1
|
Del Rosario J, Coletta S, Kim SH, Mobille Z, Peelman K, Williams B, Otsuki AJ, Del Castillo Valerio A, Worden K, Blanpain LT, Lovell L, Choi H, Haider B. Lateral inhibition in V1 controls neural and perceptual contrast sensitivity. Nat Neurosci 2025; 28:836-847. [PMID: 40033123 DOI: 10.1038/s41593-025-01888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/06/2025] [Indexed: 03/05/2025]
Abstract
Lateral inhibition is a central principle in sensory system function. It is thought to operate by the activation of inhibitory neurons that restrict the spatial spread of sensory excitation. However, the neurons, computations and mechanisms underlying cortical lateral inhibition remain debated, and its importance for perception remains unknown. Here we show that lateral inhibition from parvalbumin neurons in mouse primary visual cortex reduced neural and perceptual sensitivity to visual contrast in a uniform subtractive manner, whereas lateral inhibition from somatostatin neurons more effectively changed the slope (or gain) of neural and perceptual contrast sensitivity. A neural circuit model, anatomical tracing and direct subthreshold measurements indicated that the larger spatial footprint for somatostatin versus parvalbumin synaptic inhibition explains this difference. Together, these results define cell-type-specific computational roles for lateral inhibition in primary visual cortex, and establish their unique consequences on sensitivity to contrast, a fundamental aspect of the visual world.
Collapse
Affiliation(s)
- Joseph Del Rosario
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Stefano Coletta
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Soon Ho Kim
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zach Mobille
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kayla Peelman
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Brice Williams
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alan J Otsuki
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - Kendell Worden
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lou T Blanpain
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lyndah Lovell
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hannah Choi
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bilal Haider
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Burton SD, Malyshko CM, Urban NN. Fast-spiking interneuron detonation drives high-fidelity inhibition in the olfactory bulb. PLoS Biol 2024; 22:e3002660. [PMID: 39186804 PMCID: PMC11379389 DOI: 10.1371/journal.pbio.3002660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/06/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Inhibitory circuits in the mammalian olfactory bulb (OB) dynamically reformat olfactory information as it propagates from peripheral receptors to downstream cortex. To gain mechanistic insight into how specific OB interneuron types support this sensory processing, we examine unitary synaptic interactions between excitatory mitral and tufted cells (MTCs), the OB projection neurons, and a conserved population of anaxonic external plexiform layer interneurons (EPL-INs) using pair and quartet whole-cell recordings in acute mouse brain slices. Physiological, morphological, neurochemical, and synaptic analyses divide EPL-INs into distinct subtypes and reveal that parvalbumin-expressing fast-spiking EPL-INs (FSIs) perisomatically innervate MTCs with release-competent dendrites and synaptically detonate to mediate fast, short-latency recurrent and lateral inhibition. Sparse MTC synchronization supralinearly increases this high-fidelity inhibition, while sensory afferent activation combined with single-cell silencing reveals that individual FSIs account for a substantial fraction of total network-driven MTC lateral inhibition. OB output is thus powerfully shaped by detonation-driven high-fidelity perisomatic inhibition.
Collapse
Affiliation(s)
- Shawn D. Burton
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Christina M. Malyshko
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Nathaniel N. Urban
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
3
|
Del Rosario J, Coletta S, Kim SH, Mobille Z, Peelman K, Williams B, Otsuki AJ, Del Castillo Valerio A, Worden K, Blanpain LT, Lovell L, Choi H, Haider B. Lateral inhibition in V1 controls neural & perceptual contrast sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566605. [PMID: 38014014 PMCID: PMC10680635 DOI: 10.1101/2023.11.10.566605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Lateral inhibition is a central principle for sensory system function. It is thought to operate by the activation of inhibitory neurons that restrict the spatial spread of sensory excitation. Much work on the role of inhibition in sensory systems has focused on visual cortex; however, the neurons, computations, and mechanisms underlying cortical lateral inhibition remain debated, and its importance for visual perception remains unknown. Here, we tested how lateral inhibition from PV or SST neurons in mouse primary visual cortex (V1) modulates neural and perceptual sensitivity to stimulus contrast. Lateral inhibition from PV neurons reduced neural and perceptual sensitivity to visual contrast in a uniform subtractive manner, whereas lateral inhibition from SST neurons more effectively changed the slope (or gain) of neural and perceptual contrast sensitivity. A neural circuit model identified spatially extensive lateral projections from SST neurons as the key factor, and we confirmed this with anatomy and direct subthreshold measurements of a larger spatial footprint for SST versus PV lateral inhibition. Together, these results define cell-type specific computational roles for lateral inhibition in V1, and establish their unique consequences on sensitivity to contrast, a fundamental aspect of the visual world.
Collapse
|
4
|
Wang Y, Zhao Q, Ma M, Xu J. Olfactory perception prediction model inspired by olfactory lateral inhibition and deep feature combination. APPL INTELL 2023. [DOI: 10.1007/s10489-023-04517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
5
|
Verhagen JV, Baker KL, Vasan G, Pieribone VA, Rolls ET. Odor encoding by signals in the olfactory bulb. J Neurophysiol 2023; 129:431-444. [PMID: 36598147 PMCID: PMC9925169 DOI: 10.1152/jn.00449.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
To understand the operation of the olfactory system, it is essential to know how information is encoded in the olfactory bulb. We applied Shannon information theoretic methods to address this, with signals from up to 57 glomeruli simultaneously optically imaged from presynaptic inputs in glomeruli in the mouse dorsal (dOB) and lateral (lOB) olfactory bulb, in response to six exemplar pure chemical odors. We discovered that, first, the tuning of these signals from glomeruli to a set of odors is remarkably broad, with a mean sparseness of 0.83 and a mean signal correlation of 0.64. Second, both of these factors contribute to the low information that is available from the responses of even populations of many tens of glomeruli, which was only 1.35 bits across 33 glomeruli on average, compared with the 2.58 bits required to perfectly encode these six odors. Third, although there is considerable interest in the possibility of temporal encoding of stimulus including odor identity, the amount of information in the temporal aspects of the presynaptic glomerular responses was low (mean 0.11 bits) and, importantly, was redundant with respect to the information available from the rates. Fourth, the information from simultaneously recorded glomeruli asymptotes very gradually and nonlinearly, showing that glomeruli do not have independent responses. Fifth, the information from a population became available quite rapidly, within 100 ms of sniff onset, and the peak of the glomerular response was at 200 ms. Sixth, the information from the lOB was not additive with that of the dOB.NEW & NOTEWORTHY We report broad tuning and low odor information available across the lateral and dorsal bulb populations of glomeruli. Even though response latencies can be significantly predictive of stimulus identity, such contained very little information and none that was not redundant with information based on rate coding alone. Last, in line with the emerging notion of the important role of earliest stages of responses ("primacy"), we report a very rapid rise in information after each inhalation.
Collapse
Affiliation(s)
- Justus V Verhagen
- The John B. Pierce Laboratory, New Haven, Connecticut
- Department of Neuroscience, Yale University, New Haven, Connecticut
| | - Keeley L Baker
- The John B. Pierce Laboratory, New Haven, Connecticut
- Department of Neuroscience, Yale University, New Haven, Connecticut
| | - Ganesh Vasan
- The John B. Pierce Laboratory, New Haven, Connecticut
- Department of Neuroscience, Yale University, New Haven, Connecticut
| | - Vincent A Pieribone
- The John B. Pierce Laboratory, New Haven, Connecticut
- Department of Neuroscience, Yale University, New Haven, Connecticut
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, United Kingdom
- University of Warwick, Coventry, United Kingdom
| |
Collapse
|
6
|
De Saint Jan D. Target-specific control of olfactory bulb periglomerular cells by GABAergic and cholinergic basal forebrain inputs. eLife 2022; 11:71965. [PMID: 35225232 PMCID: PMC8901171 DOI: 10.7554/elife.71965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
The olfactory bulb (OB), the first relay for odor processing in the brain, receives dense GABAergic and cholinergic long-range projections from basal forebrain (BF) nuclei that provide information about the internal state and behavioral context of the animal. However, the targets, impact, and dynamic of these afferents are still unclear. How BF synaptic inputs modulate activity in diverse subtypes of periglomerular (PG) interneurons using optogenetic stimulation and loose cell-attached or whole-cell patch-clamp recording in OB slices from adult mice were studied in this article. GABAergic BF inputs potently blocked PG cells firing except in a minority of calretinin-expressing cells in which GABA release elicited spiking. Parallel cholinergic projections excited a previously overlooked PG cell subtype via synaptic activation of M1 muscarinic receptors. Low-frequency stimulation of the cholinergic axons drove persistent firing in these PG cells, thereby increasing tonic inhibition in principal neurons. Taken together, these findings suggest that modality-specific BF inputs can orchestrate synaptic inhibition in OB glomeruli using multiple, potentially independent, inhibitory or excitatory target-specific pathways.
Collapse
Affiliation(s)
- Didier De Saint Jan
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
7
|
Zak JD, Schoppa NE. Neurotransmitter regulation rather than cell-intrinsic properties shapes the high-pass filtering properties of olfactory bulb glomeruli. J Physiol 2022; 600:393-417. [PMID: 34891217 PMCID: PMC10719990 DOI: 10.1113/jp282374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022] Open
Abstract
GABAergic periglomerular (PG) cells in the olfactory bulb are proposed to mediate an intraglomerular 'high-pass' filter through inhibition targeted onto a glomerulus. With this mechanism, weak stimuli (e.g. an odour with a low affinity for an odourant receptor) mainly produce PG cell-driven inhibition but strong stimuli generate enough excitation to overcome inhibition. PG cells may be particularly susceptible to being activated by weak stimuli due to their intrinsically small size and high input resistance. Here, we used dual-cell patch-clamp recordings and imaging methods in bulb slices obtained from wild-type and transgenic rats with labelled GABAergic cells to test a number of predictions of the high-pass filtering model. We first directly compared the responsiveness of PG cells with that of external tufted cells (eTCs), which are a class of excitatory cells that reside in a parallel but opposing position in the glomerular circuitry. PG cells were in fact found to be no more responsive than eTCs at low levels of sensory neuron activity. While PG cells required smaller currents to be excited, this advantage was offset by the fact that a given level of sensory neuron activity produced much smaller synaptic currents. We did, however, identify other factors that shaped the excitation/inhibition balance in a manner that would support a high-pass filter, including glial glutamate transporters and presynaptic metabotropic glutamate receptors. We conclude that a single glomerulus may act as a high-pass filter to enhance the contrast between different olfactory stimuli through mechanisms that are largely independent cell-intrinsic properties. KEY POINTS: GABAergic periglomerular (PG) cells in the olfactory bulb are proposed to mediate a 'high-pass' filter at a single glomerulus that selectively blocks weak stimulus signals. Their efficacy may reflect their intrinsically small size and high input resistance, which allows them to be easily excited. It was found that PG cells were in fact no more likely to be activated by weak stimuli than excitatory neurons. PG cells fired action potentials more readily in response to a fixed current input, but this advantage for excitability was offset by small synaptic currents. Glomeruli nevertheless display an excitation/inhibition balance that can support a high-pass filter, shifting from unfavourable to favourable with increasing stimulus strength. Factors shaping the filter include glial glutamate transporters and presynaptic metabotropic glutamate receptors. It is concluded that a single glomerulus may act as a high-pass filter to enhance stimulus contrast through mechanisms that are largely independent of cell-intrinsic properties.
Collapse
Affiliation(s)
- Joseph D Zak
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nathan E Schoppa
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
8
|
Moran AK, Eiting TP, Wachowiak M. Circuit Contributions to Sensory-Driven Glutamatergic Drive of Olfactory Bulb Mitral and Tufted Cells During Odorant Inhalation. Front Neural Circuits 2021; 15:779056. [PMID: 34776878 PMCID: PMC8578712 DOI: 10.3389/fncir.2021.779056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
In the mammalian olfactory bulb (OB), mitral/tufted (MT) cells respond to odorant inhalation with diverse temporal patterns that are thought to encode odor information. Much of this diversity is already apparent at the level of glutamatergic input to MT cells, which receive direct, monosynaptic excitatory input from olfactory sensory neurons (OSNs) as well as a multisynaptic excitatory drive via glutamatergic interneurons. Both pathways are also subject to modulation by inhibitory circuits in the glomerular layer of the OB. To understand the role of direct OSN input vs. postsynaptic OB circuit mechanisms in shaping diverse dynamics of glutamatergic drive to MT cells, we imaged glutamate signaling onto MT cell dendrites in anesthetized mice while blocking multisynaptic excitatory drive with ionotropic glutamate receptor antagonists and blocking presynaptic modulation of glutamate release from OSNs with GABAB receptor antagonists. GABAB receptor blockade increased the magnitude of inhalation-linked glutamate transients onto MT cell apical dendrites without altering their inhalation-linked dynamics, confirming that presynaptic inhibition impacts the gain of OSN inputs to the OB. Surprisingly, blockade of multisynaptic excitation only modestly impacted glutamatergic input to MT cells, causing a slight reduction in the amplitude of inhalation-linked glutamate transients in response to low odorant concentrations and no change in the dynamics of each transient. The postsynaptic blockade also modestly impacted glutamate dynamics over a slower timescale, mainly by reducing adaptation of the glutamate response across multiple inhalations of odorant. These results suggest that direct glutamatergic input from OSNs provides the bulk of excitatory drive to MT cells, and that diversity in the dynamics of this input may be a primary determinant of the temporal diversity in MT cell responses that underlies odor representations at this stage.
Collapse
Affiliation(s)
- Andrew K. Moran
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Thomas P. Eiting
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Matt Wachowiak
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
9
|
Capsoni S, Fogli Iseppe A, Casciano F, Pignatelli A. Unraveling the Role of Dopaminergic and Calretinin Interneurons in the Olfactory Bulb. Front Neural Circuits 2021; 15:718221. [PMID: 34690707 PMCID: PMC8531203 DOI: 10.3389/fncir.2021.718221] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/31/2021] [Indexed: 11/27/2022] Open
Abstract
The perception and discriminating of odors are sensory activities that are an integral part of our daily life. The first brain region where odors are processed is the olfactory bulb (OB). Among the different cell populations that make up this brain area, interneurons play an essential role in this sensory activity. Moreover, probably because of their activity, they represent an exception compared to other parts of the brain, since OB interneurons are continuously generated in the postnatal and adult period. In this review, we will focus on periglomerular (PG) cells which are a class of interneurons found in the glomerular layer of the OB. These interneurons can be classified into distinct subtypes based on their neurochemical nature, based on the neurotransmitter and calcium-binding proteins expressed by these cells. Dopaminergic (DA) periglomerular cells and calretinin (CR) cells are among the newly generated interneurons and play an important role in the physiology of OB. In the OB, DA cells are involved in the processing of odors and the adaptation of the bulbar network to external conditions. The main role of DA cells in OB appears to be the inhibition of glutamate release from olfactory sensory fibers. Calretinin cells are probably the best morphologically characterized interneurons among PG cells in OB, but little is known about their function except for their inhibitory effect on noisy random excitatory signals arriving at the main neurons. In this review, we will mainly describe the electrophysiological properties related to the excitability profiles of DA and CR cells, with a particular view on the differences that characterize DA mature interneurons from cells in different stages of adult neurogenesis.
Collapse
Affiliation(s)
- Simona Capsoni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Alex Fogli Iseppe
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
- Interdepartmental Research Centre for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, Ferrara, Italy
| | - Angela Pignatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
11
|
Dynamics of Glutamatergic Drive Underlie Diverse Responses of Olfactory Bulb Outputs In Vivo. eNeuro 2021; 8:ENEURO.0110-21.2021. [PMID: 33795414 PMCID: PMC8059884 DOI: 10.1523/eneuro.0110-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022] Open
Abstract
Mitral/tufted (MT) cells of the olfactory bulb (OB) show diverse temporal responses to odorant stimulation that are thought to encode odor information. Much of this diversity is thought to arise from inhibitory OB circuits, but the dynamics of excitatory input to MT cells, which is driven in a feedforward manner by sensory afferents, may also be important. To examine the contribution of excitatory input dynamics to generating temporal diversity in MT cells, we imaged glutamate signaling onto MT cell dendrites in anesthetized and awake mice. We found surprising diversity in the temporal dynamics of these signals. Inhalation-linked glutamate transients were variable in onset latency and duration, and in awake mice the degree of coupling to inhalation varied substantially with odorant identity and concentration. Successive inhalations of odorant produced nonlinear changes in glutamate signaling that included facilitating, adapting and suppressive responses and which varied with odorant identity and concentration. Dual-color imaging of glutamate and calcium signals from MT cells in the same glomerulus revealed highly correlated presynaptic and postsynaptic signals across these different response types. Suppressive calcium responses in MT cells were nearly always accompanied by suppression in the glutamate signal, providing little evidence for MT cell suppression by lateral or feedforward inhibition. These results indicate a high degree of diversity in the dynamics of excitatory input to MT cells, and suggest that these dynamics may account for much of the diversity in MT cell responses that underlies OB odor representations.
Collapse
|
12
|
Galliano E, Hahn C, Browne LP, R Villamayor P, Tufo C, Crespo A, Grubb MS. Brief Sensory Deprivation Triggers Cell Type-Specific Structural and Functional Plasticity in Olfactory Bulb Neurons. J Neurosci 2021; 41:2135-2151. [PMID: 33483429 PMCID: PMC8018761 DOI: 10.1523/jneurosci.1606-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 02/03/2023] Open
Abstract
Can alterations in experience trigger different plastic modifications in neuronal structure and function, and if so, how do they integrate at the cellular level? To address this question, we interrogated circuitry in the mouse olfactory bulb responsible for the earliest steps in odor processing. We induced experience-dependent plasticity in mice of either sex by blocking one nostril for one day, a minimally invasive manipulation that leaves the sensory organ undamaged and is akin to the natural transient blockage suffered during common mild rhinal infections. We found that such brief sensory deprivation produced structural and functional plasticity in one highly specialized bulbar cell type: axon-bearing dopaminergic neurons in the glomerular layer. After 24 h naris occlusion, the axon initial segment (AIS) in bulbar dopaminergic neurons became significantly shorter, a structural modification that was also associated with a decrease in intrinsic excitability. These effects were specific to the AIS-positive dopaminergic subpopulation because no experience-dependent alterations in intrinsic excitability were observed in AIS-negative dopaminergic cells. Moreover, 24 h naris occlusion produced no structural changes at the AIS of bulbar excitatory neurons, mitral/tufted and external tufted cells, nor did it alter their intrinsic excitability. By targeting excitability in one specialized dopaminergic subpopulation, experience-dependent plasticity in early olfactory networks might act to fine-tune sensory processing in the face of continually fluctuating inputs.SIGNIFICANCE STATEMENT Sensory networks need to be plastic so they can adapt to changes in incoming stimuli. To see how cells in mouse olfactory circuits can change in response to sensory challenges, we blocked a nostril for just one day, a naturally relevant manipulation akin to the deprivation that occurs with a mild cold. We found that this brief deprivation induces forms of axonal and intrinsic functional plasticity in one specific olfactory bulb cell subtype: axon-bearing dopaminergic interneurons. In contrast, intrinsic properties of axon-lacking bulbar dopaminergic neurons and neighboring excitatory neurons remained unchanged. Within the same sensory circuits, specific cell types can therefore make distinct plastic changes in response to an ever-changing external landscape.
Collapse
Affiliation(s)
- Elisa Galliano
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - Christiane Hahn
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| | - Lorcan P Browne
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| | - Paula R Villamayor
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| | - Candida Tufo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| | - Andres Crespo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| |
Collapse
|
13
|
Dibattista M, Al Koborssy D, Genovese F, Reisert J. The functional relevance of olfactory marker protein in the vertebrate olfactory system: a never-ending story. Cell Tissue Res 2021; 383:409-427. [PMID: 33447880 DOI: 10.1007/s00441-020-03349-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
Olfactory marker protein (OMP) was first described as a protein expressed in olfactory receptor neurons (ORNs) in the nasal cavity. In particular, OMP, a small cytoplasmic protein, marks mature ORNs and is also expressed in the neurons of other nasal chemosensory systems: the vomeronasal organ, the septal organ of Masera, and the Grueneberg ganglion. While its expression pattern was more easily established, OMP's function remained relatively vague. To date, most of the work to understand OMP's role has been done using mice lacking OMP. This mostly phenomenological work has shown that OMP is involved in sharpening the odorant response profile and in quickening odorant response kinetics of ORNs and that it contributes to targeting of ORN axons to the olfactory bulb to refine the glomerular response map. Increasing evidence shows that OMP acts at the early stages of olfactory transduction by modulating the kinetics of cAMP, the second messenger of olfactory transduction. However, how this occurs at a mechanistic level is not understood, and it might also not be the only mechanism underlying all the changes observed in mice lacking OMP. Recently, OMP has been detected outside the nose, including the brain and other organs. Although no obvious logic has become apparent regarding the underlying commonality between nasal and extranasal expression of OMP, a broader approach to diverse cellular systems might help unravel OMP's functions and mechanisms of action inside and outside the nose.
Collapse
Affiliation(s)
- Michele Dibattista
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari "A. Moro", Bari, Italy
| | | | | | | |
Collapse
|
14
|
Imamura F, Ito A, LaFever BJ. Subpopulations of Projection Neurons in the Olfactory Bulb. Front Neural Circuits 2020; 14:561822. [PMID: 32982699 PMCID: PMC7485133 DOI: 10.3389/fncir.2020.561822] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Generation of neuronal diversity is a biological strategy widely used in the brain to process complex information. The olfactory bulb is the first relay station of olfactory information in the vertebrate central nervous system. In the olfactory bulb, axons of the olfactory sensory neurons form synapses with dendrites of projection neurons that transmit the olfactory information to the olfactory cortex. Historically, the olfactory bulb projection neurons have been classified into two populations, mitral cells and tufted cells. The somata of these cells are distinctly segregated within the layers of the olfactory bulb; the mitral cells are located in the mitral cell layer while the tufted cells are found in the external plexiform layer. Although mitral and tufted cells share many morphological, biophysical, and molecular characteristics, they differ in soma size, projection patterns of their dendrites and axons, and odor responses. In addition, tufted cells are further subclassified based on the relative depth of their somata location in the external plexiform layer. Evidence suggests that different types of tufted cells have distinct cellular properties and play different roles in olfactory information processing. Therefore, mitral and different types of tufted cells are considered as starting points for parallel pathways of olfactory information processing in the brain. Moreover, recent studies suggest that mitral cells also consist of heterogeneous subpopulations with different cellular properties despite the fact that the mitral cell layer is a single-cell layer. In this review, we first compare the morphology of projection neurons in the olfactory bulb of different vertebrate species. Next, we explore the similarities and differences among subpopulations of projection neurons in the rodent olfactory bulb. We also discuss the timing of neurogenesis as a factor for the generation of projection neuron heterogeneity in the olfactory bulb. Knowledge about the subpopulations of olfactory bulb projection neurons will contribute to a better understanding of the complex olfactory information processing in higher brain regions.
Collapse
Affiliation(s)
- Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Ayako Ito
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Brandon J LaFever
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
15
|
CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb. J Neurosci 2020; 40:6189-6206. [PMID: 32605937 DOI: 10.1523/jneurosci.0769-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 01/13/2023] Open
Abstract
Delineation of functional synaptic connections is fundamental to understanding sensory processing. Olfactory signals are synaptically processed initially in the olfactory bulb (OB) where neural circuits are formed among inhibitory interneurons and the output neurons mitral cells (MCs) and tufted cells (TCs). TCs function in parallel with but differently from MCs and are further classified into multiple subpopulations based on their anatomic and functional heterogeneities. Here, we combined optogenetics with electrophysiology to characterize the synaptic transmission from a subpopulation of TCs, which exclusively express the neuropeptide cholecystokinin (CCK), to two groups of spatially segregated GABAergic interneurons, granule cells (GCs) and glomerular interneurons in mice of both sexes with four major findings. First, CCKergic TCs receive direct input from the olfactory sensory neurons (OSNs). This monosynaptic transmission exhibits high fidelity in response to repetitive OSN input. Second, CCKergic TCs drive GCs through two functionally distinct types of monosynaptic connections: (1) dendrodendritic synapses onto GC distal dendrites via their lateral dendrites in the superficial external plexiform layer (EPL); (2) axodendritic synapses onto GC proximal dendrites via their axon collaterals or terminals in the internal plexiform layer (IPL) on both sides of each bulb. Third, CCKergic TCs monosynaptically excite two subpopulations of inhibitory glomerular interneurons via dendrodendritic synapses. Finally, sniff-like patterned activation of CCKergic TCs induces robust frequency-dependent depression of the dendrodendritic synapses but facilitation of the axodendritic synapses. These results demonstrated important roles of the CCKergic TCs in olfactory processing by orchestrating OB inhibitory activities.SIGNIFICANCE STATEMENT Neuronal morphology and organization in the olfactory bulb (OB) have been extensively studied, however, the functional operation of neuronal interactions is not fully understood. We combined optogenetic and electrophysiological approaches to investigate the functional operation of synaptic connections between a specific population of excitatory output neuron and inhibitory interneurons in the OB. We found that these output neurons formed distinct types of synapses with two populations of spatially segregated interneurons. The functional characteristics of these synapses vary significantly depending on the presynaptic compartments so that these output neurons can dynamically rebalance inhibitory feedback or feedforward to other neurons types in the OB in response to dynamic rhythmic inputs.
Collapse
|
16
|
Effect of Interglomerular Inhibitory Networks on Olfactory Bulb Odor Representations. J Neurosci 2020; 40:5954-5969. [PMID: 32561671 DOI: 10.1523/jneurosci.0233-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 11/21/2022] Open
Abstract
Lateral inhibition is a fundamental feature of circuits that process sensory information. In the mammalian olfactory system, inhibitory interneurons called short axon cells (SACs) comprise the first network mediating lateral inhibition between glomeruli, the functional units of early olfactory coding and processing. The connectivity of this network and its impact on odor representations is not well understood. To explore this question, we constructed a computational model of the interglomerular inhibitory network using detailed characterizations of SAC morphologies taken from mouse olfactory bulb (OB). We then examined how this network transformed glomerular patterns of odorant-evoked sensory input (taken from previously-published datasets) as a function of the selectivity of interglomerular inhibition. We examined three connectivity schemes: selective (each glomerulus connects to few others with heterogeneous strength), nonselective (glomeruli connect to most others with heterogenous strength), or global (glomeruli connect to all others with equal strength). We found that both selective and nonselective interglomerular networks could mediate heterogeneous patterns of inhibition across glomeruli when driven by realistic sensory input patterns, but that global inhibitory networks were unable to produce input-output transformations that matched experimental data and were poor mediators of intensity-dependent gain control. We further found that networks whose interglomerular connectivities were tuned by sensory input profile decorrelated odor representations moreeffectively. These results suggest that, despite their multiglomerular innervation patterns, SACs are capable of mediating odorant-specific patterns of inhibition between glomeruli that could, theoretically, be tuned by experience or evolution to optimize discrimination of particular odorants.SIGNIFICANCE STATEMENT Lateral inhibition is a key feature of circuitry in many sensory systems including vision, audition, and olfaction. We investigate how lateral inhibitory networks mediated by short axon cells (SACs) in the mouse olfactory bulb (OB) might shape odor representations as a function of their interglomerular connectivity. Using a computational model of interglomerular connectivity derived from experimental data, we find that SAC networks, despite their broad innervation patterns, can mediate heterogeneous patterns of inhibition across glomeruli, and that the canonical model of global inhibition does not generate experimentally observed responses to stimuli. In addition, inhibitory connections tuned by input statistics yield enhanced decorrelation of similar input patterns. These results elucidate how the organization of inhibition between neural elements may affect computations.
Collapse
|
17
|
Liu S. Dopaminergic Modulation of Glomerular Circuits in the Mouse Olfactory Bulb. Front Cell Neurosci 2020; 14:172. [PMID: 32595457 PMCID: PMC7304284 DOI: 10.3389/fncel.2020.00172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/20/2020] [Indexed: 01/11/2023] Open
Abstract
Dopaminergic neurons are located in several brain areas including the olfactory bulb (OB) and involved in many physiological and pathophysiological processes. In the OB, dopamine (DA) is released exclusively by a population of interneurons termed short axon cells (SACs) in the glomerular layer, the initial synaptic integration site of the whole olfactory system. SACs corelease GABA and extend their processes to many glomeruli forming the interglomerular circuit. Two major groups of DA receptors D1-like (D1LRs) and D2-like (D2LRs) types are differentially distributed in the OB, i.e., D1LRs are broadly present except the most superficial olfactory nerve (ON) layer while D2LRs are predominantly confined to the ON and glomerular layers, suggesting that they mediate different physiological functions. In contrast to the well-known D2LR-mediated presynaptic inhibition of ON terminals in the OB, the cellular and circuit targets of the D1LR-mediated DA actions remain unclear even though D1LR activation improves odor detection and discrimination. We recently demonstrated that endogenous DA released from SACs or exogenous DA excites a population of excitatory glomerular neurons termed external tufted cells (ETCs) via D1LRs. But the physiological significance of this D1LR activation is largely unknown. In the present study, we addressed these questions by a systematic examination of exogenous DA actions on synaptic activities and excitabilities in most glomerular neurons and OB output neurons with the following major findings: (1) DA via D1LRs enhances OB output by potentiating the ETC-mediated feedforward excitation to the OB output neurons but suppresses spontaneous excitatory synaptic activities in both types of inhibitory glomerular interneurons periglomerular (PGCs) and SACs; (2) this suppression of excitatory synaptic activities in PGCs and SACs depends on activation of GABAB receptors; (3) DA via D1LRs augments spontaneous inhibitory synaptic activities in all glomerular neurons and OB output neurons; (4) DA selectively activates SACs via D1LRs. These findings suggest that activation of D1LRs elevates the system’s sensitivity to odor stimuli and provide a mechanistic basis for the functional roles of DA in modulating odor detection and discrimination.
Collapse
Affiliation(s)
- Shaolin Liu
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
18
|
Mitf Links Neuronal Activity and Long-Term Homeostatic Intrinsic Plasticity. eNeuro 2020; 7:ENEURO.0412-19.2020. [PMID: 32193365 PMCID: PMC7174873 DOI: 10.1523/eneuro.0412-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022] Open
Abstract
Neuroplasticity forms the basis for neuronal circuit complexity and differences between otherwise similar circuits. We show that the microphthalmia-associated transcription factor (Mitf) plays a central role in intrinsic plasticity of olfactory bulb (OB) projection neurons. Mitral and tufted (M/T) neurons from Mitf mutant mice are hyperexcitable, have a reduced A-type potassium current (IA) and exhibit reduced expression of Kcnd3, which encodes a potassium voltage-gated channel subunit (Kv4.3) important for generating the IA Furthermore, expression of the Mitf and Kcnd3 genes is activity dependent in OB projection neurons and the MITF protein activates expression from Kcnd3 regulatory elements. Moreover, Mitf mutant mice have changes in olfactory habituation and have increased habituation for an odorant following long-term exposure, indicating that regulation of Kcnd3 is pivotal for long-term olfactory adaptation. Our findings show that Mitf acts as a direct regulator of intrinsic homeostatic feedback and links neuronal activity, transcriptional changes and neuronal function.
Collapse
|
19
|
Zhou FW, Shao ZY, Shipley MT, Puche AC. Short-term plasticity in glomerular inhibitory circuits shapes olfactory bulb output. J Neurophysiol 2020; 123:1120-1132. [PMID: 31995427 DOI: 10.1152/jn.00628.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Short-term plasticity is a fundamental synaptic property thought to underlie memory and neural processing. The glomerular microcircuit comprises complex excitatory and inhibitory interactions and transmits olfactory nerve signals to the excitatory output neurons, mitral/tufted cells (M/TCs). The major glomerular inhibitory interneurons, short axon cells (SACs) and periglomerular cells (PGCs), both provide feedforward and feedback inhibition to M/TCs and have reciprocal inhibitory synapses between each other. Olfactory input is episodically driven by sniffing. We hypothesized that frequency-dependent short-term plasticity within these inhibitory circuits could influence signals sent to higher-order olfactory networks. To assess short-term plasticity in glomerular circuits and MC outputs, we virally delivered channelrhodopsin-2 (ChR2) in glutamic acid decarboxylase-65 promotor (GAD2-cre) or tyrosine hydroxylase promoter (TH-cre) mice and selectively activated one of these two populations while recording from cells of the other population or from MCs. Selective activation of TH-ChR2-expressing SACs inhibited all recorded GAD2-green fluorescent protein(GFP)-expressing presumptive PGC cells, and activation of GAD2-ChR2 cells inhibited TH-GFP-expressing SACs, indicating reciprocal inhibitory connections. SAC synaptic inhibition of GAD2-expressing cells was significantly facilitated at 5-10 Hz activation frequencies. In contrast, GAD2-ChR2 cell inhibition of TH-expressing cells was activation-frequency independent. Both SAC and PGC inhibition of MCs also exhibited short-term plasticity, pronounced in the 5-20 Hz range corresponding to investigative sniffing frequency ranges. In paired SAC and olfactory nerve electrical stimulations, the SAC to MC synapse was able to markedly suppress MC spiking. These data suggest that short-term plasticity across investigative sniffing ranges may differentially regulate intra- and interglomerular inhibitory circuits to dynamically shape glomerular output signals to downstream targets.NEW & NOTEWORTHY Short-term plasticity is a fundamental synaptic property that modulates synaptic strength based on preceding activity of the synapse. In rodent olfaction, sensory input arrives episodically driven by sniffing rates ranging from quiescent respiration (1-2 Hz) through to investigative sniffing (5-10 Hz). Here we show that glomerular inhibitory networks are exquisitely sensitive to input frequencies and exhibit plasticity proportional to investigative sniffing frequencies. This indicates that olfactory glomerular circuits are dynamically modulated by episodic sniffing input.
Collapse
Affiliation(s)
- Fu-Wen Zhou
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zuo-Yi Shao
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Michael T Shipley
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Adam C Puche
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
20
|
Bhattarai JP, Schreck M, Moberly AH, Luo W, Ma M. Aversive Learning Increases Release Probability of Olfactory Sensory Neurons. Curr Biol 2019; 30:31-41.e3. [PMID: 31839448 DOI: 10.1016/j.cub.2019.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/04/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
Predicting danger from previously associated sensory stimuli is essential for survival. Contributions from altered peripheral sensory inputs are implicated in this process, but the underlying mechanisms remain elusive. Here, we use the mammalian olfactory system to investigate such mechanisms. Primary olfactory sensory neurons (OSNs) project their axons directly to the olfactory bulb (OB) glomeruli, where their synaptic release is subject to local and cortical influence and neuromodulation. Pairing optogenetic activation of a single glomerulus with foot shock in mice induces freezing to light stimulation alone during fear retrieval. This is accompanied by an increase in OSN release probability and a reduction in GABAB receptor expression in the conditioned glomerulus. Furthermore, freezing time is positively correlated with the release probability of OSNs in fear-conditioned mice. These results suggest that aversive learning increases peripheral olfactory inputs at the first synapse, which may contribute to the behavioral outcome.
Collapse
Affiliation(s)
- Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 109 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Mary Schreck
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 109 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Andrew H Moberly
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 109 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Wenqin Luo
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 109 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 109 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Temporal Dynamics of Inhalation-Linked Activity across Defined Subpopulations of Mouse Olfactory Bulb Neurons Imaged In Vivo. eNeuro 2019; 6:ENEURO.0189-19.2019. [PMID: 31209151 PMCID: PMC6597857 DOI: 10.1523/eneuro.0189-19.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 11/21/2022] Open
Abstract
In mammalian olfaction, inhalation drives the temporal patterning of neural activity that underlies early olfactory processing. It remains poorly understood how the neural circuits that process incoming olfactory information are engaged in the context of inhalation-linked dynamics. Here, we used artificial inhalation and two-photon calcium imaging to compare the dynamics of activity evoked by odorant inhalation across major cell types of the mouse olfactory bulb (OB). We expressed GCaMP6f or jRGECO1a in mitral and tufted cell (MTC) subpopulations, olfactory sensory neurons (OSNs), and two major juxtaglomerular interneuron classes and imaged responses to a single inhalation of odorant. Activity in all cell types was strongly linked to inhalation, and all cell types showed some variance in the latency, rise times, and durations of their inhalation-linked response. Juxtaglomerular interneuron dynamics closely matched that of sensory inputs, while MTCs showed the highest diversity in responses, with a range of latencies and durations that could not be accounted for by heterogeneity in sensory input dynamics. Diversity was apparent even among “sister” tufted cells innervating the same glomerulus. Surprisingly, inhalation-linked responses of MTCs were highly overlapping and could not be distinguished on the basis of their inhalation-linked dynamics, with the exception of a subpopulation of superficial tufted cells expressing cholecystokinin (CCK). Our results are consistent with a model in which diversity in inhalation-linked patterning of OB output arises first at the level of sensory input and is enhanced by feedforward inhibition from juxtaglomerular interneurons which differentially impact different subpopulations of OB output neurons.
Collapse
|
22
|
Reciprocal Inhibitory Glomerular Circuits Contribute to Excitation-Inhibition Balance in the Mouse Olfactory Bulb. eNeuro 2019; 6:ENEURO.0048-19.2019. [PMID: 31147391 PMCID: PMC6565375 DOI: 10.1523/eneuro.0048-19.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 01/22/2023] Open
Abstract
The major inhibitory interneurons in olfactory bulb (OB) glomeruli are periglomerular cells (PGCs) and short axon cells (SACs). PGCs and SACs provide feedforward inhibition to all classes of projection neurons, but inhibition between PGCs and SACs is not well understood. We crossed Cre and GFP transgenic mice and used virally-delivered optogenetic constructs to selectively activate either SACs or GAD65cre-ChR2-positive PGCs while recording from identified GAD65cre-ChR2-positive PGCs or SACs, respectively, to investigate inhibitory interactions between these two interneuron types. We show that GAD65cre-ChR2-positive PGCs robustly inhibit SACs and SACs strongly inhibit PGCs. SACs form the interglomerular circuit, which inhibits PGCs in distant glomeruli. Activation of GAD65cre-ChR2-positive PGCs monosynaptically inhibit mitral cells (MCs), which complements recent findings that SACs directly inhibit MCs. Thus, both classes of glomerular inhibitory neurons inhibit each other, as well as OB output neurons. We further show that olfactory nerve input to one glomerulus engages the interglomerular circuit and inhibits PGCs in distant glomeruli. Sensory activation of the interglomerular circuit directly inhibits output neurons in other glomeruli and by inhibiting intraglomerular PGCs, may potentially disinhibit output neurons in other glomeruli. The nature and context of odorant stimuli may determine whether inhibition or excitation prevails so that odors are represented in part by patterns of active and inactive glomeruli.
Collapse
|
23
|
Reciprocal Inhibitory Glomerular Circuits Contribute to Excitation-Inhibition Balance in the Mouse Olfactory Bulb. eNeuro 2019. [PMID: 31147391 DOI: 10.1523/eneuro.0048‐19.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The major inhibitory interneurons in olfactory bulb (OB) glomeruli are periglomerular cells (PGCs) and short axon cells (SACs). PGCs and SACs provide feedforward inhibition to all classes of projection neurons, but inhibition between PGCs and SACs is not well understood. We crossed Cre and GFP transgenic mice and used virally-delivered optogenetic constructs to selectively activate either SACs or GAD65cre-ChR2-positive PGCs while recording from identified GAD65cre-ChR2-positive PGCs or SACs, respectively, to investigate inhibitory interactions between these two interneuron types. We show that GAD65cre-ChR2-positive PGCs robustly inhibit SACs and SACs strongly inhibit PGCs. SACs form the interglomerular circuit, which inhibits PGCs in distant glomeruli. Activation of GAD65cre-ChR2-positive PGCs monosynaptically inhibit mitral cells (MCs), which complements recent findings that SACs directly inhibit MCs. Thus, both classes of glomerular inhibitory neurons inhibit each other, as well as OB output neurons. We further show that olfactory nerve input to one glomerulus engages the interglomerular circuit and inhibits PGCs in distant glomeruli. Sensory activation of the interglomerular circuit directly inhibits output neurons in other glomeruli and by inhibiting intraglomerular PGCs, may potentially disinhibit output neurons in other glomeruli. The nature and context of odorant stimuli may determine whether inhibition or excitation prevails so that odors are represented in part by patterns of active and inactive glomeruli.
Collapse
|
24
|
Sanz Diez A, Najac M, De Saint Jan D. Basal forebrain GABAergic innervation of olfactory bulb periglomerular interneurons. J Physiol 2019; 597:2547-2563. [PMID: 30920662 DOI: 10.1113/jp277811] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/22/2019] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Basal forebrain long-range projections to the olfactory bulb are important for olfactory sensitivity and odour discrimination. Using optogenetics, it was confirmed that basal forebrain afferents mediate IPSCs on granule and deep short axon cells. It was also shown that they selectively innervate specific subtypes of periglomerular (PG) cells. Three different subtypes of type 2 PG cells receive GABAergic IPSCs from the basal forebrain but not from other PG cells. Type 1 PG cells, in contrast, do not receive inputs from the basal forebrain but do receive inhibition from other PG cells. These results shed new light on the complexity and specificity of glomerular inhibitory circuits, as well as on their modulation by the basal forebrain. ABSTRACT Olfactory bulb circuits are dominated by multiple inhibitory pathways that finely tune the activity of mitral and tufted cells, the principal neurons, and regulate odour discrimination. Granule cells mediate interglomerular lateral inhibition between mitral and tufted cells' lateral dendrites whereas diverse subtypes of periglomerular (PG) cells mediate intraglomerular lateral inhibition between their apical dendrites. Deep short axon cells form broad intrabulbar inhibitory circuits that regulate both populations of interneurons. Little is known about the extrabulbar GABAergic circuits that control the activity of these various interneurons. We examined this question using patch-clamp recordings and optogenetics in olfactory bulb slices from transgenic mice. We showed that axonal projections emanating from diverse basal forebrain GABAergic neurons densely project in all layers of the olfactory bulb. These long-range GABAergic projections provide a prominent synaptic input on granule and short axon cells in deep layers as well as on selective subtypes of PG cells. Specifically, three different subclasses of type 2 PG cells receive robust and target-specific basal forebrain inputs but have little local interactions with other PG cells. In contrast, type 1 PG cells are not innervated by basal forebrain fibres but do interact with other PG cells. Thus, attention-regulated basal forebrain inputs regulate inhibition in all layers of the olfactory bulb with a previously overlooked synaptic complexity that further defines interneuron subclasses.
Collapse
Affiliation(s)
- Alvaro Sanz Diez
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3212, Université de Strasbourg, 67084, Strasbourg, France
| | - Marion Najac
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Didier De Saint Jan
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3212, Université de Strasbourg, 67084, Strasbourg, France
| |
Collapse
|
25
|
Quantitative Association of Anatomical and Functional Classes of Olfactory Bulb Neurons. J Neurosci 2018; 38:7204-7220. [PMID: 29976625 PMCID: PMC6096045 DOI: 10.1523/jneurosci.0303-18.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/04/2018] [Accepted: 06/22/2018] [Indexed: 12/04/2022] Open
Abstract
Juxtaglomerular cells (JGCs) of the olfactory bulb (OB) glomerular layer (GL) play a fundamental role in olfactory information processing. Their variability in morphology, physiology, and connectivity suggests distinct functions. The quantitative understanding of population-wise morphological and physiological properties and a comprehensive classification based on quantitative parameters, however, is still lacking, impeding the analysis of microcircuits. Here, we provide multivariate clustering of 95 in vitro sampled cells from the GL of the mouse (male or female C57BL/6) OB and perform detailed morphological and physiological characterization for the seven computed JGC types. Using a classifier based on a subselection of parameters, we identified the neuron types in paired recordings to characterize their functional connectivity. We found that 4 of the 7 clusters comply with prevailing concepts of GL cell types, whereas the other 3 represent own distinct entities. We have labeled these entities horizontal superficial tufted cell (hSTC), vertical superficial tufted cell, and microglomerular cell (MGC): The hSTC is a tufted cell with a lateral dendrite that much like mitral cells and tufted cells receives excitatory inputs from the external tufted cell but likewise serves as an excitatory element for glomerular interneurons. The vertical superficial tufted cell, on the other hand, represents a tufted cell type with vertically projecting basal dendrites. We further define the MGC, characterized by a small dendritic tree and plateau action potentials. In addition to olfactory nerve-driven and external tufted cell driven interneurons, these MGCs represent a third functionally distinct type, the hSTC-driven interneurons. The presented correlative analysis helps to bridge the gap between branching patterns and cellular functional properties, permitting the integration of results from in vivo recordings, advanced morphological tools, and connectomics. SIGNIFICANCE STATEMENT The variance of neuron properties is a feature across mammalian cerebral circuits, contributing to signal processing and adding computational robustness to the networks. It is particularly noticeable in the glomerular layer of the olfactory bulb, the first site of olfactory information processing. We provide the first unbiased population-wise multivariate analysis to correlate morphological and physiological parameters of juxtaglomerular cells. We identify seven cell types, including four previously described neuron types, and identify further three distinct classes. The presented correlative analysis of morphological and physiological parameters gives an opportunity to predict morphological classes from physiological measurements or the functional properties of neurons from morphology and opens the way to integrate results from in vivo recordings, advanced morphological tools, and connectomics.
Collapse
|
26
|
Galliano E, Franzoni E, Breton M, Chand AN, Byrne DJ, Murthy VN, Grubb MS. Embryonic and postnatal neurogenesis produce functionally distinct subclasses of dopaminergic neuron. eLife 2018; 7:e32373. [PMID: 29676260 PMCID: PMC5935487 DOI: 10.7554/elife.32373] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/04/2018] [Indexed: 11/13/2022] Open
Abstract
Most neurogenesis in the mammalian brain is completed embryonically, but in certain areas the production of neurons continues throughout postnatal life. The functional properties of mature postnatally generated neurons often match those of their embryonically produced counterparts. However, we show here that in the olfactory bulb (OB), embryonic and postnatal neurogenesis produce functionally distinct subpopulations of dopaminergic (DA) neurons. We define two subclasses of OB DA neuron by the presence or absence of a key subcellular specialisation: the axon initial segment (AIS). Large AIS-positive axon-bearing DA neurons are exclusively produced during early embryonic stages, leaving small anaxonic AIS-negative cells as the only DA subtype generated via adult neurogenesis. These populations are functionally distinct: large DA cells are more excitable, yet display weaker and - for certain long-latency or inhibitory events - more broadly tuned responses to odorant stimuli. Embryonic and postnatal neurogenesis can therefore generate distinct neuronal subclasses, placing important constraints on the functional roles of adult-born neurons in sensory processing.
Collapse
Affiliation(s)
- Elisa Galliano
- Centre for Developmental NeurobiologyInstitute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
- Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
- Centre for Brain ScienceHarvard UniversityCambridgeUnited States
| | - Eleonora Franzoni
- Centre for Developmental NeurobiologyInstitute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Marine Breton
- Centre for Developmental NeurobiologyInstitute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Annisa N Chand
- Centre for Developmental NeurobiologyInstitute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Darren J Byrne
- Centre for Developmental NeurobiologyInstitute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Venkatesh N Murthy
- Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
- Centre for Brain ScienceHarvard UniversityCambridgeUnited States
| | - Matthew S Grubb
- Centre for Developmental NeurobiologyInstitute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
27
|
Liu X, Liu S. Cholecystokinin selectively activates short axon cells to enhance inhibition of olfactory bulb output neurons. J Physiol 2018; 596:2185-2207. [PMID: 29572837 DOI: 10.1113/jp275511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/15/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Cholecystokinin (CCK) via CCK-B receptors significantly enhances the GABAA receptor-mediated synaptic inhibition of principal olfactory bulb (OB) output neurons. This CCK action requires action potentials in presynaptic neurons. The enhanced inhibition of OB output neurons is a result of CCK-elevated inhibitory input from the glomerular circuit. CCK modulation of the glomerular circuit also leads to potentiated presynaptic inhibition of olfactory nerve terminals and postsynaptic inhibition of glomerular neurons. Selective excitation of short axon cells underlies the CCK-potentiated glomerular inhibition. ABSTRACT Neuropeptides such as cholecystokinin (CCK) are important for many brain functions, including sensory processing. CCK is predominantly present in a subpopulation of excitatory neurons and activation of CCK receptors is implicated in olfactory signal processing in the olfactory bulb (OB). However, the cellular and circuit mechanisms underlying the actions of CCK in the OB remain elusive. In the present study, we characterized the effects of CCK on synaptic inhibition of the principal OB output neurons mitral/tufted cells (MTCs) followed by mechanistic analyses at both circuit and cellular levels. First, we found that CCK via CCK-B receptors enhances the GABAA receptor-mediated spontaneous IPSCs in MTCs. Second, CCK does not affect the action potential independent miniature IPSCs in MTCs. Third, CCK potentiates glomerular inhibition resulting in increased GABAB receptor-mediated presynaptic inhibition of olfactory nerve terminals and enhanced spontaneous IPSCs in MTCs and glomerular neurons. Fourth, CCK enhances miniature IPSCs in the excitatory external tufted cells, although neither in the inhibitory short axon cells (SACs) nor in periglomerular cells (PGCs). Finally, CCK excites all tested SACs and a very small minority of GABAergic neurons in the granule cell layer or in periglomerular cells, but not in deep SACs. These results demonstrate that CCK selectively activates SACs to engage the SAC-formed interglomerular circuit and thus elevates inhibition broadly in the OB glomerular layer. This modulation may prevent the system from saturating in response to a high concentration of odourants or facilitate the detection of weak stimuli by increasing signal-to-noise ratio.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaolin Liu
- Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Stimulus dependent diversity and stereotypy in the output of an olfactory functional unit. Nat Commun 2018; 9:1347. [PMID: 29632302 PMCID: PMC5890244 DOI: 10.1038/s41467-018-03837-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/14/2018] [Indexed: 11/24/2022] Open
Abstract
Olfactory inputs are organized in an array of functional units (glomeruli), each relaying information from sensory neurons expressing a given odorant receptor to a small population of output neurons, mitral/tufted (MT) cells. MT cells respond heterogeneously to odorants, and how the responses encode stimulus features is unknown. We recorded in awake mice responses from “sister” MT cells that receive input from a functionally characterized, genetically identified glomerulus, corresponding to a specific receptor (M72). Despite receiving similar inputs, sister MT cells exhibit temporally diverse, concentration-dependent, excitatory and inhibitory responses to most M72 ligands. In contrast, the strongest known ligand for M72 elicits temporally stereotyped, early excitatory responses in sister MT cells, consistent across a range of concentrations. Our data suggest that information about ligand affinity is encoded in the collective stereotypy or diversity of activity among sister MT cells within a glomerular functional unit in a concentration-tolerant manner. Mitral/tufted (MT) cells connect to a single glomerulus and receive inputs from sensory neurons expressing the same odorant receptor. Here the authors report that sister MT cells connected to the M72 glomerulus exhibit variable responses to most M72 ligands but respond in a reproducible and stereotyped way to a high-affinity M72 ligand.
Collapse
|
29
|
The Stem Cell Marker Lgr5 Defines a Subset of Postmitotic Neurons in the Olfactory Bulb. J Neurosci 2017; 37:9403-9414. [PMID: 28847812 DOI: 10.1523/jneurosci.0500-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 01/10/2023] Open
Abstract
Lgr5, leucine-rich repeat-containing G-protein coupled receptor 5, is a bona fide biomarker for stem cells in multiple tissues. Lgr5 is also expressed in the brain, but the identities and properties of these Lgr5+ cells are still elusive. Using an Lgr5-EGFP reporter mouse line, we found that, from early development to adulthood, Lgr5 is highly expressed in the olfactory bulb (OB), an area with ongoing neurogenesis. Immunostaining with stem cell, glial, and neuronal markers reveals that Lgr5 does not label stem cells in the OB but instead labels a heterogeneous population of neurons with preference in certain subtypes. Patch-clamp recordings in OB slices reveal that Lgr5-EGFP+ cells fire action potentials and display spontaneous excitatory postsynaptic events, indicating that these neurons are integrated into OB circuits. Interestingly, R-spondin 3, a potential ligand of Lgr5, is also expressed in the adult OB. Collectively, our data indicate that Lgr5-expressing cells in the OB are fully differentiated neurons and imply distinct roles of Lgr5 and its ligand in postmitotic cells.SIGNIFICANCE STATEMENT Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) is a bona fide stem cell marker in many body organs. Here we report that Lgr5 is also highly expressed in the olfactory bulb (OB), the first relay station in the brain for processing odor information and one of the few neural structures that undergo continuous neurogenesis. Surprisingly, Lgr5 is not expressed in the OB stem cells, but instead in a few subtypes of terminally differentiated neurons, which are incorporated into the OB circuit. This study reveals that Lgr5+ cells in the brain represent a nonstem cell lineage, implying distinct roles of Lgr5 in postmitotic neurons.
Collapse
|
30
|
Postnatal Odor Exposure Increases the Strength of Interglomerular Lateral Inhibition onto Olfactory Bulb Tufted Cells. J Neurosci 2017; 36:12321-12327. [PMID: 27927952 DOI: 10.1523/jneurosci.1991-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 11/21/2022] Open
Abstract
Lateral inhibition between pairs of olfactory bulb (OB) mitral cells (MCs) and tufted cells (TCs) is linked to a variety of computations including gain control, decorrelation, and gamma-frequency synchronization. Differential effects of lateral inhibition onto MCs and TCs via distinct lateral inhibitory circuits are one of several recently described circuit-level differences between MCs and TCs that allow each to encode separate olfactory features in parallel. Here, using acute OB slices from mice, we tested whether lateral inhibition is affected by prior odor exposure and if these effects differ between MCs and TCs. We found that early postnatal odor exposure to the M72 glomerulus ligand acetophenone increased the strength of interglomerular lateral inhibition onto TCs, but not MCs, when the M72 glomerulus was stimulated. These increases were specific to exposure to M72 ligands because exposure to hexanal did not increase the strength of M72-mediated lateral inhibition. Therefore, early life experiences may be an important factor shaping TC odor responses. SIGNIFICANCE STATEMENT Responses of olfactory (OB) bulb mitral cells (MCs) and tufted cells (TCs) are known to depend on prior odor exposure, yet the specific circuit mechanisms underlying these experience-dependent changes are unknown. Here, we show that odor exposure alters one particular circuit element, interglomerular lateral inhibition, which is known to be critical for a variety of OB computations. Early postnatal odor exposure to acetophenone, a ligand of M72 olfactory sensory neurons, increases the strength of M72-mediated lateral inhibition onto TCs, but not MCs, that project to nearby glomeruli. These findings add to a growing list of differences between MCs and TCs suggesting that that these two cell types play distinct roles in odor coding.
Collapse
|
31
|
Burton SD. Inhibitory circuits of the mammalian main olfactory bulb. J Neurophysiol 2017; 118:2034-2051. [PMID: 28724776 DOI: 10.1152/jn.00109.2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023] Open
Abstract
Synaptic inhibition critically influences sensory processing throughout the mammalian brain, including the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system. Decades of research across numerous laboratories have established a central role for granule cells (GCs), the most abundant GABAergic interneuron type in the MOB, in the precise regulation of principal mitral and tufted cell (M/TC) firing rates and synchrony through lateral and recurrent inhibitory mechanisms. In addition to GCs, however, the MOB contains a vast diversity of other GABAergic interneuron types, and recent findings suggest that, while fewer in number, these oft-ignored interneurons are just as important as GCs in shaping odor-evoked M/TC activity. Here I challenge the prevailing centrality of GCs. In this review, I first outline the specific properties of each GABAergic interneuron type in the rodent MOB, with particular emphasis placed on direct interneuron recordings and cell type-selective manipulations. On the basis of these properties, I then critically reevaluate the contribution of GCs vs. other interneuron types to the regulation of odor-evoked M/TC firing rates and synchrony via lateral, recurrent, and other inhibitory mechanisms. This analysis yields a novel model in which multiple interneuron types with distinct abundances, connectivity patterns, and physiologies complement one another to regulate M/TC activity and sensory processing.
Collapse
Affiliation(s)
- Shawn D Burton
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania; and .,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| |
Collapse
|
32
|
Cell-Type-Specific Modulation of Sensory Responses in Olfactory Bulb Circuits by Serotonergic Projections from the Raphe Nuclei. J Neurosci 2017; 36:6820-35. [PMID: 27335411 DOI: 10.1523/jneurosci.3667-15.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 05/17/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Serotonergic neurons in the brainstem raphe nuclei densely innervate the olfactory bulb (OB), where they can modulate the initial representation and processing of olfactory information. Serotonergic modulation of sensory responses among defined OB cell types is poorly characterized in vivo Here, we used cell-type-specific expression of optical reporters to visualize how raphe stimulation alters sensory responses in two classes of GABAergic neurons of the mouse OB glomerular layer, periglomerular (PG) and short axon (SA) cells, as well as mitral/tufted (MT) cells carrying OB output to piriform cortex. In PG and SA cells, brief (1-4 s) raphe stimulation elicited a large increase in the magnitude of responses linked to inhalation of ambient air, as well as modest increases in the magnitude of odorant-evoked responses. Near-identical effects were observed when the optical reporter of glutamatergic transmission iGluSnFR was expressed in PG and SA cells, suggesting enhanced excitatory input to these neurons. In contrast, in MT cells imaged from the dorsal OB, raphe stimulation elicited a strong increase in resting GCaMP fluorescence with only a slight enhancement of inhalation-linked responses to odorant. Finally, optogenetically stimulating raphe serotonergic afferents in the OB had heterogeneous effects on presumptive MT cells recorded extracellularly, with an overall modest increase in resting and odorant-evoked responses during serotonergic afferent stimulation. These results suggest that serotonergic afferents from raphe dynamically modulate olfactory processing through distinct effects on multiple OB targets, and may alter the degree to which OB output is shaped by inhibition during behavior. SIGNIFICANCE STATEMENT Modulation of the circuits that process sensory information can profoundly impact how information about the external world is represented and perceived. This study investigates how the serotonergic system modulates the initial processing of olfactory information by the olfactory bulb, an obligatory relay between sensory neurons and cortex. We find that serotonergic projections from the raphe nuclei to the olfactory bulb dramatically enhance the responses of two classes of inhibitory interneurons to sensory input, that this effect is mediated by increased glutamatergic drive onto these neurons, and that serotonergic afferent activation alters the responses of olfactory bulb output neurons in vivo These results elucidate pathways by which neuromodulatory systems can dynamically regulate brain circuits during behavior.
Collapse
|
33
|
Vaaga CE, Yorgason JT, Williams JT, Westbrook GL. Presynaptic gain control by endogenous cotransmission of dopamine and GABA in the olfactory bulb. J Neurophysiol 2016; 117:1163-1170. [PMID: 28031402 DOI: 10.1152/jn.00694.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/27/2016] [Accepted: 12/27/2016] [Indexed: 01/14/2023] Open
Abstract
In the olfactory bulb, lateral inhibition mediated by local juxtaglomerular interneurons has been proposed as a gain control mechanism, important for decorrelating odorant responses. Among juxtaglomerular interneurons, short axon cells are unique as dual-transmitter neurons that release dopamine and GABA. To examine their intraglomerular function, we expressed channelrhodopsin under control of the DAT-cre promoter and activated olfactory afferents within individual glomeruli. Optical stimulation of labeled cells triggered endogenous dopamine release as measured by cyclic voltammetry and GABA release as measured by whole cell GABAA receptor currents. Activation of short axon cells reduced the afferent presynaptic release probability via D2 and GABAB receptor activation, resulting in reduced spiking in both mitral and external tufted cells. Our results suggest that short axon cells influence glomerular activity not only by direct inhibition of external tufted cells but also by inhibition of afferent inputs to external tufted and mitral cells.NEW & NOTEWORTHY Sensory systems, including the olfactory system, encode information across a large dynamic range, making synaptic mechanisms of gain control critical to proper function. Here we demonstrate that a dual-transmitter interneuron in the olfactory bulb controls the gain of intraglomerular afferent input via two distinct mechanisms, presynaptic inhibition as well as inhibition of a principal neuron subtype, and thereby potently controls the synaptic gain of afferent inputs.
Collapse
Affiliation(s)
- Christopher E Vaaga
- Vollum Institute, Oregon Health and Science University, Portland, Oregon; and.,Neuroscience Graduate Program, Oregon Health and Science University, Portland, Oregon
| | - Jordan T Yorgason
- Vollum Institute, Oregon Health and Science University, Portland, Oregon; and
| | - John T Williams
- Vollum Institute, Oregon Health and Science University, Portland, Oregon; and
| | - Gary L Westbrook
- Vollum Institute, Oregon Health and Science University, Portland, Oregon; and
| |
Collapse
|
34
|
Differences in Glomerular-Layer-Mediated Feedforward Inhibition onto Mitral and Tufted Cells Lead to Distinct Modes of Intensity Coding. J Neurosci 2016; 37:1428-1438. [PMID: 28028200 DOI: 10.1523/jneurosci.2245-16.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/25/2016] [Accepted: 11/19/2016] [Indexed: 11/21/2022] Open
Abstract
Understanding how each of the many interneuron subtypes affects brain network activity is critical. In the mouse olfactory system, mitral cells (MCs) and tufted cells (TCs) comprise parallel pathways of olfactory bulb output that are thought to play distinct functional roles in odor coding. Here, in acute mouse olfactory bulb slices, we test how the two major classes of olfactory bulb interneurons differentially contribute to differences in MC versus TC response properties. We show that, whereas TCs respond to olfactory sensory neuron (OSN) stimulation with short latencies regardless of stimulation intensity, MC latencies correlate negatively with stimulation intensity. These differences between MCs and TCs are caused in part by weaker excitatory and stronger inhibitory currents onto MCs than onto TCs. These differences in inhibition between MCs and TCs are most pronounced during the first 150 ms after stimulation and are mediated by glomerular layer circuits. Therefore, blocking inhibition originating in the glomerular layer, but not granule-cell-mediated inhibition, reduces MC spike latency at weak stimulation intensities and distinct temporal patterns of odor-evoked responses in MCs and TCs emerge in part due to differences in glomerular-layer-mediated inhibition.SIGNIFICANCE STATEMENT Olfactory bulb mitral and tufted cells display different odor-evoked responses and are thought to form parallel channels of olfactory bulb output. Therefore, determining the circuit-level causes that drive these differences is vital. Here, we find that longer-latency responses in mitral cells, compared with tufted cells, are due to weaker excitation and stronger glomerular-layer-mediated inhibition.
Collapse
|
35
|
Hu B, Geng C, Hou XY. Oligomeric amyloid-β peptide disrupts olfactory information output by impairment of local inhibitory circuits in rat olfactory bulb. Neurobiol Aging 2016; 51:113-121. [PMID: 28061384 DOI: 10.1016/j.neurobiolaging.2016.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/22/2016] [Accepted: 12/05/2016] [Indexed: 11/27/2022]
Abstract
Although early olfactory dysfunction has been found in patients with Alzheimer's disease, the underlying mechanisms remain unclear. In this study, we investigated whether and how oligomeric amyloid-β peptide (Aβ) affects the responses of mitral cells (MCs). We found that oligomeric Aβ1-42 increased spontaneous and evoked firing rates but decreased the ratio of evoked to spontaneous firings in MCs. Aβ1-42 oligomers showed no impact on the hyperactivity exerted by pharmacological blockage of GABAA receptors, suggesting an involvement of GABAergic inhibitory transmission in Aβ1 to 42-induced over-excitability. It was further determined that Aβ1-42 oligomers inhibited the frequency of spontaneous inhibitory postsynaptic currents and miniature inhibitory postsynaptic currents, as well as the amplitude of miniature inhibitory postsynaptic currents in MCs. Both recurrent and lateral inhibition of MCs, which are critical for odor discrimination, were also disrupted by Aβ1-42 oligomers. The above data indicate that Aβ impairs local inhibitory circuits and thereby leads to perturbations of olfactory information output in the olfactory bulb. This study reveals a cellular and synaptic basis of olfactory deficits associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Bin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Jiangsu, China; Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Jiangsu, China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Jiangsu, China
| | - Chi Geng
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Jiangsu, China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Jiangsu, China
| | - Xiao-Yu Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Jiangsu, China; Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Jiangsu, China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Jiangsu, China.
| |
Collapse
|
36
|
Uytingco CR, Puche AC, Munger SD. Interglomerular Connectivity within the Canonical and GC-D/Necklace Olfactory Subsystems. PLoS One 2016; 11:e0165343. [PMID: 27902696 PMCID: PMC5130179 DOI: 10.1371/journal.pone.0165343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/10/2016] [Indexed: 01/25/2023] Open
Abstract
The mammalian main olfactory system contains several subsystems that differ not only in the receptors they express and the glomerular targets they innervate within the main olfactory bulb (MOB), but also in the strategies they use to process odor information. The canonical main olfactory system employs a combinatorial coding strategy that represents odorant identity as a pattern of glomerular activity. By contrast, the "GC-D/necklace" olfactory subsystem—formed by olfactory sensory neurons expressing the receptor guanylyl cyclase GC-D and their target necklace glomeruli (NGs) encircling the caudal MOB—is critical for the detection of a small number of semiochemicals that promote the acquisition of food preferences. The formation of these socially-transmitted food preferences requires the animal to integrate information about two types of olfactory stimuli: these specialized social chemosignals and the food odors themselves. However, the neural mechanisms with which the GC-D/necklace subsystem processes this information are unclear. We used stimulus-induced increases in intrinsic fluorescence signals to map functional circuitry associated with NGs and canonical glomeruli (CGs) in the MOB. As expected, CG-associated activity spread laterally through both the glomerular and external plexiform layers associated with activated glomeruli. Activation of CGs or NGs resulted in activity spread between the two types of glomeruli; there was no evidence of preferential connectivity between individual necklace glomeruli. These results support previous anatomical findings that suggest the canonical and GC-D/necklace subsystems are functionally connected and may integrate general odor and semiochemical information in the MOB.
Collapse
Affiliation(s)
- Cedric R. Uytingco
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Adam C. Puche
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Steven D. Munger
- Center for Smell and Taste, University of Florida, Gainesville, Florida, United States of America
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
37
|
Uytingco CR, Puche AC, Munger SD. Using Intrinsic Flavoprotein and NAD(P)H Imaging to Map Functional Circuitry in the Main Olfactory Bulb. PLoS One 2016; 11:e0165342. [PMID: 27902689 PMCID: PMC5130181 DOI: 10.1371/journal.pone.0165342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/10/2016] [Indexed: 12/02/2022] Open
Abstract
Neurons exhibit strong coupling of electrochemical and metabolic activity. Increases in intrinsic fluorescence from either oxidized flavoproteins or reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] in the mitochondria have been used as an indicator of neuronal activity for the functional mapping of neural circuits. However, this technique has not been used to investigate the flow of olfactory information within the circuitry of the main olfactory bulb (MOB). We found that intrinsic flavoprotein fluorescence signals induced by electrical stimulation of single glomeruli displayed biphasic responses within both the glomerular (GL) and external plexiform layers (EPL) of the MOB. Pharmacological blockers of mitochondrial activity, voltage-gated Na+ channels, or ionotropic glutamate receptors abolished stimulus-dependent flavoprotein responses. Blockade of GABAA receptors enhanced the amplitude and spatiotemporal spread of the flavoprotein signals, indicating an important role for inhibitory neurotransmission in shaping the spread of neural activity in the MOB. Stimulus-dependent spread of fluorescence across the GL and EPL displayed a spatial distribution consistent with that of individual glomerular microcircuits mapped by neuroanatomic tract tracing. These findings demonstrated the feasibility of intrinsic fluorescence imaging in the olfactory systems and provided a new tool to examine the functional circuitry of the MOB.
Collapse
Affiliation(s)
- Cedric R Uytingco
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Adam C Puche
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Steven D Munger
- Center for Smell and Taste, University of Florida, Gainesville, Florida, United States of America.,Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
38
|
Liu S, Puche AC, Shipley MT. The Interglomerular Circuit Potently Inhibits Olfactory Bulb Output Neurons by Both Direct and Indirect Pathways. J Neurosci 2016; 36:9604-17. [PMID: 27629712 PMCID: PMC5039244 DOI: 10.1523/jneurosci.1763-16.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/07/2016] [Accepted: 07/28/2016] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Sensory processing shapes our perception. In mammals, odor information is encoded by combinatorial activity patterns of olfactory bulb (OB) glomeruli. Glomeruli are richly interconnected by short axon cells (SACs), which form the interglomerular circuit (IGC). It is unclear how the IGC impacts OB output to downstream neural circuits. We combined in vitro and in vivo electrophysiology with optogenetics in mice and found the following: (1) the IGC potently and monosynaptically inhibits the OB output neurons mitral/tufted cells (MTCs) by GABA release from SACs: (2) gap junction-mediated electrical coupling is strong for the SAC→MTC synapse, but negligible for the SAC→ETC synapse; (3) brief IGC-mediated inhibition is temporally prolonged by the intrinsic properties of MTCs; and (4) sniff frequency IGC activation in vivo generates persistent MTC inhibition. These findings suggest that the temporal sequence of glomerular activation by sensory input determines which stimulus features are transmitted to downstream olfactory networks and those filtered by lateral inhibition. SIGNIFICANCE STATEMENT Odor identity is encoded by combinatorial patterns of activated glomeruli, the initial signal transformation site of the olfactory system. Lateral circuit processing among activated glomeruli modulates olfactory signal transformation before transmission to higher brain centers. Using a combination of in vitro and in vivo optogenetics, this work demonstrates that interglomerular circuitry produces potent inhibition of olfactory bulb output neurons via direct chemical and electrical synapses as well as by indirect pathways. The direct inhibitory synaptic input engages mitral cell intrinsic membrane properties to generate inhibition that outlasts the initial synaptic action.
Collapse
Affiliation(s)
- Shaolin Liu
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland 21042
| | - Adam C Puche
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland 21042
| | - Michael T Shipley
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland 21042
| |
Collapse
|
39
|
Bourne JN, Schoppa NE. Three-dimensional synaptic analyses of mitral cell and external tufted cell dendrites in rat olfactory bulb glomeruli. J Comp Neurol 2016; 525:592-609. [PMID: 27490056 DOI: 10.1002/cne.24089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/13/2016] [Accepted: 07/28/2016] [Indexed: 11/07/2022]
Abstract
Recent studies have suggested that the two excitatory cell classes of the mammalian olfactory bulb, the mitral cells (MCs) and tufted cells (TCs), differ markedly in physiological responses. For example, TCs are more sensitive and broadly tuned to odors than MCs and also are much more sensitive to stimulation of olfactory sensory neurons (OSNs) in bulb slices. To examine the morphological bases for these differences, we performed quantitative ultrastructural analyses of glomeruli in rat olfactory bulb under conditions in which specific cells were labeled with biocytin and 3,3'-diaminobenzidine. Comparisons were made between MCs and external TCs (eTCs), which are a TC subtype in the glomerular layer with large, direct OSN signals and capable of mediating feedforward excitation of MCs. Three-dimensional analysis of labeled apical dendrites under an electron microscope revealed that MCs and eTCs in fact have similar densities of several chemical synapse types, including OSN inputs. OSN synapses also were distributed similarly, favoring a distal localization on both cells. Analysis of unlabeled putative MC dendrites further revealed gap junctions distributed uniformly along the apical dendrite and, on average, proximally with respect to OSN synapses. Our results suggest that the greater sensitivity of eTCs vs. MCs is due not to OSN synapse number or absolute location but rather to a conductance in the MC dendrite that is well positioned to attenuate excitatory signals passing to the cell soma. Functionally, such a mechanism could allow rapid and dynamic control of OSN-driven action potential firing in MCs through changes in gap junction properties. J. Comp. Neurol. 525:592-609, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer N Bourne
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado, 80045
| | - Nathan E Schoppa
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado, 80045.,Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado, 80045
| |
Collapse
|
40
|
Cavarretta F, Marasco A, Hines ML, Shepherd GM, Migliore M. Glomerular and Mitral-Granule Cell Microcircuits Coordinate Temporal and Spatial Information Processing in the Olfactory Bulb. Front Comput Neurosci 2016; 10:67. [PMID: 27471461 PMCID: PMC4943958 DOI: 10.3389/fncom.2016.00067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/17/2016] [Indexed: 11/20/2022] Open
Abstract
The olfactory bulb processes inputs from olfactory receptor neurons (ORNs) through two levels: the glomerular layer at the site of input, and the granule cell level at the site of output to the olfactory cortex. The sequence of action of these two levels has not yet been examined. We analyze this issue using a novel computational framework that is scaled up, in three-dimensions (3D), with realistic representations of the interactions between layers, activated by simulated natural odors, and constrained by experimental and theoretical analyses. We suggest that the postulated functions of glomerular circuits have as their primary role transforming a complex and disorganized input into a contrast-enhanced and normalized representation, but cannot provide for synchronization of the distributed glomerular outputs. By contrast, at the granule cell layer, the dendrodendritic interactions mediate temporal decorrelation, which we show is dependent on the preceding contrast enhancement by the glomerular layer. The results provide the first insights into the successive operations in the olfactory bulb, and demonstrate the significance of the modular organization around glomeruli. This layered organization is especially important for natural odor inputs, because they activate many overlapping glomeruli.
Collapse
Affiliation(s)
- Francesco Cavarretta
- Department of Neuroscience, School of Medicine, Yale UniversityNew Haven, CT, USA; Department of Mathematics "Federigo Enriques", University of MilanMilan, Italy
| | - Addolorata Marasco
- Department of Mathematics and Application "R. Cacciopoli", University of Naples Federico II Naples, Italy
| | - Michael L Hines
- Department of Neuroscience, School of Medicine, Yale University New Haven, CT, USA
| | - Gordon M Shepherd
- Department of Neuroscience, School of Medicine, Yale University New Haven, CT, USA
| | - Michele Migliore
- Department of Neuroscience, School of Medicine, Yale UniversityNew Haven, CT, USA; Institute of Biophysics, National Research CouncilPalermo, Italy
| |
Collapse
|
41
|
Geramita MA, Burton SD, Urban NN. Distinct lateral inhibitory circuits drive parallel processing of sensory information in the mammalian olfactory bulb. eLife 2016; 5. [PMID: 27351103 PMCID: PMC4972542 DOI: 10.7554/elife.16039] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/27/2016] [Indexed: 11/13/2022] Open
Abstract
Splitting sensory information into parallel pathways is a common strategy in sensory systems. Yet, how circuits in these parallel pathways are composed to maintain or even enhance the encoding of specific stimulus features is poorly understood. Here, we have investigated the parallel pathways formed by mitral and tufted cells of the olfactory system in mice and characterized the emergence of feature selectivity in these cell types via distinct lateral inhibitory circuits. We find differences in activity-dependent lateral inhibition between mitral and tufted cells that likely reflect newly described differences in the activation of deep and superficial granule cells. Simulations show that these circuit-level differences allow mitral and tufted cells to best discriminate odors in separate concentration ranges, indicating that segregating information about different ranges of stimulus intensity may be an important function of these parallel sensory pathways. DOI:http://dx.doi.org/10.7554/eLife.16039.001 The brain often processes different features of sensory information in separate pathways. For example, when seeing an object, information about colour and movement are processed by separate types of neurons in the eye. These neurons in turn relay information to different sets of brain areas, all of which are active at the same time. Such parallel processing was originally not thought to apply to information about smell. This was because in mammals, the two types of neurons in the brain area that processes smell seemed to play the same role. However, more recent work suggests that there are in fact differences in the responses of these two neuron types (called mitral cells and tufted cells) to odors, suggesting that the brain might use parallel processing for information about smells too. Information travels along neurons in the form of electrical signals, and this activity is often seen in the form of a series of “spikes”. In a process called lateral inhibition, the activity of one neuron can feed back and inhibit the activity of its neighbors. This is important for enhancing contrast; in terms of the sense of smell, lateral inhibition is thought to help distinguish between similar odors. A technique called optogenetics allows the activity of particular neurons in an animal’s brain to be controlled by shining light onto them. Geramita et al. have now used this technique in mice to investigate whether there are differences in how lateral inhibition works in mitral cells and tufted cells. This revealed that lateral inhibition affects mitral cells only when they are spiking at intermediate firing rates, whereas tufted cells are only affected by lateral inhibition when spiking at low firing rates. Using computer simulations, Geramita et al. show that these different responses mean that mitral cells are best at distinguishing similar smells when they are present at high concentrations, while tufted cells are best at distinguishing similar smells that are present at low concentrations. These differences also mean that, by working together, mitral and tufted cells can distinguish between smells much better than either type of neuron on its own. These results demonstrate that, as with the other senses, the brain processes information about smell using parallel pathways. Future work is now needed to see what effect switching off the activity of either mitral or tufted cells will have on an animal’s behavior. DOI:http://dx.doi.org/10.7554/eLife.16039.002
Collapse
Affiliation(s)
- Matthew A Geramita
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, United States
| | - Shawn D Burton
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, United States
| | - Nathan N Urban
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
42
|
Control of Mitral/Tufted Cell Output by Selective Inhibition among Olfactory Bulb Glomeruli. Neuron 2016; 91:397-411. [PMID: 27346531 DOI: 10.1016/j.neuron.2016.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 10/30/2015] [Accepted: 05/25/2016] [Indexed: 11/23/2022]
Abstract
Inhibition is fundamental to information processing by neural circuits. In the olfactory bulb (OB), glomeruli are the functional units for odor information coding, but inhibition among glomeruli is poorly characterized. We used two-photon calcium imaging in anesthetized and awake mice to visualize both odorant-evoked excitation and suppression in OB output neurons (mitral and tufted, MT cells). MT cell response polarity mapped uniformly to discrete OB glomeruli, allowing us to analyze how inhibition shapes OB output relative to the glomerular map. Odorants elicited unique patterns of suppression in only a subset of glomeruli in which such suppression could be detected, and excited and suppressed glomeruli were spatially intermingled. Binary mixture experiments revealed that interglomerular inhibition could suppress excitatory mitral cell responses to odorants. These results reveal that inhibitory OB circuits nonlinearly transform odor representations and support a model of selective and nonrandom inhibition among glomerular ensembles.
Collapse
|
43
|
Brill J, Shao Z, Puche AC, Wachowiak M, Shipley MT. Serotonin increases synaptic activity in olfactory bulb glomeruli. J Neurophysiol 2015; 115:1208-19. [PMID: 26655822 DOI: 10.1152/jn.00847.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/09/2015] [Indexed: 11/22/2022] Open
Abstract
Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range.
Collapse
Affiliation(s)
- Julia Brill
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Zuoyi Shao
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Adam C Puche
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Matt Wachowiak
- Department of Neurobiology and Anatomy, and Brain Institute, University of Utah, Salt Lake City, Utah
| | - Michael T Shipley
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
44
|
Banerjee A, Marbach F, Anselmi F, Koh MS, Davis MB, Garcia da Silva P, Delevich K, Oyibo HK, Gupta P, Li B, Albeanu DF. An Interglomerular Circuit Gates Glomerular Output and Implements Gain Control in the Mouse Olfactory Bulb. Neuron 2015; 87:193-207. [PMID: 26139373 DOI: 10.1016/j.neuron.2015.06.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/24/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
Odors elicit distributed activation of glomeruli in the olfactory bulb (OB). Crosstalk between co-active glomeruli has been proposed to perform a variety of computations, facilitating efficient extraction of sensory information by the cortex. Dopaminergic/GABAergic cells in the OB, which can be identified by their expression of the dopamine transporter (DAT), provide the earliest opportunity for such crosstalk. Here we show in mice that DAT+ cells carry concentration-dependent odor signals and broadcast focal glomerular inputs throughout the OB to cause suppression of mitral/tufted (M/T) cell firing, an effect that is mediated by the external tufted (ET) cells coupled to DAT+ cells via chemical and electrical synapses. We find that DAT+ cells implement gain control and decorrelate odor representations in the M/T cell population. Our results further indicate that ET cells are gatekeepers of glomerular output and prime determinants of M/T responsiveness.
Collapse
Affiliation(s)
- Arkarup Banerjee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | - Fred Marbach
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | | | - Matthew S Koh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | - Martin B Davis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Pedro Garcia da Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Kristen Delevich
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | - Hassana K Oyibo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | - Priyanka Gupta
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Bo Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | - Dinu F Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
45
|
Sparse coding and lateral inhibition arising from balanced and unbalanced dendrodendritic excitation and inhibition. J Neurosci 2015; 34:13701-13. [PMID: 25297097 DOI: 10.1523/jneurosci.1834-14.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The precise mechanism by which synaptic excitation and inhibition interact with each other in odor coding through the unique dendrodendritic synaptic microcircuits present in olfactory bulb is unknown. Here a scaled-up model of the mitral-granule cell network in the rodent olfactory bulb is used to analyze dendrodendritic processing of experimentally determined odor patterns. We found that the interaction between excitation and inhibition is responsible for two fundamental computational mechanisms: (1) a balanced excitation/inhibition in strongly activated mitral cells, leading to a sparse representation of odorant input, and (2) an unbalanced excitation/inhibition (inhibition dominated) in surrounding weakly activated mitral cells, leading to lateral inhibition. These results suggest how both mechanisms can carry information about the input patterns, with optimal level of synaptic excitation and inhibition producing the highest level of sparseness and decorrelation in the network response. The results suggest how the learning process, through the emergent development of these mechanisms, can enhance odor representation of olfactory bulb.
Collapse
|
46
|
Gilra A, Bhalla US. Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding. PLoS One 2015; 10:e0098045. [PMID: 25942312 PMCID: PMC4420273 DOI: 10.1371/journal.pone.0098045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/23/2014] [Indexed: 01/13/2023] Open
Abstract
Stimulus encoding by primary sensory brain areas provides a data-rich context for understanding their circuit mechanisms. The vertebrate olfactory bulb is an input area having unusual two-layer dendro-dendritic connections whose roles in odor coding are unclear. To clarify these roles, we built a detailed compartmental model of the rat olfactory bulb that synthesizes a much wider range of experimental observations on bulbar physiology and response dynamics than has hitherto been modeled. We predict that superficial-layer inhibitory interneurons (periglomerular cells) linearize the input-output transformation of the principal neurons (mitral cells), unlike previous models of contrast enhancement. The linearization is required to replicate observed linear summation of mitral odor responses. Further, in our model, action-potentials back-propagate along lateral dendrites of mitral cells and activate deep-layer inhibitory interneurons (granule cells). Using this, we propose sparse, long-range inhibition between mitral cells, mediated by granule cells, to explain how the respiratory phases of odor responses of sister mitral cells can be sometimes decorrelated as observed, despite receiving similar receptor input. We also rule out some alternative mechanisms. In our mechanism, we predict that a few distant mitral cells receiving input from different receptors, inhibit sister mitral cells differentially, by activating disjoint subsets of granule cells. This differential inhibition is strong enough to decorrelate their firing rate phases, and not merely modulate their spike timing. Thus our well-constrained model suggests novel computational roles for the two most numerous classes of interneurons in the bulb.
Collapse
Affiliation(s)
- Aditya Gilra
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, 560065, India
| | - Upinder S. Bhalla
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, 560065, India
- * E-mail:
| |
Collapse
|
47
|
A distinct subtype of dopaminergic interneuron displays inverted structural plasticity at the axon initial segment. J Neurosci 2015; 35:1573-90. [PMID: 25632134 DOI: 10.1523/jneurosci.3515-14.2015] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The axon initial segment (AIS) is a specialized structure near the start of the axon that is a site of neuronal plasticity. Changes in activity levels in vitro and in vivo can produce structural AIS changes in excitatory cells that have been linked to alterations in excitability, but these effects have never been described in inhibitory interneurons. In the mammalian olfactory bulb (OB), dopaminergic interneurons are particularly plastic, undergoing constitutive turnover throughout life and regulating tyrosine hydroxylase expression in an activity-dependent manner. Here we used dissociated cultures of rat and mouse OB to show that a subset of bulbar dopaminergic neurons possess an AIS and that these AIS-positive cells are morphologically and functionally distinct from their AIS-negative counterparts. Under baseline conditions, OB dopaminergic AISs were short and located distally along the axon but, in response to chronic 24 h depolarization, lengthened and relocated proximally toward the soma. These activity-dependent changes were in the opposite direction to both those we saw in non-GABAergic OB neurons and those reported previously for excitatory cell types. Inverted AIS plasticity in OB dopaminergic cells was bidirectional, involved all major components of the structure, was dependent on the activity of L-type CaV1 calcium channels but not on the activity of the calcium-activated phosphatase calcineurin, and was opposed by the actions of cyclin-dependent kinase 5. Such distinct forms of AIS plasticity in inhibitory interneurons and excitatory projection neurons may allow considerable flexibility when neuronal networks must adapt to perturbations in their ongoing activity.
Collapse
|
48
|
Carey RM, Sherwood WE, Shipley MT, Borisyuk A, Wachowiak M. Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb. J Neurophysiol 2015; 113:3112-29. [PMID: 25717156 DOI: 10.1152/jn.00394.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 02/20/2015] [Indexed: 11/22/2022] Open
Abstract
Olfaction in mammals is a dynamic process driven by the inhalation of air through the nasal cavity. Inhalation determines the temporal structure of sensory neuron responses and shapes the neural dynamics underlying central olfactory processing. Inhalation-linked bursts of activity among olfactory bulb (OB) output neurons [mitral/tufted cells (MCs)] are temporally transformed relative to those of sensory neurons. We investigated how OB circuits shape inhalation-driven dynamics in MCs using a modeling approach that was highly constrained by experimental results. First, we constructed models of canonical OB circuits that included mono- and disynaptic feedforward excitation, recurrent inhibition and feedforward inhibition of the MC. We then used experimental data to drive inputs to the models and to tune parameters; inputs were derived from sensory neuron responses during natural odorant sampling (sniffing) in awake rats, and model output was compared with recordings of MC responses to odorants sampled with the same sniff waveforms. This approach allowed us to identify OB circuit features underlying the temporal transformation of sensory inputs into inhalation-linked patterns of MC spike output. We found that realistic input-output transformations can be achieved independently by multiple circuits, including feedforward inhibition with slow onset and decay kinetics and parallel feedforward MC excitation mediated by external tufted cells. We also found that recurrent and feedforward inhibition had differential impacts on MC firing rates and on inhalation-linked response dynamics. These results highlight the importance of investigating neural circuits in a naturalistic context and provide a framework for further explorations of signal processing by OB networks.
Collapse
Affiliation(s)
- Ryan M Carey
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | | | - Michael T Shipley
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Alla Borisyuk
- Department of Mathematics, University of Utah, Salt Lake City, Utah
| | - Matt Wachowiak
- Department of Neurobiology and Anatomy and Brain Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
49
|
Zak JD, Whitesell JD, Schoppa NE. Metabotropic glutamate receptors promote disinhibition of olfactory bulb glomeruli that scales with input strength. J Neurophysiol 2014; 113:1907-20. [PMID: 25552635 DOI: 10.1152/jn.00222.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Increasing evidence indicates that the neural circuitry within glomeruli of the olfactory bulb plays a major role in affecting information flow between olfactory sensory neurons (OSNs) and output mitral cells (MCs). Glutamatergic external tufted (ET) cells, located at glomeruli, can act as intermediary cells in excitation between OSNs and MCs, whereas activation of MCs by OSNs is, in turn, suppressed by inhibitory synapses onto ET cells. In this study, we used patch-clamp recordings in rat olfactory bulb slices to examine the function of metabotropic glutamate receptors (mGluRs) in altering these glomerular signaling mechanisms. We found that activation of group II mGluRs profoundly reduced inhibition onto ET cells evoked by OSN stimulation. The mGluRs that mediated disinhibition were located on presynaptic GABAergic periglomerular cells and appeared to be activated by glutamate transients derived from dendrites in glomeruli. In terms of glomerular output, the mGluR-mediated reduction in GABA release led to a robust increase in the number of action potentials evoked by OSN stimulation in both ET cells and MCs. Importantly, however, the enhanced excitation was specific to when a glomerulus was strongly activated by OSN inputs. By being selective for strong vs. weak glomerular activation, mGluR-mediated disinhibition provides a mechanism to enhance the contrast in odor signals that activate OSN inputs into a single glomerulus at varying intensities.
Collapse
Affiliation(s)
- Joseph D Zak
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; and
| | - Jennifer D Whitesell
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; and
| | - Nathan E Schoppa
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; and Department of Physiology and Biophysics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
50
|
D'Souza RD, Vijayaraghavan S. Paying attention to smell: cholinergic signaling in the olfactory bulb. Front Synaptic Neurosci 2014; 6:21. [PMID: 25309421 PMCID: PMC4174753 DOI: 10.3389/fnsyn.2014.00021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/05/2014] [Indexed: 11/13/2022] Open
Abstract
The tractable, layered architecture of the olfactory bulb (OB), and its function as a relay between odor input and higher cortical processing, makes it an attractive model to study how sensory information is processed at a synaptic and circuit level. The OB is also the recipient of strong neuromodulatory inputs, chief among them being the central cholinergic system. Cholinergic axons from the basal forebrain modulate the activity of various cells and synapses within the OB, particularly the numerous dendrodendritic synapses, resulting in highly variable responses of OB neurons to odor input that is dependent upon the behavioral state of the animal. Behavioral, electrophysiological, anatomical, and computational studies examining the function of muscarinic and nicotinic cholinergic receptors expressed in the OB have provided valuable insights into the role of acetylcholine (ACh) in regulating its function. We here review various studies examining the modulation of OB function by cholinergic fibers and their target receptors, and provide putative models describing the role that cholinergic receptor activation might play in the encoding of odor information.
Collapse
Affiliation(s)
- Rinaldo D D'Souza
- Department of Physiology and Biophysics and the Neuroscience Program, School of Medicine, University of Colorado Aurora, CO, USA
| | - Sukumar Vijayaraghavan
- Department of Physiology and Biophysics and the Neuroscience Program, School of Medicine, University of Colorado Aurora, CO, USA
| |
Collapse
|