1
|
Rudisell E, Weant K, Porcu A. Chronotherapeutic considerations of benzodiazepine administration for agitation management in the emergency department. BMJ MENTAL HEALTH 2025; 28:e301189. [PMID: 40032552 PMCID: PMC11877154 DOI: 10.1136/bmjment-2024-301189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
OBJECTIVE Agitation in the emergency department (ED) affects up to 2.6% of encounters, posing significant risks to patients and caregivers. This review investigates the impact of circadian rhythms on benzodiazepine (BZD) pharmacokinetics and pharmacodynamics, focusing on how dosing time influences outcomes in managing acute agitation. METHODS A comprehensive literature search was performed using PubMed and Google Scholar (updated April 2024) to identify studies on BZD use in adult ED patients for acute agitation. Search terms included "antipsychotic agents," "lorazepam," "midazolam," "diazepam," and "emergency service." Studies focusing solely on substance intoxication were excluded. Priority was given to double-blind clinical trials, while open-label studies were included if no double-blind data were available. Referenced citations from identified publications were also reviewed. RESULTS Twenty-nine studies met the inclusion criteria: 16 randomised, double-blinded placebo-controlled trials, 5 prospective open-label studies and 8 retrospective reviews. Of these, 22 studies either did not report the time of day of patient recruitment or recruited patients over a year-long time frame. Four studies that specified the time of day of patient recruitment suggested a possible circadian variation in BZD sedation efficacy. Additionally, three studies that reported recruitment months revealed potential seasonal patterns in sedation requirements and efficacy. CONCLUSIONS Circadian rhythms appear to influence BZD metabolism and therapeutic effects, which could have implications for optimising treatment strategies. Aligning BZD dosing schemes with biological timing may enhance treatment outcomes and minimise adverse effects. Further research is needed to validate these findings and develop personalised chronopharmacotherapy strategies for acute agitation in the ED.
Collapse
Affiliation(s)
- Emily Rudisell
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, South Carolina, USA
- Department of Clinical Pharmacy and Outcome Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Kyle Weant
- Department of Clinical Pharmacy and Outcome Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Alessandra Porcu
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
2
|
Welle TM, Smith KR. Release your inhibitions: The cell biology of GABAergic postsynaptic plasticity. Curr Opin Neurobiol 2025; 90:102952. [PMID: 39721557 PMCID: PMC11839402 DOI: 10.1016/j.conb.2024.102952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
GABAergic synaptic inhibition controls circuit function by regulating neuronal plasticity, excitability, and firing. To achieve these goals, inhibitory synapses themselves undergo several forms of plasticity via diverse mechanisms, strengthening and weakening phasic inhibition in response to numerous activity-induced stimuli. These mechanisms include changing the number and arrangement of functional GABAARs within the inhibitory postsynaptic domain (iPSD), which can profoundly regulate inhibitory synapse strength. Here, we explore recent advances in our molecular understanding of inhibitory postsynaptic plasticity, with a focus on modulation of the trafficking, protein-protein interactions, nanoscale-organization, and posttranscriptional regulation of GABAARs and iPSD proteins. What has emerged is a complex mechanistic picture of how synaptic inhibition is controlled, with critical ramifications for cognition under typical and pathogenic conditions.
Collapse
Affiliation(s)
- Theresa M Welle
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
3
|
Cuinat S, Bézieau S, Deb W, Mercier S, Vignard V, Isidor B, Küry S, Ebstein F. Understanding neurodevelopmental proteasomopathies as new rare disease entities: A review of current concepts, molecular biomarkers, and perspectives. Genes Dis 2024; 11:101130. [PMID: 39220754 PMCID: PMC11364055 DOI: 10.1016/j.gendis.2023.101130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/19/2023] [Indexed: 09/04/2024] Open
Abstract
The recent advances in high throughput sequencing technology have drastically changed the practice of medical diagnosis, allowing for rapid identification of hundreds of genes causing human diseases. This unprecedented progress has made clear that most forms of intellectual disability that affect more than 3% of individuals worldwide are monogenic diseases. Strikingly, a substantial fraction of the mendelian forms of intellectual disability is associated with genes related to the ubiquitin-proteasome system, a highly conserved pathway made up of approximately 1200 genes involved in the regulation of protein homeostasis. Within this group is currently emerging a new class of neurodevelopmental disorders specifically caused by proteasome pathogenic variants which we propose to designate "neurodevelopmental proteasomopathies". Besides cognitive impairment, these diseases are typically associated with a series of syndromic clinical manifestations, among which facial dysmorphism, motor delay, and failure to thrive are the most prominent ones. While recent efforts have been made to uncover the effects exerted by proteasome variants on cell and tissue landscapes, the molecular pathogenesis of neurodevelopmental proteasomopathies remains ill-defined. In this review, we discuss the cellular changes typically induced by genomic alterations in proteasome genes and explore their relevance as biomarkers for the diagnosis, management, and potential treatment of these new rare disease entities.
Collapse
Affiliation(s)
- Silvestre Cuinat
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Virginie Vignard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Frédéric Ebstein
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| |
Collapse
|
4
|
Wen W, Turrigiano GG. Keeping Your Brain in Balance: Homeostatic Regulation of Network Function. Annu Rev Neurosci 2024; 47:41-61. [PMID: 38382543 DOI: 10.1146/annurev-neuro-092523-110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
To perform computations with the efficiency necessary for animal survival, neocortical microcircuits must be capable of reconfiguring in response to experience, while carefully regulating excitatory and inhibitory connectivity to maintain stable function. This dynamic fine-tuning is accomplished through a rich array of cellular homeostatic plasticity mechanisms that stabilize important cellular and network features such as firing rates, information flow, and sensory tuning properties. Further, these functional network properties can be stabilized by different forms of homeostatic plasticity, including mechanisms that target excitatory or inhibitory synapses, or that regulate intrinsic neuronal excitability. Here we discuss which aspects of neocortical circuit function are under homeostatic control, how this homeostasis is realized on the cellular and molecular levels, and the pathological consequences when circuit homeostasis is impaired. A remaining challenge is to elucidate how these diverse homeostatic mechanisms cooperate within complex circuits to enable them to be both flexible and stable.
Collapse
Affiliation(s)
- Wei Wen
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA;
| | - Gina G Turrigiano
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA;
| |
Collapse
|
5
|
Garcia JD, Wolfe SE, Stewart AR, Tiemeier E, Gookin SE, Guerrero MB, Quillinan N, Smith KR. Distinct mechanisms drive sequential internalization and degradation of GABA ARs during global ischemia and reperfusion injury. iScience 2023; 26:108061. [PMID: 37860758 PMCID: PMC10582478 DOI: 10.1016/j.isci.2023.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Synaptic inhibition is critical for controlling neuronal excitability and function. During global cerebral ischemia (GCI), inhibitory synapses are rapidly eliminated, causing hyper-excitability which contributes to cell-death and the pathophysiology of disease. Sequential disassembly of inhibitory synapses begins within minutes of ischemia onset: GABAARs are rapidly trafficked away from the synapse, the gephyrin scaffold is removed, followed by loss of the presynaptic terminal. GABAARs are endocytosed during GCI, but how this process accompanies synapse disassembly remains unclear. Here, we define the precise trafficking itinerary of GABAARs during the initial stages of GCI, placing them in the context of rapid synapse elimination. Ischemia-induced GABAAR internalization quickly follows their initial dispersal from the synapse, and is controlled by PP1α signaling. During reperfusion injury, GABAARs are then trafficked to lysosomes for degradation, leading to permanent removal of synaptic GABAARs and contributing to the profound reduction in synaptic inhibition observed hours following ischemia onset.
Collapse
Affiliation(s)
- Joshua D. Garcia
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Sarah E. Wolfe
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Amber R. Stewart
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Erika Tiemeier
- Department of Anesthesiology, Neuronal Injury Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Sara E. Gookin
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Mayra Bueno Guerrero
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Nidia Quillinan
- Department of Anesthesiology, Neuronal Injury Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Katharine R. Smith
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Nuwer JL, Brady ML, Povysheva NV, Coyne A, Jacob TC. Sustained treatment with an α5 GABA A receptor negative allosteric modulator delays excitatory circuit development while maintaining GABAergic neurotransmission. Neuropharmacology 2021; 197:108724. [PMID: 34284042 DOI: 10.1016/j.neuropharm.2021.108724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023]
Abstract
α5 subunit GABA type A receptor (GABAAR) preferring negative allosteric modulators (NAMs) are cognitive enhancers with antidepressant-like effects. α5-NAM success in treating mouse models of neurodevelopmental disorders with excessive inhibition have led to Phase 2 clinical trials for Down syndrome. Despite in vivo efficacy, no study has examined the effects of continued α5-NAM treatment on inhibitory and excitatory synapse plasticity to identify mechanisms of action. Here we used L-655,708, an imidazobenzodiazepine that acts as a highly selective but weak α5-NAM, to investigate the impact of sustained treatment on hippocampal neuron synapse and dendrite development. We show that 2-day pharmacological reduction of α5-GABAAR signaling from DIV12-14, when GABAARs contribute to depolarization, delays dendritic spine maturation and the NMDA receptor (NMDAR) GluN2B/GluN2A developmental shift. In contrast, α5-NAM treatment from DIV19-21, when hyperpolarizing GABAAR signaling predominates, enhances surface synaptic GluN2A while decreasing GluN2B. Despite changes in NMDAR subtype surface levels and localization, total levels of key excitatory synapse proteins were largely unchanged, and mEPSCs were unaltered. Importantly, 2-day α5-NAM treatment does not alter the total surface levels or distribution of α5-GABAARs, reduce the gephyrin inhibitory synaptic scaffold, or impair phasic or tonic inhibition. Furthermore, α5-NAM inhibition of the GABAAR tonic current in mature neurons is maintained after 2-day α5-NAM treatment, suggesting reduced tolerance liability, in contrast to other clinically relevant GABAAR-targeting drugs such as benzodiazepines. Together, these results show that α5-GABAARs contribute to dendritic spine maturation and excitatory synapse development via a NMDAR dependent mechanism without perturbing overall neuronal excitability.
Collapse
Affiliation(s)
- Jessica L Nuwer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Megan L Brady
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadya V Povysheva
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda Coyne
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Lombardi JP, Kinzlmaier DA, Jacob TC. Visualizing GABA A Receptor Trafficking Dynamics with Fluorogenic Protein Labeling. ACTA ACUST UNITED AC 2021; 92:e97. [PMID: 32364672 DOI: 10.1002/cpns.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is increasingly evident that neurotransmitter receptors, including ionotropic GABA A receptors (GABAARs), exhibit highly dynamic trafficking and cell surface mobility. Regulated trafficking to and from the surface is a critical determinant of GABAAR neurotransmission. Receptors delivered by exocytosis diffuse laterally in the plasma membrane, with tethering and reduced movement at synapses occurring through receptor interactions with the subsynaptic scaffold. After diffusion away from synapses, receptors are internalized by clathrin-dependent endocytosis at extrasynaptic sites and can be either recycled back to the cell membrane or degraded in lysosomes. To study the dynamics of these key trafficking events in neurons, we have developed novel optical methods based around receptors containing a dual-tagged γ2 subunit (γ2pHFAP) in combination with fluorogen dyes. Specifically, the GABAAR γ2 subunit is tagged with a pH-sensitive green fluorescent protein and a fluorogen-activating peptide (FAP). The FAP allows receptor labeling with fluorogen dyes that are optically silent until bound to the FAP. Combining FAP and fluorescent imaging with organelle labeling allows novel and accurate measurement of receptor turnover and accumulation into intracellular compartments under basal conditions in scenarios ranging from in vitro seizure models to drug exposure paradigms. Here we provide a protocol to track and quantify receptors in transit from the neuronal surface to endosomes and lysosomes. This protocol is readily applicable to cell lines and primary cells, allowing rapid quantitative measurements of receptor surface levels and postendocytic trafficking decisions. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Preparation of cortical neuronal cultures for imaging assays Basic Protocol 2: Surface receptor internalization and trafficking to early endosomes Basic Protocol 3: Measurement of receptor steady state surface level, synaptic level, and lysosomal targeting.
Collapse
Affiliation(s)
- Jacob P Lombardi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A Kinzlmaier
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Pinto MJ, Tomé D, Almeida RD. The Ubiquitinated Axon: Local Control of Axon Development and Function by Ubiquitin. J Neurosci 2021; 41:2796-2813. [PMID: 33789876 PMCID: PMC8018891 DOI: 10.1523/jneurosci.2251-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 02/01/2023] Open
Abstract
Ubiquitin tagging sets protein fate. With a wide range of possible patterns and reversibility, ubiquitination can assume many shapes to meet specific demands of a particular cell across time and space. In neurons, unique cells with functionally distinct axons and dendrites harboring dynamic synapses, the ubiquitin code is exploited at the height of its power. Indeed, wide expression of ubiquitination and proteasome machinery at synapses, a diverse brain ubiquitome, and the existence of ubiquitin-related neurodevelopmental diseases support a fundamental role of ubiquitin signaling in the developing and mature brain. While special attention has been given to dendritic ubiquitin-dependent control, how axonal biology is governed by this small but versatile molecule has been considerably less discussed. Herein, we set out to explore the ubiquitin-mediated spatiotemporal control of an axon's lifetime: from its differentiation and growth through presynaptic formation, function, and pruning.
Collapse
Affiliation(s)
- Maria J Pinto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Diogo Tomé
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ramiro D Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
9
|
Davenport CM, Rajappa R, Katchan L, Taylor CR, Tsai MC, Smith CM, de Jong JW, Arnold DB, Lammel S, Kramer RH. Relocation of an Extrasynaptic GABA A Receptor to Inhibitory Synapses Freezes Excitatory Synaptic Strength and Preserves Memory. Neuron 2021; 109:123-134.e4. [PMID: 33096025 PMCID: PMC7790995 DOI: 10.1016/j.neuron.2020.09.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/21/2020] [Accepted: 09/25/2020] [Indexed: 11/27/2022]
Abstract
The excitatory synapse between hippocampal CA3 and CA1 pyramidal neurons exhibits long-term potentiation (LTP), a positive feedback process implicated in learning and memory in which postsynaptic depolarization strengthens synapses, promoting further depolarization. Without mechanisms for interrupting positive feedback, excitatory synapses could strengthen inexorably, corrupting memory storage. Here, we reveal a hidden form of inhibitory synaptic plasticity that prevents accumulation of excitatory LTP. We developed a knockin mouse that allows optical control of endogenous α5-subunit-containing γ-aminobutyric acid (GABA)A receptors (α5-GABARs). Induction of excitatory LTP relocates α5-GABARs, which are ordinarily extrasynaptic, to inhibitory synapses, quashing further NMDA receptor activation necessary for inducing more excitatory LTP. Blockade of α5-GABARs accelerates reversal learning, a behavioral test for cognitive flexibility dependent on repeated LTP. Hence, inhibitory synaptic plasticity occurs in parallel with excitatory synaptic plasticity, with the ensuing interruption of the positive feedback cycle of LTP serving as a possible critical early step in preserving memory.
Collapse
Affiliation(s)
- Christopher M Davenport
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rajit Rajappa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ljudmila Katchan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Charlotte R Taylor
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ming-Chi Tsai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Caleb M Smith
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Johannes W de Jong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Don B Arnold
- Department of Biology, Section of Molecular and Computational Biology, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA
| | - Stephan Lammel
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Richard H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
10
|
Serafin EK, Paranjpe A, Brewer CL, Baccei ML. Single-nucleus characterization of adult mouse spinal dynorphin-lineage cells and identification of persistent transcriptional effects of neonatal hindpaw incision. Pain 2021; 162:203-218. [PMID: 33045156 PMCID: PMC7744314 DOI: 10.1097/j.pain.0000000000002007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neonatal tissue damage can have long-lasting effects on nociceptive processing in the central nervous system, which may reflect persistent injury-evoked alterations to the normal balance between synaptic inhibition and excitation in the spinal dorsal horn. Spinal dynorphin-lineage (pDyn) neurons are part of an inhibitory circuit which limits the flow of nociceptive input to the brain and is disrupted by neonatal tissue damage. To identify the potential molecular underpinnings of this disruption, an unbiased single-nucleus RNAseq analysis of adult mouse spinal pDyn cells characterized this population in depth and then identified changes in gene expression evoked by neonatal hindpaw incision. The analysis revealed 11 transcriptionally distinct subpopulations (ie, clusters) of dynorphin-lineage cells, including both inhibitory and excitatory neurons. Investigation of injury-evoked differential gene expression identified 15 genes that were significantly upregulated or downregulated in adult pDyn neurons from neonatally incised mice compared with naive littermate controls, with both cluster-specific and pan-neuronal transcriptional changes observed. Several of the identified genes, such as Oxr1 and Fth1 (encoding ferritin), were related to the cellular stress response. However, the relatively low number of injury-evoked differentially expressed genes also suggests that posttranscriptional regulation within pDyn neurons may play a key role in the priming of developing nociceptive circuits by early-life injury. Overall, the findings reveal novel insights into the molecular heterogeneity of a key population of dorsal horn interneurons that has previously been implicated in the suppression of mechanical pain and itch.
Collapse
Affiliation(s)
- Elizabeth K Serafin
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH, United States . Dr. Brewer is now with the Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Aditi Paranjpe
- Division of Biomedical Informatics, Bioinformatics Collaborative Services, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Chelsie L Brewer
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH, United States . Dr. Brewer is now with the Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Mark L Baccei
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH, United States . Dr. Brewer is now with the Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
11
|
Vriend J, Rastegar M. Ubiquitin ligases and medulloblastoma: genetic markers of the four consensus subgroups identified through transcriptome datasets. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165839. [PMID: 32445667 DOI: 10.1016/j.bbadis.2020.165839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/23/2020] [Accepted: 05/13/2020] [Indexed: 01/05/2023]
Abstract
The ubiquitin proteasome system regulates key cellular processes in normal and in cancer cells. Herein, we review published data on the role of ubiquitin ligases in the four major subgroups of medulloblastoma (MB). While conventional literature serves as an initial source of information on cellular pathways in MB, large publicly available datasets of gene expression can be used to add information not previously identified in the literature. By analysing the publicly available Cavalli dataset, we show that increased expression of ZNRF3 characterizes the WNT subgroup of MB. The ZNRF3 gene codes for an E3 ligase associated with WNT receptors. Loss of a copy of chromosome 6 in a subtype of the WNT group was associated with decreased expression of the gene encoding the E3 ligase RNF146. While the E3 ligase SMURF regulates SHH receptors, increased expression of the gene encoding the Cullin Ring E3 adaptor PPP2R2C was statistically a better genetic marker of the SHH group. Genes whose expression was statistically strongly related to Group 3 included the E3 ligase gene TRIM58, and the gene for the E3 ligase adaptor, PPP2R2B. Group 4 MB was associated with expression of genes encoding several E3 ligases and E3 ligase adaptors involved in ribosome biogenesis. Increased expression of the genes encoding the E3 ligase adaptors and transcription repressors ZBTB18 and ZBTB38 were also noted in subgroup 4. These data suggest that several E3 ligases and their adaptors should be investigated as therapeutic targets for subgroup specific MB brain tumors.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics and Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| |
Collapse
|
12
|
Folci A, Mirabella F, Fossati M. Ubiquitin and Ubiquitin-Like Proteins in the Critical Equilibrium between Synapse Physiology and Intellectual Disability. eNeuro 2020; 7:ENEURO.0137-20.2020. [PMID: 32719102 PMCID: PMC7544190 DOI: 10.1523/eneuro.0137-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023] Open
Abstract
Posttranslational modifications (PTMs) represent a dynamic regulatory system that precisely modulates the functional organization of synapses. PTMs consist in target modifications by small chemical moieties or conjugation of lipids, sugars or polypeptides. Among them, ubiquitin and a large family of ubiquitin-like proteins (UBLs) share several features such as the structure of the small protein modifiers, the enzymatic cascades mediating the conjugation process, and the targeted aminoacidic residue. In the brain, ubiquitination and two UBLs, namely sumoylation and the recently discovered neddylation orchestrate fundamental processes including synapse formation, maturation and plasticity, and their alteration is thought to contribute to the development of neurological disorders. Remarkably, emerging evidence suggests that these pathways tightly interplay to modulate the function of several proteins that possess pivotal roles for brain homeostasis as well as failure of this crosstalk seems to be implicated in the development of brain pathologies. In this review, we outline the role of ubiquitination, sumoylation, neddylation, and their functional interplay in synapse physiology and discuss their implication in the molecular pathogenesis of intellectual disability (ID), a neurodevelopmental disorder that is frequently comorbid with a wide spectrum of brain pathologies. Finally, we propose a few outlooks that might contribute to better understand the complexity of these regulatory systems in regard to neuronal circuit pathophysiology.
Collapse
Affiliation(s)
- Alessandra Folci
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
| | - Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve 9 Emanuele - Milan, Italy
| | - Matteo Fossati
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
- CNR-Institute of Neuroscience, via Manzoni 56, 20089, Rozzano (MI), Italy
| |
Collapse
|
13
|
Increased O-GlcNAcylation rapidly decreases GABA AR currents in hippocampus but depresses neuronal output. Sci Rep 2020; 10:7494. [PMID: 32366857 PMCID: PMC7198489 DOI: 10.1038/s41598-020-63188-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/02/2020] [Indexed: 02/08/2023] Open
Abstract
O-GlcNAcylation, a post-translational modification involving O-linkage of β-N-acetylglucosamine to Ser/Thr residues on target proteins, is increasingly recognized as a critical regulator of synaptic function. Enzymes that catalyze O-GlcNAcylation are found at both presynaptic and postsynaptic sites, and O-GlcNAcylated proteins localize to synaptosomes. An acute increase in O-GlcNAcylation can affect neuronal communication by inducing long-term depression (LTD) of excitatory transmission at hippocampal CA3-CA1 synapses, as well as suppressing hyperexcitable circuits in vitro and in vivo. Despite these findings, to date, no studies have directly examined how O-GlcNAcylation modulates the efficacy of inhibitory neurotransmission. Here we show an acute increase in O-GlcNAc dampens GABAergic currents onto principal cells in rodent hippocampus likely through a postsynaptic mechanism, and has a variable effect on the excitation/inhibition balance. The overall effect of increased O-GlcNAc is reduced synaptically-driven spike probability via synaptic depression and decreased intrinsic excitability. Our results position O-GlcNAcylation as a novel regulator of the overall excitation/inhibition balance and neuronal output.
Collapse
|
14
|
Das S, Ramakrishna S, Kim KS. Critical Roles of Deubiquitinating Enzymes in the Nervous System and Neurodegenerative Disorders. Mol Cells 2020; 43:203-214. [PMID: 32133826 PMCID: PMC7103888 DOI: 10.14348/molcells.2020.2289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Post-translational modifications play major roles in the stability, function, and localization of target proteins involved in the nervous system. The ubiquitin-proteasome pathway uses small ubiquitin molecules to degrade neuronal proteins. Deubiquitinating enzymes (DUBs) reverse this degradation and thereby control neuronal cell fate, synaptic plasticity,axonal growth, and proper function of the nervous system.Moreover, mutations or downregulation of certain DUBshave been found in several neurodegenerative diseases, as well as gliomas and neuroblastomas. Based on emerging findings, DUBs represent an important target for therapeutic intervention in various neurological disorders. Here, we summarize advances in our understanding of the roles of DUBs related to neurobiology.
Collapse
Affiliation(s)
- Soumyadip Das
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
15
|
Foitzick MF, Medina NB, Iglesias García LC, Gravielle MC. Benzodiazepine exposure induces transcriptional down-regulation of GABA A receptor α1 subunit gene via L-type voltage-gated calcium channel activation in rat cerebrocortical neurons. Neurosci Lett 2020; 721:134801. [PMID: 32007495 DOI: 10.1016/j.neulet.2020.134801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 01/10/2023]
Abstract
GABAA receptors are targets of different pharmacologically relevant drugs, such as barbiturates, benzodiazepines, and anesthetics. In particular, benzodiazepines are prescribed for the treatment of anxiety, sleep disorders, and seizure disorders. Benzodiazepines potentiate GABA responses by binding to GABAA receptors, which are mainly composed of α (1-3, 5), β2, and γ2 subunits. Prolonged activation of GABAA receptors by endogenous and exogenous modulators induces adaptive changes that lead to tolerance. For example, chronic administration of benzodiazepines produces tolerance to most of their pharmacological actions, limiting their usefulness. The mechanism of benzodiazepine tolerance is still unknown. To investigate the molecular basis of tolerance, we studied the effect of sustained exposure of rat cerebral cortical neurons to diazepam on the GABAA receptor. Flunitrazepam binding experiments showed that diazepam treatment induced uncoupling between GABA and benzodiazepine sites, which was blocked by co-incubation with flumazenil, picrotoxin, or nifedipine. Diazepam also produced selective transcriptional down-regulation of GABAA receptor α1 subunit gene through a mechanism dependent on the activation of L-type voltage-gated calcium channels. These findings suggest benzodiazepine-induced stimulation of calcium influx through L-type voltage-gated calcium channels triggers the activation of a signaling pathway that leads to uncoupling and an alteration of receptor subunit expression. Insights into the mechanism of benzodiazepine tolerance will contribute to the design of new drugs that can maintain their efficacies after long-term treatments.
Collapse
Affiliation(s)
- María Florencia Foitzick
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. CONICET, Buenos Aires, Argentina
| | - Nelsy Beatriz Medina
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. CONICET, Buenos Aires, Argentina
| | - Lucía Candela Iglesias García
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. CONICET, Buenos Aires, Argentina
| | - María Clara Gravielle
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. CONICET, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Nathanson AJ, Davies PA, Moss SJ. Inhibitory Synapse Formation at the Axon Initial Segment. Front Mol Neurosci 2019; 12:266. [PMID: 31749683 PMCID: PMC6848228 DOI: 10.3389/fnmol.2019.00266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/17/2019] [Indexed: 11/28/2022] Open
Abstract
The axon initial segment (AIS) is the site of action potential (AP) initiation in most neurons and is thus a critical site in the regulation of neuronal excitability. Normal function within the discrete AIS compartment requires intricate molecular machinery to ensure the proper concentration and organization of voltage-gated and ligand-gated ion channels; in humans, dysfunction at the AIS due to channel mutations is commonly associated with epileptic disorders. In this review, we will examine the molecular mechanisms underlying the formation of the only synapses found at the AIS: synapses containing γ-aminobutyric type A receptors (GABAARs). GABAARs are heteropentamers assembled from 19 possible subunits and are the primary mediators of fast synaptic inhibition in the brain. Although the total GABAAR population is incredibly heterogeneous, only one specific GABAAR subtype—the α2-containing receptor—is enriched at the AIS. These AIS synapses are innervated by GABAergic chandelier cells, and this inhibitory signaling is thought to contribute to the tight control of AP firing. Here, we will summarize the progress made in understanding the regulation of GABAAR synapse formation, concentrating on post-translational modifications of subunits and on interactions with intracellular proteins. We will then discuss subtype-specific synapse formation, with a focus on synapses found at the AIS, and how these synapses influence neuronal excitation.
Collapse
Affiliation(s)
- Anna J Nathanson
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Paul A Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA, United States.,Department of Neuroscience, Physiology and Pharmacology, University College, London, United Kingdom
| |
Collapse
|
17
|
Nakajima M, Schmitt LI, Feng G, Halassa MM. Combinatorial Targeting of Distributed Forebrain Networks Reverses Noise Hypersensitivity in a Model of Autism Spectrum Disorder. Neuron 2019; 104:488-500.e11. [PMID: 31648899 DOI: 10.1016/j.neuron.2019.09.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/03/2019] [Accepted: 09/23/2019] [Indexed: 12/29/2022]
Abstract
Autism spectrum disorder (ASD) is associated with noise hypersensitivity, the suboptimal extraction of meaningful signals in noisy environments. Because sensory filtering can involve distinct automatic and executive circuit mechanisms, however, developing circuit-specific therapeutic strategies for ASD noise hypersensitivity can be challenging. Here, we find that both of these processes are individually perturbed in one monogenic form of ASD, Ptchd1 deletion. Although Ptchd1 is preferentially expressed in the thalamic reticular nucleus during development, pharmacological rescue of thalamic perturbations in knockout (KO) mice only normalized automatic sensory filtering. By discovering a separate prefrontal perturbation in these animals and adopting a combinatorial pharmacological approach that also rescued its associated goal-directed noise filtering deficit, we achieved full normalization of noise hypersensitivity in this model. Overall, our work highlights the importance of identifying large-scale functional circuit architectures and utilizing them as access points for behavioral disease correction.
Collapse
Affiliation(s)
- Miho Nakajima
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - L Ian Schmitt
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA; The Stanley Center for Psychiatric Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Michael M Halassa
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA; The Stanley Center for Psychiatric Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
18
|
Gorny X, Säring P, Bergado Acosta JR, Kahl E, Kolodziejczyk MH, Cammann C, Wernecke KEA, Mayer D, Landgraf P, Seifert U, Dieterich DC, Fendt M. Deficiency of the immunoproteasome subunit β5i/LMP7 supports the anxiogenic effects of mild stress and facilitates cued fear memory in mice. Brain Behav Immun 2019; 80:35-43. [PMID: 30797047 DOI: 10.1016/j.bbi.2019.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/22/2018] [Accepted: 02/20/2019] [Indexed: 02/01/2023] Open
Abstract
Proteolysis as mediated by one of the major cellular protein degradation pathways, the ubiquitin-proteasome system (UPS), plays an essential role in learning and memory formation. However, the functional relevance of immunoproteasomes in the healthy brain and especially their impact on normal brain function including processes of learning and memory has not been investigated so far. In the present study, we analyzed the phenotypic effects of an impaired immunoproteasome formation using a β5i/LMP7-deficient mouse model in different behavioral paradigms focusing on locomotor activity, exploratory behavior, innate anxiety, startle response, prepulse inhibition, as well as fear and safety conditioning. Overall, our results demonstrate no strong effects of constitutive β5i/LMP7-deficiency on gross locomotor abilities and anxiety-related behavior in general. However, β5i/LMP7-deficient mice expressed more anxiety after mild stress and increased cued fear after fear conditioning. These findings indicate that the basal proper formation of immunoproteasomes and/or at least the expression of β5i/LMP7 in healthy mice seem to be involved in the regulation of anxiety and cued fear levels.
Collapse
Affiliation(s)
- Xenia Gorny
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Germany
| | - Paula Säring
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany
| | - Jorge R Bergado Acosta
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany
| | - Evelyn Kahl
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany
| | | | - Clemens Cammann
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Germany; Friedrich Loeffler Institute for Medical Microbiology, University Medicine, University Greifswald, Greifswald, Germany
| | - Kerstin E A Wernecke
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany
| | - Dana Mayer
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany
| | - Peter Landgraf
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany
| | - Ulrike Seifert
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Germany; Friedrich Loeffler Institute for Medical Microbiology, University Medicine, University Greifswald, Greifswald, Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany.
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany.
| |
Collapse
|
19
|
Lorenz-Guertin JM, Bambino MJ, Das S, Weintraub ST, Jacob TC. Diazepam Accelerates GABA AR Synaptic Exchange and Alters Intracellular Trafficking. Front Cell Neurosci 2019; 13:163. [PMID: 31080408 PMCID: PMC6497791 DOI: 10.3389/fncel.2019.00163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Despite 50+ years of clinical use as anxiolytics, anti-convulsants, and sedative/hypnotic agents, the mechanisms underlying benzodiazepine (BZD) tolerance are poorly understood. BZDs potentiate the actions of gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the adult brain, through positive allosteric modulation of γ2 subunit containing GABA type A receptors (GABAARs). Here we define key molecular events impacting γ2 GABAAR and the inhibitory synapse gephyrin scaffold following initial sustained BZD exposure in vitro and in vivo. Using immunofluorescence and biochemical experiments, we found that cultured cortical neurons treated with the classical BZD, diazepam (DZP), presented no substantial change in surface or synaptic levels of γ2-GABAARs. In contrast, both γ2 and the postsynaptic scaffolding protein gephyrin showed diminished total protein levels following a single DZP treatment in vitro and in mouse cortical tissue. We further identified DZP treatment enhanced phosphorylation of gephyrin Ser270 and increased generation of gephyrin cleavage products. Selective immunoprecipitation of γ2 from cultured neurons revealed enhanced ubiquitination of this subunit following DZP exposure. To assess novel trafficking responses induced by DZP, we employed a γ2 subunit containing an N terminal fluorogen-activating peptide (FAP) and pH-sensitive green fluorescent protein (γ2pHFAP). Live-imaging experiments using γ2pHFAP GABAAR expressing neurons identified enhanced lysosomal targeting of surface GABAARs and increased overall accumulation in vesicular compartments in response to DZP. Using fluorescence resonance energy transfer (FRET) measurements between α2 and γ2 subunits within a GABAAR in neurons, we identified reductions in synaptic clusters of this subpopulation of surface BZD sensitive receptor. Additional time-series experiments revealed the gephyrin regulating kinase ERK was inactivated by DZP at multiple time points. Moreover, we found DZP simultaneously enhanced synaptic exchange of both γ2-GABAARs and gephyrin using fluorescence recovery after photobleaching (FRAP) techniques. Finally we provide the first proteomic analysis of the BZD sensitive GABAAR interactome in DZP vs. vehicle treated mice. Collectively, our results indicate DZP exposure elicits down-regulation of gephyrin scaffolding and BZD sensitive GABAAR synaptic availability via multiple dynamic trafficking processes.
Collapse
Affiliation(s)
- Joshua M. Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew J. Bambino
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sabyasachi Das
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Susan T. Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tija C. Jacob
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
20
|
Mele M, Costa RO, Duarte CB. Alterations in GABA A-Receptor Trafficking and Synaptic Dysfunction in Brain Disorders. Front Cell Neurosci 2019; 13:77. [PMID: 30899215 PMCID: PMC6416223 DOI: 10.3389/fncel.2019.00077] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022] Open
Abstract
GABAA receptors (GABAAR) are the major players in fast inhibitory neurotransmission in the central nervous system (CNS). Regulation of GABAAR trafficking and the control of their surface expression play important roles in the modulation of the strength of synaptic inhibition. Different pieces of evidence show that alterations in the surface distribution of GABAAR and dysregulation of their turnover impair the activity of inhibitory synapses. A diminished efficacy of inhibitory neurotransmission affects the excitatory/inhibitory balance and is a common feature of various disorders of the CNS characterized by an increased excitability of neuronal networks. The synaptic pool of GABAAR is mainly controlled through regulation of internalization, recycling and lateral diffusion of the receptors. Under physiological condition these mechanisms are finely coordinated to define the strength of GABAergic synapses. In this review article, we focus on the alteration in GABAAR trafficking with an impact on the function of inhibitory synapses in various disorders of the CNS. In particular we discuss how similar molecular mechanisms affecting the synaptic distribution of GABAAR and consequently the excitatory/inhibitory balance may be associated with a wide diversity of pathologies of the CNS, from psychiatric disorders to acute alterations leading to neuronal death. A better understanding of the cellular and molecular mechanisms that contribute to the impairment of GABAergic neurotransmission in these disorders, in particular the alterations in GABAAR trafficking and surface distribution, may lead to the identification of new pharmacological targets and to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Rui O Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
21
|
Arrúe A, González-Torres MA, Basterreche N, Arnaiz A, Olivas O, Zamalloa MI, Erkoreka L, Catalán A, Zumárraga M. GAD1 gene polymorphisms are associated with bipolar I disorder and with blood homovanillic acid levels but not with plasma GABA levels. Neurochem Int 2019; 124:152-161. [PMID: 30625343 DOI: 10.1016/j.neuint.2019.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/18/2018] [Accepted: 01/04/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Aurora Arrúe
- Departamento de Investigación Neuroquímica, Hospital de Zamudio, Red de Salud Mental de Bizkaia, Zamudio, Spain; BioCruces Health Research Institute, Barakaldo, Spain.
| | - Miguel Angel González-Torres
- BioCruces Health Research Institute, Barakaldo, Spain; Servicio de Psiquiatría, Hospital Universitario Basurto, Bilbao, Spain; Departamento de Neurociencias, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Nieves Basterreche
- BioCruces Health Research Institute, Barakaldo, Spain; Departamento de Neurociencias, University of the Basque Country (UPV/EHU), Leioa, Spain; Unidad de Hospitalización de Corta Estancia, Hospital de Zamudio, Red de Salud Mental de Bizkaia, Zamudio, Spain
| | - Ainara Arnaiz
- BioCruces Health Research Institute, Barakaldo, Spain; Servicio de Rehabilitación, Hospital de Zamudio, Red de Salud Mental de Bizkaia, Zamudio, Spain
| | - Olga Olivas
- BioCruces Health Research Institute, Barakaldo, Spain; Centro de Salud Mental de Gernika, Red de Salud Mental de Bizkaia, Gernika, Spain
| | - M Isabel Zamalloa
- Departamento de Investigación Neuroquímica, Hospital de Zamudio, Red de Salud Mental de Bizkaia, Zamudio, Spain; BioCruces Health Research Institute, Barakaldo, Spain
| | - Leire Erkoreka
- BioCruces Health Research Institute, Barakaldo, Spain; Departamento de Neurociencias, University of the Basque Country (UPV/EHU), Leioa, Spain; Centro de Salud Mental Barakaldo, Red de Salud Mental de Bizkaia, Barakaldo, Spain
| | - Ana Catalán
- BioCruces Health Research Institute, Barakaldo, Spain; Servicio de Psiquiatría, Hospital Universitario Basurto, Bilbao, Spain; Departamento de Neurociencias, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mercedes Zumárraga
- Departamento de Investigación Neuroquímica, Hospital de Zamudio, Red de Salud Mental de Bizkaia, Zamudio, Spain; BioCruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
22
|
Lorenz-Guertin JM, Jacob TC. GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol 2018; 78:238-270. [PMID: 28901728 PMCID: PMC6589839 DOI: 10.1002/dneu.22536] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
Ubiquitous expression of GABA type A receptors (GABAA R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABAA Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABAA R function. Here we review the current understanding of how GABAA Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABAA R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABAA R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
23
|
Ge Y, Kang Y, Cassidy RM, Moon KM, Lewis R, Wong ROL, Foster LJ, Craig AM. Clptm1 Limits Forward Trafficking of GABA A Receptors to Scale Inhibitory Synaptic Strength. Neuron 2018; 97:596-610.e8. [PMID: 29395912 DOI: 10.1016/j.neuron.2017.12.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 11/17/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022]
Abstract
In contrast with numerous studies of glutamate receptor-associated proteins and their involvement in the modulation of excitatory synapses, much less is known about mechanisms controlling postsynaptic GABAA receptor (GABAAR) numbers. Using tandem affinity purification from tagged GABAAR γ2 subunit transgenic mice and proteomic analysis, we isolated several GABAAR-associated proteins, including Cleft lip and palate transmembrane protein 1 (Clptm1). Clptm1 interacted with all GABAAR subunits tested and promoted GABAAR trapping in the endoplasmic reticulum. Overexpression of Clptm1 reduced GABAAR-mediated currents in a recombinant system, in cultured hippocampal neurons, and in brain, with no effect on glycine or AMPA receptor-mediated currents. Conversely, knockdown of Clptm1 increased phasic and tonic inhibitory transmission with no effect on excitatory synaptic transmission. Furthermore, altering the expression level of Clptm1 mimicked activity-induced inhibitory synaptic scaling. Thus, in complement to other GABAAR-associated proteins that promote receptor surface expression, Clptm1 limits GABAAR forward trafficking and regulates inhibitory homeostatic plasticity.
Collapse
Affiliation(s)
- Yuan Ge
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Yunhee Kang
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Robert M Cassidy
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Renate Lewis
- Department of Anatomy and Neurobiology, Washington University, St. Louis, MO 63110, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
24
|
Activity-Dependent Inhibitory Synapse Scaling Is Determined by Gephyrin Phosphorylation and Subsequent Regulation of GABA A Receptor Diffusion. eNeuro 2018; 5:eN-NWR-0203-17. [PMID: 29379879 PMCID: PMC5780843 DOI: 10.1523/eneuro.0203-17.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
Synaptic plasticity relies on the rapid changes in neurotransmitter receptor number at postsynaptic sites. Using superresolution photoactivatable localization microscopy imaging and quantum dot-based single-particle tracking in rat hippocampal cultured neurons, we investigated whether the phosphorylation status of the main scaffolding protein gephyrin influenced the organization of the gephyrin scaffold and GABAA receptor (GABAAR) membrane dynamics. We found that gephyrin phosphorylation regulates gephyrin microdomain compaction. Extracellular signal-regulated kinase 1/2 and glycogen synthase kinase 3β (GSK3β) signaling alter the gephyrin scaffold mesh differentially. Differences in scaffold organization similarly affected the diffusion of synaptic GABAARs, suggesting reduced gephyrin receptor-binding properties. In the context of synaptic scaling, our results identify a novel role of the GSK3β signaling pathway in the activity-dependent regulation of extrasynaptic receptor surface trafficking and GSK3β, protein kinase A, and calcium/calmodulin-dependent protein kinase IIα pathways in facilitating adaptations of synaptic receptors.
Collapse
|
25
|
Hodul M, Dahlberg CL, Juo P. Function of the Deubiquitinating Enzyme USP46 in the Nervous System and Its Regulation by WD40-Repeat Proteins. Front Synaptic Neurosci 2017; 9:16. [PMID: 29302259 PMCID: PMC5735123 DOI: 10.3389/fnsyn.2017.00016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/29/2017] [Indexed: 11/13/2022] Open
Abstract
Posttranslational modification of proteins by ubiquitin regulates synapse development and synaptic transmission. Much progress has been made investigating the role of ubiquitin ligases at the synapse, however very little is known about the deubiquitinating enzymes (DUBs) which remove ubiquitin from target proteins. Although there are far fewer DUBs than ubiquitin ligases encoded by the human genome, it is becoming clear that DUBs have very specific physiological functions, suggesting that DUB activity is tightly regulated in vivo. Many DUBs function as part of larger protein complexes, and multiple regulatory mechanisms exist to control the expression, localization and catalytic activity of DUBs. In this review article, we focus on the role of the DUB USP46 in the nervous system, and illustrate potential mechanisms of regulating DUBs by describing how USP46 is regulated by two WD40-repeat (WDR) proteins, WDR48/UAF1 and WDR20, based on recent structural studies and genetic analyses in vivo.
Collapse
Affiliation(s)
- Molly Hodul
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Tufts University, Boston, MA, United States.,Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Tufts University, Boston, MA, United States
| | - Caroline L Dahlberg
- Biology Department, Western Washington University, Bellingham, WA, United States
| | - Peter Juo
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Tufts University, Boston, MA, United States
| |
Collapse
|
26
|
Li Q, Li Y, Wang X, Qi J, Jin X, Tong H, Zhou Z, Zhang ZC, Han J. Fbxl4 Serves as a Clock Output Molecule that Regulates Sleep through Promotion of Rhythmic Degradation of the GABA A Receptor. Curr Biol 2017; 27:3616-3625.e5. [PMID: 29174887 DOI: 10.1016/j.cub.2017.10.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/24/2017] [Accepted: 10/19/2017] [Indexed: 01/11/2023]
Abstract
The timing of sleep is tightly governed by the circadian clock, which contains a negative transcriptional feedback loop and synchronizes the physiology and behavior of most animals to daily environmental oscillations. However, how the circadian clock determines the timing of sleep is largely unclear. In vertebrates and invertebrates, the status of sleep and wakefulness is modulated by the electrical activity of pacemaker neurons that are circadian regulated and suppressed by inhibitory GABAergic inputs. Here, we showed that Drosophila GABAA receptors undergo rhythmic degradation in arousal-promoting large ventral lateral neurons (lLNvs) and their expression level in lLNvs displays a daily oscillation. We also demonstrated that the E3 ligase Fbxl4 promotes GABAA receptor ubiquitination and degradation and revealed that the transcription of fbxl4 in lLNvs is CLOCK dependent. Finally, we demonstrated that Fbxl4 regulates the timing of sleep through rhythmically reducing GABA sensitivity to modulate the excitability of lLNvs. Our study uncovered a critical molecular linkage between the circadian clock and the electrical activity of pacemaker neurons and demonstrated that CLOCK-dependent Fbxl4 expression rhythmically downregulates GABAA receptor level to increase the activity of pacemaker neurons and promote wakefulness.
Collapse
Affiliation(s)
- Qian Li
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Yi Li
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Xiao Wang
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Junxia Qi
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Xi Jin
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Huawei Tong
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Zikai Zhou
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Zi Chao Zhang
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Junhai Han
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
27
|
Hochrainer K. Protein Modifications with Ubiquitin as Response to Cerebral Ischemia-Reperfusion Injury. Transl Stroke Res 2017; 9:157-173. [DOI: 10.1007/s12975-017-0567-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
|
28
|
Printsev I, Curiel D, Carraway KL. Membrane Protein Quantity Control at the Endoplasmic Reticulum. J Membr Biol 2017; 250:379-392. [PMID: 27743014 PMCID: PMC5392169 DOI: 10.1007/s00232-016-9931-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023]
Abstract
The canonical function of the endoplasmic reticulum-associated degradation (ERAD) system is to enforce quality control among membrane-associated proteins by targeting misfolded secreted, intra-organellar, and intramembrane proteins for degradation. However, increasing evidence suggests that ERAD additionally functions in maintaining appropriate levels of a subset of membrane-associated proteins. In this 'quantity control' capacity, ERAD responds to environmental cues to regulate the proteasomal degradation of specific ERAD substrates according to cellular need. In this review, we discuss in detail seven proteins that are targeted by the ERAD quantity control system. Not surprisingly, ERAD-mediated protein degradation is a key regulatory feature of a variety of ER-resident proteins, including HMG-CoA reductase, cytochrome P450 3A4, IP3 receptor, and type II iodothyronine deiodinase. In addition, the ERAD quantity control system plays roles in maintaining the proper stoichiometry of multi-protein complexes by mediating the degradation of components that are produced in excess of the limiting subunit. Perhaps somewhat unexpectedly, recent evidence suggests that the ERAD quantity control system also contributes to the regulation of plasma membrane-localized signaling receptors, including the ErbB3 receptor tyrosine kinase and the GABA neurotransmitter receptors. For these substrates, a proportion of the newly synthesized yet properly folded receptors are diverted for degradation at the ER, and are unable to traffic to the plasma membrane. Given that receptor abundance or concentration within the plasma membrane plays key roles in determining signaling efficiency, these observations may point to a novel mechanism for modulating receptor-mediated cellular signaling.
Collapse
Affiliation(s)
- Ignat Printsev
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA
| | - Daniel Curiel
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA.
| |
Collapse
|
29
|
Vien TN, Moss SJ, Davies PA. Regulating the Efficacy of Inhibition Through Trafficking of γ-Aminobutyric Acid Type A Receptors. Anesth Analg 2017; 123:1220-1227. [PMID: 27285004 DOI: 10.1213/ane.0000000000001349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Trafficking of anesthetic-sensitive receptors within the plasma membrane, or from one cellular component to another, occurs continuously. Changes in receptor trafficking have implications in altering anesthetic sensitivity. γ-Aminobutyric acid type A receptors (GABAARs) are anion-permeable ion channels and are the major class of receptor in the adult mammalian central nervous system that mediates inhibition. GABAergic signaling allows for precise synchronized firing of action potentials within brain circuits that is critical for cognition, behavior, and consciousness. This precision depends upon tightly controlled trafficking of GABAARs into the membrane. General anesthetics bind to and allosterically enhance GABAARs by prolonging the open state of the receptor and thereby altering neuronal and brain circuit activity. Subunit composition and GABAAR localization strongly influence anesthetic end points; therefore, changes in GABAAR trafficking could have significant consequences to anesthetic sensitivity. GABAARs are not static membrane structures but are in a constant state of flux between extrasynaptic and synaptic locations and are continually endocytosed and recycled from and to the membrane. Neuronal activity, posttranslational modifications, and some naturally occurring and synthetic compounds can influence the expression and trafficking of GABAARs. In this article, we review GABAARs, their trafficking, and how phosphorylation of GABAAR subunits can influence the surface expression and function of the receptor. Ultimately, alterations of GABAAR trafficking could modify anesthetic end points, both unintentionally through pathologic processes but potentially as a therapeutic target to adjust anesthetic-sensitive GABAARs.
Collapse
Affiliation(s)
- Thuy N Vien
- From the *Department of Neuroscience, Tufts University School of Medicine, Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts; and †Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | | | | |
Collapse
|
30
|
Abstract
Maintaining synaptic integrity and function depends on the continuous removal and degradation of aged or damaged proteins. Synaptic protein degradation has received considerable attention in the context of synaptic plasticity and growing interest in relation to neurodegenerative and other disorders. Conversely, less attention has been given to constitutive, ongoing synaptic protein degradation and the roles canonical degradation pathways play in these processes. Here we briefly review recent progress on this topic and new experimental approaches which have expedited such progress and highlight several emerging principles. These include the realization that synaptic proteins typically have unusually long lifetimes, as might be expected from the remote locations of most synaptic sites; the possibility that degradation pathways can change with time from synthesis, cellular context, and physiological input; and that degradation pathways, other than ubiquitin-proteasomal-mediated degradation, might play key roles in constitutive protein degradation at synaptic sites. Finally, we point to the importance of careful experimental design and sufficiently sensitive techniques for studying synaptic protein degradation, which bring into account their slow turnover rates and complex life cycles.
Collapse
Affiliation(s)
- Laurie D Cohen
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Technion City, Haifa, 32000, Israel
| | - Noam E Ziv
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Technion City, Haifa, 32000, Israel
| |
Collapse
|
31
|
Meunier CNJ, Chameau P, Fossier PM. Modulation of Synaptic Plasticity in the Cortex Needs to Understand All the Players. Front Synaptic Neurosci 2017; 9:2. [PMID: 28203201 PMCID: PMC5285384 DOI: 10.3389/fnsyn.2017.00002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/13/2017] [Indexed: 12/19/2022] Open
Abstract
The prefrontal cortex (PFC) is involved in cognitive tasks such as working memory, decision making, risk assessment and regulation of attention. These functions performed by the PFC are supposed to rely on rhythmic electrical activity generated by neuronal network oscillations determined by a precise balance between excitation and inhibition balance (E/I balance) resulting from the coordinated activities of recurrent excitation and feedback and feedforward inhibition. Functional alterations in PFC functions have been associated with cognitive deficits in several pathologies such as major depression, anxiety and schizophrenia. These pathological situations are correlated with alterations of different neurotransmitter systems (i.e., serotonin (5-HT), dopamine (DA), acetylcholine…) that result in alterations of the E/I balance. The aim of this review article is to cover the basic aspects of the regulation of the E/I balance as well as to highlight the importance of the complementarity role of several neurotransmitters in the modulation of the plasticity of excitatory and inhibitory synapses. We illustrate our purpose by recent findings that demonstrate that 5-HT and DA cooperate to regulate the plasticity of excitatory and inhibitory synapses targeting layer 5 pyramidal neurons (L5PyNs) of the PFC and to fine tune the E/I balance. Using a method based on the decomposition of the synaptic conductance into its excitatory and inhibitory components, we show that concomitant activation of D1-like receptors (D1Rs) and 5-HT1ARs, through a modulation of NMDA receptors, favors long term potentiation (LTP) of both excitation and inhibition and consequently does not modify the E/I balance. We also demonstrate that activation of D2-receptors requires functional 5-HT1ARs to shift the E-I balance towards more inhibition and to favor long term depression (LTD) of excitatory synapses through the activation of glycogen synthase kinase 3β (GSK3β). This cooperation between different neurotransmitters is particularly relevant in view of pathological situations in which alterations of one neurotransmitter system will also have consequences on the regulation of synaptic efficacy by other neurotransmitters. This opens up new perspectives in the development of therapeutic strategies for the pharmacological treatment of neuronal disorders.
Collapse
Affiliation(s)
- Claire N J Meunier
- Institut de Neurosciences Paris-Saclay (NeuroPSI), UMR 91197 CNRS-Université Paris-Saclay Paris, France
| | - Pascal Chameau
- Swammerdam Institute for Life Sciences, Center for NeuroScience, University of Amsterdam Amsterdam, Netherlands
| | - Philippe M Fossier
- Institut de Neurosciences Paris-Saclay (NeuroPSI), UMR 91197 CNRS-Université Paris-Saclay Paris, France
| |
Collapse
|
32
|
Waraczynski M, Abbott S, Schultz AV. CaV 1.3 channel blockade in the extended amygdala has a delayed effect on the reward efficacy of medial forebrain bundle stimulation. Behav Brain Res 2016; 317:485-493. [PMID: 27743939 DOI: 10.1016/j.bbr.2016.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 01/27/2023]
Abstract
Previous work in our laboratory has shown that stimulating D2 dopamine receptors in the central sublenticular extended amygdala (SLEAc) can render medial forebrain bundle (MFB) stimulation less rewarding. One of the many ways in which D2 stimulation could affect the activity status of SLEAc neurons is by indirectly blocking calcium ion (Ca2+) influx through CaV1.3 channels. He we directly investigate the effects of blocking CaV1.3 channels on the rewarding effect of MFB stimulation. In experiment one, CaV1.3 blockade with the phenylalkylamine verapamil (2.5 and 5.0μg) or the benzothiazepine diltiazem (5.0 and 10.0μg) did not significantly decrease MFB stimulation's reward efficacy relative to injections of saline. However, there were indications of an unanticipated 24-h-delayed effect of the higher dose of diltiazem - injected ipsilateral to the stimulation site - on the stimulation pulse frequency required to maintain half-maximal response rates ("required frequency"). Experiment two focused on and tracked the time course of this effect. Injections of 10μg of diltiazem decreased required frequency significantly more than did saline injections 24h after injection but not immediately after injection. Required frequency values returned to baseline levels within 48h after injection. This time course is consistent with cellular processes that regulate the insertion of GABA-A receptors in neural membranes. GABA-A-mediated neural communication is implicated in maintaining basal forebrain medium spiny neurons in an excitable state. Therefore, these results may indicate that sustaining SLEAc neurons in an excitable state may be important for MFB stimulation to retain its rewarding properties.
Collapse
Affiliation(s)
- Meg Waraczynski
- Departments of Psychology and Biological Sciences, University of Wisconsin-Whitewater, 800 West, Main Street, Whitewater, WI, USA.
| | - Samantha Abbott
- Departments of Psychology and Biological Sciences, University of Wisconsin-Whitewater, 800 West, Main Street, Whitewater, WI, USA
| | - Alex V Schultz
- Departments of Psychology and Biological Sciences, University of Wisconsin-Whitewater, 800 West, Main Street, Whitewater, WI, USA
| |
Collapse
|
33
|
Mele M, Leal G, Duarte CB. Role of GABAAR trafficking in the plasticity of inhibitory synapses. J Neurochem 2016; 139:997-1018. [DOI: 10.1111/jnc.13742] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Miranda Mele
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Graciano Leal
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Carlos B. Duarte
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Department of Life Sciences; University of Coimbra; Coimbra Portugal
| |
Collapse
|
34
|
Hakim V, Cohen LD, Zuchman R, Ziv T, Ziv NE. The effects of proteasomal inhibition on synaptic proteostasis. EMBO J 2016; 35:2238-2262. [PMID: 27613546 PMCID: PMC5069550 DOI: 10.15252/embj.201593594] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 08/08/2016] [Indexed: 01/03/2023] Open
Abstract
Synaptic function crucially depends on uninterrupted synthesis and degradation of synaptic proteins. While much has been learned on synaptic protein synthesis, little is known on the routes by which synaptic proteins are degraded. Here we systematically studied how inhibition of the ubiquitin-proteasome system (UPS) affects the degradation rates of thousands of neuronal and synaptic proteins. We identified a group of proteins, including several proteins related to glutamate receptor trafficking, whose degradation rates were significantly slowed by UPS inhibition. Unexpectedly, however, degradation rates of most synaptic proteins were not significantly affected. Interestingly, many of the differential effects of UPS inhibition were readily explained by a quantitative framework that considered known metabolic turnover rates for the same proteins. In contrast to the limited effects on protein degradation, UPS inhibition profoundly and preferentially suppressed the synthesis of a large number of synaptic proteins. Our findings point to the importance of the UPS in the degradation of certain synaptic proteins, yet indicate that under basal conditions most synaptic proteins might be degraded through alternative pathways.
Collapse
Affiliation(s)
- Vicky Hakim
- The Rappaport Faculty of Medicine and Research Institute, Haifa, Israel.,Network Biology Research Laboratories, Technion - Israel Institute of Technology, Haifa, Israel
| | - Laurie D Cohen
- The Rappaport Faculty of Medicine and Research Institute, Haifa, Israel.,Network Biology Research Laboratories, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rina Zuchman
- Smoler Proteomics Center, Faculty of Biology, Technion, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Faculty of Biology, Technion, Haifa, Israel
| | - Noam E Ziv
- The Rappaport Faculty of Medicine and Research Institute, Haifa, Israel .,Network Biology Research Laboratories, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
35
|
Hegde AN. Proteolysis, synaptic plasticity and memory. Neurobiol Learn Mem 2016; 138:98-110. [PMID: 27614141 DOI: 10.1016/j.nlm.2016.09.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/25/2016] [Accepted: 09/05/2016] [Indexed: 12/30/2022]
Abstract
Protein degradation has many critical functions in the nervous system such as refinement of synaptic connections during development and synaptic plasticity and memory in the adult organisms. A major cellular machinery of proteolysis is the ubiquitin-proteasome pathway (UPP). The UPP precisely regulates proteolysis by covalently attaching ubiquitin, a small protein, to substrates through sequential enzymatic reactions and the proteins marked with the ubiquitin tag are degraded by complex containing many subunits called the proteasome. Research over the years has shown a role for the UPP in regulating presynaptic and postsynaptic proteins critical for neurotransmission and synaptic plasticity. Studies have also revealed a role for the UPP in various forms of memory. Mechanistic investigations suggest that the function of the UPP in neurons is not homogenous and is subject to local regulation in different neuronal sub-compartments. In both invertebrate and vertebrate model systems, local roles have been found for enzymes that attach ubiquitin to substrate proteins as well as for enzymes that remove ubiquitin from substrates. The proteasome also has disparate functions in different parts of the neuron. In addition to the UPP, proteolysis by the lysosome and autophagy play a role in synaptic plasticity and memory. This review details the functions of proteolysis in synaptic plasticity and summarizes the findings on the connection between proteolysis and memory mainly focusing on the UPP including its local roles.
Collapse
Affiliation(s)
- Ashok N Hegde
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA.
| |
Collapse
|
36
|
Fu YL, Wang YJ, Mu TW. Proteostasis Maintenance of Cys-Loop Receptors. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:1-23. [DOI: 10.1016/bs.apcsb.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Plic-1, a new target in repressing epileptic seizure by regulation of GABAAR function in patients and a rat model of epilepsy. Clin Sci (Lond) 2015; 129:1207-23. [PMID: 26415648 DOI: 10.1042/cs20150202] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/25/2015] [Indexed: 12/27/2022]
Abstract
Plic-1 regulates GABAAR expression at synaptic sites during epileptic seizure. Plic-1 prolongs the seizure latency and reduces the seizure severity in epileptic rats. Plic-1 affects the inhibitory function by changing the mIPSCs and evoked IPSCs of the phasic GABA-ergic synaptic current.
Collapse
|
38
|
Park H, Yang J, Kim R, Li Y, Lee Y, Lee C, Park J, Lee D, Kim H, Kim E. Mice lacking the PSD-95-interacting E3 ligase, Dorfin/Rnf19a, display reduced adult neurogenesis, enhanced long-term potentiation, and impaired contextual fear conditioning. Sci Rep 2015; 5:16410. [PMID: 26553645 PMCID: PMC4639748 DOI: 10.1038/srep16410] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/14/2015] [Indexed: 11/09/2022] Open
Abstract
Protein ubiquitination has a significant influence on diverse aspects of neuronal development and function. Dorfin, also known as Rnf19a, is a RING finger E3 ubiquitin ligase implicated in amyotrophic lateral sclerosis and Parkinson's disease, but its in vivo functions have not been explored. We report here that Dorfin is a novel binding partner of the excitatory postsynaptic scaffolding protein PSD-95. Dorfin-mutant (Dorfin(-/-)) mice show reduced adult neurogenesis and enhanced long-term potentiation in the hippocampal dentate gyrus, but normal long-term potentiation in the CA1 region. Behaviorally, Dorfin(-/-) mice show impaired contextual fear conditioning, but normal levels of cued fear conditioning, fear extinction, spatial learning and memory, object recognition memory, spatial working memory, and pattern separation. Using a proteomic approach, we also identify a number of proteins whose ubiquitination levels are decreased in the Dorfin(-/-) brain. These results suggest that Dorfin may regulate adult neurogenesis, synaptic plasticity, and contextual fear memory.
Collapse
Affiliation(s)
- Hanwool Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Jinhee Yang
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Ryunhee Kim
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Yan Li
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Yeunkum Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Chungwoo Lee
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Jongil Park
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Dongmin Lee
- Department of Anatomy and Division of Brain Korea 21. Biomedical Science, College of Medicine, Korea University, Seoul 136-704, Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21. Biomedical Science, College of Medicine, Korea University, Seoul 136-704, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| |
Collapse
|
39
|
Gouzer G, Specht CG, Allain L, Shinoe T, Triller A. Benzodiazepine-dependent stabilization of GABA(A) receptors at synapses. Mol Cell Neurosci 2015; 63:101-13. [PMID: 25466558 DOI: 10.1016/j.mcn.2014.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 10/08/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022] Open
Abstract
GABA(A) receptors constitutively enter and exit synapses by lateral diffusion in the plane of the neuronal membrane. They are trapped at synapses through their interactions with gephyrin, the main scaffolding protein at inhibitory post-synaptic densities. Previous work has shown that the synaptic accumulation and diffusion dynamics of GABA(A)Rs are controlled via excitatory synaptic activity. However, it remains unknown whether GABA(A)R activity can itself impact the surface trafficking of the receptors. Here we report the effects of GABA(A)R agonists, antagonists and allosteric modulators on the receptor's surface dynamics. Using immunocytochemistry and single particle tracking experiments on mouse hippocampal neurons, we show that the agonist muscimol decreases GABA(A)R and gephyrin levels at synapses and accelerates the receptor's lateral diffusion within 30–120 min of treatment. In contrast, the GABA(A)R antagonist gabazine increased GABA(A)R amounts and slowed down GABA(A)R diffusion at synapses. The response to GABA(A)R activation or inhibition appears to be an adaptative regulation of GABAergic synapses. Surprisingly, the positive allosteric modulator diazepam abolished the regulation induced by muscimol, and this effect was observed on α1, α2, α5 and γ2 GABA(A)R subunits. Altogether these results indicate that diazepam stabilizes synaptic GABA(A)Rs and thus prevents the agonist-induced regulation of GABA(A)R levels at synapses. This occurred independently of neuronal activity and intracellular calcium and involved GABA(A)R–gephyrin interactions, suggesting that the changes in GABA(A)R diffusion depend on conformational changes of the receptor. Our study provides a new molecular mechanism involved in the adaptative response to changes in GABA(A)R activity and benzodiazepine treatments.
Collapse
|
40
|
Hannan S, Mortensen M, Smart TG. Snake neurotoxin α-bungarotoxin is an antagonist at native GABA(A) receptors. Neuropharmacology 2015; 93:28-40. [PMID: 25634239 PMCID: PMC4398322 DOI: 10.1016/j.neuropharm.2015.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/08/2014] [Accepted: 01/07/2015] [Indexed: 12/25/2022]
Abstract
The snake neurotoxin α-bungarotoxin (α-Bgtx) is a competitive antagonist at nicotinic acetylcholine receptors (nAChRs) and is widely used to study their function and cell-surface expression. Increasingly, α-Bgtx is also used as an imaging tool for fluorophore-labelling studies, and given the structural conservation within the pentameric ligand-gated ion channel family, we assessed whether α-Bgtx could bind to recombinant and native γ-aminobutyric type-A receptors (GABAARs). Applying fluorophore-linked α-Bgtx to recombinant αxβ1/2γ2 GABAARs expressed in HEK-293 cells enabled clear cell-surface labelling of α2β1/2γ2 contrasting with the weaker staining of α1/4β1/2γ2, and no labelling for α3/5/6β1/2γ2. The labelling of α2β2γ2 was abolished by bicuculline, a competitive antagonist at GABAARs, and by d-tubocurarine (d-Tc), which acts in a similar manner at nAChRs and GABAARs. Labelling by α-Bgtx was also reduced by GABA, suggesting that the GABA binding site at the receptor β–α subunit interface forms part of the α-Bgtx binding site. Using whole-cell recording, high concentrations of α-Bgtx (20 μM) inhibited GABA-activated currents at all αxβ2γ2 receptors examined, but at lower concentrations (5 μM), α-Bgtx was selective for α2β2γ2. Using α-Bgtx, at low concentrations, permitted the selective inhibition of α2 subunit-containing GABAARs in hippocampal dentate gyrus granule cells, reducing synaptic current amplitudes without affecting the GABA-mediated tonic current. In conclusion, α-Bgtx can act as an inhibitor at recombinant and native GABAARs and may be used as a selective tool to inhibit phasic but not tonic currents in the hippocampus. Recombinant GABAA receptors are inhibited by α-bungarotoxin The β–α subunit interface of GABAA receptors forms the α-bungarotoxin binding site. α-bungarotoxin can selectively inhibit α2 subunit-containing GABAA receptors (α2β2γ2). α-bungarotoxin inhibits GABA synaptic currents in the hippocampus. GABA-mediated tonic currents are unaffected by α-bungarotoxin
Collapse
Affiliation(s)
- Saad Hannan
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Martin Mortensen
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
41
|
Flores CE, Méndez P. Shaping inhibition: activity dependent structural plasticity of GABAergic synapses. Front Cell Neurosci 2014; 8:327. [PMID: 25386117 PMCID: PMC4209871 DOI: 10.3389/fncel.2014.00327] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/28/2014] [Indexed: 11/22/2022] Open
Abstract
Inhibitory transmission through the neurotransmitter γ-aminobutyric acid (GABA) shapes network activity in the mammalian cerebral cortex by filtering synaptic incoming information and dictating the activity of principal cells. The incredibly diverse population of cortical neurons that use GABA as neurotransmitter shows an equally diverse range of mechanisms that regulate changes in the strength of GABAergic synaptic transmission and allow them to dynamically follow and command the activity of neuronal ensembles. Similarly to glutamatergic synaptic transmission, activity-dependent functional changes in inhibitory neurotransmission are accompanied by alterations in GABAergic synapse structure that range from morphological reorganization of postsynaptic density to de novo formation and elimination of inhibitory contacts. Here we review several aspects of structural plasticity of inhibitory synapses, including its induction by different forms of neuronal activity, behavioral and sensory experience and the molecular mechanisms and signaling pathways involved. We discuss the functional consequences of GABAergic synapse structural plasticity for information processing and memory formation in view of the heterogenous nature of the structural plasticity phenomena affecting inhibitory synapses impinging on somatic and dendritic compartments of cortical and hippocampal neurons.
Collapse
Affiliation(s)
- Carmen E Flores
- Department of Basic Neuroscience, Geneva Medical Center, University of Geneva Geneva, Switzerland
| | - Pablo Méndez
- Department of Basic Neuroscience, Geneva Medical Center, University of Geneva Geneva, Switzerland
| |
Collapse
|
42
|
Petrini EM, Barberis A. Diffusion dynamics of synaptic molecules during inhibitory postsynaptic plasticity. Front Cell Neurosci 2014; 8:300. [PMID: 25294987 PMCID: PMC4171989 DOI: 10.3389/fncel.2014.00300] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/05/2014] [Indexed: 12/24/2022] Open
Abstract
The plasticity of inhibitory transmission is expected to play a key role in the modulation of neuronal excitability and network function. Over the last two decades, the investigation of the determinants of inhibitory synaptic plasticity has allowed distinguishing presynaptic and postsynaptic mechanisms. While there has been a remarkable progress in the characterization of presynaptically-expressed plasticity of inhibition, the postsynaptic mechanisms of inhibitory long-term synaptic plasticity only begin to be unraveled. At postsynaptic level, the expression of inhibitory synaptic plasticity involves the rearrangement of the postsynaptic molecular components of the GABAergic synapse, including GABAA receptors, scaffold proteins and structural molecules. This implies a dynamic modulation of receptor intracellular trafficking and receptor surface lateral diffusion, along with regulation of the availability and distribution of scaffold proteins. This Review will focus on the mechanisms of the multifaceted molecular reorganization of the inhibitory synapse during postsynaptic plasticity, with special emphasis on the key role of protein dynamics to ensure prompt and reliable activity-dependent adjustments of synaptic strength.
Collapse
Affiliation(s)
- Enrica Maria Petrini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy
| | - Andrea Barberis
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy
| |
Collapse
|
43
|
Jin H, Chiou TT, Serwanski DR, Miralles CP, Pinal N, De Blas AL. Ring finger protein 34 (RNF34) interacts with and promotes γ-aminobutyric acid type-A receptor degradation via ubiquitination of the γ2 subunit. J Biol Chem 2014; 289:29420-36. [PMID: 25193658 DOI: 10.1074/jbc.m114.603068] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have found that the large intracellular loop of the γ2 GABAA receptor (R) subunit (γ2IL) interacts with RNF34 (an E3 ubiquitin ligase), as shown by yeast two-hybrid and in vitro pulldown assays. In brain extracts, RNF34 co-immunoprecipitates with assembled GABAARs. In co-transfected HEK293 cells, RNF34 reduces the expression of the γ2 GABAAR subunit by increasing the ratio of ubiquitinated/nonubiquitinated γ2. Mutating several lysines of the γ2IL into arginines makes the γ2 subunit resistant to RNF34-induced degradation. RNF34 also reduces the expression of the γ2 subunit when α1 and β3 subunits are co-assembled with γ2. This effect is partially reversed by leupeptin or MG132, indicating that both the lysosomal and proteasomal degradation pathways are involved. Immunofluorescence of cultured hippocampal neurons shows that RNF34 forms clusters and that a subset of these clusters is associated with GABAergic synapses. This association is also observed in the intact rat brain by electron microscopy immunocytochemistry. RNF34 is not expressed until the 2nd postnatal week of rat brain development, being highly expressed in some interneurons. Overexpression of RNF34 in hippocampal neurons decreases the density of γ2 GABAAR clusters and the number of GABAergic contacts that these neurons receive. Knocking down endogenous RNF34 with shRNA leads to increased γ2 GABAAR cluster density and GABAergic innervation. The results indicate that RNF34 regulates postsynaptic γ2-GABAAR clustering and GABAergic synaptic innervation by interacting with and ubiquitinating the γ2-GABAAR subunit promoting GABAAR degradation.
Collapse
Affiliation(s)
- Hongbing Jin
- From the Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Tzu-Ting Chiou
- From the Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - David R Serwanski
- From the Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Celia P Miralles
- From the Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Noelia Pinal
- From the Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Angel L De Blas
- From the Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
44
|
Ristic G, Tsou WL, Todi SV. An optimal ubiquitin-proteasome pathway in the nervous system: the role of deubiquitinating enzymes. Front Mol Neurosci 2014; 7:72. [PMID: 25191222 PMCID: PMC4137239 DOI: 10.3389/fnmol.2014.00072] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023] Open
Abstract
The Ubiquitin-Proteasome Pathway (UPP), which is critical for normal function in the nervous system and is implicated in various neurological diseases, requires the small modifier protein ubiquitin to accomplish its duty of selectively degrading short-lived, abnormal or misfolded proteins. Over the past decade, a large class of proteases collectively known as deubiquitinating enzymes (DUBs) has increasingly gained attention in all manners related to ubiquitin. By cleaving ubiquitin from another protein, DUBs ensure that the UPP functions properly. DUBs accomplish this task by processing newly translated ubiquitin so that it can be used for conjugation to substrate proteins, by regulating the "where, when, and why" of UPP substrate ubiquitination and subsequent degradation, and by recycling ubiquitin for re-use by the UPP. Because of the reliance of the UPP on DUB activities, it is not surprising that these proteases play important roles in the normal activities of the nervous system and in neurodegenerative diseases. In this review, we summarize recent advances in understanding the functions of DUBs in the nervous system. We focus on their role in the UPP, and make the argument that understanding the UPP from the perspective of DUBs can yield new insight into diseases that result from anomalous intra-cellular processes or inter-cellular networks. Lastly, we discuss the relevance of DUBs as therapeutic options for disorders of the nervous system.
Collapse
Affiliation(s)
- Gorica Ristic
- Department of Pharmacology, Wayne State University School of Medicine Detroit, MI, USA
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University School of Medicine Detroit, MI, USA ; Department of Neurology, Wayne State University School of Medicine Detroit, MI, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine Detroit, MI, USA ; Department of Neurology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
45
|
Tsai NP. Ubiquitin proteasome system-mediated degradation of synaptic proteins: An update from the postsynaptic side. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2838-2842. [PMID: 25135362 DOI: 10.1016/j.bbamcr.2014.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/10/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022]
Abstract
The ubiquitin proteasome system is one of the principle mechanisms for the regulation of protein homeostasis in mammalian cells. In dynamic cellular structures such as neuronal synapses, ubiquitin proteasome system and protein translation provide an efficient way for cells to respond promptly to local stimulation and regulate neuroplasticity. The majority of research related to long-term plasticity has been focused on the postsynapses and has shown that ubiquitination and subsequent degradation of specific proteins are involved in various activity-dependent plasticity events. This review summarizes recent achievements in understanding ubiquitination of postsynaptic proteins and its impact on synapse plasticity and discusses the direction for advancing future research in the field.
Collapse
Affiliation(s)
- Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
46
|
Prescott IA, Liu LD, Dostrovsky JO, Hodaie M, Lozano AM, Hutchison WD. Lack of depotentiation at basal ganglia output neurons in PD patients with levodopa-induced dyskinesia. Neurobiol Dis 2014; 71:24-33. [PMID: 25116960 DOI: 10.1016/j.nbd.2014.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 11/26/2022] Open
Abstract
Parkinson's disease (PD), characterized by the loss of dopaminergic nigrostriatal projections, is a debilitating neurodegenerative disease which produces bradykinesia, rigidity, tremor and postural instability. The dopamine precursor levodopa (L-Dopa) is the most effective treatment for the amelioration of PD signs and symptoms, but long-term administration can lead to disabling motor fluctuations and L-Dopa-induced dyskinesias. In animal models of PD, a form of plasticity called depotentiation, or the reversal of previous potentiation, is selectively lost after the development of dyskinetic movements following L-Dopa treatment. We investigated whether low frequency stimulation (LFS) in the globus pallidus internus (GPi) and substantia nigra pars reticulata (SNr) could induce depotentiation at synapses that had already undergone high frequency stimulation (HFS)-induced potentiation. To do so, we measured the field potentials (fEPs) evoked by stimulation from a nearby microelectrode in 28 patients undergoing implantation of deep brain stimulating (DBS) electrodes in the subthalamic nucleus (STN) or GPi. We found that GPi and SNr synapses in patients with less severe dyskinesia underwent greater depotentiation following LFS than in patients with more severe dyskinesia. This demonstration of impaired depotentiation in basal ganglia output nuclei in PD patients with dyskinesia is an important validation of animal models of levodopa-induced dyskinesia. The ability of a synapse to reverse previous potentiation may be crucial to the normal function of the BG, perhaps by preventing saturation of the storage capacity required in motor learning and optimal motor function. Loss of this ability at the output nuclei may underlie, or contribute to the cellular basis of dyskinetic movements.
Collapse
Affiliation(s)
- I A Prescott
- Department of Physiology, University of Toronto, Canada.
| | - L D Liu
- Department of Physiology, University of Toronto, Canada
| | | | - M Hodaie
- Dept. of Surgery, Division of Neurosurgery, Toronto Western Research Institute, Canada; Krembil Neuroscience Centre, Canada
| | - A M Lozano
- Dept. of Surgery, Division of Neurosurgery, Toronto Western Research Institute, Canada; Krembil Neuroscience Centre, Canada
| | - W D Hutchison
- Department of Physiology, University of Toronto, Canada; Dept. of Surgery, Division of Neurosurgery, Toronto Western Research Institute, Canada; Krembil Neuroscience Centre, Canada
| |
Collapse
|
47
|
Deidda G, Bozarth IF, Cancedda L. Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives. Front Cell Neurosci 2014; 8:119. [PMID: 24904277 PMCID: PMC4033255 DOI: 10.3389/fncel.2014.00119] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/14/2014] [Indexed: 01/30/2023] Open
Abstract
During mammalian ontogenesis, the neurotransmitter GABA is a fundamental regulator of neuronal networks. In neuronal development, GABAergic signaling regulates neural proliferation, migration, differentiation, and neuronal-network wiring. In the adult, GABA orchestrates the activity of different neuronal cell-types largely interconnected, by powerfully modulating synaptic activity. GABA exerts these functions by binding to chloride-permeable ionotropic GABAA receptors and metabotropic GABAB receptors. According to its functional importance during development, GABA is implicated in a number of neurodevelopmental disorders such as autism, Fragile X, Rett syndrome, Down syndrome, schizophrenia, Tourette's syndrome and neurofibromatosis. The strength and polarity of GABAergic transmission is continuously modulated during physiological, but also pathological conditions. For GABAergic transmission through GABAA receptors, strength regulation is achieved by different mechanisms such as modulation of GABAA receptors themselves, variation of intracellular chloride concentration, and alteration in GABA metabolism. In the never-ending effort to find possible treatments for GABA-related neurological diseases, of great importance would be modulating GABAergic transmission in a safe and possibly physiological way, without the dangers of either silencing network activity or causing epileptic seizures. In this review, we will discuss the different ways to modulate GABAergic transmission normally at work both during physiological and pathological conditions. Our aim is to highlight new research perspectives for therapeutic treatments that reinstate natural and physiological brain functions in neuro-pathological conditions.
Collapse
Affiliation(s)
- Gabriele Deidda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Ignacio F Bozarth
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| |
Collapse
|
48
|
Bates RC, Stith BJ, Stevens KE, Adams CE. Reduced CHRNA7 expression in C3H mice is associated with increases in hippocampal parvalbumin and glutamate decarboxylase-67 (GAD67) as well as altered levels of GABA(A) receptor subunits. Neuroscience 2014; 273:52-64. [PMID: 24836856 DOI: 10.1016/j.neuroscience.2014.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/23/2014] [Accepted: 05/02/2014] [Indexed: 12/14/2022]
Abstract
Decreased expression of CHRNA7, the gene encoding the α7(∗) subtype of nicotinic receptor, may contribute to the cognitive dysfunction observed in schizophrenia by disrupting the inhibitory/excitatory balance in the hippocampus. C3H mice with reduced Chrna7 expression have significant reductions in hippocampal α7(∗) receptor density, deficits in hippocampal auditory gating, increased hippocampal activity as well as significant decreases in hippocampal glutamate decarboxylase-65 (GAD65) and γ-aminobutyric acid-A (GABAA) receptor levels. The current study investigated whether altered Chrna7 expression is associated with changes in the levels of parvalbumin, GAD67 and/or GABAA receptor subunits in the hippocampus from male and female C3H Chrna7 wildtype, C3H Chrna7 heterozygous and C3H Chrna7 knockout (KO) mice using quantitative Western immunoblotting. Reduced Chrna7 expression was associated with significant increases in hippocampal parvalbumin and GAD67 and with complex alterations in GABAA receptor subunits. A decrease in α3 subunit protein was seen in both female C3H Chrna7 Het and KO mice while a decrease in α4 subunit protein was also detected in C3H Chrna7 KO mice with no sex difference. In contrast, an increase in δ subunit protein was observed in C3H Chrna7 Het mice while a decrease in this subunit was observed in C3H Chrna7 KO mice, with δ subunit protein levels being greater in males than in females. Finally, an increase in γ2 subunit protein was found in C3H Chrna7 KO mice with the levels of this subunit again being greater in males than in females. The increases in hippocampal parvalbumin and GAD67 observed in C3H Chrna7 mice are contrary to reports of reductions in these proteins in the postmortem hippocampus from schizophrenic individuals. We hypothesize that the disparate results may occur because of the influence of factors other than CHRNA7 that have been found to be abnormal in schizophrenia.
Collapse
Affiliation(s)
- R C Bates
- Medical Research, Veterans Affairs Medical Center, Denver, CO 80220, United States; Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, United States; Department of Integrative Biology, University of Colorado Denver Downtown Denver Campus, Denver, CO 80217, United States
| | - B J Stith
- Department of Integrative Biology, University of Colorado Denver Downtown Denver Campus, Denver, CO 80217, United States
| | - K E Stevens
- Medical Research, Veterans Affairs Medical Center, Denver, CO 80220, United States; Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, United States
| | - C E Adams
- Medical Research, Veterans Affairs Medical Center, Denver, CO 80220, United States; Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
49
|
Kudryashova IV. Molecular mechanisms of short-term plasticity as a basis of frequency coding: The role of proteolytic systems. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Frank CA. How voltage-gated calcium channels gate forms of homeostatic synaptic plasticity. Front Cell Neurosci 2014; 8:40. [PMID: 24592212 PMCID: PMC3924756 DOI: 10.3389/fncel.2014.00040] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/28/2014] [Indexed: 01/15/2023] Open
Abstract
Throughout life, animals face a variety of challenges such as developmental growth, the presence of toxins, or changes in temperature. Neuronal circuits and synapses respond to challenges by executing an array of neuroplasticity paradigms. Some paradigms allow neurons to up- or downregulate activity outputs, while countervailing ones ensure that outputs remain within appropriate physiological ranges. A growing body of evidence suggests that homeostatic synaptic plasticity (HSP) is critical in the latter case. Voltage-gated calcium channels gate forms of HSP. Presynaptically, the aggregate data show that when synapse activity is weakened, homeostatic signaling systems can act to correct impairments, in part by increasing calcium influx through presynaptic CaV2-type channels. Increased calcium influx is often accompanied by parallel increases in the size of active zones and the size of the readily releasable pool of presynaptic vesicles. These changes coincide with homeostatic enhancements of neurotransmitter release. Postsynaptically, there is a great deal of evidence that reduced network activity and loss of calcium influx through CaV1-type calcium channels also results in adaptive homeostatic signaling. Some adaptations drive presynaptic enhancements of vesicle pool size and turnover rate via retrograde signaling, as well as de novo insertion of postsynaptic neurotransmitter receptors. Enhanced calcium influx through CaV1 after network activation or single cell stimulation can elicit the opposite response-homeostatic depression via removal of excitatory receptors. There exist intriguing links between HSP and calcium channelopathies-such as forms of epilepsy, migraine, ataxia, and myasthenia. The episodic nature of some of these disorders suggests alternating periods of stable and unstable function. Uncovering information about how calcium channels are regulated in the context of HSP could be relevant toward understanding these and other disorders.
Collapse
Affiliation(s)
- C Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|