synaptic plasticity and to adapt to sensory patterns in an experience-dependent manner-which is likely to contribute to learning deficits.
Collapse
Affiliation(s)
- Helen Motanis
- Departments of Neurobiology and Psychology, and Integrative Center for Learning and Memory, University of California, 630 Charles E Young Dr S, Center for Health Sciences Building, Los Angeles, CA, 90095, USA
| | - Dean Buonomano
- Departments of Neurobiology and Psychology, and Integrative Center for Learning and Memory, University of California, 630 Charles E Young Dr S, Center for Health Sciences Building, Los Angeles, CA, 90095, USA.
| |
Collapse
|
25
|
Booker SA, Simões de Oliveira L, Anstey NJ, Kozic Z, Dando OR, Jackson AD, Baxter PS, Isom LL, Sherman DL, Hardingham GE, Brophy PJ, Wyllie DJ, Kind PC. Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome. Cell Rep 2020; 32:107988. [PMID: 32783927 PMCID: PMC7435362 DOI: 10.1016/j.celrep.2020.107988] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/01/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular hyperexcitability is a salient feature of fragile X syndrome animal models. The cellular basis of hyperexcitability and how it responds to changing activity states is not fully understood. Here, we show increased axon initial segment length in CA1 of the Fmr1-/y mouse hippocampus, with increased cellular excitability. This change in length does not result from reduced AIS plasticity, as prolonged depolarization induces changes in AIS length independent of genotype. However, depolarization does reduce cellular excitability, the magnitude of which is greater in Fmr1-/y neurons. Finally, we observe reduced functional inputs from the entorhinal cortex, with no genotypic difference in the firing rates of CA1 pyramidal neurons. This suggests that AIS-dependent hyperexcitability in Fmr1-/y mice may result from adaptive or homeostatic regulation induced by reduced functional synaptic connectivity. Thus, while AIS length and intrinsic excitability contribute to cellular hyperexcitability, they may reflect a homeostatic mechanism for reduced synaptic input onto CA1 neurons.
Collapse
Affiliation(s)
- Sam A. Booker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Corresponding author
| | - Laura Simões de Oliveira
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK
| | - Natasha J. Anstey
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India
| | - Zrinko Kozic
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Owen R. Dando
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Dementia Research Institute, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India
| | - Adam D. Jackson
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India
| | - Paul S. Baxter
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Dementia Research Institute, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-5632, USA
| | - Diane L. Sherman
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Giles E. Hardingham
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Dementia Research Institute, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Peter J. Brophy
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - David J.A. Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India
| | - Peter C. Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India,Corresponding author
| |
Collapse
|
26
|
Brandalise F, Kalmbach BE, Mehta P, Thornton O, Johnston D, Zemelman BV, Brager DH. Fragile X Mental Retardation Protein Bidirectionally Controls Dendritic I h in a Cell Type-Specific Manner between Mouse Hippocampus and Prefrontal Cortex. J Neurosci 2020; 40:5327-5340. [PMID: 32467357 PMCID: PMC7329306 DOI: 10.1523/jneurosci.1670-19.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 11/21/2022] Open
Abstract
Channelopathies are implicated in Fragile X syndrome (FXS), yet the dysfunction of a particular ion channel varies with cell type. We previously showed that HCN channel function is elevated in CA1 dendrites of the fmr1-/y mouse model of FXS, but reduced in L5 PFC dendrites. Using male mice, we tested whether Fragile X Mental Retardation Protein (FMRPO), the protein whose absence causes FXS, differentially modulates HCN channels in CA1 versus L5 PFC dendrites. Using a combination of viral tools, intracellular peptide, and dendritic electrophysiology, we found that FMRP regulates HCN channels via a cell-autonomous protein-protein interaction. Virally expressed FMRP restored WT HCN channel-related dendritic properties in both CA1 and L5 neurons. Rapid intracellular perfusion of the non-mRNA binding N-terminal fragment, FMRP1-298, similarly restored dendritic function. In support of a protein-protein interaction, we found that FMRP associated with HCN-TRIP8b complexes in both hippocampus and PFC. Finally, voltage-clamp recordings showed that FMRP modulated Ih by regulating the number of functional dendritic HCN channels rather than individual channel properties. Together, these represent three novel findings as to the nature of the changes in dendritic function in CA1 and PFC neurons based on the presence or absence of FMRP. Moreover, our findings provide evidence that FMRP can regulate its targets in opposite directions depending upon the cellular milieu.SIGNIFICANCE STATEMENT Changes in dendritic function, and voltage-gated ion channels in particular, are increasingly the focus of neurological disorders. We, and others, previously identified cell type-specific channelopathies in a mouse of model of Fragile X syndrome. The present study shows that replacing Fragile X Mental Retardation Protein, which is absent in Fragile X syndrome, in adult CA1 and L5 PFC neurons regulates the number of functional dendritic HCN channels in a cell type-specific manner. These results suggest that Fragile X Mental Retardation Protein regulates dendritic HCN channels via a cell-autonomous protein--protein mechanism.
Collapse
Affiliation(s)
- Federico Brandalise
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - Brian E Kalmbach
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - Preeti Mehta
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - Olivia Thornton
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - Daniel Johnston
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - Boris V Zemelman
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - Darrin H Brager
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
27
|
Loss of fragile X mental retardation protein precedes Lewy pathology in Parkinson's disease. Acta Neuropathol 2020; 139:319-345. [PMID: 31768670 DOI: 10.1007/s00401-019-02099-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) and the gradual appearance of α-synuclein (α-syn)-containing neuronal protein aggregates. Although the exact mechanism of α-syn-mediated cell death remains elusive, recent research suggests that α-syn-induced alterations in neuronal excitability contribute to cell death in PD. Because the fragile X mental retardation protein (FMRP) controls the expression and function of numerous neuronal genes related to neuronal excitability and synaptic function, we here investigated the role of FMRP in α-syn-associated pathological changes in cell culture and mouse models of PD as well as in post-mortem human brain tissue from PD patients. We found FMRP to be decreased in cultured DA neurons and in the mouse brain in response to α-syn overexpression. FMRP was, furthermore, lost in the SNc of PD patients and in patients with early stages of incidental Lewy body disease (iLBD). Unlike fragile X syndrome (FXS), FMR1 expression in response to α-syn was regulated by a mechanism involving Protein Kinase C (PKC) and cAMP response element-binding protein (CREB). Reminiscent of FXS neurons, α-syn-overexpressing cells exhibited an increase in membrane N-type calcium channels, increased phosphorylation of ERK1/2, eIF4E and S6, increased overall protein synthesis, and increased expression of Matrix Metalloproteinase 9 (MMP9). FMRP affected neuronal function in a PD animal model, because FMRP-KO mice were resistant to the effect of α-syn on striatal dopamine release. In summary, our results thus reveal a new role of FMRP in PD and support the examination of FMRP-regulated genes in PD disease progression.
Collapse
|
28
|
Ferron L, Novazzi CG, Pilch KS, Moreno C, Ramgoolam K, Dolphin AC. FMRP regulates presynaptic localization of neuronal voltage gated calcium channels. Neurobiol Dis 2020; 138:104779. [PMID: 31991246 PMCID: PMC7152798 DOI: 10.1016/j.nbd.2020.104779] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/09/2020] [Accepted: 01/24/2020] [Indexed: 12/31/2022] Open
Abstract
Fragile X syndrome (FXS), the most common form of inherited intellectual disability and autism, results from the loss of fragile X mental retardation protein (FMRP). We have recently identified a direct interaction of FMRP with voltage-gated Ca2+ channels that modulates neurotransmitter release. In the present study we used a combination of optophysiological tools to investigate the impact of FMRP on the targeting of voltage-gated Ca2+ channels to the active zones in neuronal presynaptic terminals. We monitored Ca2+ transients at synaptic boutons of dorsal root ganglion (DRG) neurons using the genetically-encoded Ca2+ indicator GCaMP6f tagged to synaptophysin. We show that knock-down of FMRP induces an increase of the amplitude of the Ca2+ transient in functionally-releasing presynaptic terminals, and that this effect is due to an increase of N-type Ca2+ channel contribution to the total Ca2+ transient. Dynamic regulation of CaV2.2 channel trafficking is key to the function of these channels in neurons. Using a CaV2.2 construct with an α-bungarotoxin binding site tag, we further investigate the impact of FMRP on the trafficking of CaV2.2 channels. We show that forward trafficking of CaV2.2 channels from the endoplasmic reticulum to the plasma membrane is reduced when co-expressed with FMRP. Altogether our data reveal a critical role of FMRP on localization of CaV channels to the presynaptic terminals and how its defect in a context of FXS can profoundly affect synaptic transmission. Loss of FMRP increases presynaptic Ca2+ transients. FMRP is a negative regulator of presynaptic Cav2.2 channel abundance. FMRP reduces the forward trafficking of Cav2.2 channels from ER to plasma membrane. Distal part of FMRP carboxy terminus is key for interaction with Cav2.2 channels.
Collapse
Affiliation(s)
- Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| | - Cesare G Novazzi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Kjara S Pilch
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Cristian Moreno
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Krishma Ramgoolam
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
29
|
Impaired Reliability and Precision of Spiking in Adults But Not Juveniles in a Mouse Model of Fragile X Syndrome. eNeuro 2019; 6:ENEURO.0217-19.2019. [PMID: 31685673 PMCID: PMC6917895 DOI: 10.1523/eneuro.0217-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/26/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common source of intellectual disability and autism. Extensive studies have been performed on the network and behavioral correlates of the syndrome, but our knowledge about intrinsic conductance changes is still limited. In this study, we show a differential effect of FMRP knockout in different subsections of hippocampus using whole-cell patch clamp in mouse hippocampal slices. We observed no significant change in spike numbers in the CA1 region of hippocampus, but a significant increase in CA3, in juvenile mice. However, in adult mice we see a reduction in spike number in the CA1 with no significant difference in CA3. In addition, we see increased variability in spike numbers in CA1 cells following a variety of steady and modulated current step protocols. This effect emerges in adult mice (8 weeks) but not juvenile mice (4 weeks). This increased spiking variability was correlated with reduced spike number and with elevated AHP. The increased AHP arose from elevated SK currents (small conductance calcium-activated potassium channels), but other currents involved in medium AHP, such as Ih and M, were not significantly different. We obtained a partial rescue of the cellular variability phenotype when we blocked SK current using the specific blocker apamin. Our observations provide a single-cell correlate of the network observations of response variability and loss of synchronization, and suggest that the elevation of SK currents in FXS may provide a partial mechanistic explanation for this difference.
Collapse
|
30
|
Neuronal deletion of phosphatase and tensin homolog results in cerebellar motor learning dysfunction and alterations in intracellular signaling. Neuroreport 2019; 30:556-561. [PMID: 30920436 DOI: 10.1097/wnr.0000000000001241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The purpose of this investigation was to examine cerebellar levels of several molecular signaling pathways, including PI3K/AKT/mammalian target of rapamycin (mTOR) signaling and markers of neuronal migration, following loss of the phosphatase and tensin homolog (PTEN) gene in a subset of neurons, as well as the accompanying behavior phenotype in mice. Motor coordination and learning were measured by the sticker removal task and the accelerating rotarod. Western blots were conducted on cerebellar tissue samples. We demonstrated that neuron subset-specific deletion of PTEN in mice led to deficits in motor coordination. These changes were accompanied by alterations in many different proteins, including the PI3K/AKT/mTOR signaling pathway, FMRP, glutamate receptors, and neuronal migration markers. These data firstly support a role for hyperactivation of mTOR in the cerebellum following the loss of PTEN, accompanied by behavioral deficits. Moreover, the results of the current study support a broader role for PTEN signaling in early neuronal migration and organization of the cerebellum, and point to a putative role for PTEN in many neuropsychiatric conditions.
Collapse
|
31
|
Domanski APF, Booker SA, Wyllie DJA, Isaac JTR, Kind PC. Cellular and synaptic phenotypes lead to disrupted information processing in Fmr1-KO mouse layer 4 barrel cortex. Nat Commun 2019; 10:4814. [PMID: 31645553 PMCID: PMC6811545 DOI: 10.1038/s41467-019-12736-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 09/23/2019] [Indexed: 02/06/2023] Open
Abstract
Sensory hypersensitivity is a common and debilitating feature of neurodevelopmental disorders such as Fragile X Syndrome (FXS). How developmental changes in neuronal function culminate in network dysfunction that underlies sensory hypersensitivities is unknown. By systematically studying cellular and synaptic properties of layer 4 neurons combined with cellular and network simulations, we explored how the array of phenotypes in Fmr1-knockout (KO) mice produce circuit pathology during development. We show that many of the cellular and synaptic pathologies in Fmr1-KO mice are antagonistic, mitigating circuit dysfunction, and hence may be compensatory to the primary pathology. Overall, the layer 4 network in the Fmr1-KO exhibits significant alterations in spike output in response to thalamocortical input and distorted sensory encoding. This developmental loss of layer 4 sensory encoding precision would contribute to subsequent developmental alterations in layer 4-to-layer 2/3 connectivity and plasticity observed in Fmr1-KO mice, and circuit dysfunction underlying sensory hypersensitivity.
Collapse
Affiliation(s)
- Aleksander P F Domanski
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
- Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
- Developmental Synaptic Plasticity Section, NINDS, NIH, Bethesda, MD, 20892, USA.
| | - Sam A Booker
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - David J A Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Centre for Brain Development and Repair, NCBS, GKVK Campus, Bangalore, 560065, India
| | - John T R Isaac
- Developmental Synaptic Plasticity Section, NINDS, NIH, Bethesda, MD, 20892, USA.
- Janssen Neuroscience, J&J London Innovation Centre, J&J London Innovation Centre, One Chapel Place, London, W1G 0B, UK.
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
- Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
- Centre for Brain Development and Repair, NCBS, GKVK Campus, Bangalore, 560065, India.
| |
Collapse
|
32
|
Disruption of GpI mGluR-Dependent Cav2.3 Translation in a Mouse Model of Fragile X Syndrome. J Neurosci 2019; 39:7453-7464. [PMID: 31350260 DOI: 10.1523/jneurosci.1443-17.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome (FXS) is an inherited intellectual impairment that results from the loss of fragile X mental retardation protein (FMRP), an mRNA binding protein that regulates mRNA translation at synapses. The absence of FMRP leads to neuronal and circuit-level hyperexcitability that is thought to arise from the aberrant expression and activity of voltage-gated ion channels, although the identification and characterization of these ion channels have been limited. Here, we show that FMRP binds the mRNA of the R-type voltage-gated calcium channel Cav2.3 in mouse brain synaptoneurosomes and represses Cav2.3 translation under basal conditions. Consequently, in hippocampal neurons from male and female FMRP KO mice, we find enhanced Cav2.3 protein expression by western blotting and abnormally large R currents in whole-cell voltage-clamp recordings. In agreement with previous studies showing that FMRP couples Group I metabotropic glutamate receptor (GpI mGluR) signaling to protein translation, we find that GpI mGluR stimulation results in increased Cav2.3 translation and R current in hippocampal neurons which is disrupted in FMRP KO mice. Thus, FMRP serves as a key translational regulator of Cav2.3 expression under basal conditions and in response to GpI mGluR stimulation. Loss of regulated Cav2.3 expression could underlie the neuronal hyperactivity and aberrant calcium spiking in FMRP KO mice and contribute to FXS, potentially serving as a novel target for future therapeutic strategies.SIGNIFICANCE STATEMENT Patients with fragile X syndrome (FXS) exhibit signs of neuronal and circuit hyperexcitability, including anxiety and hyperactive behavior, attention deficit disorder, and seizures. FXS is caused by the loss of fragile X mental retardation protein (FMRP), an mRNA binding protein, and the neuronal hyperexcitability observed in the absence of FMRP likely results from its ability to regulate the expression and activity of voltage-gated ion channels. Here we find that FMRP serves as a key translational regulator of the voltage-gated calcium channel Cav2.3 under basal conditions and following activity. Cav2.3 impacts cellular excitability and calcium signaling, and the alterations in channel translation and expression observed in the absence of FMRP could contribute to the neuronal hyperactivity that underlies FXS.
Collapse
|
33
|
Tiwari D, Brager DH, Rymer JK, Bunk AT, White AR, Elsayed NA, Krzeski JC, Snider A, Schroeder Carter LM, Danzer SC, Gross C. MicroRNA inhibition upregulates hippocampal A-type potassium current and reduces seizure frequency in a mouse model of epilepsy. Neurobiol Dis 2019; 130:104508. [PMID: 31212067 DOI: 10.1016/j.nbd.2019.104508] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is often associated with altered expression or function of ion channels. One example of such a channelopathy is the reduction of A-type potassium currents in the hippocampal CA1 region. The underlying mechanisms of reduced A-type channel function in epilepsy are unclear. Here, we show that inhibiting a single microRNA, miR-324-5p, which targets the pore-forming A-type potassium channel subunit Kv4.2, selectively increased A-type potassium currents in hippocampal CA1 pyramidal neurons in mice. Resting membrane potential, input resistance and other potassium currents were not altered. In a mouse model of acquired chronic epilepsy, inhibition of miR-324-5p reduced the frequency of spontaneous seizures and interictal epileptiform spikes supporting the physiological relevance of miR-324-5p-mediated control of A-type currents in regulating neuronal excitability. Mechanistic analyses demonstrated that microRNA-induced silencing of Kv4.2 mRNA is increased in epileptic mice leading to reduced Kv4.2 protein levels, which is mitigated by miR-324-5p inhibition. By contrast, other targets of miR-324-5p were unchanged. These results suggest a selective miR-324-5p-dependent mechanism in epilepsy regulating potassium channel function, hyperexcitability and seizures.
Collapse
Affiliation(s)
- Durgesh Tiwari
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Darrin H Brager
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey K Rymer
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alexander T Bunk
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Angela R White
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nada A Elsayed
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joseph C Krzeski
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrew Snider
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Anesthesia, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
34
|
Noh W, Pak S, Choi G, Yang S, Yang S. Transient Potassium Channels: Therapeutic Targets for Brain Disorders. Front Cell Neurosci 2019; 13:265. [PMID: 31263403 PMCID: PMC6585177 DOI: 10.3389/fncel.2019.00265] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/28/2019] [Indexed: 01/04/2023] Open
Abstract
Transient potassium current channels (IA channels), which are expressed in most brain areas, have a central role in modulating feedforward and feedback inhibition along the dendroaxonic axis. Loss of the modulatory channels is tightly associated with a number of brain diseases such as Alzheimer’s disease, epilepsy, fragile X syndrome (FXS), Parkinson’s disease, chronic pain, tinnitus, and ataxia. However, the functional significance of IA channels in these diseases has so far been underestimated. In this review, we discuss the distribution and function of IA channels. Particularly, we posit that downregulation of IA channels results in neuronal (mostly dendritic) hyperexcitability accompanied by the imbalanced excitation and inhibition ratio in the brain’s networks, eventually causing the brain diseases. Finally, we propose a potential therapeutic target: the enhanced action of IA channels to counteract Ca2+-permeable channels including NMDA receptors could be harnessed to restore dendritic excitability, leading to a balanced neuronal state.
Collapse
Affiliation(s)
- Wonjun Noh
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Sojeong Pak
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Geunho Choi
- Department of Computer Science and Engineering, Incheon National University, Incheon, South Korea
| | - Sungchil Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sunggu Yang
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| |
Collapse
|
35
|
Briggs C, Bowes SC, Semba K, Hirasawa M. Sleep deprivation-induced pre- and postsynaptic modulation of orexin neurons. Neuropharmacology 2018; 154:50-60. [PMID: 30586566 DOI: 10.1016/j.neuropharm.2018.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
Sleep/wake states are controlled by sleep- and wake-promoting systems, and transitions between states are thought to be regulated by their reciprocal inhibition and homeostatic sleep need. Orexin neurons are known to promote wake maintenance and stabilize the sleep/wake switch. Thus, we asked whether orexin neurons are modulated by homeostatic sleep need. Rats were sleep deprived or left undisturbed to rest for 6 h, then acute brain slices were generated for patch clamp recordings. We found that sleep deprivation increased firing and reduced spike frequency adaptation in response to excitatory drive in orexin neurons. These changes were specific to D-type orexin neurons which, unlike H-type orexin neurons, lack A-type current. In D-type orexin neurons, sleep deprivation decreased afterhyperpolarizing potential, which was associated with increased gain, measured as the slope of the input-output relationship. These effects were mimicked by inhibition of SK channels. Furthermore, sleep deprivation resulted in presynaptic inhibition of excitatory inputs to both D-type and H-type orexin neurons, which preferentially affected sparse synaptic inputs while sparing high frequency synaptic activities. Taken together, our results indicate that sleep deprivation modulates the gain control and synaptic gating in orexin neurons. These pre-and postsynaptic changes would tune orexin neurons to strong wake-promoting excitatory signals, while dampening weak synaptic inputs to allow transition to sleep in the absence of such strong signals. These mechanisms are consistent with a role of orexin neurons not only as a key state stabilizer, but also as a homeostatic wake integrator in the sleep/wake switch. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Chantalle Briggs
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada; Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4R2, Canada
| | - Sherri C Bowes
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Kazue Semba
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4R2, Canada; Department of Psychiatry, Faculty of Medicine, Dalhousie University, 5909 Veterans' Memorial Lane, Halifax, NS, B3H 2E2, Canada; Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| | - Michiru Hirasawa
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
36
|
Voltage-Independent SK-Channel Dysfunction Causes Neuronal Hyperexcitability in the Hippocampus of Fmr1 Knock-Out Mice. J Neurosci 2018; 39:28-43. [PMID: 30389838 DOI: 10.1523/jneurosci.1593-18.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/08/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022] Open
Abstract
Neuronal hyperexcitability is one of the major characteristics of fragile X syndrome (FXS), yet the molecular mechanisms of this critical dysfunction remain poorly understood. Here we report a major role of voltage-independent potassium (K+)-channel dysfunction in hyperexcitability of CA3 pyramidal neurons in Fmr1 knock-out (KO) mice. We observed a reduction of voltage-independent small conductance calcium (Ca2+)-activated K+ (SK) currents in both male and female mice, leading to decreased action potential (AP) threshold and reduced medium afterhyperpolarization. These SK-channel-dependent deficits led to markedly increased AP firing and abnormal input-output signal transmission of CA3 pyramidal neurons. The SK-current defect was mediated, at least in part, by loss of FMRP interaction with the SK channels (specifically the SK2 isoform), without changes in channel expression. Intracellular application of selective SK-channel openers or a genetic reintroduction of an N-terminal FMRP fragment lacking the ability to associate with polyribosomes normalized all observed excitability defects in CA3 pyramidal neurons of Fmr1 KO mice. These results suggest that dysfunction of voltage-independent SK channels is the primary cause of CA3 neuronal hyperexcitability in Fmr1 KO mice and support the critical translation-independent role for the fragile X mental retardation protein as a regulator of neural excitability. Our findings may thus provide a new avenue to ameliorate hippocampal excitability defects in FXS.SIGNIFICANCE STATEMENT Despite two decades of research, no effective treatment is currently available for fragile X syndrome (FXS). Neuronal hyperexcitability is widely considered one of the hallmarks of FXS. Excitability research in the FXS field has thus far focused primarily on voltage-gated ion channels, while contributions from voltage-independent channels have been largely overlooked. Here we report that voltage-independent small conductance calcium-activated potassium (SK)-channel dysfunction causes hippocampal neuron hyperexcitability in the FXS mouse model. Our results support the idea that translation-independent function of fragile X mental retardation protein has a major role in regulating ion-channel activity, specifically the SK channels, in hyperexcitability defects in FXS. Our findings may thus open a new direction to ameliorate hippocampal excitability defects in FXS.
Collapse
|
37
|
Mably AJ, Colgin LL. Gamma oscillations in cognitive disorders. Curr Opin Neurobiol 2018; 52:182-187. [PMID: 30121451 DOI: 10.1016/j.conb.2018.07.009] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/18/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
Gamma oscillations (∼25-100 Hz) are believed to play a role in cognition. Accordingly, aberrant gamma oscillations have been observed in several cognitive disorders, including Alzheimer's disease and Fragile X syndrome. Here, we review how recent results showing abnormal gamma rhythms in Alzheimer's disease and Fragile X syndrome help reveal links between cellular disturbances and cognitive impairments. We also discuss how gamma results from rodent models of Alzheimer's disease and Fragile X syndrome may provide insights about unique functions of distinct slow (∼25-50 Hz) and fast gamma (∼55-100 Hz) subtypes. Finally, we consider studies employing brain stimulation paradigms in Alzheimer's disease and discuss how such studies may reveal causal relationships between gamma impairments and memory disturbances.
Collapse
Affiliation(s)
- Alexandra J Mably
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, 1 University Station Stop C7000, Austin, TX 78712, USA
| | - Laura Lee Colgin
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, 1 University Station Stop C7000, Austin, TX 78712, USA.
| |
Collapse
|
38
|
Zhu P, Li J, Zhang L, Liang Z, Tang B, Liao WP, Yi YH, Su T. Development-related aberrations in Kv1.1 α-subunit exert disruptive effects on bioelectrical activities of neurons in a mouse model of fragile X syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:140-151. [PMID: 29481897 DOI: 10.1016/j.pnpbp.2018.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 10/18/2022]
Abstract
Kv1.1, a Shaker homologue potassium channel, plays a critical role in homeostatic regulation of neuronal excitability. Aberrations in the functional properties of Kv1.1 have been implicated in several neurological disorders featured by neuronal hyperexcitability. Fragile X syndrome (FXS), the most common form of inherited mental retardation, is characterized by hyperexcitability in neural network and intrinsic membrane properties. The Kv1.1 channel provides an intriguing mechanistic candidate for FXS. We investigated the development-related expression pattern of the Kv1.1 α-subunit by using a Fmr1 knockout (KO) mouse model of FXS. Markedly decreased protein expression of Kv1.1 was found in neonatal and adult stages when compared to age-matched wild-type (WT) mice. Immunohistochemical investigations supported the delayed development-related increases in Kv1.1 expression, especially in CA3 pyramidal neurons. By applying a Kv1.1-specific blocker, dendrotoxin-κ (DTX-κ), we isolated the Kv1.1-mediated currents in the CA3 pyramidal neurons. The isolated DTX-κ-sensitive current of neurons from KO mice exhibited decreased amplitude, lower threshold of activation, and faster recovery from inactivation. The equivalent reduction in potassium current in the WT neurons following application of the appropriate amount of DTX-κ reproduced the enhanced firing abilities of KO neurons, suggesting the Kv1.1 channel as a critical contributor to the hyperexcitability of KO neurons. The role of Kv1.1 in controlling neuronal discharges was further supported by the parallel developmental trajectories of Kv1.1 expression, current amplitude, and discharge impacts, with a significant correlation between the amplitude of Kv1.1-mediated currents and Kv1.1-blocking-induced firing enhancement. These data suggest that the expression of the Kv1.1 α-subunit has a profound pathological relevance to hyperexcitability in FXS, as well as implications for normal development, maintenance, and control of neuronal activities.
Collapse
Affiliation(s)
- Pingping Zhu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China; Department of Neurology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Jialing Li
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Liting Zhang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Zhanrong Liang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Bin Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Yong-Hong Yi
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China.
| |
Collapse
|
39
|
Boone CE, Davoudi H, Harrold JB, Foster DJ. Abnormal Sleep Architecture and Hippocampal Circuit Dysfunction in a Mouse Model of Fragile X Syndrome. Neuroscience 2018; 384:275-289. [PMID: 29775702 DOI: 10.1016/j.neuroscience.2018.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/19/2022]
Abstract
Fragile X syndrome (FXS) is the most common heritable cause of intellectual disability and single-gene cause of autism spectrum disorder. The Fmr1 null mouse models much of the human disease including hyperarousal, sensory hypersensitivity, seizure activity, and hippocampus-dependent cognitive impairment. Sleep architecture is disorganized in FXS patients, but has not been examined in Fmr1 knockout (Fmr1-KO) mice. Hippocampal neural activity during sleep, which is implicated in memory processing, also remains uninvestigated in Fmr1-KO mice. We performed in vivo electrophysiological studies of freely behaving Fmr1-KO mice to assess neural activity, in the form of single-unit spiking and local field potential (LFP), within the hippocampal CA1 region during multiple differentiated sleep and wake states. Here, we demonstrate that Fmr1-KO mice exhibited a deficit in rapid eye movement sleep (REM) due to a reduction in the frequency of bouts of REM, consistent with sleep architecture abnormalities of FXS patients. Fmr1-KO CA1 pyramidal cells (CA1-PCs) were hyperactive in all sleep and wake states. Increased low gamma power in CA1 suggests that this hyperactivity was related to increased input to CA1 from CA3. By contrast, slower sharp-wave ripple events (SWRs) in Fmr1-KO mice exhibited longer event duration, slower oscillation frequency, with reduced CA1-PC firing rates during SWRs, yet the incidence rate of SWRs remained intact. These results suggest abnormal neuronal activity in the Fmr1-KO mouse during SWRs, and hyperactivity during other wake and sleep states, with likely adverse consequences for memory processes.
Collapse
Affiliation(s)
- Christine E Boone
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Heydar Davoudi
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| | - Jon B Harrold
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David J Foster
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| |
Collapse
|
40
|
Increased Persistent Sodium Current Causes Neuronal Hyperexcitability in the Entorhinal Cortex of Fmr1 Knockout Mice. Cell Rep 2018; 16:3157-3166. [PMID: 27653682 DOI: 10.1016/j.celrep.2016.08.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/08/2016] [Accepted: 08/12/2016] [Indexed: 11/20/2022] Open
Abstract
Altered neuronal excitability is one of the hallmarks of fragile X syndrome (FXS), but the mechanisms underlying this critical neuronal dysfunction are poorly understood. Here, we find that pyramidal cells in the entorhinal cortex of Fmr1 KO mice, an established FXS mouse model, display a decreased AP threshold and increased neuronal excitability. The AP threshold changes in Fmr1 KO mice are caused by increased persistent sodium current (INaP). Our results indicate that this abnormal INaP in Fmr1 KO animals is mediated by increased mGluR5-PLC-PKC (metabotropic glutamate receptor 5/phospholipase C/protein kinase C) signaling. These findings identify Na(+) channel dysregulation as a major cause of neuronal hyperexcitability in cortical FXS neurons and uncover a mechanism by which abnormal mGluR5 signaling causes neuronal hyperexcitability in a FXS mouse model.
Collapse
|
41
|
Gross C, Yao X, Engel T, Tiwari D, Xing L, Rowley S, Danielson SW, Thomas KT, Jimenez-Mateos EM, Schroeder LM, Pun RYK, Danzer SC, Henshall DC, Bassell GJ. MicroRNA-Mediated Downregulation of the Potassium Channel Kv4.2 Contributes to Seizure Onset. Cell Rep 2017; 17:37-45. [PMID: 27681419 DOI: 10.1016/j.celrep.2016.08.074] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/18/2016] [Accepted: 08/19/2016] [Indexed: 02/05/2023] Open
Abstract
Seizures are bursts of excessive synchronized neuronal activity, suggesting that mechanisms controlling brain excitability are compromised. The voltage-gated potassium channel Kv4.2, a major mediator of hyperpolarizing A-type currents in the brain, is a crucial regulator of neuronal excitability. Kv4.2 expression levels are reduced following seizures and in epilepsy, but the underlying mechanisms remain unclear. Here, we report that Kv4.2 mRNA is recruited to the RNA-induced silencing complex shortly after status epilepticus in mice and after kainic acid treatment of hippocampal neurons, coincident with reduction of Kv4.2 protein. We show that the microRNA miR-324-5p inhibits Kv4.2 protein expression and that antagonizing miR-324-5p is neuroprotective and seizure suppressive. MiR-324-5p inhibition also blocks kainic-acid-induced reduction of Kv4.2 protein in vitro and in vivo and delays kainic-acid-induced seizure onset in wild-type but not in Kcnd2 knockout mice. These results reveal an important role for miR-324-5p-mediated silencing of Kv4.2 in seizure onset.
Collapse
Affiliation(s)
- Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Xiaodi Yao
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Durgesh Tiwari
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lei Xing
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shane Rowley
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Scott W Danielson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kristen T Thomas
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eva M Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Lindsay M Schroeder
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Raymund Y K Pun
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Steve C Danzer
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA; Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Anesthesiology, University of Cincinnati, Cincinnati, OH 45229, USA
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
42
|
Luque MA, Beltran-Matas P, Marin MC, Torres B, Herrero L. Excitability is increased in hippocampal CA1 pyramidal cells of Fmr1 knockout mice. PLoS One 2017; 12:e0185067. [PMID: 28931075 PMCID: PMC5607184 DOI: 10.1371/journal.pone.0185067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/06/2017] [Indexed: 02/03/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by a failure of neuronal cells to express the gene encoding the fragile mental retardation protein (FMRP). Clinical features of the syndrome include intellectual disability, learning impairment, hyperactivity, seizures and anxiety. Fmr1 knockout (KO) mice do not express FMRP and, as a result, reproduce some FXS behavioral abnormalities. While intrinsic and synaptic properties of excitatory cells in various part of the brain have been studied in Fmr1 KO mice, a thorough analysis of action potential characteristics and input-output function of CA1 pyramidal cells in this model is lacking. With a view to determining the effects of the absence of FMRP on cell excitability, we studied rheobase, action potential duration, firing frequency-current intensity relationship and action potential after-hyperpolarization (AHP) in CA1 pyramidal cells of the hippocampus of wild type (WT) and Fmr1 KO male mice. Brain slices were prepared from 8- to 12-week-old mice and the electrophysiological properties of cells recorded. Cells from both groups had similar resting membrane potentials. In the absence of FMRP expression, cells had a significantly higher input resistance, while voltage threshold and depolarization voltage were similar in WT and Fmr1 KO cell groups. No changes were observed in rheobase. The action potential duration was longer in the Fmr1 KO cell group, and the action potential firing frequency evoked by current steps of the same intensity was higher. Moreover, the gain (slope) of the relationship between firing frequency and injected current was 1.25-fold higher in the Fmr1 KO cell group. Finally, AHP amplitude was significantly reduced in the Fmr1 KO cell group. According to these data, FMRP absence increases excitability in hippocampal CA1 pyramidal cells.
Collapse
Affiliation(s)
| | | | - M. Carmen Marin
- Department of Physiology. University of Seville, Seville, Spain
| | - Blas Torres
- Department of Physiology. University of Seville, Seville, Spain
| | - Luis Herrero
- Department of Physiology. University of Seville, Seville, Spain
- * E-mail:
| |
Collapse
|
43
|
Prefrontal Cortex Dysfunction in Fragile X Mice Depends on the Continued Absence of Fragile X Mental Retardation Protein in the Adult Brain. J Neurosci 2017; 37:7305-7317. [PMID: 28652410 DOI: 10.1523/jneurosci.0571-17.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/09/2017] [Accepted: 06/10/2017] [Indexed: 01/28/2023] Open
Abstract
Fragile X Syndrome (FX) is generally considered a developmental disorder, arising from a mutation that disrupts the transcription of Fragile X Mental Retardation Protein (FMRP). However, FMRP regulates the transcription of other proteins and participates in an unknown number of protein-protein interactions throughout life. In addition to known developmental issues, it is thus likely that some dysfunction is also due to the ongoing absence of FMRP. Dissociating dysfunction due to developmental dysregulation from dysfunction due to the continued absence of FMRP is necessary to understand the different roles of FMRP and to treat patients effectively throughout life. We show here that FX model mice display substantial deficits in a PFC-dependent task. We then use conditional knock-out mice to eliminate FMRP only in the PFC alone of adult mice. We observe an increase in the proportion of nonlearners and a delay in the onset of learning in both FX and conditional knock-out mice. The results suggest that these deficits (1) are due to the absence of FMRP in the PFC alone and (2) are not the result of developmental dysregulation. Furthermore, PFC-associated deficits are rescued by initiating production of FMRP in adult conditional restoration mice, suggesting that PFC dysfunction may persist as long as FMRP is absent and therefore can be rescued after development. The data suggest that it is possible to dissociate the roles of FMRP in neural function from developmental dysregulation, and that PFC function can be restored in the adult FX brain.SIGNIFICANCE STATEMENT The absence of Fragile X Mental Retardation Protein (FMRP) from birth results in developmental disabilities and lifelong impairments. We show here that in mouse models PFC dysfunction in Fragile X Syndrome (FX) can be attributed to the continued absence of FMRP from the PFC, independent of FMRP status during development. Furthermore, initiation of FMRP production in the PFC of adult FX animals rescues PFC function. The results suggest that at least some FX-specific neurological defects can be rescued in the adult FX brain after development.
Collapse
|
44
|
Raab-Graham KF, Niere F. mTOR referees memory and disease through mRNA repression and competition. FEBS Lett 2017; 591:1540-1554. [PMID: 28493559 DOI: 10.1002/1873-3468.12675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022]
Abstract
Mammalian target of rapamycin (mTOR) activity is required for memory and is dysregulated in disease. Activation of mTOR promotes protein synthesis; however, new studies are demonstrating that mTOR activity also represses the translation of mRNAs. Almost three decades ago, Kandel and colleagues hypothesised that memory was due to the induction of positive regulators and removal of negative constraints. Are these negative constraints repressed mRNAs that code for proteins that block memory formation? Herein, we will discuss the mRNAs coded by putative memory suppressors, how activation/inactivation of mTOR repress protein expression at the synapse, how mTOR activity regulates RNA binding proteins, mRNA stability, and translation, and what the possible implications of mRNA repression are to memory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kimberly F Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Farr Niere
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
45
|
Routh BN, Rathour RK, Baumgardner ME, Kalmbach BE, Johnston D, Brager DH. Increased transient Na + conductance and action potential output in layer 2/3 prefrontal cortex neurons of the fmr1 -/y mouse. J Physiol 2017; 595:4431-4448. [PMID: 28370141 PMCID: PMC5491866 DOI: 10.1113/jp274258] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/23/2017] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Layer 2/3 neurons of the prefrontal cortex display higher gain of somatic excitability, responding with a higher number of action potentials for a given stimulus, in fmr1-/y mice. In fmr1-/y L2/3 neurons, action potentials are taller, faster and narrower. Outside-out patch clamp recordings revealed that the maximum Na+ conductance density is higher in fmr1-/y L2/3 neurons. Measurements of three biophysically distinct K+ currents revealed a depolarizing shift in the activation of a rapidly inactivating (A-type) K+ conductance. Realistic neuronal simulations of the biophysical observations recapitulated the elevated action potential and repetitive firing phenotype. ABSTRACT Fragile X syndrome is the most common form of inherited mental impairment and autism. The prefrontal cortex is responsible for higher order cognitive processing, and prefrontal dysfunction is believed to underlie many of the cognitive and behavioural phenotypes associated with fragile X syndrome. We recently demonstrated that somatic and dendritic excitability of layer (L) 5 pyramidal neurons in the prefrontal cortex of the fmr1-/y mouse is significantly altered due to changes in several voltage-gated ion channels. In addition to L5 pyramidal neurons, L2/3 pyramidal neurons play an important role in prefrontal circuitry, integrating inputs from both lower brain regions and the contralateral cortex. Using whole-cell current clamp recording, we found that L2/3 pyramidal neurons in prefrontal cortex of fmr1-/y mouse fired more action potentials for a given stimulus compared with wild-type neurons. In addition, action potentials in fmr1-/y neurons were significantly larger, faster and narrower. Voltage clamp of outside-out patches from L2/3 neurons revealed that the transient Na+ current was significantly larger in fmr1-/y neurons. Furthermore, the activation curve of somatic A-type K+ current was depolarized. Realistic conductance-based simulations revealed that these biophysical changes in Na+ and K+ channel function could reliably reproduce the observed increase in action potential firing and altered action potential waveform. These results, in conjunction with our prior findings on L5 neurons, suggest that principal neurons in the circuitry of the medial prefrontal cortex are altered in distinct ways in the fmr1-/y mouse and may contribute to dysfunctional prefrontal cortex processing in fragile X syndrome.
Collapse
Affiliation(s)
- Brandy N Routh
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA
| | - Rahul K Rathour
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA
| | - Michael E Baumgardner
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA
| | - Brian E Kalmbach
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA
| | - Daniel Johnston
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA
| | - Darrin H Brager
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
46
|
Sun MK, Hongpaisan J, Alkon DL. Rescue of Synaptic Phenotypes and Spatial Memory in Young Fragile X Mice. J Pharmacol Exp Ther 2016; 357:300-10. [PMID: 26941170 DOI: 10.1124/jpet.115.231100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/02/2016] [Indexed: 01/01/2023] Open
Abstract
Fragile X syndrome (FXS) is characterized by synaptic immaturity, cognitive impairment, and behavioral changes. The disorder is caused by transcriptional shutdown in neurons of thefragile X mental retardation 1gene product, fragile X mental retardation protein. Fragile X mental retardation protein is a repressor of dendritic mRNA translation and its silencing leads to dysregulation of synaptically driven protein synthesis and impairments of intellect, cognition, and behavior, and FXS is a disorder that currently has no effective therapeutics. Here, young fragile X mice were treated with chronic bryostatin-1, a relatively selective protein kinase Cεactivator, which induces synaptogenesis and synaptic maturation/repair. Chronic treatment with bryostatin-1 rescues young fragile X mice from the disorder phenotypes, including normalization of most FXS abnormalities in 1) hippocampal brain-derived neurotrophic factor expression, 2) postsynaptic density-95 levels, 3) transformation of immature dendritic spines to mature synapses, 4) densities of the presynaptic and postsynaptic membranes, and 5) spatial learning and memory. The therapeutic effects were achieved without downregulation of metabotropic glutamate receptor (mGluR) 5 in the hippocampus and are more dramatic than those of a late-onset treatment in adult fragile X mice. mGluR5 expression was in fact lower in fragile X mice and its expression was restored with the bryostatin-1 treatment. Our results show that synaptic and cognitive function of young FXS mice can be normalized through pharmacological treatment without downregulation of mGluR5 and that bryostatin-1-like agents may represent a novel class of drugs to treat fragile X mental retardation at a young age and in adults.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia
| | - Jarin Hongpaisan
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia
| | - Daniel L Alkon
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia
| |
Collapse
|
47
|
Deng PY, Klyachko VA. Genetic upregulation of BK channel activity normalizes multiple synaptic and circuit defects in a mouse model of fragile X syndrome. J Physiol 2015; 594:83-97. [PMID: 26427907 DOI: 10.1113/jp271031] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/29/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Single-channel recordings in CA3 pyramidal neurons revealed that large-conductance calcium-activated K(+) (BK) channel open probability was reduced by loss of fragile X mental retardation protein (FMRP) and that FMRP acts on BK channels by modulating the channel's gating kinetics. Fmr1/BKβ4 double knockout mice were generated to genetically upregulate BK channel activity in the absence of FMRP. Deletion of the BKβ4 subunit alleviated reduced BK channel open probability via increasing BK channel open frequency, but not through prolonging its open duration. Genetic upregulation of BK channel activity via deletion of BKβ4 normalized action potential duration, excessive glutamate release and short-term synaptic plasticity during naturalistic stimulus trains in excitatory hippocampal neurons in the absence of FMRP. Genetic upregulation of BK channel activity via deletion of BKβ4 was sufficient to normalize excessive epileptiform activity in an in vitro model of seizure activity in the hippocampal circuit in the absence of FMRP. Loss of fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS), yet the mechanisms underlying the pathophysiology of FXS are incompletely understood. Recent studies identified important new functions of FMRP in regulating neural excitability and synaptic transmission via both translation-dependent mechanisms and direct interactions of FMRP with a number of ion channels in the axons and presynaptic terminals. Among these presynaptic FMRP functions, FMRP interaction with large-conductance calcium-activated K(+) (BK) channels, specifically their auxiliary β4 subunit, regulates action potential waveform and glutamate release in hippocampal and cortical pyramidal neurons. Given the multitude of ion channels and mechanisms that mediate presynaptic FMRP actions, it remains unclear, however, to what extent FMRP-BK channel interactions contribute to synaptic and circuit defects in FXS. To examine this question, we generated Fmr1/β4 double knockout (dKO) mice to genetically upregulate BK channel activity in the absence of FMRP and determine its ability to normalize multilevel defects caused by FMRP loss. Single-channel analyses revealed that FMRP loss reduced BK channel open probability, and this defect was compensated in dKO mice. Furthermore, dKO mice exhibited normalized action potential duration, glutamate release and short-term dynamics during naturalistic stimulus trains in hippocampal pyramidal neurons. BK channel upregulation was also sufficient to correct excessive seizure susceptibility in an in vitro model of seizure activity in hippocampal slices. Our studies thus suggest that upregulation of BK channel activity normalizes multi-level deficits caused by FMRP loss.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Departments of Cell Biology and Physiology, Biomedical Engineering, CIMED, Washington University, St Louis, MO, USA
| | - Vitaly A Klyachko
- Departments of Cell Biology and Physiology, Biomedical Engineering, CIMED, Washington University, St Louis, MO, USA
| |
Collapse
|
48
|
Cell-Type Specific Channelopathies in the Prefrontal Cortex of the fmr1-/y Mouse Model of Fragile X Syndrome. eNeuro 2015; 2:eN-NWR-0114-15. [PMID: 26601124 PMCID: PMC4647062 DOI: 10.1523/eneuro.0114-15.2015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/14/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by transcriptional silencing of the fmr1 gene resulting in the loss of fragile X mental retardation protein (FMRP) expression. FXS patients display several behavioral phenotypes associated with prefrontal cortex (PFC) dysfunction. Voltage-gated ion channels, some of which are regulated by FMRP, heavily influence PFC neuron function. Although there is evidence for brain region-specific alterations to the function a single type of ion channel in FXS, it is unclear whether subtypes of principal neurons within a brain region are affected uniformly. We tested for alterations to ion channels critical in regulating neural excitability in two subtypes of prefrontal L5 pyramidal neurons. Using somatic and dendritic patch-clamp recordings, we provide evidence that the functional expression of h-channels (Ih) is down-regulated, whereas A-type K+ channel function is up-regulated in pyramidal tract-projecting (PT) neurons in the fmr1-/y mouse PFC. This is the opposite pattern of results from published findings from hippocampus where Ih is up-regulated and A-type K+ channel function is down-regulated. Additionally, we find that somatic Kv1-mediated current is down-regulated, resulting in increased excitability of fmr1-/y PT neurons. Importantly, these h- and K+ channel differences do not extend to neighboring intratelencephalic-projecting neurons. Thus, the absence of FMRP has divergent effects on the function of individual types of ion channels not only between brain regions, but also variable effects across cell types within the same brain region. Given the importance of ion channels in regulating neural circuits, these results suggest cell-type-specific phenotypes for the disease.
Collapse
|
49
|
Abstract
Fragile X syndrome (FXS) results from a genetic mutation in a single gene yet produces a phenotypically complex disorder with a range of neurological and psychiatric problems. Efforts to decipher how perturbations in signaling pathways lead to the myriad alterations in synaptic and cellular functions have provided insights into the molecular underpinnings of this disorder. From this large body of data, the theme of circuit hyperexcitability has emerged as a potential explanation for many of the neurological and psychiatric symptoms in FXS. The mechanisms for hyperexcitability range from alterations in the expression or activity of ion channels to changes in neurotransmitters and receptors. Contributions of these processes are often brain region and cell type specific, resulting in complex effects on circuit function that manifest as altered excitability. Here, we review the current state of knowledge of the molecular, synaptic, and circuit-level mechanisms underlying hyperexcitability and their contributions to the FXS phenotypes.
Collapse
|
50
|
Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci 2015; 16:595-605. [PMID: 26350240 DOI: 10.1038/nrn4001] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fragile X syndrome (FXS), the most-frequently inherited form of intellectual disability and the most-prevalent single-gene cause of autism, results from a lack of fragile X mental retardation protein (FMRP), an RNA-binding protein that acts, in most cases, to repress translation. Multiple pharmacological and genetic manipulations that target receptors, scaffolding proteins, kinases and translational control proteins can rescue neuronal morphology, synaptic function and behavioural phenotypes in FXS model mice, presumably by reducing excessive neuronal translation to normal levels. Such rescue strategies might also be explored in the future to identify the mRNAs that are critical for FXS pathophysiology.
Collapse
Affiliation(s)
- Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01545, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York City, New York 10003, USA
| |
Collapse
|