1
|
Knudsen LV, Michel TM, Farahani ZA, Vafaee MS. Multimodal neuroimaging insights into the neurobiology of healthy aging across the lifespan. Eur J Nucl Med Mol Imaging 2025; 52:2267-2278. [PMID: 39890633 DOI: 10.1007/s00259-025-07100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
PURPOSE The purpose of this study was to advance our understanding of the neurobiology of healthy aging, which is crucial for improving quality of life and preventing age-related diseases. Despite its importance, a comprehensive investigation of this process has yet to be fully characterized. METHODS We used a hybrid PET/MRI scanner to assess neurophysiological parameters in 80 healthy individuals aged 20-78. Cerebral amyloid-beta (Aβ) deposition and glucose metabolism were assessed using PET scans, while participants underwent simultaneous MRI scans. RESULTS We found a positive correlation between Aβ-deposition and aging, and a negative correlation between glucose metabolism and aging. The insula showed the strongest negative correlation between glucose metabolism and age (Spearman's r = -0.683, 95% CI [-0.79, -0.54], p < 0.0001), while the posterior cingulate cortex had the strongest positive correlation between Aβ-deposition and age (Spearman's r = 0.479, 95% CI [0.28, 0.64], p < 0.0001). These results suggest a spatially dependent link between Aβ-deposition and metabolism in healthy older adults, indicating a compensatory mechanism in early Alzheimer's. Additionally, Aβ-deposition was linked to changes in interregional neural communication. CONCLUSIONS Our study confirms previous findings on aging and offers new insights, particularly on the role of Aβ-deposition in healthy aging. We observed a linear increase in Aβ-deposition, alongside decreases in white matter integrity, cerebral blood flow, and glucose metabolism. Additionally, we identified a complex regional relationship between Aβ-deposition, glucose metabolism, and neural communication, possibly reflecting compensatory mechanisms.
Collapse
Affiliation(s)
- Laust Vind Knudsen
- Department of Psychiatry, University of Southern Denmark, Odense University Hospital, Odense C, 5000, Denmark
| | - Tanja Maria Michel
- Department of Psychiatry, University of Southern Denmark, Odense University Hospital, Odense C, 5000, Denmark
| | | | - Manouchehr Seyedi Vafaee
- Department of Psychiatry, University of Southern Denmark, Odense University Hospital, Odense C, 5000, Denmark.
| |
Collapse
|
2
|
Wells M, Alty J, Hinder MR, St George RJ. Falls in people with Alzheimer's Disease: Exploring the role of inhibitory control. Neurosci Biobehav Rev 2025:106228. [PMID: 40412460 DOI: 10.1016/j.neubiorev.2025.106228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/05/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
On average, people with dementia fall more often than their age-matched peers, with serious consequences, yet the underlying reasons remain poorly understood. This narrative review explores relevant psychological, physiological and neuroimaging studies to discuss whether diminished inhibitory control contributes to poor balance and falls in people with Alzheimer's Disease (AD), the most common form of dementia. Inhibitory control, a component of executive function, plays a vital role in suppressing dominant impulses or actions and regulating attention in favour of a desired outcome. Although objective tests of inhibitory control are not routinely used in clinical settings, research suggests inhibitory control declines early, and progressively, in AD. Postural tasks that require inhibitory control can improve the accuracy of distinguishing fallers from non-fallers beyond known factors. Neuroimaging studies link the prefrontal cortex to both inhibitory and postural control, and this region exhibits neuronal loss early in AD. Thus, emerging evidence suggests that accurately assessing inhibitory control could not only improve falls risk predictions but also aid AD detection.
Collapse
Affiliation(s)
- Marlee Wells
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Australia.
| | - Jane Alty
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Australia; School of Medicine, College of Health and Medicine, University of Tasmania, Australia; Department of Neurology, Royal Hobart Hospital, Tasmania, Australia.
| | - Mark R Hinder
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Australia.
| | - Rebecca J St George
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Australia.
| |
Collapse
|
3
|
Kashyap B, Hanson LR, Gustafson SK, Sherman SJ, Sughrue ME, Rosenbloom MH. Functional MRI Analysis of Cortical Regions to Distinguish Lewy Body Dementia From Alzheimer's Disease. J Neuropsychiatry Clin Neurosci 2025:appineuropsych20240157. [PMID: 40384035 DOI: 10.1176/appi.neuropsych.20240157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
OBJECTIVE Cortical regions such as parietal area H (PH) and the fundus of the superior temporal sulcus (FST) are involved in higher visual function and may play a role in dementia with Lewy bodies (DLB), which is frequently associated with hallucinations. The authors evaluated functional connectivity between these two regions for distinguishing participants with DLB from those with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and from cognitively normal (CN) individuals to identify a functional connectivity MRI signature for DLB. METHODS Eighteen DLB participants completed cognitive testing and functional MRI scans and were matched to AD or MCI and CN individuals whose data were obtained from the Alzheimer's Disease Neuroimaging Initiative database (https://adni.loni.usc.edu). Images were analyzed with data from Human Connectome Project (HCP) comparison individuals by using a machine learning-based subject-specific HCP atlas based on diffusion tractography. RESULTS Bihemispheric functional connectivity of the PH to left FST regions was reduced in the DLB group compared with the AD and CN groups (mean±SD connectivity score=0.307±0.009 vs. 0.456±0.006 and 0.433±0.006, respectively). No significant differences were detected among the groups in connectivity within basal ganglia structures, and no significant correlations were observed between neuropsychological testing results and functional connectivity between the PH and FST regions. Performances on clock-drawing and number-cancelation tests were significantly and negatively correlated with connectivity between the right caudate nucleus and right substantia nigra for DLB participants but not for AD or CN participants. CONCLUSIONS The functional connectivity between PH and FST regions is uniquely affected by DLB and may help distinguish this condition from AD.
Collapse
Affiliation(s)
- Bhavani Kashyap
- HealthPartners Institute, Bloomington, Minn. (Kashyap, Hanson, Gustafson, Sherman); HealthPartners Center for Memory and Aging, St. Paul, Minn. (Kashyap, Hanson, Sherman); Omniscient Neurotechnology, Atlanta (Sughrue); Department of Neurology, Center for Memory and Brain Wellness, University of Washington, Seattle (Rosenbloom)
| | - Leah R Hanson
- HealthPartners Institute, Bloomington, Minn. (Kashyap, Hanson, Gustafson, Sherman); HealthPartners Center for Memory and Aging, St. Paul, Minn. (Kashyap, Hanson, Sherman); Omniscient Neurotechnology, Atlanta (Sughrue); Department of Neurology, Center for Memory and Brain Wellness, University of Washington, Seattle (Rosenbloom)
| | - Sally K Gustafson
- HealthPartners Institute, Bloomington, Minn. (Kashyap, Hanson, Gustafson, Sherman); HealthPartners Center for Memory and Aging, St. Paul, Minn. (Kashyap, Hanson, Sherman); Omniscient Neurotechnology, Atlanta (Sughrue); Department of Neurology, Center for Memory and Brain Wellness, University of Washington, Seattle (Rosenbloom)
| | - Samantha J Sherman
- HealthPartners Institute, Bloomington, Minn. (Kashyap, Hanson, Gustafson, Sherman); HealthPartners Center for Memory and Aging, St. Paul, Minn. (Kashyap, Hanson, Sherman); Omniscient Neurotechnology, Atlanta (Sughrue); Department of Neurology, Center for Memory and Brain Wellness, University of Washington, Seattle (Rosenbloom)
| | - Michael E Sughrue
- HealthPartners Institute, Bloomington, Minn. (Kashyap, Hanson, Gustafson, Sherman); HealthPartners Center for Memory and Aging, St. Paul, Minn. (Kashyap, Hanson, Sherman); Omniscient Neurotechnology, Atlanta (Sughrue); Department of Neurology, Center for Memory and Brain Wellness, University of Washington, Seattle (Rosenbloom)
| | - Michael H Rosenbloom
- HealthPartners Institute, Bloomington, Minn. (Kashyap, Hanson, Gustafson, Sherman); HealthPartners Center for Memory and Aging, St. Paul, Minn. (Kashyap, Hanson, Sherman); Omniscient Neurotechnology, Atlanta (Sughrue); Department of Neurology, Center for Memory and Brain Wellness, University of Washington, Seattle (Rosenbloom)
| |
Collapse
|
4
|
Lu Z, Wang X, Wang J, Zhao L, Wu Y, Sun M, Zhang J. The intersection of delirium and long-term cognition in older adults: the critical role of delirium prevention. J Neurol 2025; 272:381. [PMID: 40329080 DOI: 10.1007/s00415-025-13104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025]
Abstract
Delirium, a neuropsychiatric syndrome characterized by an acute and usually reversible state of confusion, while dementia is a chronic, acquired cognitive impairment that significantly reduces a patient's ability to perform daily tasks, learn, work, and engage in social interactions. Previous studies indicates that individuals with dementia are more susceptible to delirium than the general population, and that delirium serves as an independent risk factor for the subsequent onset of dementia. However, a major controversy in this field concerns whether delirium is merely a marker of vulnerability to dementia, or whether delirium-induced adverse outcomes such as falls and functional decline contribute to dementia, or whether delirium directly causes permanent neuronal damage and lead to dementia. It is possible that all these hypotheses hold some truth. In this review, we examine the shared and distinct mechanisms of delirium and dementia by reviewing their clinical features, epidemiology, clinicopathological, biomarkers, neuroimaging, and recent experimental studies, and we discuss the importance of targeting delirium to explore new preventive and therapeutic strategies for reducing long-term cognitive impairment.
Collapse
Affiliation(s)
- Zhongyuan Lu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No. 7, Wei-Wu Road, Jinshui District, Zhengzhou, 450000, Henan, China
- Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, Henan, China
| | - Xiaoling Wang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No. 7, Wei-Wu Road, Jinshui District, Zhengzhou, 450000, Henan, China
- Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, Henan, China
| | - Jiao Wang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No. 7, Wei-Wu Road, Jinshui District, Zhengzhou, 450000, Henan, China
- Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, Henan, China
| | - Liang Zhao
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No. 7, Wei-Wu Road, Jinshui District, Zhengzhou, 450000, Henan, China
- Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, Henan, China
| | - Yichen Wu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No. 7, Wei-Wu Road, Jinshui District, Zhengzhou, 450000, Henan, China
- Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, Henan, China
- Henan University, Zhengzhou, 450000, Henan, China
| | - Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No. 7, Wei-Wu Road, Jinshui District, Zhengzhou, 450000, Henan, China.
- Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, Henan, China.
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China.
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No. 7, Wei-Wu Road, Jinshui District, Zhengzhou, 450000, Henan, China.
- Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, Henan, China.
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Lalive HM, Griffa A, Pini L, Rouaud O, Allali G. Biomarkers do not paint the whole picture: The role of clinical expertise and advanced neuroimaging for Alzheimer's disease diagnosis. J Alzheimers Dis 2025; 105:370-374. [PMID: 40111924 DOI: 10.1177/13872877251328953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Accurate diagnosis of Alzheimer's disease (AD) in Memory Clinics remains challenging due to the limited specificity of conventional clinical assessment and structural imaging. The recent commentary by Vyhnalek and colleagues advocates for the incorporation of molecular biomarkers for AD diagnosis in clinical practice. However, this approach only partially captures the complexity of disease expression due to co-pathologies such as limbic-predominant age-related TDP-43 encephalopathy, a mimic of AD. At the era of immunotherapy for AD, clinical expertise remains essential to identify AD from its mimics, especially when both entities co-exist, and may rely on advanced neuroimaging techniques such as brain connectivity.
Collapse
Affiliation(s)
- Hadrien M Lalive
- Department of Clinical Neurosciences, Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alessandra Griffa
- Department of Clinical Neurosciences, Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
| | - Lorenzo Pini
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Olivier Rouaud
- Department of Clinical Neurosciences, Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gilles Allali
- Department of Clinical Neurosciences, Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Pini L, Brusini L, Griffa A, Cruciani F, Allali G, Frisoni GB, Corbetta M, Menegaz G, Boscolo Galazzo I. Functional dynamic network connectivity differentiates biological patterns in the Alzheimer's disease continuum. Neurobiol Dis 2025; 208:106866. [PMID: 40081429 DOI: 10.1016/j.nbd.2025.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/23/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
Alzheimer's disease (AD) can be conceptualized as a network-based syndrome. Network alterations are linked to the molecular hallmarks of AD, involving amyloid-beta and tau accumulation, and consecutively neurodegeneration. By combining molecular and resting-state functional magnetic resonance imaging, we assessed whether different biological patterns of AD identified through a data-driven approach matched specific abnormalities in brain dynamic connectivity. We identified three main patient clusters. The first group displayed mild pathological alterations. The second cluster exhibited typical behavioral impairment alongside AD pathology. The third cluster demonstrated similar behavioral impairment but with a divergent tau (low) and neurodegeneration (high) profile. Univariate and multivariate analyses revealed two connectivity patterns encompassing the default mode network and the occipito-temporal cortex, linked respectively with typical and atypical patterns. These results support the key association between macro-scale and molecular alterations. Dynamic connectivity markers can assist in identifying patients with AD-like clinical profiles but with different underlying pathologies.
Collapse
Affiliation(s)
- Lorenzo Pini
- Padova Neuroscience Center, University of Padova, Via Giuseppe Orus 2/B, 35131 Padova, Italy; Department of Neuroscience, University of Padova, via Belzoni 160, 35121 Padova, Italy.
| | - Lorenza Brusini
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Alessandra Griffa
- Leenaards Memory Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Montpaisible 16, 1011 Lausanne, Switzerland; Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique FÉdÉrale De Lausanne (EPFL), Campus Biotech Chemin des Mines 9, 1202 Geneva, Switzerland
| | - Federica Cruciani
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Gilles Allali
- Leenaards Memory Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Montpaisible 16, 1011 Lausanne, Switzerland
| | - Giovanni B Frisoni
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Rue du Général-Dufour 24, 1211 Genève, Switzerland
| | - Maurizio Corbetta
- Padova Neuroscience Center, University of Padova, Via Giuseppe Orus 2/B, 35131 Padova, Italy; Department of Neuroscience, University of Padova, via Belzoni 160, 35121 Padova, Italy; Veneto Institute of Molecular Medicine, VIMM, Via Giuseppe Orus 2, 35129 Padova, Italy
| | - Gloria Menegaz
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Ilaria Boscolo Galazzo
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
7
|
Fadel L, Hipskind E, Pedersen SE, Romero J, Ortiz C, Shin E, Samee MAH, Pautler RG. Modeling functional connectivity with learning and memory in a mouse model of Alzheimer's disease. FRONTIERS IN NEUROIMAGING 2025; 4:1558759. [PMID: 40353249 PMCID: PMC12062036 DOI: 10.3389/fnimg.2025.1558759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/04/2025] [Indexed: 05/14/2025]
Abstract
Introduction Functional connectivity (FC) is a metric of how different brain regions interact with each other. Although there have been some studies correlating learning and memory with FC, there have not yet been, to date, studies that use machine learning (ML) to explain how FC changes can be used to explain behavior not only in healthy mice, but also in mouse models of Alzheimer's Disease (AD). Here, we investigated changes in FC and their relationship to learning and memory in a mouse model of AD across disease progression. Methods We assessed the APP/PS1 mouse model of AD and wild-type controls at 3-, 6-, and 10-months of age. Using resting state functional magnetic resonance imaging (rs-fMRI) in awake, unanesthetized mice, we assessed FC between 30 brain regions. ML models were then used to define interactions between neuroimaging readouts with learning and memory performance. Results In the APP/PS1 mice, we identified a pattern of hyperconnectivity across all three time points, with 47 hyperconnected regions at 3 months, 46 at 6 months, and 84 at 10 months. Notably, FC changes were also observed in the Default Mode Network, exhibiting a loss of hyperconnectivity over time. Modeling revealed functional connections that support learning and memory performance differ between the 6- and 10-month groups. Discussion These ML models show potential for early disease detection by identifying connectivity patterns associated with cognitive decline. Additionally, ML may provide a means to begin to understand how FC translates into learning and memory performance.
Collapse
Affiliation(s)
- Lindsay Fadel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Elizabeth Hipskind
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Steen E. Pedersen
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
| | - Jonathan Romero
- Small Animal Imaging Facility, Texas Children's Hospital, Houston, TX, United States
| | - Caitlyn Ortiz
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
- Small Animal Imaging Facility, Texas Children's Hospital, Houston, TX, United States
| | - Eric Shin
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
| | - Md Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
| | - Robia G. Pautler
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
- Small Animal Imaging Facility, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
8
|
Kopalli SR, Behl T, Baldaniya L, Ballal S, Joshi KK, Arya R, Chaturvedi B, Chauhan AS, Verma R, Patel M, Jain SK, Wal A, Gulati M, Koppula S. Neuroadaptation in neurodegenerative diseases: compensatory mechanisms and therapeutic approaches. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111375. [PMID: 40280271 DOI: 10.1016/j.pnpbp.2025.111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Progressive neuronal loss is a hallmark of neurodegenerative diseases including Alzheimer's, Parkinson's, Huntington's, and Amyotrophic Lateral Sclerosis (ALS), which cause cognitive and motor impairment. Delaying the onset and course of symptoms is largely dependent on neuroadaptation, the brain's ability to restructure in response to damage. The molecular, cellular, and systemic processes that underlie neuroadaptation are examined in this study. These mechanisms include gliosis, neurogenesis, synaptic plasticity, and changes in neurotrophic factors. Axonal sprouting, dendritic remodelling, and compensatory alterations in neurotransmitter systems are important adaptations observed in NDDs; nevertheless, these processes may shift to maladaptive plasticity, which would aid in the advancement of the illness. Amyloid and tau pathology-induced synaptic alterations in Alzheimer's disease emphasize compensatory network reconfiguration. Dopamine depletion causes a major remodelling of the basal ganglia in Parkinson's disease, and non-dopaminergic systems compensate. Both ALS and Huntington's disease rely on motor circuit rearrangement and transcriptional dysregulation to slow down functional deterioration. Neuroadaptation is, however, constrained by oxidative stress, compromised autophagy, and neuroinflammation, particularly in elderly populations. The goal of emerging therapy strategies is to improve neuroadaptation by pharmacologically modifying neurotrophic factors, neuroinflammation, and synaptic plasticity. Neurostimulation, cognitive training, and physical rehabilitation are instances of non-pharmacological therapies that support neuroplasticity. Restoring compensating systems may be possible with the use of stem cell techniques and new gene treatments. The goal of future research is to combine biomarkers and individualized medicines to maximize neuroadaptive responses and decrease the course of illness. In order to reduce neurodegeneration and enhance patient outcomes, this review highlights the dual function of neuroadaptation in NDDs and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab-140306, India
| | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Bhumi Chaturvedi
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Rakesh Verma
- Department of Pharmacology, Institute of Medical Science, BHU, Varanasi, India
| | - Minesh Patel
- Department of Pharmacology & Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Dhanap, Gandhinagar, Gujarat, India
| | - Sanmati Kumar Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur, India, 495009
| | - Ankita Wal
- Pranveer Singh Institute of Technology, Pharmacy, NH-19, Bhauti Road, Kanpur, UP, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
9
|
Spruyt L, Mlinarič T, Dusart N, Reinartz M, Meade G, Van Hulle MM, Van Laere K, Dupont P, Vandenberghe R. EEG-based graph network analysis in relation to regional tau in asymptomatic Alzheimer's disease. Brain Commun 2025; 7:fcaf138. [PMID: 40255689 PMCID: PMC12008720 DOI: 10.1093/braincomms/fcaf138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/07/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025] Open
Abstract
Tau aggregation in early affected regions in the asymptomatic stage of Alzheimer's disease marks a transitional phase between stable asymptomatic amyloid positivity and the clinically manifest stage. How this early region tau aggregation covertly affects brain function during this asymptomatic stage remains unclear. In this study, 83 participants underwent a 128 electrodes resting-state EEG, a dynamic 100 min tau PET scan (18F-MK6240), an amyloid PET scan, a structural T1 MRI scan and neuropsychological assessment. Tau PET data quality control led to a final sample of 66 subjects. Based on the clinical and cognitive status, amyloid and tau PET biomarkers, the group was composed of 37 cognitively unimpaired amyloid negative subjects, 14 cognitively unimpaired amyloid positive subjects and 15 patients with prodromal Alzheimer's disease. We calculated the average undirected weighted Phase Lag Index in the alpha frequency band with eyes closed and used this as weights for the graph and analysed the global clustering coefficient and characteristic path length in sensor space. As a primary objective, we assessed how these global graph measures correlated with tau PET values, in an a priori defined early metaVOI, comprised of the entorhinal and perirhinal cortex, hippocampus, parahippocampus and fusiform cortex. As secondary analyses, we investigated which specific brain regions were mainly implicated, what the contribution was of amyloid, the effect of electrode density and the relation to cognitive performance. In the overall group and within the cognitively unimpaired amyloid positive subgroup, tau aggregation was associated with a decrease in global clustering coefficient and an increase in characteristic path length. These changes reflect the initial disintegration of the small-world brain network during the transitional phase, even before clinical symptoms are apparent. The correlations are most prominent in the perirhinal cortex, indicating that global deterioration of the network is already present early in the Alzheimer's disease pathology. We obtained similar results with only taking 64 electrodes into account. To conclude, we found that in the asymptomatic stage of Alzheimer's disease, tau PET load in medial temporal cortex is associated with global electrophysiological measures of network disintegration. The study demonstrates the potential value of high-density EEG in the era of biologically defined Alzheimer's disease for characterizing brain function in the asymptomatic stage.
Collapse
Affiliation(s)
- Laure Spruyt
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
| | - Tjaša Mlinarič
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, Leuven Brain institute, KU Leuven, Leuven 3000, Belgium
| | - Nathalie Dusart
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
| | - Mariska Reinartz
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
| | - Gabriela Meade
- Division of Speech Pathology, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Marc M Van Hulle
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, Leuven Brain institute, KU Leuven, Leuven 3000, Belgium
| | - Koen Van Laere
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
- Division of Nuclear Medicine, UZ Leuven, Leuven 3000, Belgium
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
- Department of Neurology, UZ Leuven, Leuven 3000, Belgium
| |
Collapse
|
10
|
Koch G, Casula EP, Bonnì S, Borghi I, Assogna M, Di Lorenzo F, Esposito R, Maiella M, D'Acunto A, Ferraresi M, Mencarelli L, Pezzopane V, Motta C, Santarnecchi E, Bozzali M, Martorana A. Effects of 52 weeks of precuneus rTMS in Alzheimer's disease patients: a randomized trial. Alzheimers Res Ther 2025; 17:69. [PMID: 40176122 PMCID: PMC11963669 DOI: 10.1186/s13195-025-01709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/04/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Personalized repetitive transcranial magnetic stimulation (rTMS) of the precuneus (PC) is emerging as a new non-invasive therapeutic approach in treating Alzheimer's disease (AD). Here we sought to investigate the effects of 52 weeks of rTMS applied over the PC on cognitive functions in patients with mild-to-moderate dementia due to AD. METHODS Forty-eight patients with mild-to-moderate dementia due to AD were enrolled for the study. Of those 31 patients were extended to 52 weeks after being included in a 24-week trial (NCT03778151) with the same experimental design. The trial included a 52-week treatment with a 2-week intensive course where rTMS (or sham) was applied over the PC daily (5 times per week, Monday to Friday), followed by a 50-week maintenance phase in which the same stimulation was applied once weekly. Personalization of rTMS treatment was established using neuronavigated TMS in combination with electroencephalography (TMS-EEG). The primary outcome measure was change from baseline to week 52 of the Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB). Secondary outcomes included score changes in the Alzheimer's Disease Assessment Scale- Cognitive Subscale (ADAS-Cog)11, Mini Mental State Examination (MMSE), Alzheimer's Disease Cooperative Study-Activities of Daily Living scale (ADCS-ADL) and Neuropsychiatric Inventory (NPI). Changes in cortical activity and connectivity were monitored by TMS-EEG. RESULTS Among 48 patients randomized (mean age 72.8 years; 56% women), 32 (68%) completed the study. Repetitive TMS of the PC (PC-rTMS) had a significant effect on the primary outcome measure. The estimated mean change in CDR-SB after 52 week was 1.36 for PC-rTMS (95% confidence interval (CI) [0.68, 2.04]) and 2.45 for sham-rTMS group (95%CI [1.85, 3.05]). There were also significant effects for the secondary outcomes ADAS-Cog11, ADCS-ADL and NPI scores. Stronger DMN connectivity at baseline was associated with favorable response to rTMS treatment. CONCLUSIONS Fifty-two weeks of PC-rTMS may slow down the impairment of cognitive functions, activities of daily living and behavioral disturbances in patients with mild-to-moderate AD. Further multicenter studies are needed to confirm the clinical potential of DMN personalized rTMS. TRIAL REGISTRATION The study was registered on the clinicaltrial.gov website on 07-07-2022 (NCT05454540).
Collapse
Affiliation(s)
- Giacomo Koch
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy.
- Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), 44121, Ferrara, Italy.
| | - Elias Paolo Casula
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, 00133, Rome, Italy
| | - Sonia Bonnì
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
| | - Ilaria Borghi
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
| | - Martina Assogna
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, 00133, Rome, Italy
| | - Francesco Di Lorenzo
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
| | - Romina Esposito
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), 44121, Ferrara, Italy
| | - Michele Maiella
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
| | - Alessia D'Acunto
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, 00133, Rome, Italy
| | - Matteo Ferraresi
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
| | - Lucia Mencarelli
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
| | - Valentina Pezzopane
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), 44121, Ferrara, Italy
| | - Caterina Motta
- Department of Systems Medicine, University of Tor Vergata, 00133, Rome, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachussets General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Marco Bozzali
- Department of Neuroscience Rita Levi Montalcini, University of Torino, 10126, Turin, Italy
| | - Alessandro Martorana
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
11
|
Hojjati SH, Butler TA, de Leon M, Gupta A, Nayak S, Luchsinger JA, Razlighi QR, Chiang GC. Inter-network functional connectivity increases by beta-amyloid and may facilitate the early stage of tau accumulation. Neurobiol Aging 2025; 148:16-26. [PMID: 39879839 DOI: 10.1016/j.neurobiolaging.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Alzheimer's disease (AD) is pathologically marked by tau tangles and beta-amyloid (Aβ) plaques. It has been hypothesized that Aβ facilitates spread of tau outside of the medial temporal lobe (MTL), but exact mechanism of this facilitation remains unclear. We aimed to test the hypothesis that abnormal Aβ induces an increase in inter-network functional connectivity, which in turn induces early-stage tau elevation in limbic network. Our study used 18F-Florbetaben Aβ positron emission tomography (PET), 18F-MK6240 tau-PET, and resting-state functional magnetic resonance imaging (rs-fMRI) from 489 healthy unimpaired older adults, including 46 with longitudinal data. We found significant correlations between tau in limbic network and Aβ in distinct functional networks. We then demonstrated that Aβ+ /Tau- participants exhibited elevated inter-network functional connectivity of the limbic network. Finally, our longitudinal results showed that annual increases in inter-network functional connectivity between limbic network and default mode and control networks were linked to annual tau elevation in limbic network, primarily modulated by Aβ+ individuals. Understanding this early brain alteration in response to pathologies could guide treatments early in disease course.
Collapse
Affiliation(s)
- Seyed Hani Hojjati
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States.
| | - Tracy A Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Mony de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Ajay Gupta
- Department of Radiology, Columbia University, New York, NY, United States
| | - Siddharth Nayak
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - José A Luchsinger
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States; Departments of Epidemiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Qolamreza R Razlighi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Gloria C Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
12
|
Abuwarda H, Trainer A, Horien C, Shen X, Ju S, Constable RT, Fredericks C. Whole-brain functional connectivity predicts regional tau PET in preclinical Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.02.587791. [PMID: 38617320 PMCID: PMC11014551 DOI: 10.1101/2024.04.02.587791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Preclinical Alzheimer's disease (AD), characterized by the abnormal accumulation of amyloid prior to cognitive symptoms, presents a critical opportunity for early intervention. Past work has described functional connectivity changes in preclinical disease, yet the interplay between AD pathology and the functional connectome during this window remains unexplored. We applied connectome-based predictive modeling to investigate the ability of resting-state whole-brain functional connectivity to predict tau (18F-flortaucipir) and amyloid (18F-florbetapir) PET binding in a preclinical AD cohort (A4, n =342, age 65-85). Separate predictive models were developed for each of 14 regions, and model performance was assessed using a Spearman's correlation between predicted and observed PET binding standard uptake value ratios. We assessed the validity of significant models by applying them to an external dataset, and visualized the underlying connectivity that was positively and negatively correlated to posterior cingulate tau binding, the most successful model. We found that whole brain functional connectivity predicts regional tau PET, outperforming amyloid PET models. The best performing tau models were for regions affected in Braak stage IV-V regions (posterior cingulate, precuneus, lateral occipital cortex, middle temporal, inferior temporal, and Bank STS), while models for regions of earlier tau pathology (entorhinal, parahippocampal, fusiform, and amygdala) performed poorly. Importantly, tau models generalized to a symptomatic AD cohort (ADNI; amyloid positive, n = 211, age 55-90), in tau-elevated but not tau-negative individuals. For the posterior cingulate A4 tau model, the most successful model, the predictive edges positively correlated with posterior cingulate tau predominantly came from nodes within temporal, limbic, and cerebellar regions. The most predictive edges negatively associated to tau were from nodes of heteromodal association areas, particularly within the prefrontal and parietal cortices. These findings reveal that whole-brain functional connectivity predicts tau PET in preclinical AD and generalizes to a clinical dataset specifically in individuals with abnormal tau PET, highlighting the relevance of the functional connectome for the early detection and monitoring of AD pathology.
Collapse
|
13
|
Zheng D, Xue C, Feng Y, Ruan Y, Qi W, Yuan Q, Li Z, Xiao C. The abnormal accumulation of pathological proteins and compensatory functional connectivity enhancement of insula subdivisions in mild cognitive impairment. Front Aging Neurosci 2025; 17:1506478. [PMID: 40171383 PMCID: PMC11959027 DOI: 10.3389/fnagi.2025.1506478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025] Open
Abstract
Background The insula is a critical node of the salience network responsible for initiating network switching, and its dysfunctional connections are linked to the mechanisms of mild cognitive impairment (MCI). This study aimed to explore the changes in functional connectivity (FC) of insular subregions in MCI patients with varying levels of cerebrospinal fluid (CSF) pathological proteins, and to investigate the impact of these proteins on the brain network alterations in MCI. Methods Based on CSF Amyloid-beta (Aβ, A) and phosphorylated tau protein (p-tau, T), MCI patients were classified into 54 A-T-, 28 A+T-, and 52 A+T+ groups. Seed-based FC analysis was employed to compare the FC differences of insular subregions across the three groups. Correlation analysis was further conducted to explore the relationship between altered FC and cognitive function. Finally, ROC curve analysis was used to assess the diagnostic value of altered FC of insular subregion in distinguishing between the groups. Results In the left ventral anterior insula, left dorsal anterior insula, and bilateral posterior insular subnetworks, both the A+T- and A+T+ groups showed increased FC compared to the A-T- group, with the A+T+ group showing further increased FC compared to the A+T- group. Additionally, FC of the left cerebellar posterior lobe was negatively correlated with RAVLT-learning, and FC of the left middle frontal gyrus was negatively correlated with p-tau levels. Finally, logistic regression analysis demonstrated that multivariable analysis had high sensitivity and specificity in distinguishing between the groups. Conclusion This study showed that MCI patients with abnormal CSF pathological protein levels exhibit compensatory increases in FC of insular subregions, which in turn affect cognitive function. Our findings contributed to a better understanding of the pathophysiology and underlying neural mechanisms of MCI.
Collapse
Affiliation(s)
- Darui Zheng
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yingcai Feng
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiming Ruan
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqian Yuan
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zonghong Li
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chaoyong Xiao
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Nabizadeh F. Connectomics and neurotransmitter receptor profile explain regional tau pathology in Alzheimer's disease. Cereb Cortex 2025; 35:bhaf053. [PMID: 40083151 DOI: 10.1093/cercor/bhaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/27/2024] [Accepted: 02/03/2025] [Indexed: 03/16/2025] Open
Abstract
Alzheimer's disease tau pathology spreads through neuronal pathways and synaptic connections. Alteration in synaptic activity facilitates tau spreading. Multiple neurotransmitter systems are shown to be implicated in Alzheimer's disease, but their influence on the trans-synaptic spread of tau is not well understood. I aimed to combine resting-state functional magnetic resonance imaging connectomics, neurotransmitter receptor profiles, and tau-PET data to explain the regional susceptibility to tau accumulation. The tau-PET imaging data of 161 amyloid-beta-negative cognitively unimpaired participants as control and 259 amyloid-beta-positive subjects were recruited from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Linear regression analysis revealed that a higher tau-PET z-score is associated with a lower density of nine receptors in the serotonin, dopamine, gamma-aminobutyric acid (GABA), acetylcholine, and glutamate systems. Furthermore, adding four neurotransmitter receptor density z-scores significantly increased the proportion of explained variance by 3% to 7% compared to the epicenter-connectivity distance model in the group-level analysis. Also, adding nine neurotransmitter receptor density z-scores to the epicenter-connectivity distance model increased the explanatory power of variability in individual levels of tau-PET z-score by 3% to 8%. The current study demonstrated the additive value of atlas-based neurotransmitter receptor mapping and individual-level amyloid-beta-PET scans to enhance the connectivity-based explanation of tau accumulation.
Collapse
|
15
|
Dark HE, Shafer AT, Cordon J, An Y, Lewis A, Moghekar A, Landman B, Resnick SM, Walker KA. Association of Plasma Biomarkers of Alzheimer Disease and Neurodegeneration With Longitudinal Intra-Network Functional Brain Connectivity. Neurology 2025; 104:e210271. [PMID: 39889254 PMCID: PMC11784718 DOI: 10.1212/wnl.0000000000210271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/12/2024] [Indexed: 02/02/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Alzheimer disease (AD) is defined by cortical β-amyloid (Aβ), tau, and neurodegeneration, which contribute to cognitive decline, in part, by altering large-scale functional brain networks. While cortical Aβ and tau have been associated with changes in functional brain connectivity, it is unknown whether plasma biomarkers relate to such changes. In a healthy community sample of cognitively unimpaired adults free from major CNS disease from the Baltimore Longitudinal Study of Aging, we examined whether plasma biomarkers of AD pathology (Aβ42/40, phosphorylated tau [pTau-181]), astrogliosis (glial fibrillary acidic protein [GFAP]), and neuronal injury (neurofilament light chain [NfL]) were associated with longitudinal changes in functional connectivity and whether changes in functional connectivity were related to longitudinal cognition. METHODS Plasma biomarkers were measured using the Quanterix SIMOA assays. Intranetwork connectivity (3T resting-state fMRI) from 7 functional networks was derived using a predefined cortical parcellation mask for each participant visit. Cognitive performance was assessed concurrently with fMRI scan. Covariate-adjusted linear mixed-effect models were used to determine (1) whether plasma biomarkers were associated with longitudinal changes in connectivity, (2) whether the magnitude of the biomarker-connectivity relationships differed by amyloid status, and (3) whether changes in connectivity co-occurred with longitudinal changes in cognition. RESULTS Our primary findings (n = 486; age = 65.5 ± 16.2 years; 54% female; mean follow-up time = 4.3 ± 1.7 years) showed that higher baseline GFAP was associated with faster declines in somatomotor (β = -0.04, p = 0.01, 95% CI -0.06 to -0.01), limbic (β = -0.03, p = 0.02, 95% CI -0.06 to -0.005), and frontoparietal (β = -0.04, p = 0.02, 95% CI -0.07 to -0.01) network connectivity. Amyloid status moderated several biomarker-connectivity associations. For instance, higher baseline NfL was related to faster declines in visual and limbic network connectivity, but only among amyloid-positive participants. Among 421 participants with ≥2 fMRI visits (age = 71.7 ± 11.4 years; 55% female; follow-up time = 3.9 ± 1.6 years), longitudinal changes in connectivity were associated with concurrent declines in cognition; however, these results did not survive multiple comparison correction. DISCUSSION Among cognitively unimpaired participants, plasma biomarkers of amyloidosis, astrogliosis, and neuronal injury are associated with declines in network connectivity, particularly among amyloid-positive participants. Major limitations include the lack of inclusion of the sensitive pTau-217 and pTau-231 isoforms and comparative PET biomarkers.
Collapse
Affiliation(s)
- Heather E Dark
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Bethesda, MD
| | - Andrea T Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Bethesda, MD
| | - Jenifer Cordon
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Bethesda, MD
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Bethesda, MD
| | - Alexandria Lewis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; and
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; and
| | - Bennett Landman
- Department of Electrical and Computer Engineering, Department of Computer Science, Vanderbilt University, Nashville, TN
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Bethesda, MD
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Bethesda, MD
| |
Collapse
|
16
|
Zhou Z, Wang Q, Liu L, Wang Q, Zhang X, Li C, Liu J, Wei Y, Gao J, Fu L, Wang R. Investigating the Aβ and tau pathology in autosomal dominant Alzheimer's disease: insights from hybrid PET/MRI and network mapping. Alzheimers Res Ther 2025; 17:45. [PMID: 39962560 PMCID: PMC11831832 DOI: 10.1186/s13195-025-01690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/01/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Autosomal dominant Alzheimer's disease (ADAD) offers a distinct framework to study the preclinical phase of Alzheimer's disease (AD), due to its predictable symptom onset and high penetrance of causative mutations. The study aims to examine the spatial distribution and temporal progression of amyloid-beta (Aβ) and tau pathologies, along with mapping the pathology-functional connectivity network, in asymptomatic ADAD mutation carriers using hybrid positron emission tomography/magnetic resonance imaging (PET/MRI). METHODS Participants were recruited from the Chinese Familial Alzheimer's Disease Network, comprising 14 asymptomatic ADAD mutation carriers and 20 cognitively normal healthy controls (CN). Aβ deposition was evaluated using 11C-PIB PET, while tau aggregation was assessed via 18F-MK6240 PET imaging. Resting-state functional connectivity (rsFC) was analyzed to investigate relationships between pathological burden and neural network changes. Through qualitative analysis, ADAD carriers with marked 18F-MK6240 uptake in intracranial regions were categorized into Group 2, while others were designated as Group 1. RESULTS Asymptomatic ADAD carriers demonstrated a significantly greater Aβ burden across the cortex and striatum compared to CN, although tau PET binding did not differ significantly between the groups. Group 2 participants exhibited elevated 11C-PIB uptake in the neocortex and striatum, and increased 18F-MK6240-PET uptake in the medial temporal and other cortical regions. Compared with Group 1, network mapping of rsFC in Group 2 indicated increased connectivity associated with tau deposition in limbic, posterior cortical, and bilateral temporal regions, overlapping with the default mode network, suggesting potential compensatory mechanisms. Additionally, reduced connectivity in the left medial inferior temporal cortex and fusiform gyrus aligned with findings in sporadic AD cases. CONCLUSIONS This study shows the spatiotemporal progression of Aβ and tau pathologies in preclinical ADAD, supporting the hypothesis that Aβ deposition precedes tau pathology. The rsFC alterations observed associate with tau deposition in asymptomatic carriers indicate early network disruptions. Tau network mapping presents a valuable approach for assessing individualized brain connectivity changes in preclinical AD, mitigating single-subject variability and advancing precision assessment in early-stage AD diagnosis.
Collapse
Affiliation(s)
- Zhi Zhou
- Department of Neurology, China-Japan Friendship Hospital, Yinghua East Road Hepingli, Beijing, 100029, China
| | - Qigeng Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Changchun Street 45, Beijing, 100037, China
| | - Linwen Liu
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongdan Santiao 9, Beijing, 100730, China
| | - Qi Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Changchun Street 45, Beijing, 100037, China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100039, China
| | - Can Li
- Department of Nuclear Medicine, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100039, China
| | - Jiajin Liu
- Department of Nuclear Medicine, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100039, China
| | - Yidan Wei
- Department of Nuclear Medicine, China-Japan Friendship Hospital, Yinghua East Road Hepingli, Beijing, 100029, China
| | - Jin Gao
- Department of Nuclear Medicine, China-Japan Friendship Hospital, Yinghua East Road Hepingli, Beijing, 100029, China
| | - Liping Fu
- Department of Nuclear Medicine, China-Japan Friendship Hospital, Yinghua East Road Hepingli, Beijing, 100029, China.
| | - Ruimin Wang
- Department of Nuclear Medicine, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100039, China.
| |
Collapse
|
17
|
Ozturk G, Hari E, Yildirim K, Bayram A, Yildirim Z, Demiralp T, Gurvit H. Prospective memory performance and its resting-state functional connectivity correlates in individuals with memory complaints. Neuropsychologia 2025; 208:109082. [PMID: 39855424 DOI: 10.1016/j.neuropsychologia.2025.109082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 12/14/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
This study aimed to investigate prospective memory (PM) in patients with memory complaints but without dementia (PWD) and correlate findings with resting-state functional connectivity (rsFC) alterations. We hypothesized that PM impairment would be evident at a certain relatively early point in the continuum and specific rsFC patterns would be the neuroimaging signature of this impairment. Sixty PWD participated in the study. The Memory Screening Test for Intentions and the Virtual Week were used to assess PM. Using the participants' PM scores as a regressor, the rsFC for PM was analyzed by Network-Based Statistics (NBS). Participants were divided into high and low PM groups (HPMG, LPMG) according to their PM scores and then their neuropsychological scores, rsFC patterns, and CSF biomarker levels were compared. The effect of education on the relationship between connectivity and CSF Aβ42 level was examined by moderation analysis. Compared with HPMG, LPMG was impaired in both event- and time-based PM tasks, but the difference was more distinct in the event-based ones. While HPMG was more successful in event-based tasks than time-based ones, LPMG was not. As a result of NBS analysis, the middle frontal gyrus (MFG), supramarginal gyrus (SMG), and anterior cingulate cortex (ACC) were determined as central seeds. The HPMG's performance and connectivity were higher for most comparisons but had lower CSF Aβ42 than LPMG and therefore was closer to the positivity threshold. When the education level was at the mean and above, there was a negative correlation between CSF Aβ42 level and overall connectivity. The connectivities of MFG, SMG, and ACC play an important role in PM performance in the PWD. In more advanced PM impairment, the impairment of spontaneous processes is more prominent. At the onset of amyloidosis, the cognitive reserve may compensate for cognitive impairment by increasing connectivity.
Collapse
Affiliation(s)
- Gulcan Ozturk
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093, Istanbul, Turkey.
| | - Emre Hari
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey
| | - Kardelen Yildirim
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey
| | - Ali Bayram
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093, Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey
| | - Zerrin Yildirim
- Department of Neurology, Bagcilar Training and Research Hospital, University of Health Sciences, 34200, Istanbul, Turkey
| | - Tamer Demiralp
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey; Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, 34093, Istanbul, Turkey
| | - Hakan Gurvit
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey; Department of Neurology, Behavioral Neurology and Movement Disorders Unit, Istanbul Faculty of Medicine, Istanbul University, 34093, Istanbul, Turkey
| |
Collapse
|
18
|
Roemer-Cassiano SN, Wagner F, Evangelista L, Rauchmann BS, Dehsarvi A, Steward A, Dewenter A, Biel D, Zhu Z, Pescoller J, Gross M, Perneczky R, Malpetti M, Ewers M, Schöll M, Dichgans M, Höglinger GU, Brendel M, Jäkel S, Franzmeier N. Amyloid-associated hyperconnectivity drives tau spread across connected brain regions in Alzheimer's disease. Sci Transl Med 2025; 17:eadp2564. [PMID: 39841807 DOI: 10.1126/scitranslmed.adp2564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/08/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
In Alzheimer's disease (AD), amyloid-β (Aβ) triggers the aggregation and spreading of tau pathology, which drives neurodegeneration and cognitive decline. However, the pathophysiological link between Aβ and tau remains unclear, which hinders therapeutic efforts to attenuate Aβ-related tau accumulation. Aβ has been found to trigger neuronal hyperactivity and hyperconnectivity, and preclinical research has shown that tau spreads across connected neurons in an activity-dependent manner. Here, we hypothesized that neuronal hyperactivity and hypersynchronicity, resulting in functional connectivity increases, constitute a crucial mechanism by which Aβ facilitates the spreading of tau pathology. By combining Aβ positron emission tomography (PET), resting-state functional magnetic resonance imaging, and longitudinal tau-PET in 69 cognitively normal amyloid-negative controls and 140 amyloid-positive patients covering the AD spectrum, we confirmed that Aβ induces hyperconnectivity of temporal lobe tau epicenters to posterior brain regions that are vulnerable to tau accumulation in AD. This was replicated in an independent sample of 55 controls and 345 individuals with preclinical AD and low cortical tau-PET uptake, suggesting that the emergence of Aβ-related hyperconnectivity precedes neocortical tau spreading . Last, using longitudinal tau-PET and mediation analysis, we confirmed that these Aβ-related connectivity increases in tau epicenters to typical tau-vulnerable brain regions in AD mediated the effect of Aβ on faster tau accumulation, unveiling increased connectivity as a potential causal link between the two AD hallmark pathologies. Together, these findings suggest that Aβ promotes tau spreading by eliciting neuronal hyperconnectivity and that targeting Aβ-related neuronal hyperconnectivity may attenuate tau spreading in AD.
Collapse
Affiliation(s)
- Sebastian N Roemer-Cassiano
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Max Planck School of Cognition, 04103 Leipzig, Germany
| | - Fabian Wagner
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Lisa Evangelista
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Anna Steward
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Davina Biel
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Zeyu Zhu
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Julia Pescoller
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mattes Gross
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Aging Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, W6 8RP London, UK
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, S10 2HQ Sheffield, UK
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, CB2 0PY Cambridge, UK
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Mölndal and Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Günter U Höglinger
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Matthias Brendel
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sarah Jäkel
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Mölndal and Gothenburg, Sweden
| |
Collapse
|
19
|
Scheijbeler EP, de Haan W, Coomans EM, den Braber A, Tomassen J, ten Kate M, Konijnenberg E, Collij LE, van de Giessen E, Barkhof F, Visser PJ, Stam CJ, Gouw AA. Amyloid-β deposition predicts oscillatory slowing of magnetoencephalography signals and a reduction of functional connectivity over time in cognitively unimpaired adults. Brain Commun 2025; 7:fcaf018. [PMID: 40008329 PMCID: PMC11851009 DOI: 10.1093/braincomms/fcaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/11/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
With the ongoing developments in the field of anti-amyloid therapy for Alzheimer's disease, it is crucial to better understand the longitudinal associations between amyloid-β deposition and altered network activity in the living human brain. We included 110 cognitively unimpaired individuals (67.9 ± 5.7 years), who underwent [18F]flutemetamol (amyloid-β)-PET imaging and resting-state magnetoencephalography (MEG) recording at baseline and 4-year follow-up. We tested associations between baseline amyloid-β deposition and MEG measures (oscillatory power and functional connectivity). Next, we examined the relationship between baseline amyloid-β deposition and longitudinal MEG measures, as well as between baseline MEG measures and longitudinal amyloid-β deposition. Finally, we assessed associations between longitudinal changes in both amyloid-β deposition and MEG measures. Analyses were performed using linear mixed models corrected for age, sex and family. At baseline, amyloid-β deposition in orbitofrontal-posterior cingulate regions (i.e. early Alzheimer's disease regions) was associated with higher theta (4-8 Hz) power (β = 0.17, P < 0.01) in- and lower functional connectivity [inverted Joint Permutation Entropy (JPEinv) theta, β = -0.24, P < 0.001] of these regions, lower whole-brain beta (13-30 Hz) power (β = -0.13, P < 0.05) and lower whole-brain functional connectivity (JPEinv theta, β = -0.18, P < 0.001). Whole-brain amyloid-β deposition was associated with higher whole-brain theta power (β = 0.17, P < 0.05), lower whole-brain beta power (β = -0.13, P < 0.05) and lower whole-brain functional connectivity (JPEinv theta, β = -0.21, P < 0.001). Baseline amyloid-β deposition in early Alzheimer's disease regions also predicted future oscillatory slowing, reflected by increased theta power over time in early Alzheimer's disease regions and across the whole brain (β = 0.11, β = 0.08, P < 0.001), as well as decreased whole-brain beta power over time (β = -0.04, P < 0.05). Baseline amyloid-β deposition in early Alzheimer's disease regions also predicted a reduction in functional connectivity between these regions and the rest of the brain over time (JPEinv theta, β = -0.07, P < 0.05). Baseline whole-brain amyloid-β deposition was associated with increased whole-brain theta power over time (β = 0.08, P < 0.01). Baseline MEG measures were not associated with longitudinal amyloid-β deposition. Longitudinal changes in amyloid-β deposition in early Alzheimer's disease regions were associated with longitudinal changes in functional connectivity of early Alzheimer's disease regions (JPEinv theta, β = -0.19, P < 0.05) and the whole brain [corrected amplitude envelope correlations alpha (8-13 Hz), β = -0.22, P < 0.05]. Finally, longitudinal changes in whole-brain amyloid-β deposition were associated with longitudinal changes in whole-brain relative theta power (β = 0.21, P < 0.05). Disruptions of oscillatory power and functional connectivity appear to represent early functional consequences of emerging amyloid-β deposition in cognitively unimpaired individuals. These findings suggest a role for neurophysiology in monitoring disease progression and potential treatment effects in pre-clinical Alzheimer's disease.
Collapse
Affiliation(s)
- Elliz P Scheijbeler
- Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Department of Clinical Neurophysiology & MEG Center, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Willem de Haan
- Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Emma M Coomans
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Anouk den Braber
- Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jori Tomassen
- Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Mara ten Kate
- Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Elles Konijnenberg
- Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 202 13 Malmö, Sweden
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, WC1N 3BG London, UK
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, 6229 ET Maastricht, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology & MEG Center, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Alida A Gouw
- Department of Clinical Neurophysiology & MEG Center, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
20
|
Li G, Hsu LM, Wu Y, Bozoki AC, Shih YYI, Yap PT. Revealing excitation-inhibition imbalance in Alzheimer's disease using multiscale neural model inversion of resting-state functional MRI. COMMUNICATIONS MEDICINE 2025; 5:17. [PMID: 39814858 PMCID: PMC11735810 DOI: 10.1038/s43856-025-00736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a serious neurodegenerative disorder without a clear understanding of pathophysiology. Recent experimental data have suggested neuronal excitation-inhibition (E-I) imbalance as an essential element of AD pathology, but E-I imbalance has not been systematically mapped out for either local or large-scale neuronal circuits in AD, precluding precise targeting of E-I imbalance in AD treatment. METHOD In this work, we apply a Multiscale Neural Model Inversion (MNMI) framework to the resting-state functional MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to identify brain regions with disrupted E-I balance in a large network during AD progression. RESULTS We observe that both intra-regional and inter-regional E-I balance is progressively disrupted from cognitively normal individuals, to mild cognitive impairment (MCI) and to AD. Also, we find that local inhibitory connections are more significantly impaired than excitatory ones and the strengths of most connections are reduced in MCI and AD, leading to gradual decoupling of neural populations. Moreover, we reveal a core AD network comprised mainly of limbic and cingulate regions. These brain regions exhibit consistent E-I alterations across MCI and AD, and thus may represent important AD biomarkers and therapeutic targets. Lastly, the E-I balance of multiple brain regions in the core AD network is found to be significantly correlated with the cognitive test score. CONCLUSIONS Our study constitutes an important attempt to delineate E-I imbalance in large-scale neuronal circuits during AD progression, which may facilitate the development of new treatment paradigms to restore physiological E-I balance in AD.
Collapse
Affiliation(s)
- Guoshi Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ye Wu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrea C Bozoki
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
21
|
Garmendia J, Labayru G, Jiménez-Marín A, Villanúa J, Cortés J, López de Munain A, Sistiaga A. Hyperconnectivity in resting-state fMRI as a marker of disease severity in Myotonic Dystrophy Type 1. J Neuromuscul Dis 2025; 12:22143602241307197. [PMID: 39973452 DOI: 10.1177/22143602241307197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
INTRODUCTION Myotonic dystrophy type 1 (DM1) patients show both structural and functional brain alterations, including abnormal resting-state (RS) functional connectivity. Although some studies have investigated RS functional connectivity in DM1, methodological differences make it challenging to draw consistent conclusions. OBJECTIVES This study aims to analyze 1) RS functional connectivity in DM1 patients compared to healthy controls (HC), 2) graph theory metrics, 3) longitudinal connectivity variations, and 4) the relationship between connectivity and clinical, cognitive, and structural brain data. METHODOLOGY Twenty-one DM1 patients and 21 matched HCs underwent 3 T MRI scans, including RS fMRI. Of these, 15 DM1 patients and 13 HCs participated in the follow-up after 3 years. Additionally, DM1 patients underwent baseline clinical, molecular and cognitive assessments. Functional connectivity analysis (ROI-to-ROI) and graph theory measures were employed. Longitudinal changes in connectivity were examined, and total hyperconnectivity and hypoconnectivity values were calculated to explore correlations with clinical, brain, and cognitive correlates. RESULTS DM1 patients showed widespread hyperconnectivity compared to HCs. Although no statistically significant differences were found in graph theory measures, patients tended to show decreased efficiency, strength, and clustering (with moderate effect sizes). Patients remained hyperconnected over time, with a progression similar to HCs. Hyperconnectivity was associated with more severe disease, greater muscular impairment, and molecular defects, as well as lower cognitive performance. Conversely, hypoconnectivity was associated with less severe disease. DISCUSSION DM1 patients are characterized by brain hyperconnectivity and a less efficient brain network organization. Hyperconnectivity is discussed as a compensatory mechanism and is suggested as a disease severity marker.
Collapse
Affiliation(s)
- Joana Garmendia
- Department of Clinical and Health Psychology and Research Methodology, Psychology Faculty, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Gipuzkoa, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain
| | - Garazi Labayru
- Department of Clinical and Health Psychology and Research Methodology, Psychology Faculty, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Gipuzkoa, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain
- Neuroscience Area, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain
| | - Antonio Jiménez-Marín
- Computational Neuroimaging Laboratory, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Jorge Villanúa
- Osatek, Donostia University Hospital, Donostia-San Sebastián, Gipuzkoa, Spain
| | - Jesús Cortés
- Computational Neuroimaging Laboratory, Biobizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
- Department of Cell Biology and Histology. Faculty of Medicine, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain
- Neuroscience Area, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain
- Neurology Department, Donostia University Hospital, Donostia-San Sebastián, Gipuzkoa, Spain
| | - Andone Sistiaga
- Department of Clinical and Health Psychology and Research Methodology, Psychology Faculty, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Gipuzkoa, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain
- Neuroscience Area, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain
| |
Collapse
|
22
|
Day IL, Tamboline M, Lipshutz GS, Xu S. Recent developments in translational imaging of in vivo gene therapy outcomes. Mol Ther 2024:S1525-0016(24)00849-9. [PMID: 39741403 DOI: 10.1016/j.ymthe.2024.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/18/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Gene therapy achieves therapeutic benefits by delivering genetic materials, packaged within a delivery vehicle, to target cells with defective genes. This approach has shown promise in treating various conditions, including cancer, metabolic disorders, and tissue-degenerative diseases. Over the past 5 years, molecular imaging has increasingly supported gene therapy development in both preclinical and clinical studies. High-quality images from positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), and computed tomography (CT) enable quantitative and reliable monitoring of gene therapy. Most reported studies have applied imaging biomarkers to non-invasively evaluate the outcomes of gene therapy. This review aims to inform researchers in molecular imaging and gene therapy about the integration of these two disciplines. We highlight recent developments in using imaging biomarkers to monitor the outcome of in vivo gene therapy, where the therapeutic delivery vehicle is administered systemically. In addition, we discuss prospects for further incorporating imaging biomarkers to support the development and application of gene therapy.
Collapse
Affiliation(s)
- Isabel L Day
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mikayla Tamboline
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gerald S Lipshutz
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shili Xu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
23
|
Pini L, Lista S, Griffa A, Allali G, Imbimbo BP. Can brain network connectivity facilitate the clinical development of disease-modifying anti-Alzheimer drugs? Brain Commun 2024; 7:fcae460. [PMID: 39741782 PMCID: PMC11686405 DOI: 10.1093/braincomms/fcae460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/28/2024] [Accepted: 12/18/2024] [Indexed: 01/03/2025] Open
Abstract
The preclinical phase of Alzheimer's disease represents a crucial time window for therapeutic intervention but requires the identification of clinically relevant biomarkers that are sensitive to the effects of disease-modifying drugs. Amyloid peptide and tau proteins, the main histological hallmarks of Alzheimer's disease, have been widely used as biomarkers of anti-amyloid and anti-tau drugs. However, these biomarkers do not fully capture the multiple biological pathways of the brain. Indeed, robust amyloid-target engagement by anti-amyloid monoclonal antibodies has recently translated into modest cognitive and clinical benefits in Alzheimer's disease patients, albeit with potentially life-threatening side effects. Moreover, targeting the tau pathway has yet to result in any positive clinical outcomes. Findings from computational neuroscience have demonstrated that brain regions do not work in isolation but are interconnected within complex network structures. Brain connectivity studies suggest that misfolded proteins can spread through these connections, leading to the hypothesis that Alzheimer's disease is a pathology of network disconnectivity. Based on these assumptions, here we discuss how incorporating brain connectivity outcomes could better capture global brain functionality and, in conjunction with traditional Alzheimer's disease biomarkers, could facilitate the clinical development of new disease-modifying anti-Alzheimer's disease drugs.
Collapse
Affiliation(s)
- Lorenzo Pini
- Department of Neuroscience, Università degli Studi di Padova, 35121 Padova, Italy
- Padova Neuroscience Center, Università degli Studi di Padova, 35121 Padova, Italy
| | - Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain
| | - Alessandra Griffa
- Department of Clinical Neurosciences, Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Montpaisible 16, 1011 Lausanne, Switzerland
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Campus Biotech Chemin des Mines 9, 1202 Geneva, Switzerland
| | - Gilles Allali
- Department of Clinical Neurosciences, Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Montpaisible 16, 1011 Lausanne, Switzerland
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, 43122 Parma, Italy
| |
Collapse
|
24
|
Wang S, Wang Y, Xu FH, Tian X, Fredericks CA, Shen L, Zhao Y, for the Alzheimer's Disease Neuroimaging Initiative. Sex-specific topological structure associated with dementia via latent space estimation. Alzheimers Dement 2024; 20:8387-8401. [PMID: 39530632 PMCID: PMC11667551 DOI: 10.1002/alz.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION We investigate sex-specific topological structures associated with typical Alzheimer's disease (AD) dementia using a novel state-of-the-art latent space estimation technique. METHODS This study applies a probabilistic approach for latent space estimation that extends current multiplex network modeling approaches and captures the higher-order dependence in functional connectomes by preserving transitivity and modularity structures. RESULTS We find sex differences in network topology with females showing more default mode network (DMN)-centered hyperactivity and males showing more limbic system (LS)-centered hyperactivity, while both show DMN-centered hypoactivity. We find that centrality plays an important role in dementia-related dysfunction with stronger association between connectivity changes and regional centrality in females than in males. DISCUSSION The study contributes to the current literature by providing a more comprehensive picture of dementia-related neurodegeneration linking centrality, network segregation, and DMN-centered changes in functional connectomes, and how these components of neurodegeneration differ between the sexes. HIGHLIGHTS We find evidence supporting the active role network topology plays in neurodegeneration with an imbalance between the excitatory and inhibitory mechanisms that can lead to whole-brain destabilization in dementia patients. We find sex-based differences in network topology with females showing more default mode network (DMN)-centered hyperactivity, males showing more limbic system (LS)-centered hyperactivity, while both show DMN-centered hypoactivity. We find that brain region centrality plays an important role in dementia-related dysfunction with a stronger association between connectivity changes and regional centrality in females than in males. Females, compared to males, tend to exhibit stronger dementia-related changes in regions that are the central actors of the brain networks. Taken together, this research uniquely contributes to the current literature by providing a more comprehensive picture of dementia-related neurodegeneration linking centrality, network segregation, and DMN-centered changes in functional connectomes, and how these components of neurodegeneration differ between the sexes.
Collapse
Affiliation(s)
- Selena Wang
- Department of Biostatistics and Health Data ScienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Yiting Wang
- Department of StatisticsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Frederick H. Xu
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Xinyuan Tian
- Department of NeurologyYale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Carolyn A. Fredericks
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Li Shen
- Department of BiostatisticsYale School of Public HealthNew HavenConnecticutUSA
| | - Yize Zhao
- Department of NeurologyYale School of MedicineYale UniversityNew HavenConnecticutUSA
| | | |
Collapse
|
25
|
Luan Y, Rubinski A, Biel D, Otero Svaldi D, Alonzo Higgins I, Shcherbinin S, Pontecorvo M, Franzmeier N, Ewers M. Tau-network mapping of domain-specific cognitive impairment in Alzheimer's disease. Neuroimage Clin 2024; 44:103699. [PMID: 39509992 PMCID: PMC11574813 DOI: 10.1016/j.nicl.2024.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Fibrillar tau gradually progresses in the brain during the course of Alzheimer's disease (AD). However, the contribution of tau accumulation in a given brain region to decline in different cognitive domains and thus phenotypic heterogeneity in AD remains unclear. Here, we leveraged the functional connectome to link the locality of tau accumulation to domain-specific cognitive impairment. In the current study, we mapped regional tau-PET accumulation onto the normative functional connectome. Subsequently, we cross-validated in two samples of AD-patients the associations between the tau-connectivity profiles and cognitive domains (episodic memory, executive function, or language). Lastly, we tested the effect of local tau-PET accumulation on the domain-specific tau-lesion networks and cognition. We identified cognitive-domain-specific tau-lesion networks, where closer topological proximity of tau-PET locations to a network was predictive of worse impairment in that domain. Higher tau-PET was associated with decreased domain-specific network connectivity, and the decrease in connectivity was associated with lower domain-specific cognition. The tau locations' connectivity profile explained domain-specific cognitive impairment, where disrupted connectivity may underlie the effect of tau on cognitive impairment.
Collapse
Affiliation(s)
- Ying Luan
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University (LMU), Munich, Germany
| | - Anna Rubinski
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University (LMU), Munich, Germany
| | - Davina Biel
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University (LMU), Munich, Germany
| | | | | | | | | | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University (LMU), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University (LMU), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
26
|
Hanssen KS, Winter-Hjelm N, Niethammer SN, Kobro-Flatmoen A, Witter MP, Sandvig A, Sandvig I. Reverse engineering of feedforward cortical-Hippocampal microcircuits for modelling neural network function and dysfunction. Sci Rep 2024; 14:26021. [PMID: 39472479 PMCID: PMC11522409 DOI: 10.1038/s41598-024-77157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Engineered biological neural networks are indispensable models for investigation of neural function and dysfunction from the subcellular to the network level. Notably, advanced neuroengineering approaches are of significant interest for their potential to replicate the topological and functional organization of brain networks. In this study, we reverse engineered feedforward neural networks of primary cortical and hippocampal neurons, using a custom-designed multinodal microfluidic device with Tesla valve inspired microtunnels. By interfacing this device with nanoporous microelectrodes, we show that the reverse engineered multinodal neural networks exhibit capacity for both segregated and integrated functional activity, mimicking brain network dynamics. To advocate the broader applicability of our model system, we induced localized perturbations with amyloid beta to study the impact of pathology on network functionality. Additionally, we demonstrate long-term culturing of subregion- and layer specific neurons extracted from the entorhinal cortex and hippocampus of adult Alzheimer's-model mice and rats. Our results thus highlight the potential of our approach for reverse engineering of anatomically relevant multinodal neural networks to study dynamic structure-function relationships in both healthy and pathological conditions.
Collapse
Affiliation(s)
- Katrine Sjaastad Hanssen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Nicolai Winter-Hjelm
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Salome Nora Niethammer
- Division of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- K.G. Jebsen Centre for Alzheimer's Disease, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- K.G. Jebsen Centre for Alzheimer's Disease, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St Olav's University Hospital, Trondheim, Norway
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
27
|
Corriveau-Lecavalier N, Adams JN, Fischer L, Molloy EN, Maass A. Cerebral hyperactivation across the Alzheimer's disease pathological cascade. Brain Commun 2024; 6:fcae376. [PMID: 39513091 PMCID: PMC11542485 DOI: 10.1093/braincomms/fcae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Neuronal dysfunction in specific brain regions or across distributed brain networks is a known feature of Alzheimer's disease. An often reported finding in the early stage of the disease is the presence of increased functional MRI (fMRI) blood oxygenation level-dependent signal under task conditions relative to cognitively normal controls, a phenomenon known as 'hyperactivation'. However, research in the past decades yielded complex, sometimes conflicting results. The magnitude and topology of fMRI hyperactivation patterns have been found to vary across the preclinical and clinical spectrum of Alzheimer's disease, including concomitant 'hypoactivation' in some cases. These incongruences are likely due to a range of factors, including the disease stage at which the cohort is examined, the brain areas or networks studied and the fMRI paradigm utilized to evoke these functional abnormalities. Additionally, a perennial question pertains to the nature of hyperactivation in the context of Alzheimer's disease. Some propose it reflects compensatory mechanisms to sustain cognitive performance, while others suggest it is linked to the pathological disruption of a highly regulated homeostatic cycle that contributes to, or even drives, disease progression. Providing a coherent narrative for these empirical and conceptual discrepancies is paramount to develop disease models, understand the synergy between hyperactivation and the Alzheimer's disease pathological cascade and tailor effective interventions. We first provide a comprehensive overview of functional brain changes spanning the course from normal ageing to the clinical spectrum of Alzheimer's disease. We then highlight evidence supporting a close relationship between fMRI hyperactivation and in vivo markers of Alzheimer's pathology. We primarily focus on task-based fMRI studies in humans, but also consider studies using different functional imaging techniques and animal models. We then discuss the potential mechanisms underlying hyperactivation in the context of Alzheimer's disease and provide a testable framework bridging hyperactivation, ageing, cognition and the Alzheimer's disease pathological cascade. We conclude with a discussion of future challenges and opportunities to advance our understanding of the fundamental disease mechanisms of Alzheimer's disease, and the promising development of therapeutic interventions incorporating or aimed at hyperactivation and large-scale functional systems.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55902 USA
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine 92697, CA, USA
| | - Larissa Fischer
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
| | - Eóin N Molloy
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Division of Nuclear Medicine, Department of Radiology & Nuclear Medicine, Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Institute for Biology, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| |
Collapse
|
28
|
Svenningsson AL, Bocancea DI, Stomrud E, van Loenhoud A, Barkhof F, Mattsson-Carlgren N, Palmqvist S, Hansson O, Ossenkoppele R. Biological mechanisms of resilience to tau pathology in Alzheimer's disease. Alzheimers Res Ther 2024; 16:221. [PMID: 39396028 PMCID: PMC11470552 DOI: 10.1186/s13195-024-01591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/29/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND In Alzheimer's disease (AD), the associations between tau pathology and brain atrophy and cognitive decline are well established, but imperfect. We investigate whether cerebrospinal fluid (CSF) biomarkers of biological processes (vascular, synaptic, and axonal integrity, neuroinflammation, neurotrophic factors) explain the disconnection between tau pathology and brain atrophy (brain resilience), and tau pathology and cognitive decline (cognitive resilience). METHODS We included 428 amyloid positive participants (134 cognitively unimpaired (CU), 128 with mild cognitive impairment (MCI), 166 with AD dementia) from the BioFINDER-2 study. At baseline, participants underwent tau positron emission tomography (tau-PET), magnetic resonance imaging (MRI), cognitive testing, and lumbar puncture. Longitudinal data were available for MRI (mean (standard deviation) follow-up 26.4 (10.7) months) and cognition (25.2 (11.4) months). We analysed 18 pre-selected CSF proteins, reflecting vascular, synaptic, and axonal integrity, neuroinflammation, and neurotrophic factors. Stratifying by cognitive status, we performed linear mixed-effects models with cortical thickness (brain resilience) and global cognition (cognitive resilience) as dependent variables to assess whether the CSF biomarkers interacted with tau-PET levels in its effect on cortical atrophy and cognitive decline. RESULTS Regarding brain resilience, interaction effects were observed in AD dementia, with vascular integrity biomarkers (VEGF-A (βinteraction = -0.009, pFDR = 0.047) and VEGF-B (βinteraction = -0.010, pFDR = 0.037)) negatively moderating the association between tau-PET signal and atrophy. In MCI, higher NfL levels were associated with more longitudinal cortical atrophy (β = -0.109, pFDR = 0.033) and lower baseline cortical thickness (β = -0.708, pFDR = 0.033) controlling for tau-PET signal. Cognitive resilience analyses in CU revealed interactions with tau-PET signal for inflammatory (GFAP, IL-15; βinteraction -0.073--0.069, pFDR 0.001-0.045), vascular (VEGF-A, VEGF-D, PGF; βinteraction -0.099--0.063, pFDR < 0.001-0.046), synaptic (14-3-3ζ/δ; βinteraction = -0.092, pFDR = 0.041), axonal (NfL; βinteraction = -0.079, pFDR < 0.001), and neurotrophic (NGF; βinteraction = 0.091, pFDR < 0.001) biomarkers. In MCI higher NfL levels (βmain = -0.690, pFDR = 0.025) were associated with faster cognitive decline independent of tau-PET signal. CONCLUSIONS Biomarkers of co-existing pathological processes, in particular vascular pathology and axonal degeneration, interact with levels of tau pathology on its association with the downstream effects of AD pathology (i.e. brain atrophy and cognitive decline). This indicates that vascular pathology and axonal degeneration could impact brain and cognitive resilience.
Collapse
Affiliation(s)
- Anna L Svenningsson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 211 46, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, 214 28, Malmö, Sweden.
| | - Diana I Bocancea
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081, Amsterdam, The Netherlands
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 211 46, Lund, Sweden
- Memory Clinic, Skåne University Hospital, 214 28, Malmö, Sweden
| | - Anita van Loenhoud
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London, WC1N 3BG, UK
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 211 46, Lund, Sweden
- Department of Neurology, Skåne University Hospital, 211 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 211 46, Lund, Sweden
- Memory Clinic, Skåne University Hospital, 214 28, Malmö, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 211 46, Lund, Sweden
- Memory Clinic, Skåne University Hospital, 214 28, Malmö, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 211 46, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Solar KG, Ventresca M, Zamyadi R, Zhang J, Jetly R, Vartanian O, Rhind SG, Dunkley BT. Repetitive subconcussion results in disrupted neural activity independent of concussion history. Brain Commun 2024; 6:fcae348. [PMID: 39440300 PMCID: PMC11495223 DOI: 10.1093/braincomms/fcae348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024] Open
Abstract
Concussion is a public health crisis that results in a complex cascade of neurochemical changes that can have life-changing consequences. Subconcussions are generally considered less serious, but we now realize repetitive subconcussions can lead to serious neurological deficits. Subconcussions are common in contact sports and the military where certain personnel are exposed to repetitive occupational blast overpressure. Post-mortem studies show subconcussion is a better predictor than concussion for chronic traumatic encephalopathy-a progressive and fatal neurodegenerative tauopathy, only diagnosable post-mortem-thus, an in vivo biomarker would be transformative. Magnetoencephalography captures the dynamics of neuronal electrochemical action, and functional MRI shows that functional connectivity is associated with tauopathy patterns. Therefore, both imaging modalities could provide surrogate markers of tauopathy. In this cross-sectional study, we examined the effects of repetitive subconcussion on neuronal activity and functional connectivity using magnetoencephalography and functional MRI, and on neurological symptoms and mental health in a military sample. For magnetoencephalography and outcome analyses, 81 participants were split into 'high' and 'low' blast exposure groups using the generalized blast exposure value: n = 41 high blast (26.4-65.7 years; 4 females) and n = 40 low blast (28.0-63.3 years; 8 females). For functional MRI, two high blast male participants without data were excluded: n = 39 (29.6-65.7 years). Magnetoencephalography revealed disrupted neuronal activity in participants with a greater history of repetitive subconcussions, including neural slowing (higher delta activity) in right fronto-temporal lobes and subcortical regions (hippocampus, amygdala, caudate, pallidum and thalamus), and functional dysconnectivity in the posterior default mode network (lower connectivity at low and high gamma). These abnormalities were independent of concussion or traumatic stress history, and magnetoencephalography showed functional dysconnectivity not detected in functional MRI. Besides magnetoencephalography changes, those with higher blast exposure had poorer somatic and cognitive outcomes, with no blast-related differences in mental health or associations between neurological symptoms and neuronal activity. This study suggests that repetitive subconcussions have deleterious effects on brain function and that magnetoencephalography provides an avenue for both treatment targets by identifying affected brain regions and in prevention by identifying those at risk of cumulative subconcussive neurotrauma.
Collapse
Affiliation(s)
- Kevin Grant Solar
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Matthew Ventresca
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Rouzbeh Zamyadi
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Jing Zhang
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada M3K 2C9
| | - Rakesh Jetly
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1A 0K6
| | - Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada M3K 2C9
| | - Shawn G Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada M3K 2C9
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada M5S 2W6
| | - Benjamin T Dunkley
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada M5G 1X8
- Department of Diagnostic and Interventional Radiology, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
- Department of Psychology, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
30
|
Lee S, Zide BS, Palm ST, Drew WJ, Sperling RA, Jacobs HIL, Siddiqi SH, Donovan NJ. Specific Association of Worry With Amyloid-β But Not Tau in Cognitively Unimpaired Older Adults. Am J Geriatr Psychiatry 2024; 32:1203-1214. [PMID: 38763835 DOI: 10.1016/j.jagp.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVE Anxiety disorders and subsyndromal anxiety symptoms are highly prevalent in late life. Recent studies support that anxiety may be a neuropsychiatric symptom during preclinical Alzheimer's disease (AD) and that higher anxiety is associated with more rapid cognitive decline and progression to cognitive impairment. However, the associations of specific anxiety symptoms with AD pathologies and with co-occurring subjective and objective cognitive changes have not yet been established. METHODS Baseline data from the A4 and Longitudinal Evaluation of Amyloid Risk and Neurodegeneration studies were analyzed. Older adult participants (n = 4,486) underwent assessments of anxiety (State-Trait Anxiety Inventory-6 item version [STAI]), and cerebral amyloid-beta (Aβ; 18F-florbetapir) PET and a subset underwent tau (18F-flortaucipir) PET. Linear regressions estimated associations of Aβ in a cortical composite and tau in the amygdala, entorhinal, and inferior temporal regions with STAI-Total and individual STAI item scores. Models adjusted for age, sex, education, marital status, depression, Apolipoprotein ε4 genotype, and subjective and objective cognition (Cognitive Function Index-participant; Preclinical Alzheimer Cognitive Composite). RESULTS Greater Aβ deposition was significantly associated with higher STAI-Worry, adjusting for all covariates, but not with other STAI items or STAI-Total scores. In mediation analyses, the association of Aβ with STAI-Worry was partially mediated by subjective cognition with a stronger direct effect. No associations were found for regional tau deposition with STAI-Total or STAI-Worry score. CONCLUSION Greater worry was associated with Aβ but not tau deposition, independent of subjective and objective cognition in cognitively unimpaired (CU) older adults. These findings implicate worry as an early, specific behavioral marker and a possible therapeutic target in preclinical AD.
Collapse
Affiliation(s)
- Soyoung Lee
- Division of Geriatric Psychiatry, Department of Psychiatry, Brigham and Women's Hospital (SL, BSZ, NJD), Harvard Medical School, Boston, MA; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital (SL, STP, WJD, SHS), Boston, MA.
| | - Benjamin S Zide
- Division of Geriatric Psychiatry, Department of Psychiatry, Brigham and Women's Hospital (SL, BSZ, NJD), Harvard Medical School, Boston, MA
| | - Stephan T Palm
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital (SL, STP, WJD, SHS), Boston, MA; Department of Neurology, Brigham and Women's Hospital (STP, WJD, RAS, NJD), Harvard Medical School, Boston, MA
| | - William J Drew
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital (SL, STP, WJD, SHS), Boston, MA; Department of Neurology, Brigham and Women's Hospital (STP, WJD, RAS, NJD), Harvard Medical School, Boston, MA
| | - Reisa A Sperling
- Department of Neurology, Brigham and Women's Hospital (STP, WJD, RAS, NJD), Harvard Medical School, Boston, MA; Department of Neurology, Massachusetts General Hospital (RAS, NJD), Harvard Medical School, Boston, MA
| | - Heidi I L Jacobs
- Department of Radiology, Massachusetts General Hospital (HILJ), Harvard Medical School, Boston, MA; School for Mental Health and Neuroscience, Alzheimer Centre Limburg (HILJ), Maastricht University, Maastricht, The Netherlands
| | - Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital (SL, STP, WJD, SHS), Boston, MA; Department of Psychiatry, Brigham and Women's Hospital (SHS), Harvard Medical School, Boston, MA
| | - Nancy J Donovan
- Division of Geriatric Psychiatry, Department of Psychiatry, Brigham and Women's Hospital (SL, BSZ, NJD), Harvard Medical School, Boston, MA; Department of Neurology, Brigham and Women's Hospital (STP, WJD, RAS, NJD), Harvard Medical School, Boston, MA; Department of Psychiatry, Massachusetts General Hospital (NJD), Harvard Medical School, Boston, MA
| |
Collapse
|
31
|
Shen T, Sheriff S, You Y, Jiang J, Schulz A, Francis H, Mirzaei M, Saks D, Palanivel V, Basavarajappa D, Chitranshi N, Gupta V, Wen W, Sachdev PS, Jia H, Sun X, Graham SL, Gupta VK. Brain-Derived Neurotrophic Factor Val66Met is Associated with Variation in Cortical Structure in Healthy Aging Subjects. Aging Dis 2024; 15:2315-2327. [PMID: 38916728 PMCID: PMC11346411 DOI: 10.14336/ad.2024.0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
Aging is associated with progressive brain atrophy and declines in learning and memory, often attributed to hippocampal or cortical deterioration. The role of brain-derived neurotrophic factor (BDNF) in modulating the structural and functional changes in the brain and visual system, particularly in relation to BDNF Val66Met polymorphism, remains underexplored. In this present cross-sectional observational study, we aimed to assess the effects of BDNF polymorphism on brain structural integrity, cognitive function, and visual pathway alterations. A total of 108 older individuals with no evidence of dementia and a mean (SD) age of 67.3 (9.1) years were recruited from the Optic Nerve Decline and Cognitive Change (ONDCC) study cohort. The BDNF Met allele carriage had a significant association with lower entorhinal cortex volume (6.7% lower compared to the Val/Val genotype, P = 0.02) and posterior cingulate volume (3.2% lower than the Val/Val group, P = 0.03), after adjusting for confounding factors including age, sex and estimated total intracranial volumes (eTIV). No significant associations were identified between the BDNF Val66Met genotype and other brain volumetric or diffusion measures, cognitive performances, or vision parameters except for temporal retinal nerve fibre layer thickness. Small but significant correlations were found between visual structural and functional, cognitive, and brain morphological metrics. Our findings suggest that carriage of BDNF Val66Met polymorphism is associated with lower entorhinal cortex and posterior cingulate volumes and may be involved in modulating the cortical morphology along the aging process.
Collapse
Affiliation(s)
- Ting Shen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Samran Sheriff
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Yuyi You
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Angela Schulz
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Heather Francis
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Neurology Department, Royal North Shore Hospital, St Leonards NSW 2065, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Danit Saks
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | - Nitin Chitranshi
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Veer Gupta
- Faculty of Health, Deakin University, VIC 3125, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Randwick NSW 2031, Australia
| | - Huixun Jia
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Stuart L Graham
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Vivek K Gupta
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
32
|
Stampacchia S, Asadi S, Tomczyk S, Ribaldi F, Scheffler M, Lövblad KO, Pievani M, Fall AB, Preti MG, Unschuld PG, Van De Ville D, Blanke O, Frisoni GB, Garibotto V, Amico E. Fingerprints of brain disease: connectome identifiability in Alzheimer's disease. Commun Biol 2024; 7:1169. [PMID: 39294332 PMCID: PMC11411139 DOI: 10.1038/s42003-024-06829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024] Open
Abstract
Functional connectivity patterns in the human brain, like the friction ridges of a fingerprint, can uniquely identify individuals. Does this "brain fingerprint" remain distinct even during Alzheimer's disease (AD)? Using fMRI data from healthy and pathologically ageing subjects, we find that individual functional connectivity profiles remain unique and highly heterogeneous during mild cognitive impairment and AD. However, the patterns that make individuals identifiable change with disease progression, revealing a reconfiguration of the brain fingerprint. Notably, connectivity shifts towards functional system connections in AD and lower-order cognitive functions in early disease stages. These findings emphasize the importance of focusing on individual variability rather than group differences in AD studies. Individual functional connectomes could be instrumental in creating personalized models of AD progression, predicting disease course, and optimizing treatments, paving the way for personalized medicine in AD management.
Collapse
Affiliation(s)
- Sara Stampacchia
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
| | - Saina Asadi
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
| | - Szymon Tomczyk
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Max Scheffler
- Division of Radiology, Geneva University Hospitals, Geneva, Switzerland
| | - Karl-Olof Lövblad
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
- Neurodiagnostic and Neurointerventional Division, Geneva University Hospitals, Geneva, Switzerland
| | - Michela Pievani
- Lab of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Aïda B Fall
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Maria Giulia Preti
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Paul G Unschuld
- Division of Geriatric Psychiatry, University Hospitals of Geneva (HUG), 1226, Thônex, Switzerland
- Department of Psychiatry, University of Geneva (UniGE), 1205, Geneva, Switzerland
| | - Dimitri Van De Ville
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
| | - Olaf Blanke
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| | - Enrico Amico
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- School of Mathematics, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
33
|
Hennessee JP, Lung TC, Park DC, Kennedy KM. Age differences in BOLD modulation to task difficulty as a function of amyloid burden. Cereb Cortex 2024; 34:bhae357. [PMID: 39227310 PMCID: PMC11371418 DOI: 10.1093/cercor/bhae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
Effective cognitive performance often requires the allocation of additional neural resources (i.e. blood-oxygen-level-dependent [BOLD] activation) as task demands increase, and this demand-related modulation is affected by amyloid-beta deposition and normal aging. The present study investigated these complex relationships between amyloid, modulation, and cognitive function (i.e. fluid ability). Participants from the Dallas Lifespan Brain Study (DLBS, n = 252, ages 50-89) completed a semantic judgment task during functional magnetic resonance imaging (fMRI) where the judgments differed in classification difficulty. Amyloid burden was assessed via positron emission tomography (PET) using 18F-florbetapir. A quadratic relationship between amyloid standardized value uptake ratios (SUVRs) and BOLD modulation was observed such that modulation was weaker in those with moderately elevated SUVRs (e.g. just reaching amyloid-positivity), whereas those with very high SUVRs (e.g. SUVR > 1.5) showed strong modulation. Greater modulation was related to better fluid ability, and this relationship was strongest in younger participants and those with lower amyloid burden. These results support the theory that effective demand-related modulation contributes to healthy cognitive aging, especially in the transition from middle age to older adulthood, whereas high modulation may be dysfunctional in those with substantial amyloid deposition.
Collapse
Affiliation(s)
- Joseph P Hennessee
- Center for Vital Longevity; Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy Dr., Suite 800, Dallas, TX 75235, United States
| | - Tzu-Chen Lung
- Center for Vital Longevity; Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy Dr., Suite 800, Dallas, TX 75235, United States
| | - Denise C Park
- Center for Vital Longevity; Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy Dr., Suite 800, Dallas, TX 75235, United States
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, United States
| | - Kristen M Kennedy
- Center for Vital Longevity; Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy Dr., Suite 800, Dallas, TX 75235, United States
| |
Collapse
|
34
|
Zhang L, Pini L. A divergent pattern in functional connectivity: a transdiagnostic perspective. Neural Regen Res 2024; 19:1885-1886. [PMID: 38227510 DOI: 10.4103/1673-5374.390982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 01/17/2024] Open
Affiliation(s)
- Lu Zhang
- Padova Neuroscience Center, Università degli Studi di Padova, Padova, Italy
| | | |
Collapse
|
35
|
Hu X, Ma YN, Karako K, Song P, Tang W, Xia Y. Guardians of memory: The urgency of early dementia screening in an aging society. Intractable Rare Dis Res 2024; 13:133-137. [PMID: 39220280 PMCID: PMC11350203 DOI: 10.5582/irdr.2024.01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 09/04/2024] Open
Abstract
The global aging population has led to a significant rise in the prevalence of age-related non-communicable diseases such as dementia and other cognitive disorders. In 2019, there were 57.4 million people with dementia worldwide, and this number is projected to triple by 2050. Intervening in and managing 12 potentially modifiable dementia risk factors can prevent or delay the onset and progression of about 40% of dementia cases. Neuroimaging, biomarkers, and advanced neuropsychological testing offer promising pathways for the early detection of dementia. Emphasis should be placed on educating the public about the importance of brain health and the early signs of cognitive impairment, as well as promoting dementia prevention measures. Adopting a healthy lifestyle - including a balanced diet, regular physical exercise, active social engagement, cognitive activities, and avoiding smoking and excessive alcohol consumption - can help reduce the risk of cognitive decline and prevent cognitive disorders. Government policies on dementia prevention and health care, along with early and regular dementia screening programs, can enhance the early identification and management of individuals at risk. In addition, integrating cognitive health assessments into routine medical check-ups is essential for the early screening and management of dementia.
Collapse
Affiliation(s)
- Xiqi Hu
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Ya-nan Ma
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Kenji Karako
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Peipei Song
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Wei Tang
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| |
Collapse
|
36
|
Sadeghi M, Azargoonjahromi A, Nasiri H, Yaghoobi A, Sadeghi M, Chavoshi SS, Baghaeikia S, Mahzari N, Valipour A, Razeghi Oskouei R, Shahkarami F, Amiri F, Mayeli M. Altered brain connectivity in mild cognitive impairment is linked to elevated tau and phosphorylated tau, but not to GAP-43 and Amyloid-β measurements: a resting-state fMRI study. Mol Brain 2024; 17:60. [PMID: 39215335 PMCID: PMC11363600 DOI: 10.1186/s13041-024-01136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Mild Cognitive Impairment (MCI) is a neurological condition characterized by a noticeable decline in cognitive abilities that falls between normal aging and dementia. Along with some biomarkers like GAP-43, Aβ, tau, and P-tau, brain activity and connectivity are ascribed to MCI; however, the link between brain connectivity changes and such biomarkers in MCI is still being investigated. This study explores the relationship between biomarkers like GAP-43, Aβ, tau, and P-tau, and brain connectivity. We enrolled 25 Participants with normal cognitive function and 23 patients with MCI. Levels of GAP-43, Aβ1-42, t-tau, and p-tau181p in the CSF were measured, and functional connectivity measures including ROI-to-voxel (RV) correlations and the DMN RV-ratio were extracted from the resting-state fMRI data. P-values below 0.05 were considered significant. The results showed that in CN individuals, higher connectivity within the both anterior default mode network (aDMN) and posterior DMN (pDMN) was associated with higher levels of the biomarker GAP-43. In contrast, MCI individuals showed significant negative correlations between DMN connectivity and levels of tau and P-tau. Notably, no significant correlations were found between Aβ levels and connectivity measures in either group. These findings suggest that elevated levels of GAP-43 indicate increased functional connectivity in aDMN and pDMN. Conversely, elevated levels of tau and p-tau can disrupt connectivity through various mechanisms. Thus, the accumulation of tau and p-tau can lead to impaired neuronal connectivity, contributing to cognitive decline.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- School of Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hamide Nasiri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arash Yaghoobi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadeghi
- Department of Nuclear Medicine, Children Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shilan Baghaeikia
- Faculty of the Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Nastaran Mahzari
- Department of Pharmacy, School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Arina Valipour
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Romina Razeghi Oskouei
- Department of clinical laboratory sciences, Qazvin University of medical sciences, Qazvin, Iran
| | - Farshad Shahkarami
- Department of Internal Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amiri
- Student Research Committee, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahsa Mayeli
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
García-Colomo A, López-Sanz D, Stam CJ, Hillebrand A, Carrasco-Gómez M, Spuch C, Comis-Tuche M, Maestú F. Minimum spanning tree analysis of unimpaired individuals at risk of Alzheimer's disease. Brain Commun 2024; 6:fcae283. [PMID: 39229485 PMCID: PMC11369931 DOI: 10.1093/braincomms/fcae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/20/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Identifying early and non-invasive biomarkers to detect individuals in the earliest stages of the Alzheimer's disease continuum is crucial. As a result, electrophysiology and plasma biomarkers are emerging as great candidates in this pursuit due to their low invasiveness. This is the first magnetoencephalography study to assess the relationship between minimum spanning tree parameters, an alternative to overcome the comparability and thresholding problem issues characteristic of conventional brain network analyses, and plasma phosphorylated tau231 levels in unimpaired individuals, with different risk levels of Alzheimer's disease. Seventy-six individuals with available magnetoencephalography recordings and phosphorylated tau231 plasma determination were included. The minimum spanning tree for the theta, alpha and beta bands for each subject was obtained, and the leaf fraction, tree hierarchy and diameter were calculated. To study the relationship between these topological parameters and phosphorylated tau231, we performed correlation analyses, for the whole sample and considering the two risk sub-groups separately. Increasing concentrations of phosphorylated tau231 were associated with greater leaf fraction and tree hierarchy values, along with lower diameter values, for the alpha and theta frequency bands. These results emerged for the whole sample and the higher risk group, but not for the lower risk group. Our results indicate that the network topology of cognitively unimpaired individuals with elevated plasma phosphorylated tau231 levels, a marker of Alzheimer's disease pathology and amyloid-β accumulation, is already altered, shifting towards a more integrated network increasing its vulnerability and hub-dependency, mostly in the alpha band. This is indicated by increases in leaf fraction and tree hierarchy, along with reductions in diameter. These results match the initial trajectory proposed by theoretical models of disease progression and network disruption and suggest that changes in brain function and organization begin early on.
Collapse
Affiliation(s)
- Alejandra García-Colomo
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
| | - David López-Sanz
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, 1081 HV Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, 1081 HV Amsterdam, The Netherlands
| | - Martín Carrasco-Gómez
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
- Department of Electronic Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Carlos Spuch
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute (IIS-Galicia Sur), SERGAS-UVIGO, CIBERSAM, 36312 Vigo, Spain
| | - María Comis-Tuche
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute (IIS-Galicia Sur), SERGAS-UVIGO, CIBERSAM, 36312 Vigo, Spain
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
38
|
Nabizadeh F. Disruption in functional networks mediated tau spreading in Alzheimer's disease. Brain Commun 2024; 6:fcae198. [PMID: 38978728 PMCID: PMC11227975 DOI: 10.1093/braincomms/fcae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/27/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Alzheimer's disease may be conceptualized as a 'disconnection syndrome', characterized by the breakdown of neural connectivity within the brain as a result of amyloid-beta plaques, tau neurofibrillary tangles and other factors leading to progressive degeneration and shrinkage of neurons, along with synaptic dysfunction. It has been suggested that misfolded tau proteins spread through functional connections (known as 'prion-like' properties of tau). However, the local effect of tau spreading on the synaptic function and communication between regions is not well understood. I aimed to investigate how the spreading of tau aggregates through connections can locally influence functional connectivity. In total, the imaging data of 211 participants including 117 amyloid-beta-negative non-demented and 94 amyloid-beta-positive non-demented participants were recruited from the Alzheimer's Disease Neuroimaging Initiative. Furthermore, normative resting-state functional MRI connectomes were used to model tau spreading through functional connections, and functional MRI of the included participants was used to determine the effect of tau spreading on functional connectivity. I found that lower functional connectivity to tau epicentres is associated with tau spreading through functional connections in both amyloid-beta-negative and amyloid-beta-positive participants. Also, amyloid-beta-PET in tau epicentres mediated the association of tau spreading and functional connectivity to epicentres suggesting a partial mediating effect of amyloid-beta deposition in tau epicentres on the local effect of tau spreading on functional connectivity. My findings provide strong support for the notion that tau spreading through connection is locally associated with disrupted functional connectivity between tau epicentre and non-epicentre regions independent of amyloid-beta pathology. Also, I defined several groups based on the relationship between tau spreading and functional disconnection, which provides quantitative assessment to investigate susceptibility or resilience to functional disconnection related to tau spreading. I showed that amyloid-beta, other copathologies and the apolipoprotein E epsilon 4 allele can be a leading factor towards vulnerability to tau relative functional disconnection.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran 441265421414, Iran
| |
Collapse
|
39
|
García-Colomo A, Nebreda A, Carrasco-Gómez M, de Frutos-Lucas J, Ramirez-Toraño F, Spuch C, Comis-Tuche M, Bruña R, Alfonsín S, Maestú F. Longitudinal changes in the functional connectivity of individuals at risk of Alzheimer's disease. GeroScience 2024; 46:2989-3003. [PMID: 38172488 PMCID: PMC11009204 DOI: 10.1007/s11357-023-01036-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
First-degree relatives of Alzheimer's disease patients constitute a key population in the search for early markers. Our group identified functional connectivity differences between cognitively unimpaired individuals with and without a family history. In this unprecedented follow-up study, we examine whether family history is associated with a longitudinal increase in the functional connectivity of those regions. Moreover, this is the first work to correlate electrophysiological measures with plasma p-tau231 levels, a known pathology marker, to interpret the nature of the change. We evaluated 69 cognitively unimpaired individuals with a family history of Alzheimer's disease and 28 without, at two different time points, approximately 3 years apart, including resting state magnetoencephalography recordings and plasma p-tau231 determinations. Functional connectivity changes in both precunei and left anterior cingulate cortex in the high-alpha band were studied using non-parametric cluster-based permutation tests. Connectivity values were correlated with p-tau231 levels. Three clusters emerged in individuals with family history, exhibiting a longitudinal increase of connectivity. Notably, the clusters for both precunei bore a striking resemblance to those found in previous cross-sectional studies. The connectivity values at follow-up and the change in connectivity in the left precuneus cluster showed significant positive correlations with p-tau231. This study consolidates the use of electrophysiology, in combination with plasma biomarkers, to monitor healthy individuals at risk of Alzheimer's disease and emphasizes the value of combining noninvasive markers to understand the underlying mechanisms and track disease progression. This could facilitate the design of more effective intervention strategies and accurate progression assessment tools.
Collapse
Affiliation(s)
- Alejandra García-Colomo
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain.
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain.
| | - Alberto Nebreda
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
| | - Martín Carrasco-Gómez
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain.
- Department of Electronic Engineering, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | - Jaisalmer de Frutos-Lucas
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
| | - Federico Ramirez-Toraño
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
| | - Carlos Spuch
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute (IIS-Galicia Sur), SERGAS-UVIGO, CIBERSAM, Vigo, Spain
| | - María Comis-Tuche
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute (IIS-Galicia Sur), SERGAS-UVIGO, CIBERSAM, Vigo, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlo.s (IdISSC), 28240, Madrid, Spain
- Department of Radiology, Universidad Complutense de Madrid, 28240, Madrid, Spain
| | - Soraya Alfonsín
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlo.s (IdISSC), 28240, Madrid, Spain
| |
Collapse
|
40
|
Carrasco-Gómez M, García-Colomo A, Nebreda A, Bruña R, Santos A, Maestú F. Dynamic functional connectivity is modulated by the amount of p-Tau231 in blood in cognitively intact participants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596323. [PMID: 38854147 PMCID: PMC11160744 DOI: 10.1101/2024.05.29.596323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Electrophysiology and plasma biomarkers are early and non-invasive candidates for Alzheimer's disease detection. The purpose of this paper is to evaluate changes in dynamic functional connectivity measured with magnetoencephalography, associated with the plasma pathology marker p-tau231 in unimpaired adults. METHODS 73 individuals were included. Static and dynamic functional connectivity were calculated using leakage corrected amplitude envelope correlation. Each source's strength entropy across trials was calculated. A data-driven statistical analysis was performed to find the association between functional connectivity and plasma p-tau231 levels. Regression models were used to assess the influence of other variables over the clusters' connectivity. RESULTS Frontotemporal dynamic connectivity positively associated with p-tau231 levels. Linear regression models identified pathological, functional and structural factors that influence dynamic functional connectivity. DISCUSSION These results expand previous literature on dynamic functional connectivity in healthy individuals at risk of AD, highlighting its usefulness as an early, non-invasive and more sensitive biomarker.
Collapse
Affiliation(s)
- Martín Carrasco-Gómez
- Department of Electronic Engineering, ETSIT, Universidad Politécnica de Madrid, 28040, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra García-Colomo
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
| | - Alberto Nebreda
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28240, Madrid, Spain
- Department of Radiology, Universidad Complutense de Madrid, 28240, Madrid, Spain
| | - Andrés Santos
- Department of Electronic Engineering, ETSIT, Universidad Politécnica de Madrid, 28040, Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28240, Madrid, Spain
| |
Collapse
|
41
|
Iordan AD, Ploutz-Snyder R, Ghosh B, Rahman-Filipiak A, Koeppe R, Peltier S, Giordani B, Albin RL, Hampstead BM. Salience Network Segregation Mediates the Effect of Tau Pathology on Mild Behavioral Impairment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.26.24307943. [PMID: 38854100 PMCID: PMC11160832 DOI: 10.1101/2024.05.26.24307943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
INTRODUCTION A recently developed mild behavioral impairment (MBI) diagnostic framework standardizes the early characterization of neuropsychiatric symptoms in older adults. However, the links between MBI, brain function, and Alzheimer's disease (AD) biomarkers are unclear. METHODS Using data from 128 participants with diagnosis of amnestic mild cognitive impairment and mild dementia - Alzheimer's type, we test a novel model assessing direct relationships between AD biomarker status and MBI symptoms, as well as mediated effects through segregation of the salience and default-mode networks. RESULTS We identified a mediated effect of tau positivity on MBI through functional segregation of the salience network from the other high-level, association networks. There were no direct effects of AD biomarkers status on MBI. DISCUSSION Our findings suggest an indirect role of tau pathology in MBI through brain network dysfunction and emphasize the role of the salience network in mediating relationships between neuropathological changes and behavioral manifestations.
Collapse
Affiliation(s)
- Alexandru D. Iordan
- Research Program on Cognition and Neuromodulation Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, 4251 Plymouth Rd., Ann Arbor, MI, 48105, USA
| | - Robert Ploutz-Snyder
- Applied Biostatistics Laboratory, School of Nursing, University of Michigan, 426 N Ingalls St, Ann Arbor, MI 48109, USA
| | - Bidisha Ghosh
- Applied Biostatistics Laboratory, School of Nursing, University of Michigan, 426 N Ingalls St, Ann Arbor, MI 48109, USA
| | - Annalise Rahman-Filipiak
- Research Program on Cognition and Neuromodulation Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, 4251 Plymouth Rd., Ann Arbor, MI, 48105, USA
| | - Robert Koeppe
- Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, USA
| | - Scott Peltier
- Functional MRI Laboratory, University of Michigan, 2360 Bonisteel Blvd, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| | - Bruno Giordani
- Research Program on Cognition and Neuromodulation Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, 4251 Plymouth Rd., Ann Arbor, MI, 48105, USA
- Department of Neurology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, USA
| | - Roger L. Albin
- Department of Neurology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, USA
- Neurology Service & GRECC, VAAAHS, 2215 Fuller Rd, Ann Arbor, MI 48105, USA
| | - Benjamin M. Hampstead
- Research Program on Cognition and Neuromodulation Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, 4251 Plymouth Rd., Ann Arbor, MI, 48105, USA
- VA Ann Arbor Healthcare System, Neuropsychology Section, Mental Health Service, 2215 Fuller Rd, Ann Arbor, MI 48105, USA
| |
Collapse
|
42
|
L'esperance OJ, McGhee J, Davidson G, Niraula S, Smith AS, Sosunov A, Yan SS, Subramanian J. Functional connectivity favors aberrant visual network c-Fos expression accompanied by cortical synapse loss in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.05.522900. [PMID: 36712054 PMCID: PMC9881957 DOI: 10.1101/2023.01.05.522900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While Alzheimer's disease (AD) has been extensively studied with a focus on cognitive networks, sensory network dysfunction has received comparatively less attention despite compelling evidence of its significance in both Alzheimer's disease patients and mouse models. We recently found that neurons in the primary visual cortex of an AD mouse model expressing human amyloid protein precursor with the Swedish and Indiana mutations (hAPP mutations) exhibit aberrant c-Fos expression and altered synaptic structures at a pre-amyloid plaque stage. However, it is unclear whether aberrant c-Fos expression and synaptic pathology vary across the broader visual network and to what extent c-Fos abnormality in the cortex is inherited through functional connectivity. Using both sexes of 4-6-month AD model mice with hAPP mutations (J20[PDGF-APPSw, Ind]), we found that cortical regions of the visual network show aberrant c-Fos expression and impaired experience-dependent modulation while subcortical regions do not. Interestingly, the average network-wide functional connectivity strength of a brain region in wild type (WT) mice significantly predicts its aberrant c-Fos expression, which in turn correlates with impaired experience-dependent modulation in the AD model. Using in vivo two-photon and ex vivo imaging of presynaptic termini, we observed a subtle yet selective weakening of excitatory cortical synapses in the visual cortex. Intriguingly, the change in the size distribution of cortical boutons in the AD model is downscaled relative to those in WT mice, suggesting that synaptic weakening may reflect an adaptation to aberrant activity. Our observations suggest that cellular and synaptic abnormalities in the AD model represent a maladaptive transformation of the baseline physiological state seen in WT conditions rather than entirely novel and unrelated manifestations.
Collapse
|
43
|
Seoane S, van den Heuvel M, Acebes Á, Janssen N. The subcortical default mode network and Alzheimer's disease: a systematic review and meta-analysis. Brain Commun 2024; 6:fcae128. [PMID: 38665961 PMCID: PMC11043657 DOI: 10.1093/braincomms/fcae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The default mode network is a central cortical brain network suggested to play a major role in several disorders and to be particularly vulnerable to the neuropathological hallmarks of Alzheimer's disease. Subcortical involvement in the default mode network and its alteration in Alzheimer's disease remains largely unknown. We performed a systematic review, meta-analysis and empirical validation of the subcortical default mode network in healthy adults, combined with a systematic review, meta-analysis and network analysis of the involvement of subcortical default mode areas in Alzheimer's disease. Our results show that, besides the well-known cortical default mode network brain regions, the default mode network consistently includes subcortical regions, namely the thalamus, lobule and vermis IX and right Crus I/II of the cerebellum and the amygdala. Network analysis also suggests the involvement of the caudate nucleus. In Alzheimer's disease, we observed a left-lateralized cluster of decrease in functional connectivity which covered the medial temporal lobe and amygdala and showed overlap with the default mode network in a portion covering parts of the left anterior hippocampus and left amygdala. We also found an increase in functional connectivity in the right anterior insula. These results confirm the consistency of subcortical contributions to the default mode network in healthy adults and highlight the relevance of the subcortical default mode network alteration in Alzheimer's disease.
Collapse
Affiliation(s)
- Sara Seoane
- Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
- Institute of Biomedical Technologies (ITB), University of La Laguna, Tenerife 38200, Spain
- Instituto Universitario de Neurociencia (IUNE), University of La Laguna, Tenerife 38200, Spain
| | - Martijn van den Heuvel
- Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Ángel Acebes
- Institute of Biomedical Technologies (ITB), University of La Laguna, Tenerife 38200, Spain
- Department of Basic Medical Sciences, University of La Laguna, Tenerife 38200, Spain
| | - Niels Janssen
- Institute of Biomedical Technologies (ITB), University of La Laguna, Tenerife 38200, Spain
- Instituto Universitario de Neurociencia (IUNE), University of La Laguna, Tenerife 38200, Spain
- Department of Cognitive, Social and Organizational Psychology, University of La Laguna, Tenerife 38200, Spain
| |
Collapse
|
44
|
Bueichekú E, Diez I, Gagliardi G, Kim CM, Mimmack K, Sepulcre J, Vannini P. Multi-modal Neuroimaging Phenotyping of Mnemonic Anosognosia in the Aging Brain. COMMUNICATIONS MEDICINE 2024; 4:65. [PMID: 38580832 PMCID: PMC10997795 DOI: 10.1038/s43856-024-00497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Unawareness is a behavioral condition characterized by a lack of self-awareness of objective memory decline. In the context of Alzheimer's Disease (AD), unawareness may develop in predementia stages and contributes to disease severity and progression. Here, we use in-vivo multi-modal neuroimaging to profile the brain phenotype of individuals presenting altered self-awareness of memory during aging. METHODS Amyloid- and tau-PET (N = 335) and resting-state functional MRI (N = 713) imaging data of individuals from the Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4)/Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) Study were used in this research. We applied whole-brain voxel-wise and region-of-interest analyses to characterize the cortical intersections of tau, amyloid, and functional connectivity networks underlying unawareness in the aging brain compared to aware, complainer and control groups. RESULTS Individuals with unawareness present elevated amyloid and tau burden in midline core regions of the default mode network compared to aware, complainer or control individuals. Unawareness is characterized by an altered network connectivity pattern featuring hyperconnectivity in the medial anterior prefrontal cortex and posterior occipito-parietal regions co-locating with amyloid and tau deposition. CONCLUSIONS Unawareness is an early behavioral biomarker of AD pathology. Failure of the self-referential system in unawareness of memory decline can be linked to amyloid and tau burden, along with functional network connectivity disruptions, in several medial frontal and parieto-occipital areas of the human brain.
Collapse
Affiliation(s)
- Elisenda Bueichekú
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Geoffroy Gagliardi
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chan-Mi Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kayden Mimmack
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
- Department of Radiology, Yale PET Center, Yale Medical School, Yale University, New Haven, CT, USA.
| | - Patrizia Vannini
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Cabrera-Álvarez J, Stefanovski L, Martin L, Susi G, Maestú F, Ritter P. A Multiscale Closed-Loop Neurotoxicity Model of Alzheimer's Disease Progression Explains Functional Connectivity Alterations. eNeuro 2024; 11:ENEURO.0345-23.2023. [PMID: 38565295 PMCID: PMC11026343 DOI: 10.1523/eneuro.0345-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 04/04/2024] Open
Abstract
The accumulation of amyloid-β (Aβ) and hyperphosphorylated-tau (hp-tau) are two classical histopathological biomarkers in Alzheimer's disease (AD). However, their detailed interactions with the electrophysiological changes at the meso- and macroscale are not yet fully understood. We developed a mechanistic multiscale model of AD progression, linking proteinopathy to its effects on neural activity and vice-versa. We integrated a heterodimer model of prion-like protein propagation and a brain network model of Jansen-Rit neural masses derived from human neuroimaging data whose parameters varied due to neurotoxicity. Results showed that changes in inhibition guided the electrophysiological alterations found in AD, and these changes were mainly attributed to Aβ effects. Additionally, we found a causal disconnection between cellular hyperactivity and interregional hypersynchrony contrary to previous beliefs. Finally, we demonstrated that early Aβ and hp-tau depositions' location determine the spatiotemporal profile of the proteinopathy. The presented model combines the molecular effects of both Aβ and hp-tau together with a mechanistic protein propagation model and network effects within a closed-loop model. This holds the potential to enlighten the interplay between AD mechanisms on various scales, aiming to develop and test novel hypotheses on the contribution of different AD-related variables to the disease evolution.
Collapse
Affiliation(s)
- Jesús Cabrera-Álvarez
- Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón 28223, Spain
- Centre for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid 28040, Spain
| | - Leon Stefanovski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Leon Martin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Gianluca Susi
- Centre for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid 28040, Spain
- Department of Structure of Matter, Thermal Physics and Electronics, Complutense University of Madrid, Madrid 28040, Spain
| | - Fernando Maestú
- Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón 28223, Spain
- Centre for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid 28040, Spain
| | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin 10115, Germany
| |
Collapse
|
46
|
Décarie-Labbé L, Dialahy IZ, Corriveau-Lecavalier N, Mellah S, Belleville S. Examining the relationship between brain activation and proxies of disease severity using quantile regression in individuals at risk of Alzheimer's disease. Cortex 2024; 173:234-247. [PMID: 38432175 DOI: 10.1016/j.cortex.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/27/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024]
Abstract
Previous studies have reported a pattern of hyperactivation in the pre-dementia phase of Alzheimer's disease (AD), followed by hypoactivation in later stages of the disease. This pattern was modeled as an inverse U-shape function between activation and markers of disease severity. In this study, we used quantile regression to model the association between task-related brain activation in AD signature regions and three markers of disease severity (hippocampal volume, cortical thickness, and associative memory). This approach offers distinct advantages over standard regression models as it analyzes the relationship between brain activation and disease severity across various levels of brain activation. Participants were 54 older adults with subjective cognitive decline+ (SCD+) or mild cognitive impairment (MCI) from the CIMA-Q cohort. The analysis revealed an inverse U-shape quadratic function depicting the relationship between disease severity markers and the activation of the left superior parietal region, while a linear relationship was observed for activation of the hippocampal and temporal regions. Quantile differences were observed for temporal and parietal activation, with more pronounced effects observed in the higher quantiles of activation. When comparing quantiles, we found that higher quantile of activation featured a greater number of individuals with SCD+ compared to mild cognitive impairment (MCI). Results are globally consistent with the presence of an inverse-U shape function of activation in relation to disease severity. They study also underscores the utility of employing quantile regression modeling as the modeling approach revealed the presence of non-homogeneous effects across various quantiles.
Collapse
Affiliation(s)
- Laurie Décarie-Labbé
- Research Center, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada; Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Isaora Zefania Dialahy
- Research Center, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
| | | | - Samira Mellah
- Research Center, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
| | - Sylvie Belleville
- Research Center, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada; Department of Psychology, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
47
|
Almeida VN. Somatostatin and the pathophysiology of Alzheimer's disease. Ageing Res Rev 2024; 96:102270. [PMID: 38484981 DOI: 10.1016/j.arr.2024.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Among the central features of Alzheimer's disease (AD) progression are altered levels of the neuropeptide somatostatin (SST), and the colocalisation of SST-positive interneurons (SST-INs) with amyloid-β plaques, leading to cell death. In this theoretical review, I propose a molecular model for the pathogenesis of AD based on SST-IN hypofunction and hyperactivity. Namely, hypofunctional and hyperactive SST-INs struggle to control hyperactivity in medial regions in early stages, leading to axonal Aβ production through excessive presynaptic GABAB inhibition, GABAB1a/APP complex downregulation and internalisation. Concomitantly, excessive SST-14 release accumulates near SST-INs in the form of amyloids, which bind to Aβ to form toxic mixed oligomers. This leads to differential SST-IN death through excitotoxicity, further disinhibition, SST deficits, and increased Aβ release, fibrillation and plaque formation. Aβ plaques, hyperactive networks and SST-IN distributions thereby tightly overlap in the brain. Conversely, chronic stimulation of postsynaptic SST2/4 on gulutamatergic neurons by hyperactive SST-INs promotes intense Mitogen-Activated Protein Kinase (MAPK) p38 activity, leading to somatodendritic p-tau staining and apoptosis/neurodegeneration - in agreement with a near complete overlap between p38 and neurofibrillary tangles. This model is suitable to explain some of the principal risk factors and markers of AD progression, including mitochondrial dysfunction, APOE4 genotype, sex-dependent vulnerability, overactive glial cells, dystrophic neurites, synaptic/spine losses, inter alia. Finally, the model can also shed light on qualitative aspects of AD neuropsychology, especially within the domains of spatial and declarative (episodic, semantic) memory, under an overlying pattern of contextual indiscrimination, ensemble instability, interference and generalisation.
Collapse
Affiliation(s)
- Victor N Almeida
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo (USP), Brazil; Faculty of Languages, Federal University of Minas Gerais (UFMG), Brazil.
| |
Collapse
|
48
|
Ziontz J, Harrison TM, Chen X, Giorgio J, Adams JN, Wang Z, Jagust W, Alzheimer’s Disease Neuroimaging Initiative. Behaviorally meaningful functional networks mediate the effect of Alzheimer's pathology on cognition. Cereb Cortex 2024; 34:bhae134. [PMID: 38602736 PMCID: PMC11008686 DOI: 10.1093/cercor/bhae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Tau pathology is associated with cognitive impairment in both aging and Alzheimer's disease, but the functional and structural bases of this relationship remain unclear. We hypothesized that the integrity of behaviorally meaningful functional networks would help explain the relationship between tau and cognitive performance. Using resting state fMRI, we identified unique networks related to episodic memory and executive function cognitive domains. The episodic memory network was particularly related to tau pathology measured with positron emission tomography in the entorhinal and temporal cortices. Further, episodic memory network strength mediated the relationship between tau pathology and cognitive performance above and beyond neurodegeneration. We replicated the association between these networks and tau pathology in a separate cohort of older adults, including both cognitively unimpaired and mildly impaired individuals. Together, these results suggest that behaviorally meaningful functional brain networks represent a functional mechanism linking tau pathology and cognition.
Collapse
Affiliation(s)
- Jacob Ziontz
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
| | - Xi Chen
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
| | - Joseph Giorgio
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
- School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, University Dr, Callaghan, Newcastle, NSW 2305, Australia
| | - Jenna N Adams
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, 1400 Biological Sciences III, University of California, Irvine, Irvine, CA 92697, United States
| | - Zehao Wang
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
| | - William Jagust
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | | |
Collapse
|
49
|
Snytte J, Setton R, Mwilambwe-Tshilobo L, Natasha Rajah M, Sheldon S, Turner GR, Spreng RN. Structure-Function Interactions in the Hippocampus and Prefrontal Cortex Are Associated with Episodic Memory in Healthy Aging. eNeuro 2024; 11:ENEURO.0418-23.2023. [PMID: 38479810 PMCID: PMC10972739 DOI: 10.1523/eneuro.0418-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 04/01/2024] Open
Abstract
Aging comes with declines in episodic memory. Memory decline is accompanied by structural and functional alterations within key brain regions, including the hippocampus and lateral prefrontal cortex, as well as their affiliated default and frontoparietal control networks. Most studies have examined how structural or functional differences relate to memory independently. Here we implemented a multimodal, multivariate approach to investigate how interactions between individual differences in structural integrity and functional connectivity relate to episodic memory performance in healthy aging. In a sample of younger (N = 111; mean age, 22.11 years) and older (N = 78; mean age, 67.29 years) adults, we analyzed structural MRI and multiecho resting-state fMRI data. Participants completed measures of list recall (free recall of words from a list), associative memory (cued recall of paired words), and source memory (cued recall of the trial type, or the sensory modality in which a word was presented). The findings revealed that greater structural integrity of the posterior hippocampus and middle frontal gyrus were linked with a pattern of increased within-network connectivity, which together were related to better associative and source memory in older adulthood. Critically, older adults displayed better memory performance in the context of decreased hippocampal volumes when structural differences were accompanied by functional reorganization. This functional reorganization was characterized by a pruning of connections between the hippocampus and the limbic and frontoparietal control networks. Our work provides insight into the neural mechanisms that underlie age-related compensation, revealing that the functional architecture associated with better memory performance in healthy aging is tied to the structural integrity of the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Jamie Snytte
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Roni Setton
- Department of Psychology, Harvard University, Cambridge, Massachusetts 02138
| | - Laetitia Mwilambwe-Tshilobo
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Psychology, Princeton University, Princeton, New Jersey 08540
| | - M Natasha Rajah
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada
| | - R Nathan Spreng
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
50
|
Kim J, Kim S, Um YH, Wang SM, Kim REY, Choe YS, Lee J, Kim D, Lim HK, Lee CU, Kang DW. Associations between Education Years and Resting-state Functional Connectivity Modulated by APOE ε4 Carrier Status in Cognitively Normal Older Adults. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:169-181. [PMID: 38247423 PMCID: PMC10811405 DOI: 10.9758/cpn.23.1113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 01/23/2024]
Abstract
Objective : Cognitive reserve has emerged as a concept to explain the variable expression of clinical symptoms in the pathology of Alzheimer's disease (AD). The association between years of education, a proxy of cognitive reserve, and resting-state functional connectivity (rFC), a representative intermediate phenotype, has not been explored in the preclinical phase, considering risk factors for AD. We aimed to evaluate whether the relationship between years of education and rFC in cognitively preserved older adults differs depending on amyloid-beta deposition and APOE ε4 carrier status as effect modifiers. Methods : A total of 121 participants underwent functional magnetic resonance imaging, [18F] flutemetamol positron emission tomography-computed tomography, APOE genotyping, and a neuropsychological battery. Potential interactions between years of education and AD risk factors for rFC of AD-vulnerable neural networks were assessed with whole-brain voxel-wise analysis. Results : We found a significant education years-by-APOE ε4 carrier status interaction for the rFC from the seed region of the central executive (CEN) and dorsal attention networks. Moreover, there was a significant interaction of rFC between right superior occipital gyrus and the CEN seed region by APOE ε4 carrier status for memory performances and overall cognitive function. Conclusion : In preclinical APOE ε4 carriers, higher years of education were associated with higher rFC of the AD vulnerable network, but this contributed to lower cognitive function. These results contribute to a deeper understanding of the impact of cognitive reserve on sensitive functional intermediate phenotypic markers in the preclinical phase of AD.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sunghwan Kim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | - Jiyeon Lee
- Research Institute, NEUROPHET Inc., Seoul, Korea
| | | | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Research Institute, NEUROPHET Inc., Seoul, Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|