1
|
Shi S, Feng X, Cao Z, Wang L, Sun M, Zhao Z, Sun W. Screening, Analysis, and Validation of Endoplasmic Reticulum Stress-Related DEGs in Epilepsy. Cell Mol Neurobiol 2025; 45:51. [PMID: 40413658 DOI: 10.1007/s10571-025-01567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 05/12/2025] [Indexed: 05/27/2025]
Abstract
To investigate the relationship between Endoplasmic Reticulum Stress (ERS) and epilepsy, as well as their biological functions. We downloaded the GSE143272 dataset from the GEO database, identified differentially expressed genes (DEGs), and cross-analyzed them with ERS-related genes from GeneCards and the Molecular Signatures Database (MSigDB). Protein-protein interaction (PPI) networks were constructed, and Hub genes were screened. ROC curve analysis was conducted to assess the diagnostic utility of these genes, followed by qRT-PCR validation. This study identified a total of 83 ERS-related DEGs in epilepsy. PPI network analysis revealed eight feature genes: C-X-C motif chemokine ligand 8 (CXCL8), Toll-like receptor 4 (TLR4), Matrix metalloproteinase 9 (MMP9), Tumor necrosis factor receptor superfamily member 1A (TNFRSF1A), Prostaglandin-endoperoxide synthase 2 (PTGS2), Signal transducer and activator of transcription 1 (STAT1), B-cell lymphoma 2 (BCL2), and RELA proto-oncogene, NF-κB subunit (RELA). ROC curve analysis demonstrated that the combination of these eight feature genes exhibited the highest diagnostic potential. Among them, CXCL8 was the most valuable gene. qRT-PCR analysis showed that CXCL8 mRNA expression was significantly lower in the case group compared to the control group (P < 0.01). The results suggest that ERS is involved in physiological processes such as inflammation and neuronal apoptosis in epilepsy. This provides a bioinformatics evidence for exploring the biological functions and pathology of ERS in epilepsy, as well as serving as a reference for clinical diagnosis and potential therapeutic targets.
Collapse
Affiliation(s)
- Sunyena Shi
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xu Feng
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Zhan Cao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Lin Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Mingjian Sun
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Ziyi Zhao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Wei Sun
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
2
|
Zhou Y, Yuan X, Guo M. Unlocking NAC's potential ATF4 and m6A dynamics in rescuing cognitive impairments in PTSD. Metab Brain Dis 2025; 40:129. [PMID: 39954094 DOI: 10.1007/s11011-024-01485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 11/21/2024] [Indexed: 02/17/2025]
Abstract
In this study, we investigated the therapeutic potential of N-acetylcysteine (NAC) in a mouse model of post-traumatic stress disorder (PTSD) induced by a single prolonged stress (SPS) protocol. Our findings demonstrate that NAC treatment significantly improved cognitive function and mitigated hippocampal neuronal apoptosis in PTSD model mice. These positive effects were accompanied by a reduction in m6A methylation levels and activating transcription factor 4 (ATF4) expression. Silencing ATF4 further attenuated hippocampal neuronal apoptosis and cognitive dysfunction, while ATF4 overexpression partially reversed the beneficial effects of NAC. It suggests that NAC's efficacy in PTSD may be mediated by its regulation of ATF4 expression and m6A methylation levels. Overall, our study provides valuable insights into the potential mechanism of action for NAC in PTSD treatment, offering promising avenues for future therapeutic strategies.
Collapse
Affiliation(s)
- Yanling Zhou
- The Fourth People's Hospital of Haikou, Haikou, 570311, P. R. China
| | - Xiuhong Yuan
- Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, P. R. China
- Department of Clinical Psychology, The Third Xiangya Hospital of Central South University, Changsha, 410013, P. R. China
| | - Min Guo
- Hainan General Hospital, No.19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, P. R. China.
| |
Collapse
|
3
|
Wu W, Wen F, Hu J, Li L. Overexpression of ATF4 Inhibits Ferroptosis to Alleviate Anxiety Disorders by Activating the TGF-β Signaling Pathway. Neuropsychiatr Dis Treat 2024; 20:1969-1983. [PMID: 39430656 PMCID: PMC11491069 DOI: 10.2147/ndt.s480782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
Background Anxiety disorders seriously impair patients' mental health and quality of life, with limited effectiveness of current treatments. Dysregulation of activating transcription factor 4 (ATF4) is involved in various mental diseases, but the research on its potential roles in alleviating anxiety disorders remains limited. Methods ATF4 was screened out by bioinformatic analysis and its expression was verified in vivo. Mice were treated with 21 d of chronic restraint stress to establish the anxiety mice model. The anxiolytic effect of ATF4 was assessed by a battery of behavior tests and evaluation of hippocampal tissue damage after overexpressing ATF4. Ferroptosis-related indicators were detected by enzyme-linked immunosorbent assay and Western blotting. Then the transforming growth factor beta (TGF-β) signaling pathway was predicted as the downstream regulatory pathway of ATF4 by bioinformatic methods. Western blotting was conducted to detect the protein expression level of TGF-β1, small mothers against decapentaplegic 3 (Smad3), and phospho-Smad3 (p-Smad3). Results ATF4 was screened out as a ferroptosis-related anxiolytic gene after bioinformatics analysis and was down-regulated in the anxiety mice model. Mice with ATF4 overexpression spent more time in the open arms in the elevated plus-maze test, appeared more frequently in the central area in the open-field test, and decreased the immobility time in the forced swimming and tail suspension tests. Hippocampal tissue damage was alleviated, ferroptosis was suppressed, and the levels of TGF-β1 and p-Smad3/Smad3 were increased by AFT4 overexpression. Conclusion ATF4 overexpression can repress ferroptosis to improve anxiety disorders by activating the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Wentao Wu
- Department of Psychiatry, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Fei Wen
- Department of Psychiatry, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Jiaxin Hu
- Department of Psychiatry, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Leijun Li
- Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou City, Guangdong Province, People’s Republic of China
| |
Collapse
|
4
|
Bakulin A, Teyssier NB, Kampmann M, Khoroshkin M, Goodarzi H. pyPAGE: A framework for Addressing biases in gene-set enrichment analysis-A case study on Alzheimer's disease. PLoS Comput Biol 2024; 20:e1012346. [PMID: 39236079 PMCID: PMC11421795 DOI: 10.1371/journal.pcbi.1012346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Inferring the driving regulatory programs from comparative analysis of gene expression data is a cornerstone of systems biology. Many computational frameworks were developed to address this problem, including our iPAGE (information-theoretic Pathway Analysis of Gene Expression) toolset that uses information theory to detect non-random patterns of expression associated with given pathways or regulons. Our recent observations, however, indicate that existing approaches are susceptible to the technical biases that are inherent to most real world annotations. To address this, we have extended our information-theoretic framework to account for specific biases and artifacts in biological networks using the concept of conditional information. To showcase pyPAGE, we performed a comprehensive analysis of regulatory perturbations that underlie the molecular etiology of Alzheimer's disease (AD). pyPAGE successfully recapitulated several known AD-associated gene expression programs. We also discovered several additional regulons whose differential activity is significantly associated with AD. We further explored how these regulators relate to pathological processes in AD through cell-type specific analysis of single cell and spatial gene expression datasets. Our findings showcase the utility of pyPAGE as a precise and reliable biomarker discovery in complex diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Artemy Bakulin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Noam B. Teyssier
- Institute for Neurodegenerative Diseases, University of California San Francisco, California, United States of America
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Matvei Khoroshkin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Department of Urology, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Department of Urology, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
- Arc Institute, Palo Alto, California, United States of America
| |
Collapse
|
5
|
Xie MX, Rao JH, Tian XY, Liu JK, Li X, Chen ZY, Cao Y, Chen AN, Shu HH, Zhang XL. ATF4 inhibits TRPV4 function and controls itch perception in rodents and nonhuman primates. Pain 2024; 165:1840-1859. [PMID: 38422489 DOI: 10.1097/j.pain.0000000000003189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
ABSTRACT Acute and chronic itch are prevalent and incapacitating, yet the neural mechanisms underlying both acute and chronic itch are just starting to be unraveled. Activated transcription factor 4 (ATF4) belongs to the ATF/CREB transcription factor family and primarily participates in the regulation of gene transcription. Our previous study has demonstrated that ATF4 is expressed in sensory neurons. Nevertheless, the role of ATF4 in itch sensation remains poorly understood. Here, we demonstrate that ATF4 plays a significant role in regulating itch sensation. The absence of ATF4 in dorsal root ganglion (DRG) neurons enhances the itch sensitivity of mice. Overexpression of ATF4 in sensory neurons significantly alleviates the acute and chronic pruritus in mice. Furthermore, ATF4 interacts with the transient receptor potential cation channel subfamily V member 4 (TRPV4) and inhibits its function without altering the expression or membrane trafficking of TRPV4 in sensory neurons. In addition, interference with ATF4 increases the itch sensitivity in nonhuman primates and enhances TRPV4 currents in nonhuman primates DRG neurons; ATF4 and TRPV4 also co-expresses in human sensory neurons. Our data demonstrate that ATF4 controls pruritus by regulating TRPV4 signaling through a nontranscriptional mechanism and identifies a potential new strategy for the treatment of pathological pruritus.
Collapse
Affiliation(s)
- Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jun-Hua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiao-Yu Tian
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jin-Kun Liu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Xiao Li
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Zi-Yi Chen
- Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, China
| | - Yan Cao
- College of Food Science and Technology, Hainan University, Haikou, China
| | - An-Nan Chen
- Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, China
| | - Hai-Hua Shu
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiao-Long Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Zhang N, Nao J, Zhang S, Dong X. Novel insights into the activating transcription factor 4 in Alzheimer's disease and associated aging-related diseases: Mechanisms and therapeutic implications. Front Neuroendocrinol 2024; 74:101144. [PMID: 38797197 DOI: 10.1016/j.yfrne.2024.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Ageing is inherent to all human beings, most mechanistic explanations of ageing results from the combined effects of various physiological and pathological processes. Additionally, aging pivotally contributes to several chronic diseases. Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding protein family, has recently emerged as a pivotal player owing to its indispensable role in the pathophysiological processes of Alzheimer's disease and aging-related diseases. Moreover, ATF4 is integral to numerous biological processes. Therefore, this article aims to comprehensively review relevant research on the role of ATF4 in the onset and progression of aging-related diseases, elucidating its potential mechanisms and therapeutic approaches. Our objective is to furnish scientific evidence for the early identification of risk factors in aging-related diseases and pave the way for new research directions for their treatment. By elucidating the signaling pathway network of ATF4 in aging-related diseases, we aspire to gain a profound understanding of the molecular and cellular mechanisms, offering novel strategies for addressing aging and developing related therapeutics.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Seventh Clinical College of China Medical University, No. 24 Central Street, Xinfu District, Fushun 113000, Liaoning, China.
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Shun Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| |
Collapse
|
7
|
Lewis SA, Forstrom J, Tavani J, Schafer R, Tiede Z, Padilla-Lopez SR, Kruer MC. eIF2α phosphorylation evokes dystonia-like movements with D2-receptor and cholinergic origin and abnormal neuronal connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594240. [PMID: 38798458 PMCID: PMC11118466 DOI: 10.1101/2024.05.14.594240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dystonia is the 3rd most common movement disorder. Dystonia is acquired through either injury or genetic mutations, with poorly understood molecular and cellular mechanisms. Eukaryotic initiation factor alpha (eIF2α) controls cell state including neuronal plasticity via protein translation control and expression of ATF4. Dysregulated eIF2α phosphorylation (eIF2α-P) occurs in dystonia patients and models including DYT1, but the consequences are unknown. We increased/decreased eIF2α-P and tested motor control and neuronal properties in a Drosophila model. Bidirectionally altering eIF2α-P produced dystonia-like abnormal posturing and dyskinetic movements in flies. These movements were also observed with expression of the DYT1 risk allele. We identified cholinergic and D2-receptor neuroanatomical origins of these dyskinetic movements caused by genetic manipulations to dystonia molecular candidates eIF2α-P, ATF4, or DYT1, with evidence for decreased cholinergic release. In vivo, increased and decreased eIF2α-P increase synaptic connectivity at the NMJ with increased terminal size and bouton synaptic release sites. Long-term treatment of elevated eIF2α-P with ISRIB restored adult longevity, but not performance in a motor assay. Disrupted eIF2α-P signaling may alter neuronal connectivity, change synaptic release, and drive motor circuit changes in dystonia.
Collapse
Affiliation(s)
- Sara A Lewis
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Jacob Forstrom
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Jennifer Tavani
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Robert Schafer
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Zach Tiede
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Sergio R Padilla-Lopez
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Michael C Kruer
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Programs in Neuroscience, Molecular & Cellular Biology, and Biomedical Informatics, Arizona State University, Tempe, AZ USA
| |
Collapse
|
8
|
Paing YMM, Eom Y, Song GB, Kim B, Choi MG, Hong S, Lee SH. Neurotoxic effects of polystyrene nanoplastics on memory and microglial activation: Insights from in vivo and in vitro studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171681. [PMID: 38490422 DOI: 10.1016/j.scitotenv.2024.171681] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Nanoplastics, arising from the fragmentation of plastics into environmental pollutants and specialized commercial applications, such as cosmetics, have elicited concerns due to their potential toxicity. Evidence suggests that the oral ingestion of nanoplastics smaller than 100 nm may penetrate the brain and induce neurotoxicity. However, comprehensive research in this area has been hampered by technical challenges associated with the detection and synthesis of nanoplastics. This study aimed to bridge this research gap by successfully synthesizing fluorescent polystyrene nanoplastics (PSNPs, 30-50 nm) through the incorporation of IR-813 and validating them using various analytical techniques. We administered PSNPs orally (10 and 20 mg/kg/day) to mice and observed that they reached brain tissues and induced cognitive dysfunction, as measured by spatial and fear memory tests, while locomotor and social behaviors remained unaffected. In vitro studies (200 μg/mL) demonstrated a predominant uptake of PSNPs by microglia over astrocytes or neurons, leading to microglial activation, as evidenced by immunostaining of cellular markers and morphological analysis. Transcriptomic analysis indicated that PSNPs altered gene expression in microglia, highlighting neuroinflammatory responses that may contribute to cognitive deficits. To further explore the neurotoxic effects of PSNPs mediated by microglial activation, we measured endogenous neuronal activity using a multi-electrode array in cultured hippocampal neurons. The application of conditioned media from microglia exposed to PSNPs suppressed neuronal activity, which was reversed by inhibitors of microglial activation. Our findings offer detailed insights into the mechanisms by which nanoplastics damage the brain, particularly emphasizing the potential environmental risk factors that contribute to cognitive impairment in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunn Me Me Paing
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Gyeong Bae Song
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Bokyung Kim
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Myung Gil Choi
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Sungguan Hong
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
9
|
Amin U, Jiang R, Raza SM, Fan M, Liang L, Feng N, Li X, Yang Y, Guo F. Gut-joint axis: Oral Probiotic ameliorates Osteoarthritis. J Tradit Complement Med 2024; 14:26-39. [PMID: 38223812 PMCID: PMC10785157 DOI: 10.1016/j.jtcme.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 06/13/2023] [Indexed: 01/16/2024] Open
Abstract
Osteoarthritis (OA) etiology is multifactorial, and its prevalence is growing globally. The Gut microbiota shapes our immune system and impacts all aspects of health and disease. The idea of utilizing probiotics to treat different conditions prevails. Concerning musculoskeletal illness and health, current data lack the link to understand the interactions between the host and microbiome. We report that S. thermophilus, L. pentosus (as probiotics), and γ-aminobutyric acid (GABA) harbour against osteoarthritis in vivo and alleviate IL-1β induced changes in chondrocytes in vitro. We examined the increased GABA concentration in mice's serum and small intestine content followed by bacterial treatment. The treatment inhibited the catabolism of cartilage and rescued mice joints from degradation. Furthermore, the anabolic markers upregulated and decreased inflammatory markers in mice knee joints and chondrocytes. This study is the first to represent GABA's chondrogenic and chondroprotective effects on joints and human chondrocytes. This data provides a foundation for future studies to elucidate the role of GABA in regulating chondrocyte cell proliferation. These findings opened future horizons to understanding the gut-joint axis and OA treatment. Thus, probiotic/GABA therapy shields OA joints in mice and could at least serve as adjuvant therapy to treat osteoarthritis.
Collapse
Affiliation(s)
- Uzma Amin
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Microbiology, Government College University, Faisalabad, 38000, Punjab, Pakistan
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Shahid Masood Raza
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Microbiology, Government College University, Faisalabad, 38000, Punjab, Pakistan
| | - Mengtian Fan
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Li Liang
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Naibo Feng
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Xiaoli Li
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yuyou Yang
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Fengjin Guo
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Örd T, Örd D, Adler P, Örd T. Genome-wide census of ATF4 binding sites and functional profiling of trait-associated genetic variants overlapping ATF4 binding motifs. PLoS Genet 2023; 19:e1011014. [PMID: 37906604 PMCID: PMC10637723 DOI: 10.1371/journal.pgen.1011014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/10/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
Activating Transcription Factor 4 (ATF4) is an important regulator of gene expression in stress responses and developmental processes in many cell types. Here, we catalogued ATF4 binding sites in the human genome and identified overlaps with trait-associated genetic variants. We probed these genetic variants for allelic regulatory activity using a massively parallel reporter assay (MPRA) in HepG2 hepatoma cells exposed to tunicamycin to induce endoplasmic reticulum stress and ATF4 upregulation. The results revealed that in the majority of cases, the MPRA allelic activity of these SNPs was in agreement with the nucleotide preference seen in the ATF4 binding motif from ChIP-Seq. Luciferase and electrophoretic mobility shift assays in additional cellular models further confirmed ATF4-dependent regulatory effects for the SNPs rs532446 (GADD45A intronic; linked to hematological parameters), rs7011846 (LPL upstream; myocardial infarction), rs2718215 (diastolic blood pressure), rs281758 (psychiatric disorders) and rs6491544 (educational attainment). CRISPR-Cas9 disruption and/or deletion of the regulatory elements harboring rs532446 and rs7011846 led to the downregulation of GADD45A and LPL, respectively. Thus, these SNPs could represent examples of GWAS genetic variants that affect gene expression by altering ATF4-mediated transcriptional activation.
Collapse
Affiliation(s)
- Tiit Örd
- Institute of Genomics, University of Tartu, Tartu, Estonia
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Daima Örd
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Priit Adler
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Tõnis Örd
- Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
11
|
Ma H, Chang Q, Jia J, Zhang Y, Wang G, Li Y. Linkage of blood cell division cycle 42 with T helper cells, and their correlation with anxiety, depression, and cognitive impairment in stroke patients. Braz J Med Biol Res 2023; 56:e12855. [PMID: 37703110 PMCID: PMC10496759 DOI: 10.1590/1414-431x2023e12855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
Cell division cycle 42 (CDC42) regulates T helper (Th) cell differentiation and is related to psychological disorders. This study aimed to assess the correlation between blood CDC42 and Th cells, and their association with mental issues in stroke patients. Peripheral blood samples were obtained from 264 stroke patients and 50 controls. Then, serum CDC42 was measured by enzyme-linked immunosorbent assay, and Th1, Th2, and Th17 cells were detected by flow cytometry. Hospital Anxiety and Depression Scale (HADS) and Mini Mental State Examination (MMSE) were applied to patients. CDC42 was decreased (P<0.001), Th1 (P=0.013) and Th17 (P<0.001) cells were elevated, while Th2 cells (P=0.108) showed no difference in stroke patients compared to controls. In addition, CDC42 was negatively associated to Th1 (P=0.013) and Th17 (P<0.001) cells in stroke patients but were not associated with Th2 cells (P=0.223). Interestingly, CDC42 was negatively associated with HADS-anxiety (P<0.001) and HADS-depression scores (P=0.034) and positively associated with MMSE score (P<0.001) in stroke patients. Lower CDC42 was associated to lower occurrence of anxiety (P=0.002), depression (P=0.001), and cognitive impairment (P=0.036) in stroke patients. Furthermore, increased Th17 cells were positively correlated with HADS-anxiety and HADS-depression scores and inversely correlated with MMSE score, which were also associated with higher occurrence of anxiety, depression, and cognitive impairment in stroke patients (all P<0.05). Blood CDC42 and Th17 cells were correlated, and both of them were linked to the risk of anxiety, depression, and cognitive impairment. However, the findings need further large-scale validation, and the implicated mechanism needs more investigation.
Collapse
Affiliation(s)
- Haifeng Ma
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Qing Chang
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Jujuan Jia
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yaoyuan Zhang
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Gang Wang
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yuanyuan Li
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
12
|
Gao Y, Wei GZ, Forston MD, Rood B, Hodges ER, Burke D, Andres K, Morehouse J, Armstrong C, Glover C, Slomnicki LP, Ding J, Chariker JH, Rouchka EC, Saraswat Ohri S, Whittemore SR, Hetman M. Opposite modulation of functional recovery following contusive spinal cord injury in mice with oligodendrocyte-selective deletions of Atf4 and Chop/Ddit3. Sci Rep 2023; 13:9193. [PMID: 37280306 PMCID: PMC10244317 DOI: 10.1038/s41598-023-36258-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
The integrated stress response (ISR)-activated transcription factors ATF4 and CHOP/DDIT3 may regulate oligodendrocyte (OL) survival, tissue damage and functional impairment/recovery in white matter pathologies, including traumatic spinal cord injury (SCI). Accordingly, in OLs of OL-specific RiboTag mice, Atf4, Chop/Ddit3 and their downstream target gene transcripts were acutely upregulated at 2, but not 10, days post-contusive T9 SCI coinciding with maximal loss of spinal cord tissue. Unexpectedly, another, OL-specific upregulation of Atf4/Chop followed at 42 days post-injury. However, wild type versus OL-specific Atf4-/- or Chop-/- mice showed similar white matter sparing and OL loss at the injury epicenter, as well as unaffected hindlimb function recovery as determined by the Basso mouse scale. In contrast, the horizontal ladder test revealed persistent worsening or improvement of fine locomotor control in OL-Atf4-/- or OL-Chop-/- mice, respectively. Moreover, chronically, OL-Atf-/- mice showed decreased walking speed during plantar stepping despite greater compensatory forelimb usage. Therefore, ATF4 supports, while CHOP antagonizes, fine locomotor control during post-SCI recovery. No correlation between those effects and white matter sparing together with chronic activation of the OL ISR suggest that in OLs, ATF4 and CHOP regulate function of spinal cord circuitries that mediate fine locomotor control during post-SCI recovery.
Collapse
Affiliation(s)
- Yonglin Gao
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - George Z Wei
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
- MD/PhD Program, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Michael D Forston
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Benjamin Rood
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Emily R Hodges
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Darlene Burke
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Kariena Andres
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Johnny Morehouse
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Christine Armstrong
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Charles Glover
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
| | - Lukasz P Slomnicki
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Jixiang Ding
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA
| | - Julia H Chariker
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA
| | - Eric C Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA
| | - Sujata Saraswat Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd St., MDR616, Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
13
|
Yang T, Zhang Y, Chen L, Thomas ER, Yu W, Cheng B, Li X. The potential roles of ATF family in the treatment of Alzheimer's disease. Biomed Pharmacother 2023; 161:114544. [PMID: 36934558 DOI: 10.1016/j.biopha.2023.114544] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/20/2023] Open
Abstract
Activating transcription factors, ATFs, is a family of transcription factors that activate gene expression and transcription by recognizing and combining the cAMP response element binding proteins (CREB). It is present in various viruses as a cellular gene promoter. ATFs is involved in regulating the mammalian gene expression that is associated with various cell physiological processes. Therefore, ATFs play an important role in maintaining the intracellular homeostasis. ATF2 and ATF3 is mostly involved in mediating stress responses. ATF4 regulates the oxidative metabolism, which is associated with the survival of cells. ATF5 is presumed to regulate apoptosis, and ATF6 is involved in the regulation of endoplasmic reticulum stress (ERS). ATFs is actively studied in oncology. At present, there has been an increasing amount of research on ATFs for the treatment of neurological diseases. Here, we have focused on the different types of ATFs and their association with Alzheimer's disease (AD). The level of expression of different ATFs have a significant difference in AD patients when compared to healthy control. Recent studies have suggested that ATFs are implicated in the pathogenesis of AD, such as neuronal repair, maintenance of synaptic activity, maintenance of cell survival, inhibition of apoptosis, and regulation of stress responses. In this review, the potential role of ATFs for the treatment of AD has been highlighted. In addition, we have systematically reviewed the progress of research on ATFs in AD. This review will provide a basic and innovative understanding on the pathogenesis and treatment of AD.
Collapse
Affiliation(s)
- Ting Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Yuhong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Lixuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | | | - Wenjing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Bo Cheng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, China.
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
14
|
Neill G, Masson GR. A stay of execution: ATF4 regulation and potential outcomes for the integrated stress response. Front Mol Neurosci 2023; 16:1112253. [PMID: 36825279 PMCID: PMC9941348 DOI: 10.3389/fnmol.2023.1112253] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
ATF4 is a cellular stress induced bZIP transcription factor that is a hallmark effector of the integrated stress response. The integrated stress response is triggered by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 complex that can be carried out by the cellular stress responsive kinases; GCN2, PERK, PKR, and HRI. eIF2α phosphorylation downregulates mRNA translation initiation en masse, however ATF4 translation is upregulated. The integrated stress response can output two contradicting outcomes in cells; pro-survival or apoptosis. The mechanism for choice between these outcomes is unknown, however combinations of ATF4 heterodimerisation partners and post-translational modifications have been linked to this regulation. This semi-systematic review article covers ATF4 target genes, heterodimerisation partners and post-translational modifications. Together, this review aims to be a useful resource to elucidate the mechanisms controlling the effects of the integrated stress response. Additional putative roles of the ATF4 protein in cell division and synaptic plasticity are outlined.
Collapse
Affiliation(s)
- Graham Neill
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | | |
Collapse
|
15
|
Cheng L, Su Y, Zhi K, Xie Y, Zhang C, Meng X. Conditional deletion of MAD2B in forebrain neurons enhances hippocampus-dependent learning and memory in mice. Front Cell Neurosci 2022; 16:956029. [PMID: 36212696 PMCID: PMC9538151 DOI: 10.3389/fncel.2022.956029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Mitotic arrest deficient 2-like protein 2 (MAD2B) is not only a DNA damage repair agent but also a cell cycle regulator that is widely expressed in the hippocampus and the cerebral cortex. However, the functions of MAD2B in hippocampal and cerebral cortical neurons are poorly understood. In this study, we crossed MAD2Bflox/flox and calcium/calmodulin-dependent protein kinase II alpha (Camk2a)-Cre mice to conditionally knock out MAD2B in the forebrain pyramidal neurons by the Cre/loxP recombinase system. First, RNA sequencing suggested that the differentially expressed genes in the hippocampus and the cerebral cortex between the WT and the MAD2B cKO mice were related to learning and memory. Then, the results of behavioral tests, including the Morris water maze test, the novel object recognition test, and the contextual fear conditioning experiment, suggested that the learning and memory abilities of the MAD2B cKO mice had improved. Moreover, conditional knockout of MAD2B increased the number of neurons without affecting the number of glial cells in the hippocampal CA1 and the cerebral cortex. At the same time, the number of doublecortin-positive (DCX+) cells was increased in the dentate gyrus (DG) of the MAD2B cKO mice. In addition, as shown by Golgi staining, the MAD2B cKO mice had more mushroom-like and long-like spines than the WT mice. Transmission electron microscopy (TEM) revealed that spine synapses increased and shaft synapses decreased in the CA1 of the MAD2B cKO mice. Taken together, our findings indicated that MAD2B plays an essential role in regulating learning and memory.
Collapse
Affiliation(s)
- Li Cheng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfang Su
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaining Zhi
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaru Xie
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chun Zhang
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Xianfang Meng
| |
Collapse
|
16
|
de Moraes RCM, Lima GCA, Cardinali CAEF, Gonçalves AC, Portari GV, Guerra-Shinohara EM, Leboucher A, Júnior JD, Kleinridders A, da Silva Torrão A. Benfotiamine protects against hypothalamic dysfunction in a STZ-induced model of neurodegeneration in rats. Life Sci 2022; 306:120841. [PMID: 35907494 DOI: 10.1016/j.lfs.2022.120841] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
Abstract
The neurodegeneration of Alzheimer's disease (AD) affects not only brain structures associate with cognition early in the progression of the disease, but other areas such as the hypothalamus, a region involved in the control of metabolism and appetite. In this context, we evaluated the effects of benfotiamine (BFT), a vitamin B1 analog that is being proposed as a therapeutical approach for AD-related cognitive alterations, which were induced by intracerebroventricular injection of streptozotocin (STZ). In addition to the already described effect of STZ on cognition, we show that this drug also causes metabolic changes which are linked to changes in hypothalamic insulin signaling and orexigenic and anorexigenic circuitries, as well as a decreased cellular integrated stress response. As expected, the supplementation with 150 mg/kg of BFT for 30 days increased blood concentrations of thiamine and its phosphate esters. This led to the prevention of body weight and fat loss in STZ-ICV-treated animals. In addition, we also found an improvement in food consumption, despite hypothalamic gene expression linked to anorexia after STZ exposure. Additionally, decreased apoptosis signaling was observed in the hypothalamus. In in vitro experiments, we noticed a high ability of BFT to increase insulin sensitivity in hypothalamic neurons. Furthermore, we also observed that BFT decreases the mitochondrial unfolded stress response damage by preventing the loss of HSP60 and reversed the mitochondria dysfunction caused by STZ. Taken together, these results suggest that benfotiamine treatment is a potential therapeutic approach in the treatment of hypothalamic dysfunction and metabolic disturbances associated with sporadic AD.
Collapse
Affiliation(s)
- Ruan Carlos Macêdo de Moraes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil; Central Regulation of Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke, Germany.
| | | | | | - Alisson Carvalho Gonçalves
- Federal Institute of Education, Science and Technology Goiano, Urutaí, GO, Brazil; Laboratory of Experimental Nutrition, Institute of Health Sciences, Federal University of Triângulo Mineiro, Brazil
| | - Guilherme Vannucchi Portari
- Laboratory of Experimental Nutrition, Institute of Health Sciences, Federal University of Triângulo Mineiro, Brazil
| | - Elvira Maria Guerra-Shinohara
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Brazil; Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Brazil
| | - Antoine Leboucher
- Central Regulation of Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke, Germany
| | - José Donato Júnior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - André Kleinridders
- Central Regulation of Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke, Germany; Institute of Nutritional Science, Department of Molecular and Experimental Nutritional Medicine, University of Potsdam, Germany
| | - Andréa da Silva Torrão
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
17
|
Oliveira MM, Klann E. eIF2-dependent translation initiation: Memory consolidation and disruption in Alzheimer's disease. Semin Cell Dev Biol 2022; 125:101-109. [PMID: 34304995 PMCID: PMC8782933 DOI: 10.1016/j.semcdb.2021.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/20/2021] [Accepted: 07/12/2021] [Indexed: 01/05/2023]
Abstract
Memory storage is a conserved survivability feature, present in virtually any complex species. During the last few decades, much effort has been devoted to understanding how memories are formed and which molecular switches define whether a memory should be stored for a short or a long period of time. Among these, de novo protein synthesis is known to be required for the conversion of short- to long-term memory. There are a number translational control pathways involved in synaptic plasticity and memory consolidation, including the phosphorylation of the eukaryotic initiation factor 2 alpha (eIF2α), which has emerged as a critical molecular switch for long-term memory consolidation. In this review, we discuss findings pertaining to the requirement of de novo protein synthesis to memory formation, how local dendritic and axonal translation is regulated in neurons, and how these can influence memory consolidation. We also highlight the importance of eIF2α-dependent translation initiation to synaptic plasticity and memory formation. Finally, we contextualize how aberrant phosphorylation of eIF2α contributes to Alzheimer's disease (AD) pathology and how preventing disruption of eIF2-dependent translation may be a therapeutic avenue for preventing and/or restoring memory loss in AD.
Collapse
Affiliation(s)
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Srivastava A, Banerjee J, Dubey V, Tripathi M, Chandra PS, Sharma MC, Lalwani S, Siraj F, Doddamani R, Dixit AB. Role of Altered Expression, Activity and Sub-cellular Distribution of Various Histone Deacetylases (HDACs) in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis. Cell Mol Neurobiol 2022; 42:1049-1064. [PMID: 33258018 PMCID: PMC11441253 DOI: 10.1007/s10571-020-00994-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Histone deacetylases (HDACs) have been described to have both neurotoxic and neuroprotective roles, and partly, depend on its sub-cellular distribution. HDAC inhibitors have a long history of use in the treatment of various neurological disorders including epilepsy. Key role of HDACs in GABAergic neurotransmission, synaptogenesis, synaptic plasticity and memory formation was demonstrated whereas very less is known about their role in drug-resistant epilepsy pathologies. The present study was aimed to investigate the changes in the expression of HDACs, activity and its sub-cellular distribution in mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) patients. For this study, surgically resected hippocampal tissue specimens of 28 MTLE-HS patients and 20 hippocampus from post-mortem cases were obtained. Real-time PCR was done to analyse the mRNA expression. HDAC activity and the protein levels of HDACs in cytoplasm as well as nucleus were measured spectrophotometrically. Further, sub-cellular localization of HDACs was characterized by immunofluorescence. Significant upregulation of HDAC1, HDAC2, HDAC4, HDAC5, HDAC6, HDAC10 and HDAC11 mRNA were observed in MTLE-HS. Alterations in the mRNA expression of glutamate and gamma-aminobutyric acid (GABA) receptor subunits have been also demonstrated. We observed significant increase of HDAC activity and nuclear level of HDAC1, HDAC2, HDAC5 and HDAC11 in the hippocampal samples obtained from patients with MTLE-HS. Moreover, we found altered cytoplasmic level of HDAC4, HDAC6 and HDAC10 in the hippocampal sample obtained from patients with MTLE-HS. Alterations in the level of HDACs could potentially be part of a dynamic transcription regulation associated with MTLE-HS. Changes in cytoplasmic level of HDAC4, 6 and 10 suggest that cytoplasmic substrates may play a crucial role in the pathophysiology of MTLE-HS. Knowledge regarding expression pattern and sub-cellular distribution of HDACs may help to devise specific HDACi therapy for epilepsy.
Collapse
Affiliation(s)
- Arpna Srivastava
- Centre of Excellence for Epilepsy, AIIMS, New Delhi, India
- Department of Neurosurgery, AIIMS, New Delhi, India
| | - Jyotirmoy Banerjee
- Centre of Excellence for Epilepsy, AIIMS, New Delhi, India
- Department of Biophysics, AIIMS, New Delhi, India
| | - Vivek Dubey
- Department of Biophysics, AIIMS, New Delhi, India
| | - Manjari Tripathi
- Centre of Excellence for Epilepsy, AIIMS, New Delhi, India
- Department of Neurology, AIIMS, New Delhi, India
| | - P Sarat Chandra
- Centre of Excellence for Epilepsy, AIIMS, New Delhi, India
- Department of Neurosurgery, AIIMS, New Delhi, India
| | - M C Sharma
- Department of Pathology, AIIMS, New Delhi, India
| | - Sanjeev Lalwani
- Department of Forensic Medicine and Toxicology, AIIMS, New Delhi, India
| | - Fouzia Siraj
- National Institute of Pathology, New Delhi, India
| | | | - Aparna Banerjee Dixit
- Centre of Excellence for Epilepsy, AIIMS, New Delhi, India.
- Dr B R Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India.
| |
Collapse
|
19
|
Schmidbaur H, Kawaguchi A, Clarence T, Fu X, Hoang OP, Zimmermann B, Ritschard EA, Weissenbacher A, Foster JS, Nyholm SV, Bates PA, Albertin CB, Tanaka E, Simakov O. Emergence of novel cephalopod gene regulation and expression through large-scale genome reorganization. Nat Commun 2022; 13:2172. [PMID: 35449136 PMCID: PMC9023564 DOI: 10.1038/s41467-022-29694-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
Coleoid cephalopods (squid, cuttlefish, octopus) have the largest nervous system among invertebrates that together with many lineage-specific morphological traits enables complex behaviors. The genomic basis underlying these innovations remains unknown. Using comparative and functional genomics in the model squid Euprymna scolopes, we reveal the unique genomic, topological, and regulatory organization of cephalopod genomes. We show that coleoid cephalopod genomes have been extensively restructured compared to other animals, leading to the emergence of hundreds of tightly linked and evolutionary unique gene clusters (microsyntenies). Such novel microsyntenies correspond to topological compartments with a distinct regulatory structure and contribute to complex expression patterns. In particular, we identify a set of microsyntenies associated with cephalopod innovations (MACIs) broadly enriched in cephalopod nervous system expression. We posit that the emergence of MACIs was instrumental to cephalopod nervous system evolution and propose that microsyntenic profiling will be central to understanding cephalopod innovations.
Collapse
Affiliation(s)
- Hannah Schmidbaur
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | | | - Tereza Clarence
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Xiao Fu
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Oi Pui Hoang
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Elena A Ritschard
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - Jamie S Foster
- Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab, Merritt Island, FL, USA
| | - Spencer V Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Caroline B Albertin
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, USA.
| | - Elly Tanaka
- Institute for Molecular Pathology, Vienna, Austria.
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Keeping the Balance: GABAB Receptors in the Developing Brain and Beyond. Brain Sci 2022; 12:brainsci12040419. [PMID: 35447949 PMCID: PMC9031223 DOI: 10.3390/brainsci12040419] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022] Open
Abstract
The main neurotransmitter in the brain responsible for the inhibition of neuronal activity is γ-aminobutyric acid (GABA). It plays a crucial role in circuit formation during development, both via its primary effects as a neurotransmitter and also as a trophic factor. The GABAB receptors (GABABRs) are G protein-coupled metabotropic receptors; on one hand, they can influence proliferation and migration; and, on the other, they can inhibit cells by modulating the function of K+ and Ca2+ channels, doing so on a slower time scale and with a longer-lasting effect compared to ionotropic GABAA receptors. GABABRs are expressed pre- and post-synaptically, at both glutamatergic and GABAergic terminals, thus being able to shape neuronal activity, plasticity, and the balance between excitatory and inhibitory synaptic transmission in response to varying levels of extracellular GABA concentration. Furthermore, given their subunit composition and their ability to form complexes with several associated proteins, GABABRs display heterogeneity with regard to their function, which makes them a promising target for pharmacological interventions. This review will describe (i) the latest results concerning GABABRs/GABABR-complex structures, their function, and the developmental time course of their appearance and functional integration in the brain, (ii) their involvement in manifestation of various pathophysiological conditions, and (iii) the current status of preclinical and clinical studies involving GABABR-targeting drugs.
Collapse
|
21
|
Behrendt M. TRPM3 in the eye and in the nervous system - from new findings to novel mechanisms. Biol Chem 2022; 403:859-868. [PMID: 35240732 DOI: 10.1515/hsz-2021-0403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 01/13/2023]
Abstract
The calcium-permeable cation channel TRPM3 can be activated by heat and the endogenous steroid pregnenolone sulfate. TRPM3's best understood function is its role as a peripheral noxious heat sensor in mice. However, the channel is expressed in various tissues and cell types including neurons as well as glial and epithelial cells. TRPM3 expression patterns differ between species and change during development. Furthermore, a plethora of TRPM3 variants that result from alternative splicing have been identified and the majority of these isoforms are yet to be characterized. Moreover, the mechanisms underlying regulation of TRPM3 are largely unexplored. In addition, a micro-RNA gene (miR-204) is located within the TRPM3 gene. This complexity makes it difficult to obtain a clear picture of TRPM3 characteristics. However, a clear picture is needed to unravel TRPM3's full potential as experimental tool, diagnostic marker and therapeutic target. Therefore, the newest data related to TRPM3 have to be discussed and to be put in context as soon as possible to be up-to-date and to accelerate the translation from bench to bedside. The aim of this review is to highlight recent results and developments with particular focus on findings from studies involving ocular tissues and cells or peripheral neurons of rodents and humans.
Collapse
Affiliation(s)
- Marc Behrendt
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Str. 13-17, D-68167 Mannheim, Germany
| |
Collapse
|
22
|
Akyuz E, Koklu B, Uner A, Angelopoulou E, Paudel YN. Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. J Neurosci Res 2021; 100:413-443. [PMID: 34713909 DOI: 10.1002/jnr.24985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/29/2023]
Abstract
Epilepsy is a devastating neurological disorder characterized by recurrent seizures attributed to the disruption of the dynamic excitatory and inhibitory balance in the brain. Epilepsy has emerged as a global health concern affecting about 70 million people worldwide. Despite recent advances in pre-clinical and clinical research, its etiopathogenesis remains obscure, and there are still no treatment strategies modifying disease progression. Although the precise molecular mechanisms underlying epileptogenesis have not been clarified yet, the role of ion channels as regulators of cellular excitability has increasingly gained attention. In this regard, emerging evidence highlights the potential implication of inwardly rectifying potassium (Kir) channels in epileptogenesis. Kir channels consist of seven different subfamilies (Kir1-Kir7), and they are highly expressed in both neuronal and glial cells in the central nervous system. These channels control the cell volume and excitability. In this review, we discuss preclinical and clinical evidence on the role of the several subfamilies of Kir channels in epileptogenesis, aiming to shed more light on the pathogenesis of this disorder and pave the way for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Enes Akyuz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| | - Betul Koklu
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Arda Uner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
23
|
Pontifex MG, Martinsen A, Saleh RNM, Harden G, Tejera N, Müller M, Fox C, Vauzour D, Minihane AM. APOE4 genotype exacerbates the impact of menopause on cognition and synaptic plasticity in APOE-TR mice. FASEB J 2021; 35:e21583. [PMID: 33891334 DOI: 10.1096/fj.202002621rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 01/15/2023]
Abstract
The impact of sex and menopausal status in Alzheimer's disease remains understudied despite increasing evidence of greater female risk, particularly in APOE4 carriers. Utilizing female APOE-TR mice maintained on a high-fat diet background we induced ovarian failure through repeated VCD injections, to mimic human menopause. At 12 months of age, recognition memory and spatial memory were assessed using object recognition, Y-maze spontaneous alternation, and Barnes maze. A VCD*genotype interaction reduced the recognition memory (P < .05), with APOE4 VCD-treated animals unable to distinguish between novel and familiar objects. APOE4 mice displayed an additional 37% and 12% reduction in Barnes (P < .01) and Y-maze (P < .01) performance, indicative of genotype-specific spatial memory impairment. Molecular analysis indicated both VCD and genotype-related deficits in synaptic plasticity with BDNF, Akt, mTOR, and ERK signaling compromised. Subsequent reductions in the transcription factors Creb1 and Atf4 were also evident. Furthermore, the VCD*genotype interaction specifically diminished Ephb2 expression, while Fos, and Cnr1 expression reduced as a consequence of APOE4 genotype. Brain DHA levels were 13% lower in VCD-treated animals independent of genotype. Consistent with this, we detected alterations in the expression of the DHA transporters Acsl6 and Fatp4. Our results indicate that the combination of ovarian failure and APOE4 leads to an exacerbation of cognitive and neurological deficits.
Collapse
Affiliation(s)
| | | | | | - Glenn Harden
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Noemi Tejera
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Michael Müller
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Chris Fox
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|
24
|
Rapid ATF4 Depletion Resets Synaptic Responsiveness after cLTP. eNeuro 2021; 8:ENEURO.0239-20.2021. [PMID: 33980608 PMCID: PMC8177969 DOI: 10.1523/eneuro.0239-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 04/14/2021] [Accepted: 04/24/2021] [Indexed: 12/14/2022] Open
Abstract
Activating transcription factor 4 [ATF4 (also called CREB2)], in addition to its well studied role in stress responses, is proposed to play important physiologic functions in regulating learning and memory. However, the nature of these functions has not been well defined and is subject to apparently disparate views. Here, we provide evidence that ATF4 is a regulator of excitability during synaptic plasticity. We evaluated the role of ATF4 in mature hippocampal cultures subjected to a brief chemically induced LTP (cLTP) protocol that results in changes in mEPSC properties and synaptic AMPA receptor density 1 h later, with return to baseline by 24 h. We find that ATF4 protein, but not its mRNA, is rapidly depleted by ∼50% in response to cLTP induction via NMDA receptor activation. Depletion is detectable in dendrites within 15 min and in cell bodies by 1 h, and returns to baseline by 8 h. Such changes correlate with a parallel depletion of phospho-eIF2a, suggesting that ATF4 loss is driven by decreased translation. To probe the physiologic role of cLTP-induced ATF4 depletion, we constitutively overexpressed the protein. Reversing ATF4 depletion by overexpression blocked the recovery of synaptic activity and AMPA receptor density to baseline values that would otherwise occur 24 h after cLTP induction. This reversal was not reproduced by a transcriptionally inactive ATF4 mutant. These findings support the role of ATF4 as a required element in resetting baseline synaptic responsiveness after cLTP.
Collapse
|
25
|
Xie MX, Cao XY, Zeng WA, Lai RC, Guo L, Wang JC, Xiao YB, Zhang X, Chen D, Liu XG, Zhang XL. ATF4 selectively regulates heat nociception and contributes to kinesin-mediated TRPM3 trafficking. Nat Commun 2021; 12:1401. [PMID: 33658516 PMCID: PMC7930092 DOI: 10.1038/s41467-021-21731-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 02/09/2021] [Indexed: 12/30/2022] Open
Abstract
Effective treatments for patients suffering from heat hypersensitivity are lacking, mostly due to our limited understanding of the pathogenic mechanisms underlying this disorder. In the nervous system, activating transcription factor 4 (ATF4) is involved in the regulation of synaptic plasticity and memory formation. Here, we show that ATF4 plays an important role in heat nociception. Indeed, loss of ATF4 in mouse dorsal root ganglion (DRG) neurons selectively impairs heat sensitivity. Mechanistically, we show that ATF4 interacts with transient receptor potential cation channel subfamily M member-3 (TRPM3) and mediates the membrane trafficking of TRPM3 in DRG neurons in response to heat. Loss of ATF4 also significantly decreases the current and KIF17-mediated trafficking of TRPM3, suggesting that the KIF17/ATF4/TRPM3 complex is required for the neuronal response to heat stimuli. Our findings unveil the non-transcriptional role of ATF4 in the response to heat stimuli in DRG neurons.
Collapse
Affiliation(s)
- Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Xian-Ying Cao
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
- State Key Laboratory of Marine Resources Utilization of South China Sea, 58 Renmin Avenue, Haikou, China
| | - Wei-An Zeng
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Ren-Chun Lai
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Lan Guo
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
| | - Jun-Chao Wang
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Yi-Bin Xiao
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China
| | - Xi Zhang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China
| | - Di Chen
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China.
| | - Xiao-Long Zhang
- Medical Research Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Rd. 2, Guangzhou, China.
| |
Collapse
|
26
|
Kumar S, Attrish D, Srivastava A, Banerjee J, Tripathi M, Chandra PS, Dixit AB. Non-histone substrates of histone deacetylases as potential therapeutic targets in epilepsy. Expert Opin Ther Targets 2020; 25:75-85. [PMID: 33275850 DOI: 10.1080/14728222.2021.1860016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Epilepsy is a network-level neurological disorder characterized by unprovoked recurrent seizures and associated comorbidities. Aberrant activity and localization of histone deacetylases (HDACs) have been reported in epilepsy and HDAC inhibitors (HDACi) have been used for therapeutic purposes. Several non-histone targets of HDACs have been recognized whose reversible acetylation can modulate protein functions and can contribute to disease pathology. Areas covered: This review provides an overview of HDACs in epilepsy and reflects its action on non-histone substrates involved in the pathogenesis of epilepsy and explores the effectiveness of HDACi as anti-epileptic drugs (AEDs). It also covers the efforts undertaken to target the interaction of HDACs with their substrates. We have further discussed non-deacetylase activity possessed by specific HDACs that might be essential in unraveling the molecular mechanism underlying the disease. For this purpose, relevant literature from 1996 to 2020 was derived from PubMed. Expert opinion: The interaction of HDACs and their non-histone substrates can serve as a promising therapeutic target for epilepsy. Pan-HDACi offers limited benefits to the epileptic patients. Thus, identification of novel targets of HDACs contributing to the disease and designing inhibitors targeting these complexes would be more effective and holds a greater potential as an anti-epileptogenic therapy.
Collapse
Affiliation(s)
- Sonali Kumar
- Dr. B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi , New Delhi, India
| | - Diksha Attrish
- Dr. B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi , New Delhi, India
| | | | | | | | | | - Aparna Banerjee Dixit
- Dr. B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi , New Delhi, India
| |
Collapse
|
27
|
Farah A, Kabbage M, Atafi S, Gabteni AJ, Barbirou M, Madhioub M, Hamzaoui L, Mohamed MA, Touinsi H, Kchaou AO, Chelbi E, Boubaker S, Abderrazek RB, Bouhaouala-Zahar B. Selective expression of KCNA5 and KCNB1 genes in gastric and colorectal carcinoma. BMC Cancer 2020; 20:1179. [PMID: 33267786 PMCID: PMC7709444 DOI: 10.1186/s12885-020-07647-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/17/2020] [Indexed: 01/04/2023] Open
Abstract
Background Gastric and colorectal cancers are the most common malignant tumours, leading to a significant number of cancer-related deaths worldwide. Recently, increasing evidence has demonstrated that cancer cells exhibit a differential expression of potassium channels and this can contribute to cancer progression. However, their expression and localisation at the somatic level remains uncertain. In this study, we have investigated the expression levels of KCNB1 and KCNA5 genes encoding ubiquitous Kv2.1 and Kv1.5 potassium channels in gastric and colorectal tumours. Methods Gastric and colorectal tumoral and peritumoral tissues were collected to evaluate the expression of KCNB1 and KCNA5 mRNA by quantitative PCR. Moreover, the immunohistochemical staining profile of Kv2.1 and Kv1.5 was assessed on 40 Formalin-Fixed and Paraffin-Embedded (FFPE) gastric carcinoma tissues. Differences in gene expression between tumoral and peritumoral tissues were compared statistically with the Mann-Whitney U test. The association between the clinicopathological features of the GC patients and the expression of both Kv proteins was investigated with χ2 and Fisher’s exact tests. Results The mRNA fold expression of KCNB1 and KCNA5 genes showed a lower mean in the tumoral tissues (0.06 ± 0.17, 0.006 ± 0.009) compared to peritumoral tissues (0.08 ± 0.16, 0.16 ± 0.48, respectively) without reaching the significance rate (p = 0.861, p = 0.152, respectively). Interestingly, Kv2.1 and Kv1.5 immunostaining was detectable and characterised by a large distribution in peritumoral and tumoral epithelial cells. More interestingly, inflammatory cells were also stained. Surprisingly, Kv2.1 and Kv1.5 staining was undoubtedly and predominantly detected in the cytoplasm compartment of tumour cells. Indeed, the expression of Kv2.1 in tumour cells revealed a significant association with the early gastric cancer clinical stage (p = 0.026). Conclusion The data highlight, for the first time, the potential role of Kv1.5 and Kv2.1 in gastrointestinal-related cancers and suggests they may be promising prognostic markers for these tumours.
Collapse
Affiliation(s)
- Azer Farah
- Laboratory of Venoms and Therapeutic Biomolecules, LR16IPT08 Institute Pasteur Tunis, Tunis Belvédère- University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis, Tunisia
| | - Maria Kabbage
- Biomedical Genomics and Oncogenetics Laboratory, LR11IPT05 Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Salsabil Atafi
- Laboratory of Human and Experimental Pathology, Institute Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Amira Jaballah Gabteni
- Biomedical Genomics and Oncogenetics Laboratory, LR11IPT05 Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Mouadh Barbirou
- Laboratory of Venoms and Therapeutic Biomolecules, LR16IPT08 Institute Pasteur Tunis, Tunis Belvédère- University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis, Tunisia.,Center for Biomedical Informatics, Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Mouna Madhioub
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, 8000, Nabeul, Tunisia
| | - Lamine Hamzaoui
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, 8000, Nabeul, Tunisia
| | | | - Hassen Touinsi
- Surgical Department, Mohamed Tahar Maamouri Hospital, 8000, Nabeul, Tunisia
| | | | - Emna Chelbi
- Pathology Department, Mohamed Tahar Maamouri Hospital, 8000, Nabeul, Tunisia
| | - Samir Boubaker
- Laboratory of Human and Experimental Pathology, Institute Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rahma Ben Abderrazek
- Laboratory of Venoms and Therapeutic Biomolecules, LR16IPT08 Institute Pasteur Tunis, Tunis Belvédère- University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis, Tunisia.
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Venoms and Therapeutic Biomolecules, LR16IPT08 Institute Pasteur Tunis, Tunis Belvédère- University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis, Tunisia. .,Medical School of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
28
|
Fu J, Tao T, Li Z, Chen Y, Li J, Peng L. The roles of ER stress in epilepsy: Molecular mechanisms and therapeutic implications. Biomed Pharmacother 2020; 131:110658. [PMID: 32841895 DOI: 10.1016/j.biopha.2020.110658] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsies are a diverse group of neurological disorders, which are characterized by spontaneous recurrent seizures. Although a wide range of pathogenic mechanisms such as alterations in ion channels, inflammation and neuronal loss have been reported to be implicated in the epileptogenesis, the underlying pathogenesis of epilepsy remains unclear currently. Endoplasmic reticulum (ER) stress is regarded as a condition that unfolded or misfolded proteins accumulate in the ER lumen. Excessive or prolonged ER stress causes the activation of the unfolded protein response (UPR) to buffer ER stress and restore ER homeostasis. Increasing evidence has indicated dysregulated ER stress during epileptogenesis, which may participate in various pathological processes associated with epilepsy. In this present review, we summarized recent advances in the involvement of ER stress in the pathogenesis of epilepsy. Additionally, the antiepileptic and neuroprotective effects of interventions targeting ER stress were also discussed.
Collapse
Affiliation(s)
- Jie Fu
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China; Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Tao Tao
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China
| | - Zuoxiao Li
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China
| | - Yangmei Chen
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jinglun Li
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China.
| | - Lilei Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China.
| |
Collapse
|
29
|
Papon MA, Le Feuvre Y, Barreda-Gómez G, Favereaux A, Farrugia F, Bouali-Benazzouz R, Nagy F, Rodríguez-Puertas R, Landry M. Spinal Inhibition of GABAB Receptors by the Extracellular Matrix Protein Fibulin-2 in Neuropathic Rats. Front Cell Neurosci 2020; 14:214. [PMID: 32765223 PMCID: PMC7378325 DOI: 10.3389/fncel.2020.00214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/17/2020] [Indexed: 12/23/2022] Open
Abstract
In the central nervous system, the inhibitory GABAB receptor is the archetype of heterodimeric G protein-coupled receptors (GPCRs). Receptor interaction with partner proteins has emerged as a novel mechanism to alter GPCR signaling in pathophysiological conditions. We propose here that GABAB activity is inhibited through the specific binding of fibulin-2, an extracellular matrix protein, to the B1a subunit in a rat model of neuropathic pain. We demonstrate that fibulin-2 hampers GABAB activation, presumably through decreasing agonist-induced conformational changes. Fibulin-2 regulates the GABAB-mediated presynaptic inhibition of neurotransmitter release and weakens the GABAB-mediated inhibitory effect in neuronal cell culture. In the dorsal spinal cord of neuropathic rats, fibulin-2 is overexpressed and colocalized with B1a. Fibulin-2 may thus interact with presynaptic GABAB receptors, including those on nociceptive afferents. By applying anti-fibulin-2 siRNA in vivo, we enhanced the antinociceptive effect of intrathecal baclofen in neuropathic rats, thus demonstrating that fibulin-2 limits the action of GABAB agonists in vivo. Taken together, our data provide an example of an endogenous regulation of GABAB receptor by extracellular matrix proteins and demonstrate its functional impact on pathophysiological processes of pain sensitization.
Collapse
Affiliation(s)
- Marie-Amélie Papon
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | - Yves Le Feuvre
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | | | - Alexandre Favereaux
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | - Fanny Farrugia
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | - Frédéric Nagy
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | | | - Marc Landry
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| |
Collapse
|
30
|
Activation of GCN2/ATF4 signals in amygdalar PKC-δ neurons promotes WAT browning under leucine deprivation. Nat Commun 2020; 11:2847. [PMID: 32504036 PMCID: PMC7275074 DOI: 10.1038/s41467-020-16662-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
The browning of white adipose tissue (WAT) has got much attention for its potential beneficial effects on metabolic disorders, however, the nutritional factors and neuronal signals involved remain largely unknown. We sought to investigate whether WAT browning is stimulated by leucine deprivation, and whether the amino acid sensor, general control non-derepressible 2 (GCN2), in amygdalar protein kinase C-δ (PKC-δ) neurons contributes to this regulation. Our results show that leucine deficiency can induce WAT browning, which is unlikely to be caused by food intake, but is largely blocked by PKC-δ neuronal inhibition and amygdalar GCN2 deletion. Furthermore, GCN2 knockdown in amygdalar PKC-δ neurons blocks WAT browning, which is reversed by over-expression of amino acid responsive gene activating transcription factor 4 (ATF4), and is mediated by the activities of amygdalar PKC-δ neurons and the sympathetic nervous system. Our data demonstrate that GCN2/ATF4 can regulate WAT browning in amygdalar PKC-δ neurons under leucine deprivation. The browning of white adipose tissue has potential benefits on metabolic disorders, but the nutritional factors and neuronal signals that mediate browning remain incompletely understood. Here, the authors show that leucine deprivation can induce WAT browning via GCN2/ATF4 signaling in amygdalar PKC-δ neurons.
Collapse
|
31
|
Díaz-Hung ML, Martínez G, Hetz C. Emerging roles of the unfolded protein response (UPR) in the nervous system: A link with adaptive behavior to environmental stress? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 350:29-61. [PMID: 32138903 DOI: 10.1016/bs.ircmb.2020.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stressors elicit a neuroendocrine response leading to increased levels of glucocorticoids, allowing the organism to adapt to environmental changes and maintain homeostasis. Glucocorticoids have a broad effect in the body, modifying the activity of the immune system, metabolism, and behavior through the activation of receptors in the limbic system. Chronic exposition to stressors operates as a risk factor for psychiatric diseases such as depression and posttraumatic stress disorder. Among the cellular alterations observed as a consequence of environmental stress, alterations to organelle function at the level of mitochondria and endoplasmic reticulum (ER) are emerging as possible factors contributing to neuronal dysfunction. ER proteostasis alterations elicit the unfolded protein response (UPR), a conserved signaling network that re-establish protein homeostasis. In addition, in the context of brain function, the UPR has been associated to neurodevelopment, synaptic plasticity and neuronal connectivity. Recent studies suggest a role of the UPR in the adaptive behavior to stress, suggesting a mechanistic link between environmental and cellular stress. Here, we revise recent evidence supporting an evolutionary connection between the neuroendocrine system and the UPR to modulate behavioral adaptive responses.
Collapse
Affiliation(s)
- Mei-Li Díaz-Hung
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Gabriela Martínez
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, United States.
| |
Collapse
|
32
|
Transcriptomic Analysis of MAPK Signaling in NSC-34 Motor Neurons Treated with Vitamin E. Nutrients 2019; 11:nu11051081. [PMID: 31096690 PMCID: PMC6566669 DOI: 10.3390/nu11051081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Vitamin E family is composed of different tocopherols and tocotrienols that are well-known as antioxidants but that exert also non-antioxidant effects. Oxidative stress may be involved in the progression of neurodegenerative disorders including amyotrophic lateral sclerosis (ALS), characterized by motor neuron death. The aim of the study was the evaluation of the changes induced in the transcriptional profile of NSC-34 motor neurons treated with α-tocopherol. In particular, cells were treated for 24 h with 10 µM α-tocopherol, RNA was extracted and transcriptomic analysis was performed using Next Generation Sequencing. Vitamin E treatment modulated MAPK signaling pathway. The evaluation revealed that 34 and 12 genes, respectively belonging to “Classical MAP kinase pathway” and “JNK and p38 MAP kinase pathway”, were involved. In particular, a downregulation of the genes encoding for p38 (Log2 fold change −0.87 and −0.67) and JNK (Log2 fold change −0.16) was found. On the contrary, the gene encoding for ERK showed a higher expression in cells treated with vitamin E (Log2 fold change 0.30). Since p38 and JNK seem more involved in cell death, while ERK in cell survival, the data suggested that vitamin E treatment may exert a protective role in NSC-34 motor neurons. Moreover, Vitamin E treatment reduced the expression of the genes which encode proteins involved in mitophagy. These results indicate that vitamin E may be an efficacious therapy in preventing motor neuron death, opening new strategies for those diseases that involve motor neurons, including ALS.
Collapse
|