1
|
Opendak M, Meyer H, Callaghan BL, Abramson L, John SR, Bath K, Lee F, Tottenham N, Sullivan R. Understanding the development of a functional brain circuit: reward processing as an illustration. Transl Psychiatry 2025; 15:53. [PMID: 39962048 PMCID: PMC11832941 DOI: 10.1038/s41398-025-03280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 01/13/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Aberrant reward processing is common in psychiatric disorders that begin during development. However, our understanding of the early reward system is limited, due to few studies assessing reward engagement across development. Moreover, the interpretation of these findings is based primarily on our understanding of the adult reward system. Here, we argue that approaches to early reward processing must be re-framed within the context of developmental transitions. This alternate perspective takes into account unique, age-specific brain network functions that promote adaptive behaviors as environmental demands change from infancy through childhood. We survey the literature on developing reward systems and ask the following critical questions: (1) how are rewarding stimuli defined for infants and children? (2) do adult-defined neural reward circuits also support early reward behavior? and (3) how can early circuit perturbation impact infant and adult circuit function? Altogether, we argue that this developmental niche-centered framework is needed for conceptually and theoretically approaching developmental research questions, including but also extending beyond the scope of reward. Finally, this framework can help us understand how disturbance in developmental processes may ultimately manifest as pathology.
Collapse
Affiliation(s)
- Maya Opendak
- Kennedy Krieger Institute, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Baltimore, MD, USA.
| | - Heidi Meyer
- Boston University Department of Psychological and Brain Sciences, Boston, MA, USA
| | | | - Lior Abramson
- Department of Psychology, Columbia University in the City of New York, New York, NY, USA
- Tel Aviv University, Tel Aviv, Israel
| | - Shanah Rachel John
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin Bath
- New York State Psychiatric Institute, New York, NY, USA
- Columbia University Irving Medical College, New York, NY, USA
| | - Francis Lee
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - Nim Tottenham
- Department of Psychology, Columbia University in the City of New York, New York, NY, USA
| | - Regina Sullivan
- Department of Child & Adolescent Psychiatry, NYU Grossman School of Health, New York, NY, USA
| |
Collapse
|
2
|
Morales AM, Jones SA, Carlson B, Kliamovich D, Dehoney J, Simpson BL, Dominguez-Savage KA, Hernandez KO, Lopez DA, Baker FC, Clark DB, Goldston DB, Luna B, Nooner KB, Muller-Oehring EM, Tapert SF, Thompson WK, Nagel BJ. Associations between mesolimbic connectivity, and alcohol use from adolescence to adulthood. Dev Cogn Neurosci 2024; 70:101478. [PMID: 39577156 PMCID: PMC11617707 DOI: 10.1016/j.dcn.2024.101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
Dopaminergic projections from the ventral tegmental area (VTA) to limbic regions play a key role in the initiation and maintenance of substance use; however, the relationship between mesolimbic resting-state functional connectivity (RSFC) and alcohol use during development remains unclear. We examined the associations between alcohol use and VTA RSFC to subcortical structures in 796 participants (12-21 years old at baseline, 51 % female) across 9 waves of longitudinal data from the National Consortium on Alcohol and Neurodevelopment in Adolescence. Linear mixed effects models included interactions between age, sex, and alcohol use, and best fitting models were selected using log-likelihood ratio tests. Results demonstrated a positive association between alcohol use and VTA RSFC to the nucleus accumbens. Age was associated with VTA RSFC to the amygdala and hippocampus, and an age-by-alcohol use interaction on VTA-globus pallidus connectivity was driven by a positive association between alcohol and VTA-globus pallidus RSFC in adolescence, but not adulthood. On average, male participants exhibited greater VTA RSFC to the amygdala, nucleus accumbens, caudate, hippocampus, globus pallidus, and thalamus. Differences in VTA RSFC related to age, sex, and alcohol, may inform our understanding of neurobiological risk and resilience for alcohol use and other psychiatric disorders.
Collapse
Affiliation(s)
- Angelica M Morales
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States.
| | - Scott A Jones
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Birgitta Carlson
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Dakota Kliamovich
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Joseph Dehoney
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Brooke L Simpson
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | | | - Kristina O Hernandez
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Daniel A Lopez
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Duncan B Clark
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David B Goldston
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kate B Nooner
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Eva M Muller-Oehring
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego, CA, United States
| | | | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
3
|
Ding Z, Li W, Chen C, Yang Z, Wang S, Xu J, Liu X, Zhang M. The effect of choice on memory across development. J Exp Child Psychol 2024; 246:105982. [PMID: 38879930 DOI: 10.1016/j.jecp.2024.105982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024]
Abstract
Numerous studies have demonstrated the role of making choices as an internal motivator to improve performance, and recent studies in the domain of memory have focused on adults. To chart the developmental trend of the choice effect on memory, we conducted a series of seven experiments involving children, adolescents, and young adults. Participants (N = 512) aged 5 to 26 years performed a choice encoding task that manipulated the opportunities to choose and then took a memory test. Using different types of experimental materials and corroborated by a mini meta-analysis, we found that the choice effect on memory was significant in childhood and early adolescence but not significant in late adolescence and early adulthood. The developmental changes were statistically significant, particularly evident during the transition from early to late adolescence. These findings suggest that the internal value of choice decreases across development and contributes to our understanding of developmental differences in the role of choice in memory.
Collapse
Affiliation(s)
- Zhuolei Ding
- Faculty of Education, Beijing Normal University, Beijing 100875, China; Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenqing Li
- Facuty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Chuansheng Chen
- School of Social Ecology, University of California, Irvine, Irvine, CA 92617, USA
| | - Zhong Yang
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310030, China
| | - Songxue Wang
- Department of Applied Psychology, Faculty of Social and Public Management, Guangdong Baiyun University, Guangdong 510450, China
| | - Juanjuan Xu
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xun Liu
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingxia Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Parr AC, Sydnor VJ, Calabro FJ, Luna B. Adolescent-to-adult gains in cognitive flexibility are adaptively supported by reward sensitivity, exploration, and neural variability. Curr Opin Behav Sci 2024; 58:101399. [PMID: 38826569 PMCID: PMC11138371 DOI: 10.1016/j.cobeha.2024.101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Cognitive flexibility exhibits dynamic changes throughout development, with different forms of flexibility showing dissociable developmental trajectories. In this review, we propose that an adolescent-specific mode of flexibility in the face of changing environmental contingencies supports the emergence of adolescent-to-adult gains in cognitive shifting efficiency. We first describe how cognitive shifting abilities monotonically improve from childhood to adulthood, accompanied by increases in brain state flexibility, neural variability, and excitatory/inhibitory balance. We next summarize evidence supporting the existence of a dopamine-driven, adolescent peak in flexible behavior that results in reward seeking, undirected exploration, and environmental sampling. We propose a neurodevelopmental framework that relates these adolescent behaviors to the refinement of neural phenotypes relevant to mature cognitive flexibility, and thus highlight the importance of the adolescent period in fostering healthy neurocognitive trajectories.
Collapse
Affiliation(s)
- Ashley C. Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, 14213, USA
| | - Valerie J. Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, 14213, USA
| | - Finnegan J. Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, 14213, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, 14213, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh PA, 14213, USA
| |
Collapse
|
5
|
Ravindranath O, Perica MI, Parr AC, Ojha A, McKeon SD, Montano G, Ullendorff N, Luna B, Edmiston EK. Adolescent neurocognitive development and decision-making abilities regarding gender-affirming care. Dev Cogn Neurosci 2024; 67:101351. [PMID: 38383174 PMCID: PMC11247355 DOI: 10.1016/j.dcn.2024.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Recently, politicians and legislative bodies have cited neurodevelopmental literature to argue that brain immaturity undermines decision-making regarding gender-affirming care (GAC) in youth. Here, we review this literature as it applies to adolescents' ability to make decisions regarding GAC. The research shows that while adolescence is a time of peak risk-taking behavior that may lead to impulsive decisions, neurocognitive systems supporting adult-level decisions are available given deliberative processes that minimize influence of short-term rewards and peers. Since GAC decisions occur over an extended period and with support from adult caregivers and clinicians, adolescents can engage adult-level decision-making in this context. We also weigh the benefits of providing GAC access during adolescence and consider the significant costs of blocking or delaying GAC. Transgender and non-binary (TNB) adolescents face significant mental health challenges, many of which are mitigated by GAC access. Further, initiating the GAC process during adolescence, which we define as beginning at pubertal onset, leads to better long-term mental health outcomes than waiting until adulthood. Taken together, existing research indicates that many adolescents can make informed decisions regarding gender-affirming care, and that this care is critical for the well-being of TNB youth. We highlight relevant considerations for policy makers, researchers, and clinicians.
Collapse
Affiliation(s)
- Orma Ravindranath
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Maria I Perica
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ashley C Parr
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amar Ojha
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shane D McKeon
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gerald Montano
- Division of Adolescent and Young Adult Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Naomi Ullendorff
- Division of Adolescent and Young Adult Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Kale Edmiston
- Department of Psychiatry, University of Massachusetts Chan School of Medicine, USA
| |
Collapse
|
6
|
Desai S, Zundel CG, Evanski JM, Gowatch LC, Bhogal A, Ely S, Carpenter C, Shampine M, O'Mara E, Rabinak CA, Marusak HA. Genetic variation in endocannabinoid signaling: Anxiety, depression, and threat- and reward-related brain functioning during the transition into adolescence. Behav Brain Res 2024; 463:114925. [PMID: 38423255 PMCID: PMC10977105 DOI: 10.1016/j.bbr.2024.114925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The endocannabinoid system modulates neural activity throughout the lifespan. In adults, neuroimaging studies link a common genetic variant in fatty acid amide hydrolase (FAAH C385A)-an enzyme that regulates endocannabinoid signaling-to reduced risk of anxiety and depression, and altered threat- and reward-related neural activity. However, limited research has investigated these associations during the transition into adolescence, a period of substantial neurodevelopment and increased psychopathology risk. METHODS This study included FAAH genotype and longitudinal neuroimaging and neurobehavioral data from 4811 youth (46% female; 9-11 years at Baseline, 11-13 years at Year 2) from the Adolescent Brain Cognitive DevelopmentSM Study. Linear mixed models examined the effects of FAAH and the FAAH x time interaction on anxiety and depressive symptoms, amygdala reactivity to threatening faces, and nucleus accumbens (NAcc) response to happy faces during the emotional n-back task. RESULTS A significant main effect of FAAH on depressive symptoms was observed, such that depressive symptoms were lower across both timepoints in those with the AA genotype compared to both AC and CC genotypes (p's<0.05). There were no significant FAAH x time interactions for anxiety, depression, or neural responses (p's>0.05). Additionally, there were no main effects of FAAH on anxiety or neural responses (p's>0.05). CONCLUSIONS Our findings add to emerging evidence linking the FAAH C385A variant to lower risk of psychopathology, and extend these findings to a developmental sample. In particular, we found lower depressive symptoms in FAAH AA genotypes compared to AC and CC genotypes. Future research is needed to characterize the role of the FAAH variant and the eCB system more broadly in neurodevelopment and psychiatric risk.
Collapse
Affiliation(s)
- Shreya Desai
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Clara G Zundel
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Julia M Evanski
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Leah C Gowatch
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Amanpreet Bhogal
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Samantha Ely
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Carmen Carpenter
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - MacKenna Shampine
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Emilie O'Mara
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Christine A Rabinak
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA; Dept. of Pharmacy Practice, Wayne State University, USA
| | - Hilary A Marusak
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA; Dept. of Pharmacology, Wayne State University School of Medicine, USA; Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, USA.
| |
Collapse
|
7
|
Tanrıverdi B, Cowan ET, Metoki A, Jobson KR, Murty VP, Chein J, Olson IR. Awake Hippocampal-Cortical Co-reactivation Is Associated with Forgetting. J Cogn Neurosci 2023; 35:1446-1462. [PMID: 37348130 PMCID: PMC10759317 DOI: 10.1162/jocn_a_02021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Systems consolidation theories posit that consolidation occurs primarily through a coordinated communication between hippocampus and neocortex [Moscovitch, M., & Gilboa, A. Systems consolidation, transformation and reorganization: Multiple trace theory, trace transformation theory and their competitors. PsyArXiv, 2021; Kumaran, D., Hassabis, D., & McClelland, J. L. What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends in Cognitive Sciences, 20, 512-534, 2016; McClelland, J. L., & O'Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419-457, 1995]. Recent sleep studies in rodents have shown that hippocampus and visual cortex replay the same information at temporal proximity ("co-replay"; Lansink, C. S., Goltstein, P. M., Lankelma, J. V., McNaughton, B. L., & Pennartz, C. M. A. Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biology, 7, e1000173, 2009; Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S. I., & Battaglia, F. P. Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nature Neuroscience, 12, 919-926, 2009; Wierzynski, C. M., Lubenov, E. V., Gu, M., & Siapas, A. G. State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep. Neuron, 61, 587-596, 2009; Ji, D., & Wilson, M. A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10, 100-107, 2007). We developed a novel repetition time (TR)-based co-reactivation analysis method to study hippocampal-cortical co-replays in humans using fMRI. Thirty-six young adults completed an image (face or scene) and location paired associate encoding task in the scanner, which were preceded and followed by resting state scans. We identified post-encoding rest TRs (± 1) that showed neural reactivation of each image-location trials in both hippocampus (HPC) and category-selective cortex (fusiform face area [FFA]). This allowed us to characterize temporally proximal coordinated reactivations ("co-reactivations") between HPC and FFA. Moreover, we found that increased HPC-FFA co-reactivations were associated with incorrectly recognized trials after a 1-week delay (p = .004). Finally, we found that these HPC-FFA co-reactivations were also associated with trials that were initially correctly recognized immediately after encoding but were later forgotten in 1-day (p = .043) and 1-week delay period (p = .031). We discuss these results from a trace transformation perspective [Sekeres, M. J., Winocur, G., & Moscovitch, M. The hippocampus and related neocortical structures in memory transformation. Neuroscience Letters, 680, 39-53, 2018; Winocur, G., & Moscovitch, M. Memory transformation and systems consolidation. Journal of the International Neuropsychological Society, 17, 766-780, 2011] and speculate that HPC-FFA co-reactivations may be integrating related events, at the expense of disrupting event-specific details, hence leading to forgetting.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Autistic adults frequently require treatment of mental health problems. Increased rates of suicidality and diminished quality of life among autistic people may be partially attributable to psychiatric symptoms. Some risk factors for mental health problems in autistic people are likely the same as risk factors present in neurotypical individuals, but unique factors that are specific to neurodivergent individuals, and some even more specific to autistic people, may exist. Understanding pathways from autism to mental health problems could inform intervention efforts at the individual and societal levels. RECENT FINDINGS We review a growing body of research identifying risk processes across the affective, cognitive, and social domains. Consistent with the principle of equifinality, different processes appear to independently and jointly lead to heightened risk for the onset of mental health problems. Autistic adults frequently utilize mental healthcare services, and experience heightened risk for chronic impairment as a result of mental health problems. Understanding causal and developmental risk processes in autism should inform personalized treatment. We synthesize extant research on these processes and offer suggestions for addressing them therapeutically and societally.
Collapse
Affiliation(s)
- Susan W White
- Center for Youth Development and Intervention, Department of Psychology, The University of Alabama, Tuscaloosa, AL, USA
| | - Greg J Siegle
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rajesh Kana
- Center for Innovative Research in Autism, Department of Psychology, The University of Alabama, Tuscaloosa, AL, USA
| | - Emily F Rothman
- Department of Occupational Therapy, Boston University, Boston, MA, USA
| |
Collapse
|
9
|
Ojha A, Parr AC, Foran W, Calabro FJ, Luna B. Puberty contributes to adolescent development of fronto-striatal functional connectivity supporting inhibitory control. Dev Cogn Neurosci 2022; 58:101183. [PMID: 36495791 PMCID: PMC9730138 DOI: 10.1016/j.dcn.2022.101183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Adolescence is defined by puberty and represents a period characterized by neural circuitry maturation (e.g., fronto-striatal systems) facilitating cognitive improvements. Though studies have characterized age-related changes, the extent to which puberty influences maturation of fronto-striatal networks is less known. Here, we combine two longitudinal datasets to characterize the role of puberty in the development of fronto-striatal resting-state functional connectivity (rsFC) and its relationship to inhibitory control in 106 10-18-year-olds. Beyond age effects, we found that puberty was related to decreases in rsFC between the caudate and the anterior vmPFC, rostral and ventral ACC, and v/dlPFC, as well as with rsFC increases between the dlPFC and nucleus accumbens (NAcc) across males and females. Stronger caudate rsFC with the dlPFC and vlPFC during early puberty was associated with worse inhibitory control and slower correct responses, respectively, whereas by late puberty, stronger vlPFC rsFC with the dorsal striatum was associated with faster correct responses. Taken together, our findings suggest that certain fronto-striatal connections are associated with pubertal maturation beyond age effects, which, in turn are related to inhibitory control. We discuss implications of puberty-related fronto-striatal maturation to further our understanding of pubertal effects related to adolescent cognitive and affective neurodevelopment.
Collapse
Affiliation(s)
- Amar Ojha
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Correspondence to: Laboratory of Neurocognitive Development, University of Pittsburgh, 121 Meyran Ave, Pittsburgh, PA 15213, USA.
| | - Ashley C. Parr
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Finnegan J. Calabro
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Sarpal DK, Tarcijonas G, Calabro FJ, Foran W, Haas GL, Luna B, Murty VP. Context-specific abnormalities of the central executive network in first-episode psychosis: relationship with cognition. Psychol Med 2022; 52:2299-2308. [PMID: 33222723 PMCID: PMC9805803 DOI: 10.1017/s0033291720004201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cognitive impairments, which contribute to the profound functional deficits observed in psychotic disorders, have found to be associated with abnormalities in trial-level cognitive control. However, neural tasks operate within the context of sustained cognitive states, which can be assessed with 'background connectivity' following the removal of task effects. To date, little is known about the integrity of brain processes supporting the maintenance of a cognitive state in individuals with psychotic disorders. Thus, here we examine background connectivity during executive processing in a cohort of participants with first-episode psychosis (FEP). METHODS The following fMRI study examined background connectivity of the dorsolateral prefrontal cortex (DLPFC), during working memory engagement in a group of 43 patients with FEP, relative to 35 healthy controls (HC). Findings were also examined in relation to measures of executive function. RESULTS The FEP group relative to HC showed significantly lower background DLPFC connectivity with bilateral superior parietal lobule (SPL) and left inferior parietal lobule. Background connectivity between DLPFC and SPL was also positively associated with overall cognition across all subjects and in our FEP group. In comparison, resting-state frontoparietal connectivity did not differ between groups and was not significantly associated with overall cognition, suggesting that psychosis-related alterations in executive networks only emerged during states of goal-oriented behavior. CONCLUSIONS These results provide novel evidence indicating while frontoparietal connectivity at rest appears intact in psychosis, when engaged during a cognitive state, it is impaired possibly undermining cognitive control capacities in FEP.
Collapse
Affiliation(s)
- Deepak K. Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Goda Tarcijonas
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Finnegan J. Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gretchen L. Haas
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vishnu P. Murty
- Department of Psychology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Tanriverdi B, Gregory DF, Olino TM, Ely TD, Harnett NG, van Rooij SJH, Lebois LAM, Seligowski AV, Jovanovic T, Ressler KJ, House SL, Beaudoin FL, An X, Neylan TC, Clifford GD, Linnstaedt SD, Germine LT, Bollen KA, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Kurz MC, McGrath ME, Hudak LA, Pascual JL, Seamon MJ, Datner EM, Pearson C, Domeier RM, Rathlev NK, O'Neil BJ, Sanchez LD, Bruce SE, Miller MW, Pietrzak RH, Joormann J, Barch DM, Pizzagalli DA, Sheridan JF, Smoller JW, Harte SE, Elliott JM, McLean SA, Kessler RC, Koenen KC, Stevens JS, Murty VP. Hippocampal Threat Reactivity Interacts with Physiological Arousal to Predict PTSD Symptoms. J Neurosci 2022; 42:6593-6604. [PMID: 35879096 PMCID: PMC9410748 DOI: 10.1523/jneurosci.0911-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
Hippo campal impairments are reliably associated with post-traumatic stress disorder (PTSD); however, little research has characterized how increased threat sensitivity may interact with arousal responses to alter hippocampal reactivity, and further how these interactions relate to the sequelae of trauma-related symptoms. In a sample of individuals recently exposed to trauma (N = 116, 76 female), we found that PTSD symptoms at 2 weeks were associated with decreased hippocampal responses to threat as assessed with fMRI. Further, the relationship between hippocampal threat sensitivity and PTSD symptomology only emerged in individuals who showed transient, high threat-related arousal, as assayed by an independently collected measure of fear potentiated startle. Collectively, our finding suggests that development of PTSD is associated with threat-related decreases in hippocampal function because of increases in fear-potentiated arousal.SIGNIFICANCE STATEMENT Alterations in hippocampal function linked to threat-related arousal are reliably associated with post-traumatic stress disorder (PTSD); however, how these alterations relate to the sequelae of trauma-related symptoms is unknown. Prior models based on nontrauma samples suggest that arousal may impact hippocampal neurophysiology leading to maladaptive behavior. Here we show that decreased hippocampal threat sensitivity interacts with fear-potentiated startle to predict PTSD symptoms. Specifically, individuals with high fear-potentiated startle and low, transient hippocampal threat sensitivity showed the greatest PTSD symptomology. These findings bridge literatures of threat-related arousal and hippocampal function to better understand PTSD risk.
Collapse
Affiliation(s)
- Büşra Tanriverdi
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania 19121
| | - David F Gregory
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania 19121
| | - Thomas M Olino
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania 19121
| | - Timothy D Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30329
| | - Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts 02478
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30329
| | - Lauren A M Lebois
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts 02478
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
| | - Antonia V Seligowski
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts 02478
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan 48202
| | - Kerry J Ressler
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts 02478
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
| | - Stacey L House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Francesca L Beaudoin
- Department of Emergency Medicine & Department of Health Services, Policy, and Practice, Alpert Medical School of Brown University, Rhode Island Hospital, and Miriam Hospital, Providence, Rhode Island 02930
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27559
| | - Thomas C Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, California 94143
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia 30332
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27559
| | - Laura T Germine
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts 02478
| | - Kenneth A Bollen
- Department of Psychology and Neuroscience & Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27559
| | - Scott L Rauch
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
- Institute for Technology in Psychiatry/Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478
| | - John P Haran
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Alan B Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | | | - Paul I Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, Florida 32209
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, Florida 32209
| | - Christopher W Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, New Jersey 08103
| | - Brittany E Punches
- Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
- College of Nursing, University of Cincinnati, Cincinnati, Ohio 45221
| | - Michael C Kurz
- Department of Emergency Medicine, University of Alabama School of Medicine, Birmingham, Alabama 35294
- Department of Surgery, Division of Acute Care Surgery, University of Alabama School of Medicine, Birmingham, Alabama 35294
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Meghan E McGrath
- Department of Emergency Medicine, Boston Medical Center, Boston, Massachusetts 02118
| | - Lauren A Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia 30329
| | - Jose L Pascual
- Department of Surgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mark J Seamon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Elizabeth M Datner
- Department of Emergency Medicine, Einstein Healthcare Network, Philadelphia, Pennsylvania 19141
- Department of Emergency Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Detroit, Michigan 48202
| | - Robert M Domeier
- Department of Emergency Medicine, Saint Joseph Mercy Hospital, Ypsilanti, Michigan 48197
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, Massachusetts 01107
| | - Brian J O'Neil
- Department of Emergency Medicine, Wayne State University, Detroit, Michigan 48202
| | - Leon D Sanchez
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215
- Department of Emergency Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Steven E Bruce
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, Missouri 63121
| | - Mark W Miller
- National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, Massachusetts 02130
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Robert H Pietrzak
- National Center for PTSD, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, Connecticut 06516
- Department of Psychiatry, Yale School of Medicine, West Haven, Connecticut 06510
| | - Jutta Joormann
- Department of Psychology, Yale University, West Haven, Connecticut 06520
| | - Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Diego A Pizzagalli
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts 02478
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
| | - John F Sheridan
- Department of Biosciences, Ohio State University Wexner Medical Center, Columbus, Ohio 43210
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, Ohio 43211
| | - Jordan W Smoller
- Department of Psychiatry, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02142
| | - Steven E Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - James M Elliott
- Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales 2065, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2006, Australia
- Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60208
| | - Samuel A McLean
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27559
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27559
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts 02115
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30329
| | - Vishnu P Murty
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania 19121
| |
Collapse
|
12
|
Parr AC, Calabro F, Tervo-Clemmens B, Larsen B, Foran W, Luna B. Contributions of dopamine-related basal ganglia neurophysiology to the developmental effects of incentives on inhibitory control. Dev Cogn Neurosci 2022; 54:101100. [PMID: 35344773 PMCID: PMC8961188 DOI: 10.1016/j.dcn.2022.101100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/23/2022] [Accepted: 03/16/2022] [Indexed: 01/19/2023] Open
Abstract
Inhibitory control can be less reliable in adolescence, however, in the presence of rewards, adolescents' performance often improves to adult levels. Dopamine is known to play a role in signaling rewards and supporting cognition, but its role in the enhancing effects of reward on adolescent cognition and inhibitory control remains unknown. Here, we assessed the contribution of basal ganglia dopamine-related neurophysiology using longitudinal MR-based assessments of tissue iron in rewarded inhibitory control, using an antisaccade task. In line with prior work, we show that neutral performance improves with age, and incentives enhance performance in adolescents to that of adults. We find that basal ganglia tissue iron is associated with individual differences in the magnitude of this reward boost, which is strongest in those with high levels of tissue iron, predominantly in adolescence. Our results provide novel evidence that basal ganglia neurophysiology supports developmental effects of rewards on cognition, which can inform neurodevelopmental models of the role of dopamine in reward processing during adolescence.
Collapse
Affiliation(s)
- Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States.
| | - Finnegan Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 14213, United States
| | | | - Bart Larsen
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States.
| |
Collapse
|
13
|
Luciana M, Collins PF. Is Adolescence a Sensitive Period for the Development of Incentive-Reward Motivation? Curr Top Behav Neurosci 2021; 53:79-99. [PMID: 34784026 DOI: 10.1007/7854_2021_275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human adolescence is broadly construed as a time of heightened risk-taking and a vulnerability period for the emergence of psychopathology. These tendencies have been attributed to the age-related development of neural systems that mediate incentive motivation and other aspects of reward processing as well as individual difference factors that interact with ongoing development. Here, we describe the adolescent development of incentive motivation, which we view as an inherently positive developmental progression, and its associated neural mechanisms. We consider challenges in applying the sensitive period concept to these maturational events and discuss future directions that may help to clarify mechanisms of change.
Collapse
Affiliation(s)
- Monica Luciana
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.
| | - Paul F Collins
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
Carmichael K, Sullivan B, Lopez E, Sun L, Cai H. Diverse midbrain dopaminergic neuron subtypes and implications for complex clinical symptoms of Parkinson's disease. AGEING AND NEURODEGENERATIVE DISEASES 2021; 1. [PMID: 34532720 PMCID: PMC8442626 DOI: 10.20517/and.2021.07] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson’s disease (PD), the most common degenerative movement disorder, is clinically manifested with various motor and non-motor symptoms. Degeneration of midbrain substantia nigra pas compacta (SNc) dopaminergic neurons (DANs) is generally attributed to the motor syndrome. The underlying neuronal mechanisms of non-motor syndrome are largely unexplored. Besides SNc, midbrain ventral tegmental area (VTA) DANs also produce and release dopamine and modulate movement, reward, motivation, and memory. Degeneration of VTA DANs also occurs in postmortem brains of PD patients, implying an involvement of VTA DANs in PD-associated non-motor symptoms. However, it remains to be established that there is a distinct segregation of different SNc and VTA DAN subtypes in regulating different motor and non-motor functions, and that different DAN subpopulations are differentially affected by normal ageing or PD. Traditionally, the distinction among different DAN subtypes was mainly based on the location of cell bodies and axon terminals. With the recent advance of single cell RNA sequencing technology, DANs can be readily classified based on unique gene expression profiles. A combination of specific anatomic and molecular markers shows great promise to facilitate the identification of DAN subpopulations corresponding to different behavior modules under normal and disease conditions. In this review, we first summarize the recent progress in characterizing genetically, anatomically, and functionally diverse midbrain DAN subtypes. Then, we provide perspectives on how the preclinical research on the connectivity and functionality of DAN subpopulations improves our current understanding of cell-type and circuit specific mechanisms of the disease, which could be critically informative for designing new mechanistic treatments.
Collapse
Affiliation(s)
- Kathleen Carmichael
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.,The Graduate Partnership Program of NIH and Brown University, National Institutes of Health, Bethesda, MD 20892, USA
| | - Breanna Sullivan
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elena Lopez
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lixin Sun
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Parr AC, Calabro F, Larsen B, Tervo-Clemmens B, Elliot S, Foran W, Olafsson V, Luna B. Dopamine-related striatal neurophysiology is associated with specialization of frontostriatal reward circuitry through adolescence. Prog Neurobiol 2021; 201:101997. [PMID: 33667595 PMCID: PMC8096717 DOI: 10.1016/j.pneurobio.2021.101997] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/09/2023]
Abstract
Characterizing developmental changes in frontostriatal circuitry is critical to understanding adolescent development and can clarify neurobiological mechanisms underlying increased reward sensitivity and risk-taking and the emergence of psychopathology during this period. However, the role of striatal neurobiology in the development of frontostriatal circuitry through human adolescence remains largely unknown. We examined background connectivity during a reward-guided decision-making task ("reward-state"), in addition to resting-state, and assessed the association between age-related changes in frontostriatal connectivity and age-related changes in reward learning and risk-taking through adolescence. Further, we examined the contribution of dopaminergic processes to changes in frontostriatal circuitry and decision-making using MR-based assessments of striatal tissue-iron as a correlate of dopamine-related neurobiology. Connectivity between the nucleus accumbens (NAcc) and ventral anterior cingulate, subgenual cingulate, and orbitofrontal cortices decreased through adolescence into adulthood, and decreases in reward-state connectivity were associated with improvements reward-guided decision-making as well as with decreases in risk-taking. Finally, NAcc tissue-iron mediated age-related changes and was associated with variability in connectivity, and developmental increases in NAcc R2' corresponded with developmental decreases in connectivity. Our results provide evidence that dopamine-related striatal properties contribute to the specialization of frontostriatal circuitry, potentially underlying changes in risk-taking and reward sensitivity into adulthood.
Collapse
Affiliation(s)
- Ashley C. Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Finnegan Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Bart Larsen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Brenden Tervo-Clemmens
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Samuel Elliot
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Valur Olafsson
- NUBIC, Northeastern University, Boston, MA, 02115, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| |
Collapse
|
16
|
Keifer CM, Day TC, Hauschild KM, Lerner MD. Social and Nonsocial Reward Anticipation in Typical Development and Autism Spectrum Disorders: Current Status and Future Directions. Curr Psychiatry Rep 2021; 23:32. [PMID: 33851268 DOI: 10.1007/s11920-021-01247-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW While there has been sustained interest in understanding the role of reward processing in autism spectrum disorder (ASD), researchers are just beginning to focus on the anticipation phase of reward processing in this population. This review aimed to briefly summarize recent advancements in functional imaging studies of anticipatory social and nonsocial reward processing in individuals with and without ASD and provide suggestions for avenues of future research. RECENT FINDINGS Reward salience and activation of the complex network of brain regions supporting reward anticipation vary across development and by important demographic characteristics, such as sex assigned at birth. Current research comparing social and nonsocial reward anticipation may possess confounds related to the mismatch in tangibility and salience of social and nonsocial experimental stimuli. Growing evidence suggests individuals with ASD demonstrate aberrant generalized reward anticipation that is not specific to social reward. Future research should carefully match social and nonsocial reward stimuli and consider employing a longitudinal design to disentangle the complex processes contributing to the development of reward anticipation. It may be useful to conceptualize differences in reward anticipation as a transdiagnostic factor, rather than an ASD-specific deficit.
Collapse
Affiliation(s)
- Cara M Keifer
- Stony Brook University, Stony Brook, NY, USA.
- Yale Child Study Center, New Haven, CT, 06511, USA.
| | | | | | | |
Collapse
|
17
|
Brain and Behavior Correlates of Risk Taking in Pediatric Anxiety Disorders. Biol Psychiatry 2021; 89:707-715. [PMID: 33451676 PMCID: PMC9037066 DOI: 10.1016/j.biopsych.2020.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022]
Abstract
Avoidant behavior is a defining feature of pediatric anxiety disorders. Although prior research has examined it from the perspective of early information processing events, there has been relatively less consideration of the processes by which anxious youth make avoidant decisions and how these choices are reinforced over time. Studies of risk taking are valuable in this regard because they consider how individuals identify the pros and cons of their choices, how they weigh potential gains and losses and estimate their respective probabilities, and how they tolerate the uncertainty intrinsic to any decision. In this review, we place risk taking within existing models of information processing in pediatric anxiety disorders and highlight the particular value of this construct for informing models of developmental psychopathology and individual differences in outcome over time. We review existing behavioral and neurobiological studies of risk taking in anxious youth and conclude by identifying directions for future research.
Collapse
|
18
|
Increased Functional Coupling between VTA and Hippocampus during Rest in First-Episode Psychosis. eNeuro 2021; 8:ENEURO.0375-20.2021. [PMID: 33658310 PMCID: PMC7986546 DOI: 10.1523/eneuro.0375-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
Animal models suggest that interactions between the hippocampus and ventral tegmental area (VTA) underlie the onset and etiology of psychosis. While a large body of research has separately characterized alterations in hippocampal and VTA function in psychosis, alterations across the VTA and hippocampus have not been characterized in first-episode psychosis (FEP). As the phase of psychosis most proximal to conversion, studies specifically focused on FEP are valuable to psychosis research. Here, we characterize alterations in VTA-hippocampal interactions across male and female human participants experiencing their first episode of psychosis using resting state functional magnetic resonance imaging (rsfMRI). In comparison to age and sex matched healthy controls (HCs), FEP individuals had significantly greater VTA-hippocampal functional coupling but significantly less VTA-striatal functional coupling. Further, increased VTA-hippocampal functional coupling in FEP correlated with individual differences in psychosis-related symptoms. Together, these findings demonstrate alterations in mesolimbic-hippocampal circuits in FEP and extend prominent animal models of psychosis.
Collapse
|
19
|
Early childhood stress is associated with blunted development of ventral tegmental area functional connectivity. Dev Cogn Neurosci 2020; 47:100909. [PMID: 33395612 PMCID: PMC7785957 DOI: 10.1016/j.dcn.2020.100909] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/10/2020] [Accepted: 12/22/2020] [Indexed: 01/27/2023] Open
Abstract
Early life stress increases risk for later psychopathology, due in part to changes in dopaminergic brain systems that support reward processing and motivation. Work in animals has shown that early life stress has a profound impact on the ventral tegmental area (VTA), which provides dopamine to regions including nucleus accumbens (NAcc), anterior hippocampus, and medial prefrontal cortex (mPFC), with cascading effects over the course of development. However, little is known about how early stress exposure shifts the developmental trajectory of mesocorticolimbic circuitry in humans. In the current study, 88 four- to nine-year-old children participated in resting-state fMRI. Parents completed questionnaires on their children's chronic stress exposure, including socioeconomic status (SES) and adverse childhood experiences (ACEs). We found an age x SES interaction on VTA connectivity, such that children from higher SES backgrounds showed a positive relationship between age and VTA-mPFC connectivity. Similarly, we found an age x ACEs exposure interaction on VTA connectivity, such that children with no ACEs exposure showed a positive relationship between age and VTA-mPFC connectivity. Our findings suggest that early stress exposure relates to the blunted maturation of VTA connectivity in young children, which may lead to disrupted reward processing later in childhood and beyond.
Collapse
|
20
|
Influences of affective context on amygdala functional connectivity during cognitive control from adolescence through adulthood. Dev Cogn Neurosci 2020; 45:100836. [PMID: 32836077 PMCID: PMC7451790 DOI: 10.1016/j.dcn.2020.100836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/11/2020] [Accepted: 08/04/2020] [Indexed: 11/22/2022] Open
Abstract
Emotion processing is believed to dominate over other brain functions during adolescence, including inhibitory control. However, few studies have examined the neural underpinnings of affective states during cognitive control. Here, we characterized the brain in an affective state by cross-sectionally assessing age-related changes in amygdala background connectivity during an affective inhibitory control task. Participants completed an antisaccade (AS) fMRI task while affective auditory stimuli were presented, and a 5-minute resting state scan. Results showed that while adolescents reported similar arousal levels across emotional conditions, adults perceived negative sounds to be more “arousing” and performed better than adolescents in negative trials. Amygdala background connectivity showed age-related increases with brain regions related to attention and executive control, which were not evident during resting state. Together, results suggest that amygdala connectivity within an affective context is fairly low in mid-adolescence but much stronger in adulthood, supporting age-related improvements in inhibitory control within an affective state. These findings suggest limitations during adolescence in differentiating between the arousing effects of various emotions, potentially undermining the ability to optimally engage inhibitory control. Furthermore, the age-related fMRI findings suggest that low amygdala connectivity to brain areas involved in executive control may underlie these limited abilities during adolescence.
Collapse
|
21
|
Allen TA, Hallquist MN. Disinhibition and Detachment in Adolescence: A Developmental Cognitive Neuroscience Perspective on the Alternative Model for Personality Disorders. Psychopathology 2020; 53:205-212. [PMID: 32777787 PMCID: PMC7530016 DOI: 10.1159/000509984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/06/2020] [Indexed: 11/19/2022]
Abstract
Personality pathology often emerges during adolescence, but attempts to understand its neurocognitive basis have traditionally been undermined by problems associated with the categorical classification of personality disorders. In contrast, dimensional models of personality pathology, such as the Alternative Model for Personality Disorders (AMPD) in DSM-5, may provide a stronger foundation for neurobiological investigations of maladaptive individual differences in personality. As an example, we review studies of the adolescent development of reward processing and cognitive control and connect these systems to the normal personality hierarchy and to two dimensions included in the AMPD - Detachment and Disinhibition. We argue that by linking developmental changes in these systems to the AMPD, researchers will be better positioned to understand the relationship between neurocognitive development and the expression of personality pathology in adolescence and early adulthood.
Collapse
Affiliation(s)
- Timothy A Allen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,
| | - Michael N Hallquist
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
22
|
Gregory DF, Ritchey M, Murty VP. Amygdala and ventral tegmental area differentially interact with hippocampus and cortical medial temporal lobe during rest in humans. Hippocampus 2020; 30:1073-1080. [PMID: 32485015 DOI: 10.1002/hipo.23216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/29/2019] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
Abstract
Neuromodulatory regions that detect salience, such as amygdala and ventral tegmental area (VTA), have distinct effects on memory. Yet, questions remain about how these modulatory regions target subregions across the hippocampus and medial temporal lobe (MTL) cortex. Here, we sought to characterize how VTA and amygdala subregions (i.e., basolateral amygdala and central-medial amygdala) interact with hippocampus head, body, and tail, as well as cortical MTL areas of perirhinal cortex and parahippocampal cortex in a task-free state. To quantify these interactions, we used high-resolution resting state fMRI and characterized pair-wise, partial correlations across regions-of-interest. We found that basolateral amygdala showed greater functional coupling with hippocampus head, hippocampus tail, and perirhinal cortex when compared to either VTA or central-medial amygdala. Furthermore, the VTA showed greater functional coupling with hippocampus tail when compared to central-medial amygdala. There were no significant differences in functional coupling with hippocampus body and parahippocampal cortex. These results support a framework by which neuromodulatory regions do not indiscriminately influence all MTL subregions equally, but rather bias information processing to discrete MTL targets. These findings provide a more specified model of the intrinsic properties of systems underlying MTL neuromodulation. This emphasizes the need to consider heterogeneity both across and within neuromodulatory systems to better understand affective memory.
Collapse
Affiliation(s)
- David F Gregory
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Maureen Ritchey
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Age-related cognitive decline in baboons: modeling the prodromal phase of Alzheimer's disease and related dementias. Aging (Albany NY) 2020; 12:10099-10116. [PMID: 32427127 PMCID: PMC7346018 DOI: 10.18632/aging.103272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
The aging of brain cells and synaptic loss are the major underlying pathophysiological processes contributing to the progressive decline in cognitive functions and Alzheimer’s disease. The difference in cognitive performances observed between adult and aged subjects across species highlights the decline of brain systems with age. The inflection point in age-related cognitive decline is important for our understanding of the pathophysiology of neurodegenerative diseases and for timing therapeutic interventions. Humans and nonhuman primates share many similarities including age-dependent changes in gene expression and decline in neural and immune functions. Given these evolutionary conserved organ systems, complex human-like behavioral and age-dependent changes may be modeled and monitored longitudinally in nonhuman primates. We integrated three clinically relevant outcome measures to investigate the effect of age on cognition, motor function and diurnal activity in aged baboons. We provide evidence of a naturally-occurring age-dependent precipitous decline in movement planning, in learning novel tasks, in simple discrimination and in motivation. These results suggest that baboons aged ~20 years (equivalent to ~60 year old humans) may offer a relevant model for the prodromal phase of Alzheimer’s disease and related dementias to investigate mechanisms involved in the precipitous decline in cognitive functions and to develop early therapeutic interventions
Collapse
|
24
|
Camacho MC, Quiñones-Camacho LE, Perlman SB. Does the child brain rest?: An examination and interpretation of resting cognition in developmental cognitive neuroscience. Neuroimage 2020; 212:116688. [PMID: 32114148 PMCID: PMC7190083 DOI: 10.1016/j.neuroimage.2020.116688] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 02/02/2023] Open
Abstract
In cognitive neuroscience, measurements of "resting baseline" are often considered stable across age and used as a reference point against which to judge cognitive state. The task-based approach-comparing resting baseline to task conditions-implies that resting baseline is an equalizer across participants and-in the case of studies of developmental changes in cognition-across age groups. In contrast, network neuroscience explicitly examines the development of "resting state" networks across age, at odds with the idea of a consistent resting baseline. Little attention has been paid to how cognition during rest may shift across development, particularly in children under the age of eight. Childhood is marked by striking maturation of neural systems, including a protracted developmental period for cognitive control systems. To grow and shape these cognitive systems, children have a developmental imperative to engage their neural circuitry at every possible opportunity. Thus, periods of "rest" without specific instructions may require additional control for children as they fight against developmental expectation to move, speak, or otherwise engage. We therefore theorize that the child brain does not rest in a manner consistent with the adult brain as longer rest periods may represent increased cognitive control. To shape this theory, we first review the extant literature on neurodevelopment across early childhood within the context of cognitive development. Next, we present nascent evidence for a destabilized baseline for comparisons across age. Finally, we present recommendations for designing, analyzing, and interpreting tasks conducted with young children as well as for resting state. Future work must aim to tease apart the cognitive context under which we examine functional brain development in young children and take considerations into account unique to each age.
Collapse
Affiliation(s)
- M Catalina Camacho
- Division of Biology and Biomedical Sciences (Neurosciences), Washington University in St. Louis, St. Louis, MO, USA.
| | | | - Susan B Perlman
- Division of Biology and Biomedical Sciences (Neurosciences), Washington University in St. Louis, St. Louis, MO, USA; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
25
|
Huntley ED, Marusak HA, Berman SE, Zundel CG, Hatfield JRB, Keating DP, Rabinak CA. Adolescent substance use and functional connectivity between the ventral striatum and hippocampus. Behav Brain Res 2020; 390:112678. [PMID: 32413469 DOI: 10.1016/j.bbr.2020.112678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/29/2020] [Accepted: 04/26/2020] [Indexed: 12/28/2022]
Abstract
Neurodevelopmental explanations for adolescent substance use have focused on heightened sensitivity of mesolimbic circuitry, centered on the ventral striatum (VS). Recent evidence suggests that, relative to adults, adolescents show a stronger link between reinforcement learning and episodic memory for rewarding outcomes and greater functional connectivity between the VS and hippocampus, which may reflect a heightened reward modulation of memory. However, a link between VS-hippocampal circuitry and adolescent substance use has yet to be established. Two separate studies were conducted to evaluate whether variation in VS-hippocampal resting-state functional connectivity (rs-FC) predicts subsequent adolescent substance use exposure. A pilot study (Study 1) was conducted in 19 youth recruited from a high sociodemographic risk population (N = 19; mean age = 13.3 SD = 1.4; 14 females; 47% Black Non-Hispanic, 32% White Non-Hispanic). To replicate results of Study 1, Study 2 utilized data from the National Consortium on Adolescent Neurodevelopment and Alcohol (N = 644; mean age = 16.3 SD = 2.5; 339 females; 11% Black Non-Hispanic, 11% Hispanic/Latino, 66% White Non-Hispanic). Resting-state fMRI data were collected at a baseline time point and lifetime and past year self-reported substance use was collected at a follow up visit. Regression models tested whether baseline VS-hippocampal rs-FC predicted substance use exposure at follow up, as measured by an index score reflecting the number of substance classes (e.g., alcohol, marijuana) tried and overall frequency of use. Across both studies, higher VS-hippocampal rs-FC at baseline predicted greater substance use exposure at follow up (pFWE < 0.05). These data provide the first evidence linking increased VS-hippocampal connectivity with greater adolescent substance use exposure. Results fit with the emerging idea that variation in adolescent substance use may relate to not only individual differences in mesolimbic sensitivity to reward, but also to an individuals' memory sensitivity to reward as measured by connectivity between canonical memory and reward regions.
Collapse
Affiliation(s)
- Edward D Huntley
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Hilary A Marusak
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States; Merrill Palmer Skillman Institute for Child and Family Development, Detroit, MI, United States.
| | | | - Clara G Zundel
- Behavioral Neuroscience Program, Boston University School of Medicine, Boston, MA, United States
| | - Joshua R B Hatfield
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Daniel P Keating
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Christine A Rabinak
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States; Merrill Palmer Skillman Institute for Child and Family Development, Detroit, MI, United States; Department of Pharmacy Practice, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI, United States; Department of Pharmaceutical Sciences, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI, United States
| |
Collapse
|