1
|
Hamzaoui K, Sassi F, Salhi M, Hamzaoui A. Low IL-35 expression in CSF is associated with Neuro-Behcet Disease: Comparative analysis between parenchymal and Non-parenchymal NBD. Immunol Lett 2025; 275:107031. [PMID: 40360083 DOI: 10.1016/j.imlet.2025.107031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 04/22/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND IL-35 is a recently discovered immunoregulatory cytokine that inhibits inflammatory cytokines by suppressing their lineage-specific transcription factors. The objective of this study was to investigate the expression of IL-35 in the cerebrospinal fluid (CSF) of patients with Neuro-Behçet Disease (NBD). An immuno-comparative analysis was performed between parenchymal NBD (pNBD) and non-parenchymal NBD (npNBD). METHODS We are investigating CSF IL-35 levels in 45 patients with (NBD), comprising 25 patients with pNBD and 20 with npNBD, compared to 27 patients with multiple sclerosis (MS) and 20 patients with non-inflammatory neurological diseases (NIND). We assessed the inflammatory cytokines (IL-1α, IL-18, IL-33, IL-36), Foxp3 and CD4+ CD25+ Foxp3+ regulatory Treg T cells (Tregs). The following methodologies were employed: flow cytometry, ELISA, and real-time polymerase chain reaction (RT-PCR). For RT-PCR analysis, we calculated relative gene expression in target genes using the comparative CT method with the equation 2-ΔΔCt. We employed a receiver operating characteristic (ROC) curve to investigate the predictive value of IL-35 levels. RESULTS Protein and relative mRNA expression of IL-35 were significantly decreased in NBD and MS patients compared to the NIND group. Significantly lower CSF IL-35 mRNA (p= 0.0001) and protein (p= 0.0004) were observed in patients with pNBD compared to npNBD. The study revealed that NBD patients exhibited low Treg counts, and a significant positive correlation was identified between Treg numbers and CSF IL-35 (r = 0.554, p= 0.0001). Negative associations were observed between Tregs and CRP (r =- 0.518; p= 0.0001) and ESR (r = -0.571; p= 0.0001) in NBD. Levels of the pro-inflammatory mediators were found to be elevated in contrast to a low Foxp3 level in NBD, which was more reduced in pNBD compared to npNBD. In vitro cultured memory T cells from pNBD patients stimulated with LPS showed high levels of IL-1α, IL-18, IL-33, IL-36 and low levels of Foxp3 and IL-35 measured in the culture medium. After the addition of recombinant human IL-35 (rhIL-35), Foxp3 and IL-35 were significantly increased and inflammatory cytokine levels were reduced. These results suggest that rhIL-35 may induce a regulatory effect on Foxp3 and IL-35. CONCLUSION These findings imply a critical reduction of IL-35 in pNBD patients. The combined protein and gene expression of the tested inflammatory cytokines suggest that there are distinct inflammatory mechanisms governing the central nervous system in pNBD. Further work is essential for the development of targeted interventions for the effective treatment of patients.
Collapse
Affiliation(s)
- Kamel Hamzaoui
- El Manar Tunis University, Faculty of Medicine of Tunis, Department of Immunology, Tunis, Tunisia; Research Laboratory 19SP02 "Chronic Pathologies: From Genome to Management", Pavillon B, Abderrahamen Mami Hospital, Ariana, Tunisia.
| | - FayçalHaj Sassi
- El Manar Tunis University, Faculty of Medicine of Tunis, Department of Immunology, Tunis, Tunisia; Research Laboratory 19SP02 "Chronic Pathologies: From Genome to Management", Pavillon B, Abderrahamen Mami Hospital, Ariana, Tunisia.
| | - Mariem Salhi
- El Manar Tunis University, Faculty of Medicine of Tunis, Department of Immunology, Tunis, Tunisia; Research Laboratory 19SP02 "Chronic Pathologies: From Genome to Management", Pavillon B, Abderrahamen Mami Hospital, Ariana, Tunisia.
| | - Agnès Hamzaoui
- El Manar Tunis University, Faculty of Medicine of Tunis, Department of Immunology, Tunis, Tunisia; Research Laboratory 19SP02 "Chronic Pathologies: From Genome to Management", Pavillon B, Abderrahamen Mami Hospital, Ariana, Tunisia.
| |
Collapse
|
2
|
Mohieldin AM, Spencer M, Bernal C, Fadol WB, Gupta A, Thirugnanam K, Delahunty C, Nunez F, Pan AY, Brandow AM, Palecek SP, Rarick KR, Ramchandran R, Zennadi R, Yates J, Nauli SM. Comparative Proteomic Analysis Reveals Altered Ciliary Proteins in Sickle Cell Disease. J Proteome Res 2025. [PMID: 40374167 DOI: 10.1021/acs.jproteome.5c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy characterized by sickle-shaped red blood cells (RBCs). Primary cilia are mechanosensory organelles and are projected in the lumen of blood vessels to detect blood flow. We previously reported that interaction between microvasculature endothelial cells and sickled RBCs resulted in altered blood flow that can elevate reactive oxygen species, leading to increased deciliation in SCD patients. However, the impact of deciliation mediated by sickled RBCs in the context of the ciliary protein profiles remains unclear. Here, we investigated cell-cilia stability under different physiological shear-stress magnitudes and examined cilia protein profiles in SCD, utilizing mouse models and human participants. Our results demonstrate that subjecting endothelial cilia to sickled RBCs at 5.0 dyn/cm2 led to significant deciliation events. The proteomic and bioinformatic analyses showed different ciliary protein profiles, distinct signaling pathways, and unique post-translational modification processes in the SCD mouse model. Consistent with the SCD mouse model results, our translational studies validated the enrichment of specific proteins, including Transferrin Receptor-1 (TfR1), Glyceraldehyde-3-Phosphate-Dehydrogenase (GAPDH), and ADP Ribosylation Factor Like GTPase-13B (ARL13B) in SCD patients. These findings underscore the clinical relevance of cilia in SCD and suggest that ciliary proteins are potential biomarkers for assessing vascular damage.
Collapse
Affiliation(s)
- Ashraf M Mohieldin
- College of Graduate Studies, Master Program of Pharmaceutical Science, California Northstate University, Elk Grove, California 95757, United States
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, California 95757, United States
| | - Madison Spencer
- College of Graduate Studies, Master Program of Pharmaceutical Science, California Northstate University, Elk Grove, California 95757, United States
| | - Carter Bernal
- College of Graduate Studies, Master Program of Pharmaceutical Science, California Northstate University, Elk Grove, California 95757, United States
| | - Wala B Fadol
- Department of Clinical Science, College of Medicine, California Northstate University, Elk Grove, California 95757, United States
| | - Ankan Gupta
- Department of Pediatrics, Developmental Vascular Biology Program, Division of Neonatology, Children's Research Institute (CRI), Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Karthikeyan Thirugnanam
- Department of Pediatrics, Developmental Vascular Biology Program, Division of Neonatology, Children's Research Institute (CRI), Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Claire Delahunty
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Francisco Nunez
- Department of Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California 92618, United States
| | - Amy Y Pan
- Department of Pediatrics, Division of Bioinformatics and Quantitative Child Health, CRI, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Amanda M Brandow
- Department of Pediatrics, Division of Hematology/Oncology/Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kevin R Rarick
- Department of Pediatrics, Division of Critical Care, CRI, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Ramani Ramchandran
- Department of Pediatrics, Developmental Vascular Biology Program, Division of Neonatology, Children's Research Institute (CRI), Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Rahima Zennadi
- Department of Physiology, College of Medicine, The University of Tennessee Health Science, Memphis, Tennessee 38163, United States
| | - John Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Surya M Nauli
- Department of Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California 92618, United States
- Department of Medicine, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
3
|
Cominelli G, Sulas F, Pinto D, Rinaldi F, Favero G, Rezzani R. Neuro-Nutritional Approach to Neuropathic Pain Management: A Critical Review. Nutrients 2025; 17:1502. [PMID: 40362812 PMCID: PMC12073121 DOI: 10.3390/nu17091502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Pain is a significant global public health issue that can interfere with daily activities, sleep, and interpersonal relationships when it becomes chronic or worsens, ultimately impairing quality of life. Despite ongoing efforts, the efficacy of pain treatments in improving outcomes for patients remains limited. At present, the challenge lies in developing a personalized care and management plan that helps to maintain patient activity levels and effectively manages pain. Neuropathic pain is a chronic condition resulting from damage to the somatosensory nervous system, significantly impacting quality of life. It is partly thought to be caused by inflammation and oxidative stress, and clinical research has suggested a link between this condition and diet. However, these links are not yet well understood and require further investigation to evaluate the pathways involved in neuropathic pain. Specifically, the question remains whether supplementation with dietary antioxidants, such as melatonin, could serve as a potential adjunctive treatment for neuropathic pain modulation. Melatonin, primarily secreted by the pineal gland but also produced by other systems such as the digestive system, is known for its anti-inflammatory, antioxidant, and anti-aging properties. It is found in various fruits and vegetables, and its presence alongside other polyphenols in these foods may enhance melatonin intake and contribute to improved health. The aim of this review is to provide an overview of neuropathic pain and examine the potential role of melatonin as an adjunctive treatment in a neuro-nutritional approach to pain management.
Collapse
Affiliation(s)
- Giorgia Cominelli
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.C.); (F.S.); (G.F.)
| | - Francesca Sulas
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.C.); (F.S.); (G.F.)
| | - Daniela Pinto
- Human Microbiome Advanced Project Institute, 20129 Milan, Italy; (D.P.); (F.R.)
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
| | - Fabio Rinaldi
- Human Microbiome Advanced Project Institute, 20129 Milan, Italy; (D.P.); (F.R.)
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.C.); (F.S.); (G.F.)
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.C.); (F.S.); (G.F.)
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale–SISDO), 25123 Brescia, Italy
| |
Collapse
|
4
|
Shen Y, Lin P. The Role of Cytokines in Postherpetic Neuralgia. J Integr Neurosci 2025; 24:25829. [PMID: 40302252 DOI: 10.31083/jin25829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 05/02/2025] Open
Abstract
Nerve injury is a significant cause of postherpetic neuralgia (PHN). It is marked by upregulated expression of cytokines secreted by immune cells such as tumor necrosis factor alpha, interleukin 1 beta (IL-1β), IL-6, IL-18, and IL-10. In neuropathic pain (NP) due to nerve injury, cytokines are important for the induction of neuroinflammation, activation of glial cells, and expression of cation channels. The release of chemokines due to nerve injury promotes immune cell infiltration, recruiting inflammatory cytokines and further amplifying the inflammatory response. The resulting disequilibrium in neuroimmune response and neuroinflammation leads to a reduction of nerve fibers, altered nerve excitability, and neuralgia. PHN is a typical NP and cytokines may induce PHN by promoting central and peripheral sensitization. Currently, treating PHN is challenging and research on the role of cytokine signaling pathways in PHN is lacking. This review summarizes the potential mechanisms of cytokine-mediated PHN and discusses the cytokine signaling pathways associated with the central and peripheral sensitization of PHN. By elucidating the mechanisms of cytokines, the cells and molecules that regulate cytokines, and their signaling systems in PHN, this review reveals important research developments regarding cytokines and their signaling pathways mediating PHN, highlighting new targets of action for the development of analgesic drugs.
Collapse
Affiliation(s)
- Yunyan Shen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang, China
| | - Ping Lin
- Department of Geriatrics, Hangzhou Third People's Hospital, 310009 Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Liu J, Li Z, Ju J, Chu T, Gao F. Sex Differences in the Regulation of Interleukins in Chronic Pain: A Widely Recognized but Difficult-to-Tackle Factor. Int J Mol Sci 2025; 26:3835. [PMID: 40332543 PMCID: PMC12028010 DOI: 10.3390/ijms26083835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Chronic pain is an extremely prevalent healthcare issue that has a profound impact on individuals and society. Sex and sex hormones regulate the pain threshold differently in males and females in pain processing. However, the regulatory mechanisms of sex differences in response to painful stimuli are still unclear, which contributes to the difficulty of analgesic drug development. Interleukins mediate neuroinflammation and are involved in the development of chronic pain. Recent studies have found that sex and sex hormones are involved in the regulation of pain thresholds by interleukins. Most previous studies used male animals to study the analgesic effects of treatments due to the complexity of estrogen. This review summarizes studies that used only female animals or both sexes to examine the impact of sex on interleukin-regulated chronic pain, to provide a theoretical basis for the development of more targeted precision medicines for pain.
Collapse
Affiliation(s)
- Jie Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.); (Z.L.); (J.J.); (T.C.)
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Zheng Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.); (Z.L.); (J.J.); (T.C.)
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Jie Ju
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.); (Z.L.); (J.J.); (T.C.)
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Tiantian Chu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.); (Z.L.); (J.J.); (T.C.)
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.); (Z.L.); (J.J.); (T.C.)
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| |
Collapse
|
6
|
Alboni S, Tascedda F, Uezato A, Sugama S, Chen Z, Marcondes MCG, Conti B. Interleukin 18 and the brain: neuronal functions, neuronal survival and psycho-neuro-immunology during stress. Mol Psychiatry 2025:10.1038/s41380-025-02951-z. [PMID: 40121365 DOI: 10.1038/s41380-025-02951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/27/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Interleukin 18 (IL-18) is a pleiotropic cytokine that regulates peripheral innate and adaptive immune response and is also expressed in the brain. Here, we summarize the current knowledge on the biology of IL-18 in the brain and the efforts to determine its significance concerning neurological and psychiatric conditions. The picture that emerges is that of a heavily regulated molecule that can contribute to neuroinflammatory-mediated neuronal survival but can also serve as a neuromodulator that affects behaviour. We also summarize evidence showing how the brain can control the synthesis of peripheral IL-18 during stress by hormonal and neuronal signalling, regulating tissue-specific promoter usage. We discuss how this may represent one of the mechanisms by which the brain affects immune functions and what its implications are when considering IL-18 as a biomarker of psychiatric conditions.
Collapse
Affiliation(s)
- Silvia Alboni
- University of Modena and Reggio Emilia, Department of Life Sciences via Campi 287, 41125, Modena, Italy
| | - Fabio Tascedda
- University of Modena and Reggio Emilia, Department of Life Sciences via Campi 287, 41125, Modena, Italy
| | - Akihito Uezato
- Center for Basic Medical Research, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Shuei Sugama
- Center for Basic Medical Research, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Zuxin Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, P. R. China
| | | | - Bruno Conti
- San Diego Biomedical Research Institute, 3525 John Hopkins Ct, San Diego, CA, 92121, USA.
| |
Collapse
|
7
|
Chen X, Zeng Y, Wang Z, Zhu J, Liu F, Zhu M, Zheng J, Chen Q, Zhai D, Chen Y, Niu J, Xue Z, Sun G, Li F, Pan Z. NFAT1 Signaling Contributes to Bone Cancer Pain by Regulating IL-18 Expression in Spinal Microglia. CNS Neurosci Ther 2025; 31:e70222. [PMID: 39957627 PMCID: PMC11831200 DOI: 10.1111/cns.70222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/09/2024] [Accepted: 01/03/2025] [Indexed: 02/18/2025] Open
Abstract
AIMS This study aimed to test the hypothesis that nuclear factor of activated T cells 1 (NFAT1) signaling contributes to bone cancer pain by regulating interleukin (IL)-18 expression in spinal microglia. METHODS This study was performed on male mice using a Lewis lung carcinoma-induced bone cancer pain model. Nociceptive behaviors were evaluated by measuring mechanical allodynia, thermal hyperalgesia, and spontaneous pain. Expression levels were measured via real-time quantitative polymerase chain reaction, western blotting, and immunofluorescence analysis. The effect of pharmacologic intervention of spinal NFAT1/IL-18 signaling on bone cancer pain was the primary outcome. RESULTS NFAT1 expression was upregulated in the spinal microglia after tumor inoculation. Pharmacological inhibition of NFAT1 upregulation prevented and reversed bone cancer-related pain behaviors. In spinal microglia, NFAT1 inhibition decreased p38 MAPK phosphorylation and IL-18 production. Blocking NFAT1 signaling suppressed tumor-induced neuronal sensitization and microglial activation as well as activation of the N-methyl-D-aspartate receptor and the subsequent Ca2+-dependent signaling. CONCLUSION Microglia NFAT1-p38 signaling contributes to bone cancer pain through IL-18-mediated central sensitization in spinal microglia. NFAT1 could be a potential target for therapeutic intervention to prevent bone cancer pain.
Collapse
Affiliation(s)
- Xuetai Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Ying Zeng
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Zizhu Wang
- Department of AnesthesiologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Jixiang Zhu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Fengyun Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Mingxuan Zhu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Jiayi Zheng
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Qingdaiyao Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Dongxu Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Yangyang Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Jiayao Niu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Zhouya Xue
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Guan Sun
- Department of NeurosurgeryThe Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of YanchengYanchengJiangsuChina
| | - Feng Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| |
Collapse
|
8
|
Mohammad ZB, Yudin SCY, Goldberg BJ, Serra KL, Klegeris A. Exploring neuroglial signaling: diversity of molecules implicated in microglia-to-astrocyte neuroimmune communication. Rev Neurosci 2025; 36:91-117. [PMID: 39240134 PMCID: PMC11717358 DOI: 10.1515/revneuro-2024-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
Effective communication between different cell types is essential for brain health, and dysregulation of this process leads to neuropathologies. Brain glial cells, including microglia and astrocytes, orchestrate immune defense and neuroimmune responses under pathological conditions during which interglial communication is indispensable. Our appreciation of the complexity of these processes is rapidly increasing due to recent advances in molecular biology techniques, which have identified numerous phenotypic states of both microglia and astrocytes. This review focuses on microglia-to-astrocyte communication facilitated by secreted neuroimmune modulators. The combinations of interleukin (IL)-1α, tumor necrosis factor (TNF), plus complement component C1q as well as IL-1β plus TNF are already well-established microglia-derived stimuli that induce reactive phenotypes in astrocytes. However, given the large number of inflammatory mediators secreted by microglia and the rapidly increasing number of distinct functional states recognized in astrocytes, it can be hypothesized that many more intercellular signaling molecules exist. This review identifies the following group of cytokines and gliotransmitters that, while not established as interglial mediators yet, are known to be released by microglia and elicit functional responses in astrocytes: IL-10, IL-12, IL-18, transforming growth factor (TGF)-β, interferon (IFN)-γ, C-C motif chemokine ligand (CCL)5, adenosine triphosphate (ATP), l-glutamate, and prostaglandin E2 (PGE2). The review of molecular mechanisms engaged by these mediators reveals complex, partially overlapping signaling pathways implicated in numerous neuropathologies. Additionally, lack of human-specific studies is identified as a significant knowledge gap. Further research on microglia-to-astrocyte communication is warranted, as it could discover novel interglial signaling-targeted therapies for diverse neurological disorders.
Collapse
Affiliation(s)
- Zainab B. Mohammad
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Samantha C. Y. Yudin
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Benjamin J. Goldberg
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Kursti L. Serra
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
9
|
Begum E, Mahmod MR, Rahman MM, Fukuma F, Urano T, Fujita Y. IL-18 Blockage Reduces Neuroinflammation and Promotes Functional Recovery in a Mouse Model of Spinal Cord Injury. Biomolecules 2024; 15:16. [PMID: 39858411 PMCID: PMC11761924 DOI: 10.3390/biom15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
The prognosis of spinal cord injury (SCI) is closely linked to secondary injury processes, predominantly driven by neuroinflammation. Interleukin-18 (IL-18) plays a pivotal role in this inflammatory response. In previous work, we developed an anti-IL-18 antibody capable of neutralizing the active form of IL-18. This study evaluated the functional effects of this antibody in a mouse model of SCI. IL-18 expression was significantly upregulated in the spinal cord following injury. In a mouse model of SCI (C57BL/6J strain), mice were administered 150 μg of the anti-IL-18 antibody intraperitoneally. IL-18 inhibition via antibody treatment facilitated motor functional recovery post-injury. This intervention reduced neuronal death, reactive gliosis, microglia/macrophage activation, and neutrophil infiltration. Additionally, IL-18 inhibition lowered the expression of pro-inflammatory factors, such as IL-1β and the M1 microglia/macrophage marker Ccl17, while enhancing the expression of the M2 microglia/macrophage marker Arginase 1. Collectively, our findings demonstrate that IL-18 inhibition promotes motor recovery and facilitates the polarization of M1 microglia/macrophages to the M2 phenotype, thereby fostering a neuroprotective immune microenvironment in mice with SCI.
Collapse
Affiliation(s)
- Easmin Begum
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
| | - Md Rashel Mahmod
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
| | - Md Mahbobur Rahman
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
| | - Fumiko Fukuma
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
| | - Takeshi Urano
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
- mAbProtein Co., Ltd., 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
| | - Yuki Fujita
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
| |
Collapse
|
10
|
Scheuren PS, Calvo M. Exploring neuroinflammation: A key driver in neuropathic pain disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:311-338. [PMID: 39580216 DOI: 10.1016/bs.irn.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Inflammation is a fundamental part of the body's natural defense mechanism, involving immune cells and inflammatory mediators to promote healing and protect against harm. In the event of a lesion or disease of the somatosensory nervous system, inflammation, however, triggers a cascade of changes in both the peripheral and central nervous systems, ultimately contributing to chronic neuropathic pain. Substantial evidence links neuroinflammation to various conditions associated with neuropathic pain. This chapter will explore the role of neuroinflammation in the initiation, maintenance, and resolution of peripheral and central neuropathic pain. Additionally, biomarkers of neuroinflammation in humans will be examined, emphasizing their relevance in different neuropathic pain disorders.
Collapse
Affiliation(s)
- Paulina S Scheuren
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Margarita Calvo
- Physiology Department, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| |
Collapse
|
11
|
Li D, Yang K, Li J, Xu X, Gong L, Yue S, Wei H, Yue Z, Wu Y, Yin S. Single-cell sequencing reveals glial cell involvement in development of neuropathic pain via myelin sheath lesion formation in the spinal cord. J Neuroinflammation 2024; 21:213. [PMID: 39217340 PMCID: PMC11365210 DOI: 10.1186/s12974-024-03207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Neuropathic pain (NP), which results from injury or lesion of the somatosensory nervous system, is intimately associated with glial cells. The roles of microglia and astrocytes in NP have been broadly described, while studies on oligodendrocytes have largely focused on axonal myelination. The mechanisms of oligodendrocytes and their interactions with other glial cells in NP development remain uncertain. METHODS To explore the function of the interaction of the three glial cells and their interactions on myelin development in NP, we evaluated changes in NP and myelin morphology after a chronic constriction injury (CCI) model in mice, and used single-cell sequencing to reveal the subpopulations characteristics of oligodendrocytes, microglia, and astrocytes in the spinal cord tissues, as well as their relationship with myelin lesions; the proliferation and differentiation trajectories of oligodendrocyte subpopulations were also revealed using pseudotime cell trajectory and RNA velocity analysis. In addition, we identified chemokine ligand-receptor pairs between glial cells by cellular communication and verified them using immunofluorescence. RESULTS Our study showed that NP peaked on day 7 after CCI in mice, a time at which myelin lesions were present in both the spinal cord and sciatic nerve. Oligodendrocytes, microglia, and astrocytes subpopulations in spinal cord tissue were heterogeneous after CCI and all were involved in suppressing the process of immune defense and myelin production. In addition, the differentiation trajectory of oligodendrocytes involved a unidirectional lattice process of OPC-1-Oligo-9, which was arrested at the Oligo-2 stage under the influence of microglia and astrocytes. And the CADM1-CADM1, NRP1-VEGFA interactions between glial cells are enhanced after CCI and they had a key role in myelin lesions and demyelination. CONCLUSIONS Our study reveals the close relationship between the differentiation block of oligodendrocytes after CCI and their interaction with microglia and astrocytes-mediated myelin lesions and NP. CADM1/CADM1 and NRP-1/VEGFA may serve as potential therapeutic targets for use in the treatment of NP.
Collapse
Affiliation(s)
- Danyang Li
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Kaihong Yang
- School of Nursing and Rehabilitation, Shandong University, Jinan, 250012, China
| | - Jinlu Li
- School of Nursing and Rehabilitation, Shandong University, Jinan, 250012, China
| | - Xiaoqian Xu
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lanlan Gong
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Hui Wei
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Zhenyu Yue
- UDI department, 325 Paramount Drive, Johnson&Johnson, Raynham, MA, 02375, USA
| | - Yikun Wu
- UDI department, 325 Paramount Drive, Johnson&Johnson, Raynham, MA, 02375, USA
| | - Sen Yin
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
12
|
Manengu C, Zhu CH, Zhang GD, Tian MM, Lan XB, Tao LJ, Ma L, Liu Y, Yu JQ, Liu N. HDAC inhibitors as a potential therapy for chemotherapy-induced neuropathic pain. Inflammopharmacology 2024; 32:2153-2175. [PMID: 38761314 DOI: 10.1007/s10787-024-01488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/22/2024] [Indexed: 05/20/2024]
Abstract
Cancer, a chronic disease characterized by uncontrolled cell development, kills millions of people globally. The WHO reported over 10 million cancer deaths in 2020. Anticancer medications destroy healthy and malignant cells. Cancer treatment induces neuropathy. Anticancer drugs cause harm to spinal cord, brain, and peripheral nerve somatosensory neurons, causing chemotherapy-induced neuropathic pain. The chemotherapy-induced mechanisms underlying neuropathic pain are not fully understood. However, neuroinflammation has been identified as one of the various pathways associated with the onset of chemotherapy-induced neuropathic pain. The neuroinflammatory processes may exhibit varying characteristics based on the specific type of anticancer treatment delivered. Neuroinflammatory characteristics have been observed in the spinal cord, where microglia and astrocytes have a significant impact on the development of chemotherapy-induced peripheral neuropathy. The patient's quality of life might be affected by sensory deprivation, loss of consciousness, paralysis, and severe disability. High cancer rates and ineffective treatments are associated with this disease. Recently, histone deacetylases have become a novel treatment target for chemotherapy-induced neuropathic pain. Chemotherapy-induced neuropathic pain may be treated with histone deacetylase inhibitors. Histone deacetylase inhibitors may be a promising therapeutic treatment for chemotherapy-induced neuropathic pain. Common chemotherapeutic drugs, mechanisms, therapeutic treatments for neuropathic pain, and histone deacetylase and its inhibitors in chemotherapy-induced neuropathic pain are covered in this paper. We propose that histone deacetylase inhibitors may treat several aspects of chemotherapy-induced neuropathic pain, and identifying these inhibitors as potentially unique treatments is crucial to the development of various chemotherapeutic combination treatments.
Collapse
Affiliation(s)
- Chalton Manengu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- School of International Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Chun-Hao Zhu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Guo-Dong Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Miao-Miao Tian
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Bing Lan
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Li-Jun Tao
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Lin Ma
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Jian-Qiang Yu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| | - Ning Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
13
|
Wang Q, Xie Y, Ma S, Luo H, Qiu Y. Role of microglia in diabetic neuropathic pain. Front Cell Dev Biol 2024; 12:1421191. [PMID: 39135776 PMCID: PMC11317412 DOI: 10.3389/fcell.2024.1421191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Approximately one-third of the patients with diabetes worldwide suffer from neuropathic pain, mainly categorized by spontaneous and stimulus-induced pain. Microglia are a class of immune effector cells residing in the central nervous system and play a pivotal role in diabetic neuropathic pain (DNP). Microglia specifically respond to hyperglycemia along with inflammatory cytokines and adenosine triphosphate produced during hyperglycemic damage to nerve fibers. Because of the presence of multiple receptors on the microglial surface, microglia are dynamically and highly responsive to their immediate environment. Following peripheral sensitization caused by hyperglycemia, microglia are affected by the cascade of inflammatory factors and other substances and respond accordingly, resulting in a change in their functional state for DNP pathogenesis. Inhibition of receptors such as P2X reporters, reducing cytokine expression levels in the microglial reactivity mechanisms, and inhibiting their intracellular signaling pathways can effectively alleviate DNP. A variety of drugs attenuate DNP by inhibiting the aforementioned processes induced by microglial reactivity. In this review, we summarize the pathological mechanisms by which microglia promote and maintain DNP, the drugs and therapeutic techniques available, and the latest advances in this field.
Collapse
Affiliation(s)
- Qian Wang
- Department of Endocrinology and Metabolism, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yilin Xie
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shichao Ma
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yue Qiu
- Department of Endocrinology and Metabolism, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
| |
Collapse
|
14
|
Liu W, Hu H, Li C, Li Y, Mao P, Fan B. Genetics of causal relationships between circulating inflammatory proteins and postherpetic neuralgia: a bidirectional Mendelian randomization study. Front Neurol 2024; 15:1405694. [PMID: 38974683 PMCID: PMC11225550 DOI: 10.3389/fneur.2024.1405694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Objective According to data from several observational studies, there is a strong association between circulating inflammatory cytokines and postherpetic neuralgia (PHN), but it is not clear whether this association is causal or confounding; therefore, the main aim of the present study was to analyze whether circulating inflammatory proteins have a bidirectional relationship with PHN at the genetic inheritance level using a Mendelian randomization (MR) study. Methods The Genome-Wide Association Study (GWAS) database was used for our analysis. We gathered data on inflammation-related genetic variation from three GWASs of human cytokines. These proteins included 91 circulating inflammatory proteins, tumor necrosis factor-alpha (TNF-α), macrophage inflammatory protein 1b (MIP-1b), and CXC chemokine 13 (CXCL13). The PHN dataset was obtained from the FinnGen biobank analysis round 5, and consisted of 1,413 cases and 275,212 controls. We conducted a two-sample bidirectional MR study using the TwoSampleMR and MRPRESSO R packages (version R.4.3.1). Our main analytical method was inverse variance weighting (IVW), and we performed sensitivity analyses to assess heterogeneity and pleiotropy, as well as the potential influence of individual SNPs, to validate our findings. Results According to our forward analysis, five circulating inflammatory proteins were causally associated with the development of PHN: interleukin (IL)-18 was positively associated with PHN, and IL-13, fibroblast growth factor 19 (FGF-19), MIP-1b, and stem cell growth factor (SCF) showed reverse causality with PHN. Conversely, we found that PHN was closely associated with 12 inflammatory cytokines, but no significant correlation was found among the other inflammatory factors. Among them, only IL-18 had a bidirectional causal relationship with PHN. Conclusion Our research advances the current understanding of the role of certain inflammatory biomarker pathways in the development of PHN. Additional verification is required to evaluate the viability of these proteins as targeted inflammatory factors for PHN-based treatments.
Collapse
Affiliation(s)
- WenHui Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - HuiMin Hu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Chen Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - YiFan Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Mao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - BiFa Fan
- Department of Pain Management, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
15
|
Hellenbrand DJ, Quinn CM, Piper ZJ, Elder RT, Mishra RR, Marti TL, Omuro PM, Roddick RM, Lee JS, Murphy WL, Hanna AS. The secondary injury cascade after spinal cord injury: an analysis of local cytokine/chemokine regulation. Neural Regen Res 2024; 19:1308-1317. [PMID: 37905880 PMCID: PMC11467934 DOI: 10.4103/1673-5374.385849] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/24/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
After spinal cord injury, there is an extensive infiltration of immune cells, which exacerbates the injury and leads to further neural degeneration. Therefore, a major aim of current research involves targeting the immune response as a treatment for spinal cord injury. Although much research has been performed analyzing the complex inflammatory process following spinal cord injury, there remain major discrepancies within previous literature regarding the timeline of local cytokine regulation. The objectives of this study were to establish an overview of the timeline of cytokine regulation for 2 weeks after spinal cord injury, identify sexual dimorphisms in terms of cytokine levels, and determine local cytokines that significantly change based on the severity of spinal cord injury. Rats were inflicted with either a mild contusion, moderate contusion, severe contusion, or complete transection, 7 mm of spinal cord centered on the injury was harvested at varying times post-injury, and tissue homogenates were analyzed with a Cytokine/Chemokine 27-Plex assay. Results demonstrated pro-inflammatory cytokines including tumor necrosis factor α, interleukin-1β, and interleukin-6 were all upregulated after spinal cord injury, but returned to uninjured levels within approximately 24 hours post-injury, while chemokines including monocyte chemoattractant protein-1 remained upregulated for days post-injury. In contrast, several anti-inflammatory cytokines and growth factors including interleukin-10 and vascular endothelial growth factor were downregulated by 7 days post-injury. After spinal cord injury, tissue inhibitor of metalloproteinase-1, which specifically affects astrocytes involved in glial scar development, increased more than all other cytokines tested, reaching 26.9-fold higher than uninjured rats. After a mild injury, 11 cytokines demonstrated sexual dimorphisms; however, after a severe contusion only leptin levels were different between female and male rats. In conclusion, pro-inflammatory cytokines initiate the inflammatory process and return to baseline within hours post-injury, chemokines continue to recruit immune cells for days post-injury, while anti-inflammatory cytokines are downregulated by a week post-injury, and sexual dimorphisms observed after mild injury subsided with more severe injuries. Results from this work define critical chemokines that influence immune cell infiltration and important cytokines involved in glial scar development after spinal cord injury, which are essential for researchers developing treatments targeting secondary damage after spinal cord injury.
Collapse
Affiliation(s)
- Daniel J. Hellenbrand
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Charles M. Quinn
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Zachariah J. Piper
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Ryan T. Elder
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Raveena R. Mishra
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Taylor L. Marti
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Phoebe M. Omuro
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Rylie M. Roddick
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Jae Sung Lee
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Forward BIO Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Amgad S. Hanna
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
16
|
Liu MC, Guo QF, Zhang WW, Luo HL, Zhang WJ, Hu HJ. Olfactory ensheathing cells as candidate cells for chronic pain treatment. J Chem Neuroanat 2024; 137:102413. [PMID: 38492895 DOI: 10.1016/j.jchemneu.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Chronic pain is often accompanied by tissue damage and pain hypersensitivity. It easily relapses and is challenging to cure, which seriously affects the patients' quality of life and is an urgent problem to be solved. Current treatment methods primarily rely on morphine drugs, which do not address the underlying nerve injury and may cause adverse reactions. Therefore, in recent years, scientists have shifted their focus from chronic pain treatment to cell transplantation. This review describes the classification and mechanism of chronic pain through the introduction of the characteristics of olfactory ensheathing cells (OECs), an in-depth discussion of special glial cells through the phagocytosis of nerve debris, receptor-ligand interactions, providing nutrition, and other inhibition of neuroinflammation, and ultimately supporting axon regeneration and mitigation of chronic pain. This review summarizes the potential and limitations of OECs for treating chronic pain by objectively analyzing relevant clinical trials and methods to enhance efficacy and future development prospects.
Collapse
Affiliation(s)
- Mei-Chen Liu
- The Second Clinical Medical College, Nanchang University, China
| | - Qing-Fa Guo
- The Second Clinical Medical College, Nanchang University, China
| | - Wei-Wei Zhang
- The Second Clinical Medical College, Nanchang University, China
| | - Hong-Liang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Hai-Jun Hu
- Anesthesiology Department, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
17
|
Weng HR. Emerging Molecular and Synaptic Targets for the Management of Chronic Pain Caused by Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:3602. [PMID: 38612414 PMCID: PMC11011483 DOI: 10.3390/ijms25073602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Patients with systemic lupus erythematosus (SLE) frequently experience chronic pain due to the limited effectiveness and safety profiles of current analgesics. Understanding the molecular and synaptic mechanisms underlying abnormal neuronal activation along the pain signaling pathway is essential for developing new analgesics to address SLE-induced chronic pain. Recent studies, including those conducted by our team and others using the SLE animal model (MRL/lpr lupus-prone mice), have unveiled heightened excitability in nociceptive primary sensory neurons within the dorsal root ganglia and increased glutamatergic synaptic activity in spinal dorsal horn neurons, contributing to the development of chronic pain in mice with SLE. Nociceptive primary sensory neurons in lupus animals exhibit elevated resting membrane potentials, and reduced thresholds and rheobases of action potentials. These changes coincide with the elevated production of TNFα and IL-1β, as well as increased ERK activity in the dorsal root ganglion, coupled with decreased AMPK activity in the same region. Dysregulated AMPK activity is linked to heightened excitability in nociceptive sensory neurons in lupus animals. Additionally, the increased glutamatergic synaptic activity in the spinal dorsal horn in lupus mice with chronic pain is characterized by enhanced presynaptic glutamate release and postsynaptic AMPA receptor activation, alongside the reduced activity of glial glutamate transporters. These alterations are caused by the elevated activities of IL-1β, IL-18, CSF-1, and thrombin, and reduced AMPK activities in the dorsal horn. Furthermore, the pharmacological activation of spinal GPR109A receptors in microglia in lupus mice suppresses chronic pain by inhibiting p38 MAPK activity and the production of both IL-1β and IL-18, as well as reducing glutamatergic synaptic activity in the spinal dorsal horn. These findings collectively unveil crucial signaling molecular and synaptic targets for modulating abnormal neuronal activation in both the periphery and spinal dorsal horn, offering insights into the development of analgesics for managing SLE-induced chronic pain.
Collapse
Affiliation(s)
- Han-Rong Weng
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| |
Collapse
|
18
|
Lu YY, Tsai HP, Tsai TH, Miao HC, Zhang ZH, Wu CH. RTA-408 Regulates p-NF-κB/TSLP/STAT5 Signaling to Ameliorate Nociceptive Hypersensitivity in Chronic Constriction Injury Rats. Mol Neurobiol 2024; 61:1714-1725. [PMID: 37773082 DOI: 10.1007/s12035-023-03660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Neuropathic pain following nerve injury is a complex condition, which often puts a negative impact on life and remains a sustained problem. To make pain management better is of great significance and unmet need. RTA 408 (Omaveloxone) is a traditional Asian medicine with a valid anti-inflammatory property. Thus, we aim to investigate the therapeutic effect of RTA-408 on mechanical allodynia in chronic constriction injury (CCI) rats as well as the underlying mechanisms. Neuropathic pain was induced by using CCI of the rats' sciatic nerve (SN) and the behavior testing was measured by calibrated forceps testing. Activation of Nrf-2, the phosphorylation of nuclear factor-κB (NF-κB), and the inflammatory response were assessed by western blots. The number of apoptotic neurons and degree of glial cell reaction were examined by immunofluorescence assay. RTA-408 exerts an analgesic effect on CCI rats. RTA-408 reduces neuronal apoptosis and glial cell activation by increasing Nrf-2 expression and decreasing the inflammatory response (TNF-α/ p-NF-κB/ TSLP/ STAT5). These data suggest that RTA-408 is a candidate with potential to reduce nociceptive hypersensitivity after CCI by targeting TSLP/STAT5 signaling.
Collapse
Affiliation(s)
- Ying-Yi Lu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Department of Post-Baccalaureate Medicine, School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, 821, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hsiao-Chien Miao
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Zi-Hao Zhang
- Department of Neurosurgery, Xinle City Hospital, Xinle, Hebei, 050700, People's Republic of China
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
19
|
Weiss MN, Mocci E, Zhu S, Davenport MJ, English E, Renn CL, Dorsey SG. Nociceptive and Transcriptomic Responses in a Swine Diabetic Wound Model Treated With a Topical Angiotensin 1 Receptor Antagonist. Nurs Res 2024; 73:118-125. [PMID: 37916845 PMCID: PMC10922245 DOI: 10.1097/nnr.0000000000000704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
BACKGROUND Painful, treatment-resistant wounds are prevalent among diabetic patients and significantly affect health-related quality of life (HRQOL). Topical treatments may help alleviate pain without risk of dependence or side effects. However, there is a lack of topical wound compounds targeting pain-specific receptors. One possible target is proinflammatory angiotensin 1 receptor (AT1R), which is upregulated in diabetic skin and has been implicated in nociception. OBJECTIVES We investigated the effects of topical valsartan, an AT1R antagonist, on pain (nociceptive thresholds) and gene expression changes (transcriptomics) in a swine model of diabetic wounds. METHODS Eight wounds were surgically induced in diabetic, hyperglycemic Yucatan miniature swine ( n = 4). Topical AT1R antagonist was applied to wounds on one side and vehicle on the other side. Nocifensive testing was conducted at baseline and then weekly, beginning 7 days after wound induction. Mechanical and thermal stimuli were applied to the wound margins until a nocifensive reaction was elicited or a predetermined cutoff was reached. After 7 weeks of testing, tissue from the dorsal horn, dorsal root ganglion, and wounds were sequenced and analyzed with DESeq2. Unbiased pathway analyses using Metascape were conducted on differentially expressed genes. RESULTS There was no significant difference in mechanical tolerance threshold between AT1R antagonist-treated and vehicle-treated wounds ( p = .106). Thermal tolerance was significantly higher in AT1R antagonist-treated wounds compared to vehicle-treated ( p = .015). Analysis of differentially expressed genes revealed enriched pathways of interest: interleukin-18 signaling in dorsal horn laminae IV-V and sensory perception of mechanical stimulus in wound tissue. DISCUSSION In this study, wounds modeling diabetic ulcers were created in hyperglycemic swine and treated with a topical AT1R antagonist. AT1R-antagonist-treated wounds had a higher tolerance threshold than vehicle-treated wounds for thermal hyperalgesia, but not mechanical allodynia. Pathway analyses of differentially expressed genes revealed several pathways of interest for future pain research. Although further studies are needed to confirm the findings, this study can improve nursing care by providing information about a potential future treatment that may be used to decrease pain and improve HRQOL in patients with diabetic wounds.
Collapse
|
20
|
Ju J, Li Z, Jia X, Peng X, Wang J, Gao F. Interleukin-18 in chronic pain: Focus on pathogenic mechanisms and potential therapeutic targets. Pharmacol Res 2024; 201:107089. [PMID: 38295914 DOI: 10.1016/j.phrs.2024.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Chronic pain has been proven to be an independent disease, other than an accompanying symptom of certain diseases. Interleukin-18 (IL-18), a pro-inflammatory cytokine with pleiotropic biological effects, participates in immune modulation, inflammatory response, tumor growth, as well as the process of chronic pain. Compelling evidence suggests that IL-18 is upregulated in the occurrence of chronic pain. Antagonism or inhibition of IL-18 expression can alleviate the occurrence and development of chronic pain. And IL-18 is located in microglia, while IL-18R is mostly located in astrocytes in the spinal cord. This indicates that the interaction between microglia and astrocytes mediated by the IL-18/IL-18R axis is involved in the occurrence of chronic pain. In this review, we described the role and mechanism of IL-18 in different types of chronic pain. This review provides strong evidence that IL-18 is a potential therapeutic target in pain management.
Collapse
Affiliation(s)
- Jie Ju
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Jia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Peng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
21
|
Ostertag C, Friedman TN, Keough MB, Kerr BJ, Sankar T. Heightened presence of inflammatory mediators in the cerebrospinal fluid of patients with trigeminal neuralgia. Pain Rep 2023; 8:e1117. [PMID: 38125050 PMCID: PMC10732488 DOI: 10.1097/pr9.0000000000001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/06/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Trigeminal neuralgia (TN) is a chronic, debilitating facial pain disease causing stabbing pain attacks in the sensory distribution of the trigeminal nerve. The underlying pathophysiology of TN is incompletely understood, although microstructural abnormalities consistent with focal demyelination of the trigeminal nerve root have been shown in patients with TN. Studies of the cerebrospinal fluid (CSF) in patients with TN suggest an increased prevalence of inflammatory mediators, potentially implicating neuroinflammation in the pathophysiology of TN, as it has been implicated in other chronic pain conditions. Objectives This study aimed to further assess the inflammatory profile of CSF in TN. Methods Cerebrospinal fluid was collected from 8 medically refractory patients with TN undergoing microvascular decompression surgery and 4 pain-free controls (2 with hemifacial spasm; 2 with normal pressure hydrocephalus). Cerebrospinal fluid was collected from the cerebellopontine angle cistern intraoperatively in the patients with TN. Inflammatory profiles of CSF samples were analyzed using a 71-plex cytokine and chemokine multiplex assay. Results Ten inflammatory markers were found to be significantly higher in TN CSF, and no analytes were significantly lower. Elevated factors can be classified into pro-inflammatory cytokines (IL-9, IL-18, and IL-33), chemokines (RANTES and ENA-78), the tumor necrosis factor superfamily (TRAIL and sCD40L), and growth factors (EGF, PDGF-AB/BB, and FGF-2). Conclusion This study further supports the notion that neuroinflammation is present in TN, and that multiple molecular pathways are implicated.
Collapse
Affiliation(s)
- Curtis Ostertag
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Timothy N. Friedman
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Michael B. Keough
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Bradley J. Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tejas Sankar
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Zhang T, Liang W, Ou W, Zhang M, Cui S, Zhang S. Daphnetin alleviates neuropathic pain in chronic constrictive injury rats via regulating the NF-κB dependent CXCL1/CXCR2 signaling pathway. PHARMACEUTICAL BIOLOGY 2023; 61:746-754. [PMID: 37177984 PMCID: PMC10184651 DOI: 10.1080/13880209.2023.2198560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
CONTEXT Daphnetin is a natural product with anti-inflammatory, antioxidant, and neuroprotective properties. Reports have found that it has a strong analgesic effect; however, its analgesic mechanism is unknown. OBJECTIVE We explored the effect and mechanism of daphnetin on neuropathic pain (NP). MATERIALS AND METHODS The rat model of NP was established by ligation of the sciatic nerve. Male Sprague-Dawley rats were divided into six groups: Control, Model, Sham, morphine (0.375 mg/kg), and daphnetin (0.0625 and 0.025 mg/kg). Rats were intrathecally injected with drugs or normal saline once daily for three days. Hyperalgesia was evaluated by mechanical withdrawal threshold (MWT) and thermal withdrawal threshold (TWT). Protein levels were detected using ELISA, immunofluorescence, and western blotting. RESULTS Compared to the Model group, daphnetin improved TWT (46.70 °C vs. 42.20 °C) and MWT (45.60 g vs. 23.60 g), reduced the expression of interleukin-1β (0.99 ng/g vs. 1.42 ng/g), interleukin-6 (0.90 ng/g vs. 1.52 ng/g), and tumor necrosis factor-α (0.93 ng/g vs. 1.52 ng/g) in the sciatic nerve. Daphnetin decreased the expression of toll-like receptor 4 (TLR4) (0.47-fold), phosphorylated inhibitor of NF-κB (p-IKBα) (0.29-fold), nuclear factor kappaB (NF-κB) (0.48-fold), glial fibrillary acidic protein (GFAP) (0.42-fold), CXC chemokine ligand type 1 (CXCL1) (0.84-fold), CXC chemokine receptor type 2 (CXCR2) (0.78-fold) in the spinal cord. DISCUSSION AND CONCLUSIONS Daphnetin alleviates NP by inhibiting inflammation and astrocyte activation in the spinal cord, providing theoretical support for the extensive clinical treatment of NP.
Collapse
Affiliation(s)
- Tianrui Zhang
- Department of Pharmacology of Traditional Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wulin Liang
- Department of Pharmacology of Traditional Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Ou
- Department of Pharmacology of Traditional Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingqian Zhang
- Department of Pharmacology of Traditional Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuang Cui
- Department of Pharmacology of Traditional Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuofeng Zhang
- Department of Pharmacology of Traditional Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Daigo E, Daigo Y, Idogaki J, Fukuoka H, Fukuoka N, Ishikawa M, Takahashi K. Photobiomodulation Activates Microglia/Astrocytes and Relieves Neuropathic Pain in Inferior Alveolar Nerve Injury. Photobiomodul Photomed Laser Surg 2023; 41:694-702. [PMID: 38085185 DOI: 10.1089/photob.2023.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Objective: This study aimed to determine microglial/astrocyte changes and their associated analgesic effect in inferior alveolar nerve injury (IANI) model rats treated with photobiomodulation therapy (PBMT) using a 940-nm diode laser. Background: Very few basic studies have investigated microglial/astrocyte dynamics following PBMT aimed at relieving neuropathic pain caused by IANI. Methods: Rats were divided into an IANI-PBM group, IANI+PBM group, and sham+PBM group. Observations were made on the day before IANI or the sham operation and on postoperative days 3, 5, 7, 14, and 28. PBMT was delivered for 7 consecutive days, with an energy density of 8 J/cm2. Behavioral analysis was performed to determine pain thresholds, and immunohistological staining was performed for the microglia marker Iba1 and astrocyte marker glial fibrillary acidic protein, which are observed in the spinal trigeminal nucleus. Results: Behavioral analysis showed that the pain threshold returned to the preoperative level on postoperative day 14 in the IANI+PBM group, but decreased starting from postoperative day 1 and did not improve thereafter in the IANI-PBM group (p ≤ 0.001). Immunological analysis showed that microglial and astrocyte cell counts were similar in the IANI+PBM group and IANI-PBM group shortly after IANI (day 3), but the expression area was larger (p ≤ 0.001) and hypertrophy of microglia and astrocyte cell bodies and end-feet extension (i.e., indicators of activation) were more prominent in the IANI+PBM group. Conclusions: PBMT after IANI prevented hyperalgesia and allodynia by promoting glial cell activation shortly after injury.
Collapse
Affiliation(s)
| | - Yuki Daigo
- Department of Geriatric Dentistry, Osaka Dental University, Osaka City, Japan
| | - Jun Idogaki
- Department of Geriatric Dentistry, Osaka Dental University, Osaka City, Japan
| | | | | | | | - Kazuya Takahashi
- Department of Geriatric Dentistry, Osaka Dental University, Osaka City, Japan
| |
Collapse
|
24
|
Ciapała K, Mika J. Advances in Neuropathic Pain Research: Selected Intracellular Factors as Potential Targets for Multidirectional Analgesics. Pharmaceuticals (Basel) 2023; 16:1624. [PMID: 38004489 PMCID: PMC10675751 DOI: 10.3390/ph16111624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Neuropathic pain is a complex and debilitating condition that affects millions of people worldwide. Unlike acute pain, which is short-term and starts suddenly in response to an injury, neuropathic pain arises from somatosensory nervous system damage or disease, is usually chronic, and makes every day functioning difficult, substantially reducing quality of life. The main reason for the lack of effective pharmacotherapies for neuropathic pain is its diverse etiology and the complex, still poorly understood, pathophysiological mechanism of its progression. Numerous experimental studies, including ours, conducted over the last several decades have shown that the development of neuropathic pain is based on disturbances in cell activity, imbalances in the production of pronociceptive factors, and changes in signaling pathways such as p38MAPK, ERK, JNK, NF-κB, PI3K, and NRF2, which could become important targets for pharmacotherapy in the future. Despite the availability of many different analgesics, relieving neuropathic pain is still extremely difficult and requires a multidirectional, individual approach. We would like to point out that an increasing amount of data indicates that nonselective compounds directed at more than one molecular target exert promising analgesic effects. In our review, we characterize four substances (minocycline, astaxanthin, fisetin, and peimine) with analgesic properties that result from a wide spectrum of actions, including the modulation of MAPKs and other factors. We would like to draw attention to these selected substances since, in preclinical studies, they show suitable analgesic properties in models of neuropathy of various etiologies, and, importantly, some are already used as dietary supplements; for example, astaxanthin and fisetin protect against oxidative stress and have anti-inflammatory properties. It is worth emphasizing that the results of behavioral tests also indicate their usefulness when combined with opioids, the effectiveness of which decreases when neuropathy develops. Moreover, these substances appear to have additional, beneficial properties for the treatment of diseases that frequently co-occur with neuropathic pain. Therefore, these substances provide hope for the development of modern pharmacological tools to not only treat symptoms but also restore the proper functioning of the human body.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343 Kraków, Poland;
| |
Collapse
|
25
|
Phan TT, Jayathilake NJ, Lee KP, Park JM. BDNF/TrkB Signaling Inhibition Suppresses Astrogliosis and Alleviates Mechanical Allodynia in a Partial Crush Injury Model. Exp Neurobiol 2023; 32:343-353. [PMID: 37927132 PMCID: PMC10628862 DOI: 10.5607/en23031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023] Open
Abstract
Neuropathic pain presents a formidable clinical challenge due to its persistent nature and limited responsiveness to conventional analgesic treatments. While significant progress has been made in understanding the role of spinal astrocytes in neuropathic pain, their contribution and functional changes following a partial crush injury (PCI) remain unexplored. In this study, we investigated structural and functional changes in spinal astrocytes during chronic neuropathic pain, employing a partial crush injury model. This model allowes us to replicate the transition from initial nociceptive responses to persistent pain, highlighting the relevance of astrocytes in pain maintenance and sensitization. Through the examination of mechanical allodynia, a painful sensation in response to innocuous stimuli, and the correlation with increased levels of brain-derived neurotrophic factor (BDNF) along with reactive astrocytes, we identified a potential mechanistic link between astrocytic activity and BDNF signaling. Ultimately, our research provides evidence that inhibiting astrocyte activation through a BDNF/TrkB inhibitor alleviates mechanical allodynia, underscoring the therapeutic potential of targeting glial BDNF-related pathways for pain management. These findings offer critical insights into the cellular and molecular dynamics of neuropathic pain, paving the way for innovative and targeted treatment strategies for this challenging condition.
Collapse
Affiliation(s)
- Tien Thuy Phan
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
- IBS School, University of Science and Technology, Daejeon 34126, Korea
| | - Nishani Jayanika Jayathilake
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
- IBS School, University of Science and Technology, Daejeon 34126, Korea
| |
Collapse
|
26
|
ÖZDEMİR F, AKÇAY G, ÖZKINALI S, ÇELİK Ç. [6]-Shogaol and [6]-Gingerol active ingredients may improve neuropathic pain by suppressing cytokine levels in an experimental model. Turk J Med Sci 2023; 53:1593-1604. [PMID: 38813490 PMCID: PMC10760556 DOI: 10.55730/1300-0144.5728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/12/2023] [Accepted: 10/31/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Neuropathic pain (NP) is a type of chronic pain usually caused by damage to the somatosensory system. Bioactive antioxidant compounds, such as curcumin and ginger, are widely preferred in the treatment of NP. However, the ingredient-based mechanism that underlies their pain-relieving activity remains unknown. The aim of this study was to investigate the therapeutic effects of trans-[6]-Shogaol and [6]-Gingerol active ingredients of the Zingiber officinale Roscoe extract on the spinal cord and cortex in the neuroinflammatory pathway in rats with experimental sciatic nerve injury. Materials and methods Forty-six volatile phenolic components were identified in ginger samples using gas chromatography-mass spectrometry analysis. Thirty 3-month-old male 250-300 g Wistar Albino rats were divided into three groups as (i) sham, (ii) chronic constriction injury (CCI), and (iii) CCI+ginger. NP was induced using the CCI model. A ginger extract treatment enriched with trans-[6]-shogaol and [6]-gingerol active ingredients was administered by gavage at 200 mg/kg/day for 7 days. On the 14th day of the experiment, locomotor activity was evaluated in open field and hyperalgesia in tail flick tests. Results In behavioural experiments, a significant decrease was observed in the CCI group compared to the sham group, while a significant increase was observed in the CCI+ginger group compared to the CCI group (p < 0.05). In the spinal cord and cortex tissues, there was a significant increase in the TNF-α, IL-1β, and IL-18 neuroinflammation results of the CCI group compared to the sham group, while there was a significant decrease in the CCI+ginger group compared to the CCI group. Conclusion In this study, ginger treatment was shown to have a therapeutic effect on neuroinflammation against sciatic nerve damage.
Collapse
Affiliation(s)
- Fikri ÖZDEMİR
- Department of Anatomy, Faculty of Medicine, Hitit University, Çorum,
Turkiye
| | - Güven AKÇAY
- Department of Biophysics, Faculty of Medicine, Hitit University, Çorum,
Turkiye
| | - Sevil ÖZKINALI
- Department of Chemistry, Faculty of Arts and Sciences, Hitit University, Çorum,
Turkiye
| | - Çağla ÇELİK
- Pharmacy Services Program, Vocational School of Health Services, Hitit University, Çorum,
Turkiye
| |
Collapse
|
27
|
Chen O, Luo X, Ji RR. Macrophages and microglia in inflammation and neuroinflammation underlying different pain states. MEDICAL REVIEW (2021) 2023; 3:381-407. [PMID: 38283253 PMCID: PMC10811354 DOI: 10.1515/mr-2023-0034] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 01/30/2024]
Abstract
Pain is a main symptom in inflammation, and inflammation induces pain via inflammatory mediators acting on nociceptive neurons. Macrophages and microglia are distinct cell types, representing immune cells and glial cells, respectively, but they share similar roles in pain regulation. Macrophages are key regulators of inflammation and pain. Macrophage polarization plays different roles in inducing and resolving pain. Notably, macrophage polarization and phagocytosis can be induced by specialized pro-resolution mediators (SPMs). SPMs also potently inhibit inflammatory and neuropathic pain via immunomodulation and neuromodulation. In this review, we discuss macrophage signaling involved in pain induction and resolution, as well as in maintaining physiological pain. Microglia are macrophage-like cells in the central nervous system (CNS) and drive neuroinflammation and pathological pain in various inflammatory and neurological disorders. Microglia-produced inflammatory cytokines can potently regulate excitatory and inhibitory synaptic transmission as neuromodulators. We also highlight sex differences in macrophage and microglial signaling in inflammatory and neuropathic pain. Thus, targeting macrophage and microglial signaling in distinct locations via pharmacological approaches, including immunotherapies, and non-pharmacological approaches will help to control chronic inflammation and chronic pain.
Collapse
Affiliation(s)
- Ouyang Chen
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Xin Luo
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
28
|
Nguyen T, Nguyen N, Cochran AG, Smith JA, Al-Juboori M, Brumett A, Saxena S, Talley S, Campbell EM, Obukhov AG, White FA. Repeated closed-head mild traumatic brain injury-induced inflammation is associated with nociceptive sensitization. J Neuroinflammation 2023; 20:196. [PMID: 37635235 PMCID: PMC10464478 DOI: 10.1186/s12974-023-02871-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Individuals who have experienced mild traumatic brain injuries (mTBIs) suffer from several comorbidities, including chronic pain. Despite extensive studies investigating the underlying mechanisms of mTBI-associated chronic pain, the role of inflammation in long-term pain after mTBIs is not fully elucidated. Given the shifting dynamics of inflammation, it is important to understand the spatial-longitudinal changes in inflammatory processes following mTBIs and their effects on TBI-related pain. METHODS We utilized a recently developed transgenic caspase-1 luciferase reporter mouse model to monitor caspase-1 activation through a thinned skull window in the in vivo setting following three closed-head mTBI events. Organotypic coronal brain slice cultures and acutely dissociated dorsal root ganglion (DRG) cells provided tissue-relevant context of inflammation signal. Mechanical allodynia was assessed by mechanical withdrawal threshold to von Frey and thermal hyperalgesia withdrawal latency to radiant heat. Mouse grimace scale (MGS) was used to detect spontaneous or non-evoked pain. In some experiments, mice were prophylactically treated with MCC950, a potent small molecule inhibitor of NLRP3 inflammasome assembly to inhibit injury-induced inflammatory signaling. Bioluminescence spatiotemporal dynamics were quantified in the head and hind paws, and caspase-1 activation was confirmed by immunoblot. Immunofluorescence staining was used to monitor the progression of astrogliosis and microglial activation in ex vivo brain tissue following repetitive closed-head mTBIs. RESULTS Mice with repetitive closed-head mTBIs exhibited significant increases of the bioluminescence signals within the brain and paws in vivo for at least one week after each injury. Consistently, immunoblotting and immunofluorescence experiments confirmed that mTBIs led to caspase-1 activation, astrogliosis, and microgliosis. Persistent changes in MGS and hind paw withdrawal thresholds, indicative of pain states, were observed post-injury in the same mTBI animals in vivo. We also observed enhanced inflammatory responses in ex vivo brain slice preparations and DRG for at least 3 days following mTBIs. In vivo treatment with MCC950 significantly reduced caspase-1 activation-associated bioluminescent signals in vivo and decreased stimulus-evoked and non-stimulus evoked nociception. CONCLUSIONS Our findings suggest that the inflammatory states in the brain and peripheral nervous system following repeated mTBIs are coincidental with the development of nociceptive sensitization, and that these events can be significantly reduced by inhibition of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Tyler Nguyen
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Natalie Nguyen
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ashlyn G Cochran
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jared A Smith
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mohammed Al-Juboori
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew Brumett
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Saahil Saxena
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah Talley
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Alexander G Obukhov
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cellular Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
29
|
Liang X, Fan Y. Bidirectional two-sample Mendelian randomization analysis reveals a causal effect of interleukin-18 levels on postherpetic neuralgia risk. Front Immunol 2023; 14:1183378. [PMID: 37304287 PMCID: PMC10247971 DOI: 10.3389/fimmu.2023.1183378] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Background Postherpetic neuralgia (PHN) is a debilitating complication of herpes zoster, characterized by persistent neuropathic pain that significantly impairs patients' quality of life. Identifying factors that determine PHN susceptibility is crucial for its management. Interleukin-18 (IL-18), a pro-inflammatory cytokine implicated in chronic pain, may play a critical role in PHN development. Methods In this study, we conducted bidirectional two-sample Mendelian randomization (MR) analyses to assess genetic relationships and potential causal associations between IL-18 protein levels increasing and PHN risk, utilizing genome-wide association study (GWAS) datasets on these traits. Two IL-18 datasets obtained from the EMBL's European Bioinformatics Institute database which contained 21,758 individuals with 13,102,515 SNPs and Complete GWAS summary data on IL-18 protein levels which contained 3,394 individuals with 5,270,646 SNPs. The PHN dataset obtained from FinnGen biobank had 195,191 individuals with 16,380,406 SNPs. Results Our findings from two different datasets of IL-18 protein levels suggest a correlation between genetically predicted elevations in IL-18 protein levels and an increased susceptibility to PHN.(IVW, OR and 95% CI: 2.26, 1.07 to 4.78; p = 0.03 and 2.15, 1.10 to 4.19; p =0.03, respectively), potentially indicating a causal effect of IL-18 protein levels increasing on PHN risk. However, we did not detect any causal effect of genetic liability to PHN risk on IL-18 protein levels. Conclusion These findings suggest new insights into identifying IL-18 protein levels increasing at risk of developing PHN and may aid in the development of novel prevention and treatment approaches for PHN.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuchao Fan
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
30
|
Bai X, Huang Y, Huang W, Zhang Y, Zhang K, Li Y, Ouyang H. Wnt3a/YTHDF1 Regulated Oxaliplatin-Induced Neuropathic Pain Via TNF-α/IL-18 Expression in the Spinal Cord. Cell Mol Neurobiol 2023; 43:1583-1594. [PMID: 35939138 PMCID: PMC11412420 DOI: 10.1007/s10571-022-01267-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
Abstract
Oxaliplatin is widely used in cancer treatment, however, many patients will suffer from neuropathic pain (NP) induced by it at the same time. Therefore exploring the mechanism and founding novel target for this problem are needed. In this study, YTHDF1 showed upregulation in oxaliplatin treated mice. As m6A is known as conserved and it widely functions in numerous physiological and pathological processes. Therefore, we focused on exploring the molecular mechanism of whether and how YTHDF1 functions in NP induced by oxaliplatin. IHC and western blotting were conducted to measure proteins. Intrathecal injection for corresponding siRNAs in C57/BL6 mice or spinal microinjection for virus in YTHDF1flox/flox mice were applied to specially knockdown the expression of molecular. Von Frey, acetone test and ethyl chloride (EC) test were applied to evaluate NP behavior. YTHDF1, Wnt3a, TNF-α and IL-18 were increased in oxaliplatin treated mice, restricted the molecular mentioned above respectively can significantly attenuate oxaliplatin-induced NP, including the mechanical allodynia and cold allodynia. Silencing YTHDF1 and inhibiting Wnt3a and Wnt signaling pathways can reduce the enhancement of TNF-α and IL-18, and the decreasing of the upregulation of YTHDF1 can be found when inhibiting Wnt3a and Wnts signaling pathways in oxaliplatin treated mice. Our study indicated a novel pathway that can contribute to oxaliplatin-induced NP, the Wnt3a/YTHDF1 to cytokine pathway, which upregulating YTHDF1 functioned as the downstream of Wnt3a signal and promoted the translation of TNF-α and IL-18 in oxaliplatin treated mice.
Collapse
Affiliation(s)
- Xiaohui Bai
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Road West, Guangzhou, China
| | - Yongtian Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, China
| | - Wan Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, China
| | - Yingjun Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, China
| | - Kun Zhang
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Road West, Guangzhou, China
| | - Yujuan Li
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Road West, Guangzhou, China.
| | - Handong Ouyang
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, China.
| |
Collapse
|
31
|
Astrocytic and microglial interleukin-1β mediates complement C1q-triggered orofacial mechanical allodynia. Neurosci Res 2023; 188:68-74. [PMID: 36334640 DOI: 10.1016/j.neures.2022.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Glial cells, such as microglia and astrocytes, in the trigeminal spinal subnucleus caudalis (Vc) are activated after trigeminal nerve injury and interact with Vc neurons to contribute to orofacial neuropathic pain. Complement C1q released from microglia has been reported to activate astrocytes and causes orofacial mechanical allodynia. However, how C1q-induced phenotypic alterations in Vc astrocytes are involved in orofacial pain remains to be elucidated. Intracisternal administration of C1q caused mechanical allodynia in the whisker pad skin and concurrent significant upregulation of glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1 in the Vc. Immunohistochemical analyses clarified that C1q induces a significant increase in the cytokine interleukin (IL)-1β, predominantly in Vc astrocytes and partially in Vc microglia. The number of c-Fos-positive neurons in the Vc increased significantly in response to C1q. IL-1 receptor antagonist (IL-1Ra) was used to analyze the involvement of IL-1β in C1q-induced mechanical allodynia. Intracisternal administration of IL-1Ra ameliorated C1q-induced orofacial mechanical allodynia. The present findings suggest that IL-1β released from activated astrocytes and microglia in the Vc mediates C1q-induced orofacial pain.
Collapse
|
32
|
Peng HR, Zhang YK, Zhou JW. The Structure and Function of Glial Networks: Beyond the Neuronal Connections. Neurosci Bull 2023; 39:531-540. [PMID: 36481974 PMCID: PMC10043088 DOI: 10.1007/s12264-022-00992-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/27/2022] [Indexed: 12/13/2022] Open
Abstract
Glial cells, consisting of astrocytes, oligodendrocyte lineage cells, and microglia, account for >50% of the total number of cells in the mammalian brain. They play key roles in the modulation of various brain activities under physiological and pathological conditions. Although the typical morphological features and characteristic functions of these cells are well described, the organization of interconnections of the different glial cell populations and their impact on the healthy and diseased brain is not completely understood. Understanding these processes remains a profound challenge. Accumulating evidence suggests that glial cells can form highly complex interconnections with each other. The astroglial network has been well described. Oligodendrocytes and microglia may also contribute to the formation of glial networks under various circumstances. In this review, we discuss the structure and function of glial networks and their pathological relevance to central nervous system diseases. We also highlight opportunities for future research on the glial connectome.
Collapse
Affiliation(s)
- Hai-Rong Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Kai Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Lu P, Fang K, Cheng W, Yu B. High-frequency electrical stimulation reduced hyperalgesia and the activation of the Myd88 and NFκB pathways in chronic constriction injury of sciatic nerve-induced neuropathic pain mice. Neurosci Lett 2023; 796:137064. [PMID: 36638955 DOI: 10.1016/j.neulet.2023.137064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Neuropathic pain has become a global public problem and health burden. Pharmacological interventions are the primary treatment, but the drug cure rate is low with side effects. There is an urgent need to develop novel treatment approaches. High frequency electrical stimulation (KHES) has been widely applied in clinical analgesia. However, its mechanism is poorly understood. In this study, datasets related to neuropathic pain were obtained from the GEO database. The differentially expressed genes (DEGs) and key genes were analyzed through functional enrichment analysis, showing that most of the pathways involve the inflammation. The MyD88 and NFκB pathways were further studied. KHES significantly alleviated mechanical and thermal allodynia in chronic constriction injury of the sciatic nerve mice. KHES also inhibited the increase in Myd88 and p-NFκB expression. The administration of NFκB pathway activator partly reversed the antinociceptive effects of KHES, and NFκB pathway inhibitor achieved analgesic effects similar to those of KHES. Therefore, KHES might be a novel intervention for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Peixin Lu
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| | - Kexin Fang
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| | - Wen Cheng
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| | - Bin Yu
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
34
|
Walsh CM, Gull K, Dooley D. Motor rehabilitation as a therapeutic tool for spinal cord injury: New perspectives in immunomodulation. Cytokine Growth Factor Rev 2023; 69:80-89. [PMID: 36114092 DOI: 10.1016/j.cytogfr.2022.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/27/2022] [Indexed: 02/07/2023]
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition that significantly impacts motor, sensory and autonomic function in patients. Despite advances in therapeutic approaches, there is still no curative therapy currently available. Neuroinflammation is a persisting event of the secondary injury phase of SCI that affects functional recovery, and modulation of the inflammatory response towards a beneficial anti-inflammatory state can improve recovery in preclinical SCI models. In human SCI patients, rehabilitative exercise, or motor rehabilitation as we will refer to it from here on out, remains the cornerstone of treatment to increase functional capacity and prevent secondary health implications. Motor rehabilitation is known to have anti-inflammatory effects; however, current literature is lacking in the description of the effect of motor rehabilitation on inflammation in the context of SCI. Understanding the effect on different inflammatory markers after SCI should enable the optimization of motor rehabilitation as a therapeutic regime. This review extensively describes the effect of motor rehabilitation on selected inflammatory mediators in both preclinical and human SCI studies. Additionally, we summarize how the type, duration, and intensity of motor rehabilitation can affect the inflammatory response after SCI. In doing so, we introduce a new perspective on how motor rehabilitation can be optimized as an immunomodulatory therapy to improve patient outcome after SCI.
Collapse
Affiliation(s)
- Ciara M Walsh
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Khadija Gull
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
35
|
Chen XT, Chen LP, Fan LJ, Kan HM, Wang ZZ, Qian B, Pan ZQ, Shen W. Microglial P2Y12 Signaling Contributes to Cisplatin-induced Pain Hypersensitivity via IL-18-mediated Central Sensitization in the Spinal Cord. THE JOURNAL OF PAIN 2023; 24:901-917. [PMID: 36646400 DOI: 10.1016/j.jpain.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/10/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Administration of cisplatin and other chemotherapy drugs is crucial for treating tumors. However, cisplatin-induced pain hypersensitivity is still a critical clinical issue, and the underlying molecular mechanisms have remained unresolved to date. In this study, we found that repeated cisplatin treatments remarkedly upregulated the P2Y12 expression in the spinal cord. Expression of P2Y12 was predominant in the microglia. Pharmacological inhibition of P2Y12 expression markedly attenuated the cisplatin-induced pain hypersensitivity. Meanwhile, blocking the P2Y12 signal also suppressed cisplatin-induced microglia hyperactivity. Furthermore, the microglia Src family kinase/p38 pathway is required for P2Y12-mediated cisplatin-induced pain hypersensitivity via the proinflammatory cytokine IL-18 production in the spinal cord. Blocking the P2Y12/IL-18 signaling pathway reversed cisplatin-induced pain hypersensitivity, as well as activation of N-methyl-D-aspartate receptor and subsequent Ca2+-dependent signals. Collectively, our data suggest that microglia P2Y12-SFK-p38 signaling contributes to cisplatin-induced pain hypersensitivity via IL-18-mediated central sensitization in the spinal, and P2Y12 could be a potential target for intervention to prevent chemotherapy-induced pain hypersensitivity. PERSPECTIVE: Our work identified that P2Y12/IL-18 played a critical role in cisplatin-induced pain hypersensitivity. This work suggests that P2Y12/IL-18 signaling may be a useful strategy for the treatment of chemotherapy-induced pain hypersensitivity.
Collapse
Affiliation(s)
- Xue-Tai Chen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China; Department of anesthesiology, The Yancheng Clinical College of Xuzhou Medical University; Department of central labotatory, The First people's Hospital of Yancheng, Yancheng, Jiangsu 224006, People's Republic of China
| | - Li-Ping Chen
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Li-Jun Fan
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Hou-Ming Kan
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Zi-Zhu Wang
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Bin Qian
- Department of anesthesiology, The Yancheng Clinical College of Xuzhou Medical University; Department of central labotatory, The First people's Hospital of Yancheng, Yancheng, Jiangsu 224006, People's Republic of China
| | - Zhi-Qiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Wen Shen
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China.
| |
Collapse
|
36
|
Asano S, Okada-Ogawa A, Kobayashi M, Yonemoto M, Hojo Y, Shibuta I, Noma N, Iwata K, Hitomi S, Shinoda M. Involvement of interferon gamma signaling in spinal trigeminal caudal subnucleus astrocyte in orofacial neuropathic pain in rats with infraorbital nerve injury. Mol Pain 2023; 19:17448069231222403. [PMID: 38073236 DOI: 10.1177/17448069231222403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Background: Trigeminal nerve injury causes orofacial pain that can interfere with activities of daily life. However, the underlying mechanism remains unknown, and the appropriate treatment has not been established yet. This study aimed to examine the involvement of interferon gamma (IFN-γ) signaling in the spinal trigeminal caudal subnucleus (Vc) in orofacial neuropathic pain. Methods: Infraorbital nerve (ION) injury (IONI) was performed in rats by partial ION ligation. The head-withdrawal reflex threshold (HWT) to mechanical stimulation of the whisker pad skin was measured in IONI or sham rats, as well as following a continuous intracisterna magna administration of IFN-γ and a mixture of IFN-γ and fluorocitrate (inhibitor of astrocytes activation) in naïve rats, or an IFN-γ antagonist in IONI rats. The IFN-γ receptor immunohistochemistry and IFN-γ Western blotting were analyzed in the Vc after IONI or sham treatment. The glial fibrillary acid protein (GFAP) immunohistochemistry and Western blotting were also analyzed after administration of IFN-γ and the mixture of IFN-γ and fluorocitrate. Moreover, the change in single neuronal activity in the Vc was examined in the IONI, sham, and IONI group administered IFN-γ antagonist. Results: The HWT decreased after IONI. The IFN-γ and IFN-γ receptor were upregulated after IONI, and the IFN-γ receptor was expressed in Vc astrocytes. IFN-γ administration decreased the HWT, whereas the mixture of IFN-γ and fluorocitrate recovered the decrement of HWT. IFN-γ administration upregulated GFAP expression, while the mixture of IFN-γ and fluorocitrate recovered the upregulation of GFAP expression. IONI significantly enhanced the neuronal activity of the mechanical-evoked responses, and administration of an IFN-γ antagonist significantly inhibited these enhancements. Conclusions: IFN-γ signaling through the receptor in astrocytes is a key mechanism underlying orofacial neuropathic pain associated with trigeminal nerve injury. These findings will aid in the development of therapeutics for orofacial neuropathic pain.
Collapse
Affiliation(s)
- Sayaka Asano
- Department of Anesthesiology, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Akiko Okada-Ogawa
- Department of Oral Medicine, Nihon University School of Dentistry, Tokyo, Japan
- Division of Orofacial Pain Clinic, Nihon University Dental Hospital, Tokyo, Japan
| | - Momoyo Kobayashi
- Department of Oral Medicine, Nihon University School of Dentistry, Tokyo, Japan
| | - Mamiko Yonemoto
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yasushi Hojo
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Noboru Noma
- Department of Oral Medicine, Nihon University School of Dentistry, Tokyo, Japan
- Division of Orofacial Pain Clinic, Nihon University Dental Hospital, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
37
|
de Geus TJ, Franken G, Joosten EAJ. Spinal Cord Stimulation Paradigms and Pain Relief: A Preclinical Systematic Review on Modulation of the Central Inflammatory Response in Neuropathic Pain. Neuromodulation 2023; 26:25-34. [PMID: 35931643 DOI: 10.1016/j.neurom.2022.04.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Spinal cord stimulation (SCS) is a last-resort treatment for patients with chronic neuropathic pain. The mechanism underlying SCS and pain relief is not yet fully understood. Because the inflammatory balance between pro- and anti-inflammatory molecules in the spinal nociceptive network is pivotal in the development and maintenance of neuropathic pain, the working mechanism of SCS is suggested to be related to the modulation of this balance. The aim of this systematic review is to summarize and understand the effects of different SCS paradigms on the central inflammatory balance in the spinal cord. MATERIALS AND METHODS A systematic literature search was conducted using MEDLINE, Embase, and PubMed. All articles studying the effects of SCS on inflammatory or glial markers in neuropathic pain models were included. A quality assessment was performed on predetermined entities of bias. RESULTS A total of 11 articles were eligible for this systematic review. In general, induction of neuropathic pain in rats results in a proinflammatory state and at the same time an increased activity/expression of microglial and astroglial cells in the spinal cord dorsal horn. Conventional SCS seems to further enhance this proinflammatory state and increase the messenger RNA expression of microglial markers, but it also results in a decrease in microglial protein marker levels. High-frequency and especially differential targeted multiplexed SCS can not only restore the balance between pro- and anti-inflammatory molecules but also minimize the overexpression/activation of glial cells. Quality assessment and risk of bias analysis of the studies included make it clear that the results of these preclinical studies must be interpreted with caution. CONCLUSIONS In summary, the preclinical findings tend to indicate that there is a distinct SCS paradigm-related effect in the modulation of the central inflammatory balance of the spinal dorsal horn.
Collapse
Affiliation(s)
- Thomas J de Geus
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Glenn Franken
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
38
|
Chen YL, Feng XL, Cheung CW, Liu JA. Mode of action of astrocytes in pain: From the spinal cord to the brain. Prog Neurobiol 2022; 219:102365. [DOI: 10.1016/j.pneurobio.2022.102365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
39
|
Astrocytes in Chronic Pain: Cellular and Molecular Mechanisms. Neurosci Bull 2022; 39:425-439. [PMID: 36376699 PMCID: PMC10043112 DOI: 10.1007/s12264-022-00961-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/17/2022] [Indexed: 11/15/2022] Open
Abstract
AbstractChronic pain is challenging to treat due to the limited therapeutic options and adverse side-effects of therapies. Astrocytes are the most abundant glial cells in the central nervous system and play important roles in different pathological conditions, including chronic pain. Astrocytes regulate nociceptive synaptic transmission and network function via neuron–glia and glia–glia interactions to exaggerate pain signals under chronic pain conditions. It is also becoming clear that astrocytes play active roles in brain regions important for the emotional and memory-related aspects of chronic pain. Therefore, this review presents our current understanding of the roles of astrocytes in chronic pain, how they regulate nociceptive responses, and their cellular and molecular mechanisms of action.
Collapse
|
40
|
Ferrari LF, Rey C, Ramirez A, Dziuba A, Zickella J, Zickella M, Raff H, Taylor NE. Characterization of the Dahl salt-sensitive rat as a rodent model of inherited, widespread, persistent pain. Sci Rep 2022; 12:19348. [PMID: 36369350 PMCID: PMC9652451 DOI: 10.1038/s41598-022-24094-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Animal models are essential for studying the pathophysiology of chronic pain disorders and as screening tools for new therapies. However, most models available do not reproduce key characteristics of clinical persistent pain. This has limited their ability to accurately predict which new medicines will be clinically effective. Here, we characterize the Dahl salt-sensitive (SS) rat strain as the first rodent model of inherited widespread hyperalgesia. We show that this strain exhibits physiological phenotypes known to contribute to chronic pain, such as neuroinflammation, defective endogenous pain modulation, dysfunctional hypothalamic-pituitary-adrenal axis, increased oxidative stress and immune cell activation. When compared with Sprague Dawley and Brown Norway rats, SS rats have lower nociceptive thresholds due to increased inflammatory mediator concentrations, lower corticosterone levels, and high oxidative stress. Treatment with dexamethasone, the reactive oxygen species scavenger tempol, or the glial inhibitor minocycline attenuated the pain sensitivity in SS rats without affecting the other strains while indomethacin and gabapentin provided less robust pain relief. Moreover, SS rats presented impaired diffuse noxious inhibitory controls and an exacerbated response to the proalgesic mediator PGE2, features of generalized pain conditions. These data establish this strain as a novel model of spontaneous, widespread hyperalgesia that can be used to identify biomarkers for chronic pain diagnosis and treatment.
Collapse
Affiliation(s)
- Luiz F. Ferrari
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| | - Charles Rey
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| | - Anna Ramirez
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| | - Adam Dziuba
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| | - Jacqueline Zickella
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| | - Michael Zickella
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| | - Hershel Raff
- grid.427152.7Endocrine Research Laboratory, Aurora St. Luke’s Medical Center, Advocate Aurora Research Institute, Milwaukee, WI 53215 USA ,grid.30760.320000 0001 2111 8460Department of Medicine (Endocrinology and Molecular Medicine), Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Norman E. Taylor
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| |
Collapse
|
41
|
Silva Santos Ribeiro P, Willemen HLDM, Eijkelkamp N. Mitochondria and sensory processing in inflammatory and neuropathic pain. FRONTIERS IN PAIN RESEARCH 2022; 3:1013577. [PMID: 36324872 PMCID: PMC9619239 DOI: 10.3389/fpain.2022.1013577] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Rheumatic diseases, such as osteoarthritis and rheumatoid arthritis, affect over 750 million people worldwide and contribute to approximately 40% of chronic pain cases. Inflammation and tissue damage contribute to pain in rheumatic diseases, but pain often persists even when inflammation/damage is resolved. Mechanisms that cause this persistent pain are still unclear. Mitochondria are essential for a myriad of cellular processes and regulate neuronal functions. Mitochondrial dysfunction has been implicated in multiple neurological disorders, but its role in sensory processing and pain in rheumatic diseases is relatively unexplored. This review provides a comprehensive understanding of how mitochondrial dysfunction connects inflammation and damage-associated pathways to neuronal sensitization and persistent pain. To provide an overall framework on how mitochondria control pain, we explored recent evidence in inflammatory and neuropathic pain conditions. Mitochondria have intrinsic quality control mechanisms to prevent functional deficits and cellular damage. We will discuss the link between neuronal activity, mitochondrial dysfunction and chronic pain. Lastly, pharmacological strategies aimed at reestablishing mitochondrial functions or boosting mitochondrial dynamics as therapeutic interventions for chronic pain are discussed. The evidence presented in this review shows that mitochondria dysfunction may play a role in rheumatic pain. The dysfunction is not restricted to neuronal cells in the peripheral and central nervous system, but also includes blood cells and cells at the joint level that may affect pain pathways indirectly. Pre-clinical and clinical data suggest that modulation of mitochondrial functions can be used to attenuate or eliminate pain, which could be beneficial for multiple rheumatic diseases.
Collapse
Affiliation(s)
| | | | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
42
|
Xiang T, Li JH, Su HY, Bai KH, Wang S, Traub RJ, Cao DY. Spinal CCK1 Receptors Contribute to Somatic Pain Hypersensitivity Induced by Malocclusion via a Reciprocal Neuron-Glial Signaling Cascade. THE JOURNAL OF PAIN 2022; 23:1629-1645. [PMID: 35691467 PMCID: PMC9560966 DOI: 10.1016/j.jpain.2022.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have shown that the incidence of chronic primary pain including temporomandibular disorders (TMD) and fibromyalgia syndrome (FMS) often exhibit comorbidities. We recently reported that central sensitization and descending facilitation system contributed to the development of somatic pain hypersensitivity induced by orofacial inflammation combined with stress. The purpose of this study was to explore whether TMD caused by unilateral anterior crossbite (UAC) can induce somatic pain hypersensitivity, and whether the cholecystokinin (CCK) receptor-mediated descending facilitation system promotes hypersensitivity through neuron-glia cell signaling cascade. UAC evoked thermal and mechanical pain hypersensitivity of the hind paws from day 5 to 70 that peaked at week 4 post UAC. The expression levels of CCK1 receptors, interleukin-18 (IL-18) and IL-18 receptors (IL-18R) were significantly up-regulated in the L4 to L5 spinal dorsal horn at 4 weeks post UAC. Intrathecal injection of CCK1 and IL-18 receptor antagonists blocked somatic pain hypersensitivity. IL-18 mainly co-localized with microglia, while IL-18R mainly co-localized with astrocytes and to a lesser extent with neurons. These findings indicate that the signaling transduction between neurons and glia at the spinal cord level contributes to the descending pain facilitation through CCK1 receptors during the development of the comorbidity of TMD and FMS. PERSPECTIVE: CCK1 receptor-dependent descending facilitation may mediate central mechanisms underlying the development of widespread somatic pain via a reciprocal neuron-glial signaling cascade, providing novel therapeutic targets for the clinical treatment of TMD and FMS comorbidities.
Collapse
Affiliation(s)
- Ting Xiang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China; Department of Orthodontics, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Jia-Heng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Han-Yu Su
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Kun-Hong Bai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Shuang Wang
- Department of Orthodontics, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Richard J Traub
- Department of Neural and Pain Sciences, School of Dentistry; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, Maryland.
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China.
| |
Collapse
|
43
|
Cheng T, Xu Z, Ma X. The role of astrocytes in neuropathic pain. Front Mol Neurosci 2022; 15:1007889. [PMID: 36204142 PMCID: PMC9530148 DOI: 10.3389/fnmol.2022.1007889] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Neuropathic pain, whose symptoms are characterized by spontaneous and irritation-induced painful sensations, is a condition that poses a global burden. Numerous neurotransmitters and other chemicals play a role in the emergence and maintenance of neuropathic pain, which is strongly correlated with common clinical challenges, such as chronic pain and depression. However, the mechanism underlying its occurrence and development has not yet been fully elucidated, thus rendering the use of traditional painkillers, such as non-steroidal anti-inflammatory medications and opioids, relatively ineffective in its treatment. Astrocytes, which are abundant and occupy the largest volume in the central nervous system, contribute to physiological and pathological situations. In recent years, an increasing number of researchers have claimed that astrocytes contribute indispensably to the occurrence and progression of neuropathic pain. The activation of reactive astrocytes involves a variety of signal transduction mechanisms and molecules. Signal molecules in cells, including intracellular kinases, channels, receptors, and transcription factors, tend to play a role in regulating post-injury pain once they exhibit pathological changes. In addition, astrocytes regulate neuropathic pain by releasing a series of mediators of different molecular weights, actively participating in the regulation of neurons and synapses, which are associated with the onset and general maintenance of neuropathic pain. This review summarizes the progress made in elucidating the mechanism underlying the involvement of astrocytes in neuropathic pain regulation.
Collapse
|
44
|
Freyermuth-Trujillo X, Segura-Uribe JJ, Salgado-Ceballos H, Orozco-Barrios CE, Coyoy-Salgado A. Inflammation: A Target for Treatment in Spinal Cord Injury. Cells 2022; 11:2692. [PMID: 36078099 PMCID: PMC9454769 DOI: 10.3390/cells11172692] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a significant cause of disability, and treatment alternatives that generate beneficial outcomes and have no side effects are urgently needed. SCI may be treatable if intervention is initiated promptly. Therefore, several treatment proposals are currently being evaluated. Inflammation is part of a complex physiological response to injury or harmful stimuli induced by mechanical, chemical, or immunological agents. Neuroinflammation is one of the principal secondary changes following SCI and plays a crucial role in modulating the pathological progression of acute and chronic SCI. This review describes the main inflammatory events occurring after SCI and discusses recently proposed potential treatments and therapeutic agents that regulate inflammation after insult in animal models.
Collapse
Affiliation(s)
- Ximena Freyermuth-Trujillo
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico
| | - Julia J. Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City CP 06720, Mexico
| | - Hermelinda Salgado-Ceballos
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
| | - Carlos E. Orozco-Barrios
- CONACyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
| | - Angélica Coyoy-Salgado
- CONACyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
| |
Collapse
|
45
|
Sala-Jarque J, García-Lara E, Carreras-Domínguez P, Zhou C, Rabaneda-Lombarte N, Solà C, M Vidal-Taboada J, Feiler A, Abrahamsson N, N Kozlova E, Saura J. Mesoporous silica particles are phagocytosed by microglia and induce a mild inflammatory response in vitro. Nanomedicine (Lond) 2022; 17:1077-1094. [PMID: 35997151 DOI: 10.2217/nnm-2022-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Mesoporous silica particles (MSPs) are broadly used drug delivery carriers. In this study, the authors analyzed the responses to MSPs of astrocytes and microglia, the two main cellular players in neuroinflammation. Materials & methods: Primary murine cortical mixed glial cultures were treated with rhodamine B-labeled MSPs. Results: MSPs are avidly internalized by microglial cells and remain inside the cells for at least 14 days. Despite this, MSPs do not affect glial cell viability or morphology, basal metabolic activity or oxidative stress. MSPs also do not affect mRNA levels of key proinflammatory genes; however, in combination with lipopolysaccharide, they significantly increase extracellular IL-1β levels. Conclusion: These results suggest that MSPs could be novel tools for specific drug delivery to microglial cells.
Collapse
Affiliation(s)
- Júlia Sala-Jarque
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Elisa García-Lara
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Paula Carreras-Domínguez
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | | | - Neus Rabaneda-Lombarte
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain.,Department of Cerebral Ischemia and Neurodegeneration, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Carme Solà
- Department of Cerebral Ischemia and Neurodegeneration, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain.,Peripheral Nervous System, Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Barcelona, Catalonia, Spain
| | - Adam Feiler
- Nanologica AB, Södertälje, Sweden.,KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Elena N Kozlova
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain.,Institute of Neurosciences, University of Barcelona, Catalonia, Spain
| |
Collapse
|
46
|
Tan B, Wu X, Yu J, Chen Z. The Role of Saponins in the Treatment of Neuropathic Pain. Molecules 2022; 27:molecules27123956. [PMID: 35745079 PMCID: PMC9227328 DOI: 10.3390/molecules27123956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain is a chronic pain caused by tissue injury or disease involving the somatosensory nervous system, which seriously affects the patient's body function and quality of life. At present, most clinical medications for the treatment of neuropathic pain, including antidepressants, antiepileptic drugs, or analgesics, often have limited efficacy and non-negligible side effects. As a bioactive and therapeutic component extracted from Chinese herbal medicine, the role of the effective compounds in the prevention and treatment of neuropathic pain have gradually become a research focus to explore new analgesics. Notably, saponins have shown analgesic effects in a large number of animal models. In this review, we summarized the most updated information of saponins, related to their analgesic effects in neuropathic pain, and the recent progress on the research of therapeutic targets and the potential mechanisms. Furthermore, we put up with some perspectives on future investigation to reveal the precise role of saponins in neuropathic pain.
Collapse
Affiliation(s)
- Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
| | - Xueqing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
| | - Jie Yu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
- Correspondence: ; Tel.: +86-571-88208228
| |
Collapse
|
47
|
Alvites RD, Branquinho MV, Sousa AC, Lopes B, Sousa P, Prada J, Pires I, Ronchi G, Raimondo S, Luís AL, Geuna S, Varejão ASP, Maurício AC. Effects of Olfactory Mucosa Stem/Stromal Cell and Olfactory Ensheating Cells Secretome on Peripheral Nerve Regeneration. Biomolecules 2022; 12:biom12060818. [PMID: 35740943 PMCID: PMC9220795 DOI: 10.3390/biom12060818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Cell secretome has been explored as a cell-free technique with high scientific and medical interest for Regenerative Medicine. In this work, the secretome produced and collected from Olfactory Mucosa Mesenchymal Stem Cells and Olfactory Ensheating Cells was analyzed and therapeutically applied to promote peripheral nerve regeneration. The analysis of the conditioned medium revealed the production and secretion of several factors with immunomodulatory functions, capable of intervening beneficially in the phases of nerve regeneration. Subsequently, the conditioned medium was applied to sciatic nerves of rats after neurotmesis, using Reaxon® as tube-guides. Over 20 weeks, the animals were subjected to periodic functional assessments, and after this period, the sciatic nerves and cranial tibial muscles were evaluated stereologically and histomorphometrically, respectively. The results obtained allowed to confirm the beneficial effects resulting from the application of this therapeutic combination. The administration of conditioned medium from Olfactory Mucosal Mesenchymal Stem Cells led to the best results in motor performance, sensory recovery, and gait patterns. Stereological and histomorphometric evaluation also revealed the ability of this therapeutic combination to promote nervous and muscular histologic reorganization during the regenerative process. The therapeutic combination discussed in this work shows promising results and should be further explored to clarify irregularities found in the outcomes and to allow establishing the use of cell secretome as a new therapeutic field applied in the treatment of peripheral nerves after injury.
Collapse
Affiliation(s)
- Rui D. Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Mariana V. Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Ana C. Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Justina Prada
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Isabel Pires
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (G.R.); (S.R.); (S.G.)
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (G.R.); (S.R.); (S.G.)
| | - Ana L. Luís
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (G.R.); (S.R.); (S.G.)
| | - Artur Severo P. Varejão
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
- Correspondence: ; Tel.: +351-91-9071286 or +351-22-0428000
| |
Collapse
|
48
|
Eitan C, Siany A, Barkan E, Olender T, van Eijk KR, Moisse M, Farhan SMK, Danino YM, Yanowski E, Marmor-Kollet H, Rivkin N, Yacovzada NS, Hung ST, Cooper-Knock J, Yu CH, Louis C, Masters SL, Kenna KP, van der Spek RAA, Sproviero W, Al Khleifat A, Iacoangeli A, Shatunov A, Jones AR, Elbaz-Alon Y, Cohen Y, Chapnik E, Rothschild D, Weissbrod O, Beck G, Ainbinder E, Ben-Dor S, Werneburg S, Schafer DP, Brown RH, Shaw PJ, Van Damme P, van den Berg LH, Phatnani H, Segal E, Ichida JK, Al-Chalabi A, Veldink JH, Hornstein E. Whole-genome sequencing reveals that variants in the Interleukin 18 Receptor Accessory Protein 3'UTR protect against ALS. Nat Neurosci 2022; 25:433-445. [PMID: 35361972 PMCID: PMC7614916 DOI: 10.1038/s41593-022-01040-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
The noncoding genome is substantially larger than the protein-coding genome but has been largely unexplored by genetic association studies. Here, we performed region-based rare variant association analysis of >25,000 variants in untranslated regions of 6,139 amyotrophic lateral sclerosis (ALS) whole genomes and the whole genomes of 70,403 non-ALS controls. We identified interleukin-18 receptor accessory protein (IL18RAP) 3' untranslated region (3'UTR) variants as significantly enriched in non-ALS genomes and associated with a fivefold reduced risk of developing ALS, and this was replicated in an independent cohort. These variants in the IL18RAP 3'UTR reduce mRNA stability and the binding of double-stranded RNA (dsRNA)-binding proteins. Finally, the variants of the IL18RAP 3'UTR confer a survival advantage for motor neurons because they dampen neurotoxicity of human induced pluripotent stem cell (iPSC)-derived microglia bearing an ALS-associated expansion in C9orf72, and this depends on NF-κB signaling. This study reveals genetic variants that protect against ALS by reducing neuroinflammation and emphasizes the importance of noncoding genetic association studies.
Collapse
Affiliation(s)
- Chen Eitan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Aviad Siany
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Elad Barkan
- Department of Computer Science And Applied Math, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Kristel R van Eijk
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Matthieu Moisse
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Sali M K Farhan
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yehuda M Danino
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Yanowski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Hagai Marmor-Kollet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Natalia Rivkin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Nancy Sarah Yacovzada
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science And Applied Math, Weizmann Institute of Science, Rehovot, Israel
| | - Shu-Ting Hung
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Chien-Hsiung Yu
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Kevin P Kenna
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Rick A A van der Spek
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - William Sproviero
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
| | - Ahmad Al Khleifat
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
| | - Alfredo Iacoangeli
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
| | - Aleksey Shatunov
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
| | - Ashley R Jones
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
| | - Yael Elbaz-Alon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yahel Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Elik Chapnik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Daphna Rothschild
- Department of Computer Science And Applied Math, Weizmann Institute of Science, Rehovot, Israel
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Omer Weissbrod
- Department of Computer Science And Applied Math, Weizmann Institute of Science, Rehovot, Israel
| | - Gilad Beck
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Ainbinder
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sebastian Werneburg
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Philip Van Damme
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- University Hospitals Leuven, Department of Neurology, Leuven, Belgium
| | - Leonard H van den Berg
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, USA
| | - Eran Segal
- Department of Computer Science And Applied Math, Weizmann Institute of Science, Rehovot, Israel
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Ammar Al-Chalabi
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
- King's College Hospital, Denmark Hill, London, United Kingdom
| | - Jan H Veldink
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
49
|
Li S, Li J, Xu H, Liu Y, Yang T, Yuan H. Progress in the efficacy and mechanism of spinal cord stimulation in neuropathological pain. IBRAIN 2022; 8:23-36. [PMID: 37786421 PMCID: PMC10529196 DOI: 10.1002/ibra.12020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 10/04/2023]
Abstract
Neuropathic pain (NP) is a long-term recurrent disease caused by somatosensory nervous system injury, with spontaneous pain, hyperalgesia, ectopic pain, and paresthesia as the main clinical manifestations. It adversely affects patients' quality of life. NP treatments often include medication, physical therapy, and invasive therapy; the first two therapies are generally ineffective for some NP patients. These patients sometimes rely on invasive therapy to alleviate pain. Spinal cord stimulation (SCS) is a very effective therapeutic method. SCS is a neuroregulatory method that involves placing the electrodes on the corresponding painful spinal cords. Pain is greatly alleviated after SCS. SCS has been proven to be an effective therapeutic method for the treatment of neurological pain. Furthermore, SCS provides a feasible approach for patients with unsuccessful drug treatment. This paper reviews the relevant literature of spinal cord electrical stimulation, focusing on the mechanism of action, clinical application, clinical efficacy and technical progress of spinal cord electrical stimulation. SCS is widely used in the treatment of NP diseases such as postherpetic neuralgia, back surgery failure syndrome, and phantom limb pain. With advancements in science and technology, tremendous progress has also been made in the spinal cord electrical stimulation method and good momentum has been maintained.
Collapse
Affiliation(s)
- Shun‐Lian Li
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Jing Li
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Hui‐Chan Xu
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Yu‐Cong Liu
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Ting‐Ting Yang
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Hao Yuan
- School of Basic MedicineKunming Medical UniversityKunmingYunnanChina
- Department of Spine SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
50
|
Zhou YQ, Tian XB, Tian YK, Mei W, Liu DQ, Ye DW. Wnt signaling: A prospective therapeutic target for chronic pain. Pharmacol Ther 2022; 231:107984. [PMID: 34480969 DOI: 10.1016/j.pharmthera.2021.107984] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Despite the rapid advance over the past decades to design effective therapeutic pharmacological interventions, chronic pain remains to be an unresolved healthcare concern. Long term use of opioids, the first line analgesics, often causes detrimental side effects. Therefore, a profound understanding of the mechanisms underlying the development and maintenance of chronic pain states is urgently needed for the management of chronic pain. Substantial evidence indicates aberrant activation of Wnt signaling pathways in sciatic nerve, dorsal root ganglia and spinal cord dorsal horn in rodent models of chronic pain. Moreover, growing evidence shows that pharmacological blockage of aberrant activation of Wnt signaling pathways attenuates pain behaviors in animal models of chronic pain. Importantly, both intrathecal injection of Wnt agonists and Wnt ligands to naïve rats lead to the development of mechanical allodynia, which was inhibited by Wnt inhibitors. In this review, we summarized and discussed the therapeutic potential of pharmacological inhibitors of Wnt signaling in chronic pain in preclinical studies. These evidence showed that aberrant activation of Wnt signaling pathways contributed to chronic pain via enhancing neuroinflammation, regulating synaptic plasticity and reducing intraepidermal nerve fiber density. However, these findings raise further questions. Overall, despite the future challenges, these pioneering studies suggest that Wnt signaling is a promising therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xue-Bi Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu-Ke Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Da-Wei Ye
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|