1
|
Pilato SA, O’Connell FP, Victor JD, Di Lorenzo PM. Electrophysiological responses to appetitive and consummatory behavior in the rostral nucleus tractus solitarius in awake, unrestrained rats. Front Integr Neurosci 2024; 18:1430950. [PMID: 39082054 PMCID: PMC11286463 DOI: 10.3389/fnint.2024.1430950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction As the intermediate nucleus in the brainstem receiving information from the tongue and transmitting information upstream, the rostral portion of the nucleus tractus solitarius (rNTS) is most often described as a "taste relay". Although recent evidence implicates the caudal NTS in a broad neural circuit involved in regulating ingestion, there is little information about how cells in the rNTS respond when an animal is eating solid food. Methods Single cells in the rNTS were recorded in awake, unrestrained rats as they explored and ate solid foods (Eating paradigm) chosen to correspond to the basic taste qualities: milk chocolate for sweet, salted peanuts for salty, Granny Smith apples for sour and broccoli for bitter. A subset of cells was also recorded as the animal licked exemplars of the five basic taste qualities: sucrose, NaCl, citric acid, quinine and MSG (Lick paradigm). Results Most cells were excited by exploration of a food-filled well, sometimes responding prior to contact with the food. In contrast, cells that were excited by food well exploration became significantly less active while the animal was eating the food. Most cells were broadly tuned across foods, and those cells that were recorded in both the Lick and Eating paradigms showed little correspondence in their tuning across paradigms. Discussion The preponderance of robust responses to the appetitive versus the consummatory phase of ingestion suggests that multimodal convergence onto cells in the rNTS may be used in decision making about ingestion.
Collapse
Affiliation(s)
- Stephen A. Pilato
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Flynn P. O’Connell
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Jonathan D. Victor
- Weill Cornell Medical College, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | | |
Collapse
|
2
|
Stocke S, Samuelsen CL. Multisensory Integration Underlies the Distinct Representation of Odor-Taste Mixtures in the Gustatory Cortex of Behaving Rats. J Neurosci 2024; 44:e0071242024. [PMID: 38548337 PMCID: PMC11097261 DOI: 10.1523/jneurosci.0071-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 05/15/2024] Open
Abstract
The perception of food relies on the integration of olfactory and gustatory signals originating from the mouth. This multisensory process generates robust associations between odors and tastes, significantly influencing the perceptual judgment of flavors. However, the specific neural substrates underlying this integrative process remain unclear. Previous electrophysiological studies identified the gustatory cortex as a site of convergent olfactory and gustatory signals, but whether neurons represent multimodal odor-taste mixtures as distinct from their unimodal odor and taste components is unknown. To investigate this, we recorded single-unit activity in the gustatory cortex of behaving female rats during the intraoral delivery of individual odors, individual tastes, and odor-taste mixtures. Our results demonstrate that chemoselective neurons in the gustatory cortex are broadly responsive to intraoral chemosensory stimuli, exhibiting time-varying multiphasic changes in activity. In a subset of these chemoselective neurons, odor-taste mixtures elicit nonlinear cross-modal responses that distinguish them from their olfactory and gustatory components. These findings provide novel insights into multimodal chemosensory processing by the gustatory cortex, highlighting the distinct representation of unimodal and multimodal intraoral chemosensory signals. Overall, our findings suggest that olfactory and gustatory signals interact nonlinearly in the gustatory cortex to enhance the identity coding of both unimodal and multimodal chemosensory stimuli.
Collapse
Affiliation(s)
- Sanaya Stocke
- Departments of Biology, University of Louisville, Louisville, Kentucky 40292
| | - Chad L Samuelsen
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
3
|
Pilato SA, O’Connell FP, Victor JD, Di Lorenzo PM. Electrophysiological responses to appetitive and consummatory behavior in the rostral nucleus tractus solitarius in awake, unrestrained rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591929. [PMID: 38746447 PMCID: PMC11092612 DOI: 10.1101/2024.04.30.591929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
As the intermediate nucleus in the brainstem receiving information from the tongue and transmitting information upstream, the rostral portion of the nucleus tractus solitarius (rNTS) is most often described as a "taste relay". Although recent evidence implicates the NTS in a broad neural circuit involved in regulating ingestion, there is little information about how cells in this structure respond when an animal is eating solid food. Here, single cells in the rNTS were recorded in awake, unrestrained rats as they explored and ate solid foods (Eating paradigm) chosen to correspond to the basic taste qualities: milk chocolate for sweet, salted peanuts for salty, Granny Smith apples for sour and broccoli for bitter. A subset of cells was also recorded as the animal licked exemplars of the five basic taste qualities: sucrose, NaCl, citric acid, quinine and MSG (Lick paradigm). Results showed that most cells were excited by exploration of a food-filled well, sometimes responding prior to contact with the food. In contrast, cells that were excited by food well exploration became significantly less active while the animal was eating the food. Most cells were broadly tuned across foods, and those cells that were recorded in both the Lick and Eating paradigms showed little correspondence in their tuning across paradigms. The preponderance of robust responses to the appetitive versus the consummatory phase of ingestion suggests that multimodal convergence onto cells in the rNTS may be used in decision making about ingestion.
Collapse
Affiliation(s)
- Stephen A. Pilato
- Dept. of Psychology, Box 6000, Binghamton University, Binghamton, NY 13902-6000
| | - Flynn P. O’Connell
- Dept. of Psychology, Box 6000, Binghamton University, Binghamton, NY 13902-6000
- Current address: Elizabeth R. Miller Brain Observatory, The Rockefeller University, NY, NY
| | - Jonathan D. Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, NY, NY 10065
| | | |
Collapse
|
4
|
Hua A, Dong TV, Maier JX. The effect of multisensory context and experience on flavor preference decisions in rats. Physiol Behav 2024; 276:114480. [PMID: 38307360 PMCID: PMC10922607 DOI: 10.1016/j.physbeh.2024.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Flavor is perceived through multiple senses, including gustation and olfaction. Previous studies have shown that different sensory qualities that make up flavor are integrated to inform perceptual judgements. Psychophysical work in humans further suggests a prominent role for congruency (i.e., the learnt correspondence between taste and odor components of flavor through eating experience) in shaping multisensory interactions underlying perceptual judgments of flavor. However, eating experience cannot be controlled in humans, and depending on the type of judgement, these studies yielded mixed findings. Here, we used rats to test how experimentally-controlled experience with specific flavor mixtures (OdorA+TasteA and OdorB +TasteB) from weaning to adulthood affects subsequent flavor preference judgements in a series of two-bottle preference tests. In unisensory conditions, animals made odor or taste preference decisions (i.e., OdorA versus OdorB and TasteA versus TasteB, respectively). In multisensory conditions, animals made identical decisions, but the addition of the other modality rendered one solution congruent; the other one incongruent (e.g., OdorA+TasteA versus OdorB+TasteA). The results show that animals effectively learned congruency associations between the taste and smell components of experienced flavor mixtures. Comparing unisensory and multisensory conditions revealed no systematic effect of congruency on the magnitude of flavor preference, but preferences were less variable in multisensory compared to unisensory conditions. Results from a second group of naïve animals further demonstrate that increased reliability of preference judgements in multisensory conditions was independent of experience.
Collapse
Affiliation(s)
- Alex Hua
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Timothy V Dong
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Joost X Maier
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
5
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Poli A, Cappellini F, Sala J, Miccoli M. The integrative process promoted by EMDR in dissociative disorders: neurobiological mechanisms, psychometric tools, and intervention efficacy on the psychological impact of the COVID-19 pandemic. Front Psychol 2023; 14:1164527. [PMID: 37727746 PMCID: PMC10505816 DOI: 10.3389/fpsyg.2023.1164527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
Dissociative disorders (DDs) are characterized by a discontinuity in the normal integration of consciousness, memory, identity, emotion, perception, bodily representation, motor control, and action. The life-threatening coronavirus disease 2019 (COVID-19) pandemic has been identified as a potentially traumatic event and may produce a wide range of mental health problems, such as depression, anxiety disorders, sleep disorders, and DD, stemming from pandemic-related events, such as sickness, isolation, losing loved ones, and fear for one's life. In our conceptual analysis, we introduce the contribution of the structural dissociation of personality (SDP) theory and polyvagal theory to the conceptualization of the COVID-19 pandemic-triggered DD and the importance of assessing perceived safety in DD through neurophysiologically informed psychometric tools. In addition, we analyzed the contribution of eye movement desensitization and reprocessing (EMDR) to the treatment of the COVID-19 pandemic-triggered DD and suggest possible neurobiological mechanisms of action of the EMDR. In particular, we propose that, through slow eye movements, the EMDR may promote an initial non-rapid-eye-movement sleep stage 1-like activity, a subsequent access to a slow-wave sleep activity, and an oxytocinergic neurotransmission that, in turn, may foster the functional coupling between paraventricular nucleus and both sympathetic and parasympathetic cardioinhibitory nuclei. Neurophysiologically informed psychometric tools for safety evaluation in DDs are discussed. Furthermore, clinical and public health implications are considered, combining the EMDR, SDP theory, and polyvagal conceptualizations in light of the potential dissociative symptomatology triggered by the COVID-19 pandemic.
Collapse
|
7
|
Idris A, Christensen BA, Walker EM, Maier JX. Multisensory integration of orally-sourced gustatory and olfactory inputs to the posterior piriform cortex in awake rats. J Physiol 2023; 601:151-169. [PMID: 36385245 PMCID: PMC9869978 DOI: 10.1113/jp283873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Flavour refers to the sensory experience of food, which is a combination of sensory inputs sourced from multiple modalities during consumption, including taste and odour. Previous work has demonstrated that orally-sourced taste and odour cues interact to determine perceptual judgements of flavour stimuli, although the underlying cellular- and circuit-level neural mechanisms remain unknown. We recently identified a region of the piriform olfactory cortex in rats that responds to both taste and odour stimuli. Here, we investigated how converging taste and odour inputs to this area interact to affect single neuron responsiveness ensemble coding of flavour identity. To accomplish this, we recorded spiking activity from ensembles of single neurons in the posterior piriform cortex (pPC) in awake, tasting rats while delivering taste solutions, odour solutions and taste + odour mixtures directly into the oral cavity. Our results show that taste and odour inputs evoke highly selective, temporally-overlapping responses in multisensory pPC neurons. Comparing responses to mixtures and their unisensory components revealed that taste and odour inputs interact in a non-linear manner to produce unique response patterns. Taste input enhances trial-by-trial decoding of odour identity from small ensembles of simultaneously recorded neurons. Together, these results demonstrate that taste and odour inputs to pPC interact in complex, non-linear ways to form amodal flavour representations that enhance identity coding. KEY POINTS: Experience of food involves taste and smell, although how information from these different senses is combined by the brain to create our sense of flavour remains unknown. We recorded from small groups of neurons in the olfactory cortex of awake rats while they consumed taste solutions, odour solutions and taste + odour mixtures. Taste and smell solutions evoke highly selective responses. When presented in a mixture, taste and smell inputs interacted to alter responses, resulting in activation of unique sets of neurons that could not be predicted by the component responses. Synergistic interactions increase discriminability of odour representations. The olfactory cortex uses taste and smell to create new information representing multisensory flavour identity.
Collapse
Affiliation(s)
- Ammar Idris
- Department of Neurobiology & AnatomyWake Forest School of MedicineWinston‐SalemNCUSA
| | - Brooke A. Christensen
- Department of Neurobiology & AnatomyWake Forest School of MedicineWinston‐SalemNCUSA
| | - Ellen M. Walker
- Department of Neurobiology & AnatomyWake Forest School of MedicineWinston‐SalemNCUSA
| | - Joost X. Maier
- Department of Neurobiology & AnatomyWake Forest School of MedicineWinston‐SalemNCUSA
| |
Collapse
|
8
|
Fredericksen KE, Samuelsen CL. Neural Representation of Intraoral Olfactory and Gustatory Signals by the Mediodorsal Thalamus in Alert Rats. J Neurosci 2022; 42:8136-8153. [PMID: 36171086 PMCID: PMC9636993 DOI: 10.1523/jneurosci.0674-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
The mediodorsal thalamus is a multimodal region involved in a variety of cognitive behaviors, including olfactory attention, odor discrimination, and the hedonic perception of flavors. Although the mediodorsal thalamus forms connections with principal regions of the olfactory and gustatory networks, its role in processing olfactory and gustatory signals originating from the mouth remains unclear. Here, we recorded single-unit activity in the mediodorsal thalamus of behaving female rats during the intraoral delivery of individual odors, individual tastes, and odor-taste mixtures. Our results are the first to demonstrate that neurons in the mediodorsal thalamus dynamically encode chemosensory signals originating from the mouth. This chemoselective population is broadly tuned, exhibits excited and suppressed responses, and responds to odor-taste mixtures differently than an odor or taste alone. Furthermore, a subset of chemoselective neurons encodes the palatability-related features of tastes and may represent associations between previously experienced odor-taste pairs. Our results further demonstrate the multidimensionality of the mediodorsal thalamus and provide additional evidence of its involvement in processing chemosensory information important for ingestive behaviors.SIGNIFICANCE STATEMENT The perception of food relies on the concurrent processing of olfactory and gustatory signals originating from the mouth. The mediodorsal thalamus is a higher-order thalamic nucleus involved in a variety of chemosensory-dependent behaviors and connects the olfactory and gustatory cortices with the prefrontal cortex. However, it is unknown how neurons in the mediodorsal thalamus process intraoral chemosensory signals. Using tetrode recordings in alert rats, our results are the first to show that neurons in the mediodorsal thalamus dynamically represent olfactory and gustatory signals from the mouth. Our findings are consistent with the mediodorsal thalamus being a key node between sensory and prefrontal cortical areas for processing chemosensory information underlying ingestive behavior.
Collapse
Affiliation(s)
- Kelly E Fredericksen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292
| | - Chad L Samuelsen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
9
|
Cousens GA, Fotis MM, Bradshaw CM, Ramirez-Alvarado YM, McKittrick CR. Characterization of Retronasal Airflow Patterns during Intraoral Fluid Discrimination Using a Low-Cost, Open-Source Biosensing Platform. SENSORS (BASEL, SWITZERLAND) 2022; 22:6817. [PMID: 36146175 PMCID: PMC9505993 DOI: 10.3390/s22186817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Nasal airflow plays a critical role in olfactory processes, and both retronasal and orthonasal olfaction involve sensorimotor processes that facilitate the delivery of volatiles to the olfactory epithelium during odor sampling. Although methods are readily available for monitoring nasal airflow characteristics in laboratory and clinical settings, our understanding of odor sampling behavior would be enhanced by the development of inexpensive wearable technologies. Thus, we developed a method of monitoring nasal air pressure using a lightweight, open-source brain-computer interface (BCI) system and used the system to characterize patterns of retronasal airflow in human participants performing an oral fluid discrimination task. Participants exhibited relatively sustained low-rate retronasal airflow during sampling punctuated by higher-rate pulses often associated with deglutition. Although characteristics of post-deglutitive pulses did not differ across fluid conditions, the cumulative duration, probability, and estimated volume of retronasal airflow were greater during discrimination of perceptually similar solutions. These findings demonstrate the utility of a consumer-grade BCI system in assessing human olfactory behavior. They suggest further that sensorimotor processes regulate retronasal airflow to optimize the delivery of volatiles to the olfactory epithelium and that discrimination of perceptually similar oral fluids may be accomplished by varying the duration of optimal airflow rate.
Collapse
Affiliation(s)
- Graham A. Cousens
- Department of Psychology, Drew University, 36 Madison Avenue, Madison, NJ 07940, USA
- Neuroscience Program, Drew University, 36 Madison Avenue, Madison, NJ 07940, USA
| | | | | | | | - Christina R. McKittrick
- Neuroscience Program, Drew University, 36 Madison Avenue, Madison, NJ 07940, USA
- Department of Biology, Drew University, 36 Madison Avenue, Madison, NJ 07940, USA
| |
Collapse
|
10
|
Mazzatenta A, Maffei M, Di Giulio C, Neri G. COVID-19 Smell Impairment and Crosstalk with Hypoxia Physiology. Life (Basel) 2022; 12:life12091408. [PMID: 36143443 PMCID: PMC9505897 DOI: 10.3390/life12091408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 12/21/2022] Open
Abstract
Since its apomorphic appearance in 2019, severe acute respiratory syndrome Coronavirus type 2 (SARS-CoV-2) nowadays circulates as a plesiomorphic human virus in several synapomorphic variants. The respiratory tract is the most important site of infection, the viral effects in the lungs are well described, and more than half of the patients could develop shortness of breath and dyspnea and require ventilatory support. The physiological sign of this condition is the decrease in the partial pressure of oxygen in the blood, leading to acute hypoxia, which could be a factor in the disease. In severe patients, we recorded several physiological parameters: breath frequency (BF), partial pressure of oxygen in the blood (pO2), partial pressure of carbon dioxide in the blood (pCO2), hemoglobin (Hb), heart rate (HR), and blood pressure in correlation with the olfactory threshold. We found significant correlations between reduced olfactory threshold with pO2 and hemoglobin levels, changes in heart rate, and increased HR and pCO2. These results suggest that COVID-19 causes an impaired sense of smell that decreases in threshold corresponding to the disease severity.
Collapse
Affiliation(s)
- Andrea Mazzatenta
- Neurophysiology, Olfaction and Chemoreception Laboratory, Physiology and Physiopathology Section, Neuroscience, Imaging and Clinical Sciences Department, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | - Margherita Maffei
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy
| | - Camillo Di Giulio
- Neurophysiology, Olfaction and Chemoreception Laboratory, Physiology and Physiopathology Section, Neuroscience, Imaging and Clinical Sciences Department, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giampiero Neri
- Neurophysiology, Olfaction and Chemoreception Laboratory, Physiology and Physiopathology Section, Neuroscience, Imaging and Clinical Sciences Department, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
11
|
Steenken F, Oetjen H, Beutelmann R, Carney LH, Koeppl C, Klump GM. Neural processing and perception of Schroeder-phase harmonic tone complexes in the gerbil: Relating single-unit neurophysiology to behavior. Eur J Neurosci 2022; 56:4060-4085. [PMID: 35724973 PMCID: PMC9632632 DOI: 10.1111/ejn.15744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
Schroeder-phase harmonic tone complexes have been used in physiological and psychophysical studies in several species to gain insight into cochlear function. Each pitch period of the Schroeder stimulus contains a linear frequency sweep; the duty cycle, sweep velocity, and direction are controlled by parameters of the phase spectrum. Here, responses to a range of Schroeder-phase harmonic tone complexes were studied both behaviorally and in neural recordings from the auditory nerve and inferior colliculus of Mongolian gerbils. Gerbils were able to discriminate Schroeder-phase harmonic tone complexes based on sweep direction, duty cycle, and/or velocity for fundamental frequencies up to 200 Hz. Temporal representation in neural responses based on the van Rossum spike-distance metric, with time constants of either 1 ms or related to the stimulus' period, was compared to average discharge rates. Neural responses and behavioral performance were both expressed in terms of sensitivity, d', to allow direct comparisons. Our results suggest that in the auditory nerve, stimulus fine structure is represented by spike timing while envelope is represented by rate. In the inferior colliculus, both temporal fine structure and envelope appear to be represented best by rate. However, correlations between neural d' values and behavioral sensitivity for sweep direction were strongest for both temporal metrics, for both auditory nerve and inferior colliculus. Furthermore, the high sensitivity observed in the inferior colliculus neural rate-based discrimination suggests that these neurons integrate across multiple inputs arising from the auditory periphery.
Collapse
Affiliation(s)
- Friederike Steenken
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Henning Oetjen
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Rainer Beutelmann
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Laurel H Carney
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.,Hanse-Wissenschaftskolleg, Delmenhorst, Germany
| | - Christine Koeppl
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Georg M Klump
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
12
|
Samuelsen CL, Vincis R. Cortical Hub for Flavor Sensation in Rodents. Front Syst Neurosci 2021; 15:772286. [PMID: 34867223 PMCID: PMC8636119 DOI: 10.3389/fnsys.2021.772286] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/21/2021] [Indexed: 01/05/2023] Open
Abstract
The experience of eating is inherently multimodal, combining intraoral gustatory, olfactory, and somatosensory signals into a single percept called flavor. As foods and beverages enter the mouth, movements associated with chewing and swallowing activate somatosensory receptors in the oral cavity, dissolve tastants in the saliva to activate taste receptors, and release volatile odorant molecules to retronasally activate olfactory receptors in the nasal epithelium. Human studies indicate that sensory cortical areas are important for intraoral multimodal processing, yet their circuit-level mechanisms remain unclear. Animal models allow for detailed analyses of neural circuits due to the large number of molecular tools available for tracing and neuronal manipulations. In this review, we concentrate on the anatomical and neurophysiological evidence from rodent models toward a better understanding of the circuit-level mechanisms underlying the cortical processing of flavor. While more work is needed, the emerging view pertaining to the multimodal processing of food and beverages is that the piriform, gustatory, and somatosensory cortical regions do not function solely as independent areas. Rather they act as an intraoral cortical hub, simultaneously receiving and processing multimodal sensory information from the mouth to produce the rich and complex flavor experience that guides consummatory behavior.
Collapse
Affiliation(s)
- Chad L Samuelsen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States
| | - Roberto Vincis
- Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
13
|
Lyu C, Schijvens D, Hayes JE, Stieger M. Capsaicin burn increases thickness discrimination thresholds independently of chronic chili intake. Food Res Int 2021; 149:110702. [PMID: 34600694 DOI: 10.1016/j.foodres.2021.110702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
The trigeminal nerve transduces both chemical irritation and textural sensations suggesting that perception in one may influence perception in the other. Little is known about how the oral burn of capsaicin may affect texture sensitivity. The aim of this study was to determine the effect of burning sensations on thickness discrimination thresholds in liquid foods assessed by consumers who vary in habitual spicy food intake. Forty-seven Caucasian participants (31 females and 16 males; mean age: 25.0 ± 5.7 yrs; mean BMI: 21.5 ± 2.6 kg/m2) were recruited in the Netherlands. Chili pepper intake frequency and preference for chili peppers and spicy foods were assessed using questionnaires. Perceived burn and disliking/liking of bouillon soups thickened with xanthan gum (concentrations ranging from 0.06 to 0.21 g/mL; viscosity at 50 s-1 (η50s-1) ranging from 11 to 48 mPas) containing varying amounts of capsaicin (0, 1, or 10 ppm) were determined using generalized scales (gLMS and gDOL). Estimates of thickness discrimination thresholds were determined using the 2-Alternative Forced Choice ascending staircase method. Capsaicin was applied in two ways: (i) capsaicin was added directly to the soups or (ii) a pre-rinse of a capsaicin solution was held in mouth before evaluating soups without capsaicin. As expected, frequent chili pepper consumers reported significantly lower burn intensity and higher hedonic ratings compared to infrequent consumers. Thickness discrimination thresholds (i.e., BET expressed as Δη50s-1) increased significantly from 11.3 mPas at 0 ppm to 16.1 mPas at 1 ppm (42% increase) to 21.4 mPas at 10 ppm capsaicin (89% increase) on average across all participants. Similar modification of thickness discrimination thresholds were observed regardless of whether capsaicin was added to the soup or was applied as a pre-rinse. No significant differences in thickness discrimination thresholds were observed between infrequent and frequent chili consumers. We conclude that oral burn caused by capsaicin affects thickness discrimination independently of reported chili pepper intake. Also, we suggest the ability of capsaicin to alter thickness discrimination may be due to increased neural noise, attentional effects or cross-modal interactions.
Collapse
Affiliation(s)
- Cong Lyu
- Division of Human Nutrition and Health, Wageningen University, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Daan Schijvens
- Division of Human Nutrition and Health, Wageningen University, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - John E Hayes
- Sensory Evaluation Center, Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, 220 Food Science Building, University Park, PA 16802, USA
| | - Markus Stieger
- Division of Human Nutrition and Health, Wageningen University, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
14
|
Poli A, Maremmani AGI, Chiorri C, Mazzoni GP, Orrù G, Kolacz J, Porges SW, Conversano C, Gemignani A, Miccoli M. Item Reduction, Psychometric and Biometric Properties of the Italian Version of the Body Perception Questionnaire-Short Form (BPQ-SF): The BPQ-22. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3835. [PMID: 33917552 PMCID: PMC8038843 DOI: 10.3390/ijerph18073835] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
Body awareness disorders and reactivity are mentioned across a range of clinical problems. Constitutional differences in the control of the bodily state are thought to generate a vulnerability to psychological symptoms. Autonomic nervous system dysfunctions have been associated with anxiety, depression, and post-traumatic stress. Though interoception may be a transdiagnostic mechanism promoting the improvement of clinical symptomatology, few psychometrically sound, symptom-independent, self-report measures, informed by brain-body circuits, are available for research and clinical use. We validated the Italian version of the body perception questionnaire (BPQ)-short form and found that response categories could be collapsed from five to three and that the questionnaire retained a three-factor structure with items reduced from 46 to 22 (BPQ-22). The first factor was loaded by body awareness items; the second factor comprised some items from the body awareness scale and some from the subdiaphragmatic reactivity scale (but all related to bloating and digestive issues), and the third factor by supradiaphragmatic reactivity items. The BPQ-22 had sound psychometric properties, good convergent and discriminant validity and test-retest reliability and could be used in clinical and research settings in which the body perception assessment is of interest. Psychometric findings in light of the polyvagal theory are discussed.
Collapse
Affiliation(s)
- Andrea Poli
- Department of Surgical, Medical and Molecular Pathology and of Critical Care Medicine, University of Pisa, 56126 Pisa, Italy; (G.O.); (C.C.); (A.G.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
- Verdi Clinical Center, 59100 Prato, Italy
- Florence Cognitive School, 50144 Florence, Italy;
| | - Angelo Giovanni Icro Maremmani
- Department of Psychiatry, North-Western Tuscany Region NHS Local Health Unit, Versilia Zone, 55049 Viareggio, Italy;
- Association for the Application of Neuroscientific Knowledge to Social Aims (AU-CNS), 55045 Pietrasanta, Italy
- G. De Lisio Institute of Behavioral Sciences, 56100 Pisa, Italy
| | - Carlo Chiorri
- Department of Educational Sciences, University of Genova, 16121 Genova, Italy;
| | | | - Graziella Orrù
- Department of Surgical, Medical and Molecular Pathology and of Critical Care Medicine, University of Pisa, 56126 Pisa, Italy; (G.O.); (C.C.); (A.G.)
| | - Jacek Kolacz
- Traumatic Stress Research Consortium at the Kinsey Institute, Indiana University, Bloomington, IN 47405, USA; (J.K.); (S.W.P.)
| | - Stephen W. Porges
- Traumatic Stress Research Consortium at the Kinsey Institute, Indiana University, Bloomington, IN 47405, USA; (J.K.); (S.W.P.)
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Ciro Conversano
- Department of Surgical, Medical and Molecular Pathology and of Critical Care Medicine, University of Pisa, 56126 Pisa, Italy; (G.O.); (C.C.); (A.G.)
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and of Critical Care Medicine, University of Pisa, 56126 Pisa, Italy; (G.O.); (C.C.); (A.G.)
| | - Mario Miccoli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
15
|
Avery JA. Against gustotopic representation in the human brain: There is no Cartesian Restaurant. CURRENT OPINION IN PHYSIOLOGY 2021; 20:23-28. [PMID: 33521413 PMCID: PMC7839947 DOI: 10.1016/j.cophys.2021.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The insular cortex is still one of the least understood cortical regions in the human brain. This review will highlight research on taste quality representation within the human insular cortex. Much of the controversy surrounding this topic is based in the ongoing debate over different theories of peripheral taste coding. When translated to the study of gustatory cortex, this has generated a distinct set of theoretical models, namely the topographic (or 'gustotopic') and population coding models of taste organization. Recent investigations into this topic have employed high-resolution functional neuroimaging methods and multivariate analytic approaches to examine taste quality coding in the human brain. Collectively, these recent studies do not support the topographic model of taste quality representation, but rather one where taste quality is represented by distributed patterns of activation within gustatory regions of the insula.
Collapse
Affiliation(s)
- Jason A Avery
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, United States, 20892
| |
Collapse
|
16
|
|
17
|
Lorenzo PMD. Neural Coding of Food Is a Multisensory, Sensorimotor Function. Nutrients 2021; 13:nu13020398. [PMID: 33513918 PMCID: PMC7911409 DOI: 10.3390/nu13020398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
This review is a curated discussion of the relationship between the gustatory system and the perception of food beginning at the earliest stage of neural processing. A brief description of the idea of taste qualities and mammalian anatomy of the taste system is presented first, followed by an overview of theories of taste coding. The case is made that food is encoded by the several senses that it stimulates beginning in the brainstem and extending throughout the entire gustatory neuraxis. In addition, the feedback from food-related movements is seamlessly melded with sensory input to create the representation of food objects in the brain.
Collapse
Affiliation(s)
- Patricia M Di Lorenzo
- Department of Psychology, Binghamton University, Box 6000, Binghamton, NY 13902-6000, USA
| |
Collapse
|
18
|
Enhancing GABAergic Tone in the Rostral Nucleus of the Solitary Tract Reconfigures Sensorimotor Neural Activity. J Neurosci 2021; 41:489-501. [PMID: 33234608 DOI: 10.1523/jneurosci.0388-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 11/21/2022] Open
Abstract
Recent work has shown that most cells in the rostral, gustatory portion of the nucleus tractus solitarius (rNTS) in awake, freely licking rats show lick-related firing. However, the relationship between taste-related and lick-related activity in rNTS remains unclear. Here, we tested whether GABA-derived inhibitory activity regulates the balance of lick- and taste-driven neuronal activity. Combinatorial viral tools were used to restrict the expression of channelrhodopsin 2-enhanced yellow fluorescent protein to GAD1+ GABAergic neurons. Viral infusions were bilateral in rNTS. A fiber-optic fiber attached to a bundle of drivable microwires was later implanted into the rNTS. After recovery, water-deprived rats were presented with taste stimuli in an experimental chamber. Trials were five consecutive taste licks [NaCl, KCl, NH4Cl, sucrose, monosodium glutamate/inosine-5'-monophosphate, citric acid, quinine, or artificial saliva (AS)] separated by five AS rinse licks on a variable ratio 5 schedule. Each taste lick triggered a 1 s train of laser light (25 Hz; 473 nm; 8-10 mW) in a random half of the trials. In all, 113 cells were recorded in the rNTS, 50 cells responded to one or more taste stimuli without GABA enhancement. Selective changes in response magnitude (spike count) within cells shifted across-unit patterns but preserved interstimulus relationships. Cells where enhanced GABAergic tone increased lick coherence conveyed more information distinguishing basic taste qualities and different salts than other cells. In addition, GABA activation significantly amplified the amount of information that discriminated palatable versus unpalatable tastants. By dynamically regulating lick coherence and remodeling the across-unit response patterns to taste, enhancing GABAergic tone in rNTS reconfigures the neural activity reflecting sensation and movement.
Collapse
|
19
|
Zheng M, Xu J, Keniston L, Wu J, Chang S, Yu L. Choice-dependent cross-modal interaction in the medial prefrontal cortex of rats. Mol Brain 2021; 14:13. [PMID: 33446258 PMCID: PMC7809823 DOI: 10.1186/s13041-021-00732-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/08/2021] [Indexed: 11/25/2022] Open
Abstract
Cross-modal interaction (CMI) could significantly influence the perceptional or decision-making process in many circumstances. However, it remains poorly understood what integrative strategies are employed by the brain to deal with different task contexts. To explore it, we examined neural activities of the medial prefrontal cortex (mPFC) of rats performing cue-guided two-alternative forced-choice tasks. In a task requiring rats to discriminate stimuli based on auditory cue, the simultaneous presentation of an uninformative visual cue substantially strengthened mPFC neurons' capability of auditory discrimination mainly through enhancing the response to the preferred cue. Doing this also increased the number of neurons revealing a cue preference. If the task was changed slightly and a visual cue, like the auditory, denoted a specific behavioral direction, mPFC neurons frequently showed a different CMI pattern with an effect of cross-modal enhancement best evoked in information-congruent multisensory trials. In a choice free task, however, the majority of neurons failed to show a cross-modal enhancement effect and cue preference. These results indicate that CMI at the neuronal level is context-dependent in a way that differs from what has been shown in previous studies.
Collapse
Affiliation(s)
- Mengyao Zheng
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, and School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Jinghong Xu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, and School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Les Keniston
- Department of Physical Therapy, University of Maryland Eastern Shore, Princess Anne, MD 21853 USA
| | - Jing Wu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, and School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Song Chang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, and School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Liping Yu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, and School of Life Sciences, East China Normal University, Shanghai, 200062 China
| |
Collapse
|
20
|
Mazzatenta A, Neri G, D'Ardes D, De Luca C, Marinari S, Porreca E, Cipollone F, Vecchiet J, Falcicchia C, Panichi V, Origlia N, Di Giulio C. Smell and Taste in Severe CoViD-19: Self-Reported vs. Testing. Front Med (Lausanne) 2020; 7:589409. [PMID: 33344476 PMCID: PMC7745760 DOI: 10.3389/fmed.2020.589409] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/07/2020] [Indexed: 01/05/2023] Open
Abstract
One of the most striking reported symptoms in CoViD-19 is loss of smell and taste. The frequency of these impairments and their specificity as a potential central nervous system function biomarker are of great interest as a diagnostic clue for CoViD-19 infection as opposed to other similar symptomatologic diseases and because of their implication in viral pathogenesis. Here severe CoViD-19 was investigated by comparing self-report vs. testing of smell and taste, thus the objective severity of olfactory impairment and their possible correlation with other symptoms. Because a significant discrepancy between smell and taste testing vs. self-report results (p < 0.001) emerges in our result, we performed a statistical analysis highlighting disagreement among normosmia (p < 0.05), hyposmia, severe hyposmia, and anosmia (p < 0.001) and, in hypogeusia and severe hypogeusia, while no differences are observed in normogeusia and ageusia. Therefore, we analyzed the olfactory threshold by an objective test revealing the distribution of hyposmic (34%), severe hyposmic (48%), and anosmic (13%) patients in severe CoViD-19. In severe CoViD-19 patients, taste is lost in 4.3% of normosmic individuals, 31.9% of hyposmic individuals, 46.8% of severe hyposmic individuals, and 17% of anosmic individuals. Moreover, 95% of 100 CoViD-19 patients objectively tested were affected by smell dysfunction, while 47% were affected by taste dysfunction. Furthermore, analysis by objective testing also highlighted that the severity of smell dysfunction in CoViD-19 subjects did not correlate with age and sex. In conclusion, we report by objective testing that the majority of CoViD-19 patients report severe anosmia, that most of the subjects have olfactory impairment rather than taste impairment, and, finally, that the olfactory impairment correlate with symptom onset and hospitalization (p < 0.05). Patients who exhibit severe olfactory impairment had been hospitalized for about a week from symptom onset; double time has taken place in subjects with normosmia. Our results may be limited by the relatively small number of study participants, but these suggest by objective testing that hyposmia, severe hyposmia, and anosmia may relate directly to infection severity and neurological damage. The smell test assessment could be a potential screening symptom that might contribute to the decision to test suspected cases or guide quarantine instructions, further therapeutic approach, and evaluation of neurological damage.
Collapse
Affiliation(s)
- Andrea Mazzatenta
- Neurophysiology, Olfaction and Chemoreception Laboratory, Physiology and Physiopathology Section, Neuroscience, Imaging and Clinical Sciences Department, ‘G. d'Annunzio’ University of Chieti-Pescara, Chieti, Italy
| | - Giampiero Neri
- Neurophysiology, Olfaction and Chemoreception Laboratory, Physiology and Physiopathology Section, Neuroscience, Imaging and Clinical Sciences Department, ‘G. d'Annunzio’ University of Chieti-Pescara, Chieti, Italy
| | - Damiano D'Ardes
- Medicine and Aging Sciences Department, 'G. d'Annunzio'University of Chieti-Pescara, Chieti, Italy
| | - Carlo De Luca
- Neurophysiology, Olfaction and Chemoreception Laboratory, Physiology and Physiopathology Section, Neuroscience, Imaging and Clinical Sciences Department, ‘G. d'Annunzio’ University of Chieti-Pescara, Chieti, Italy
| | | | - Ettore Porreca
- Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio'University of Chieti-Pescara, Chieti, Italy
| | - Francesco Cipollone
- Medicine and Aging Sciences Department, 'G. d'Annunzio'University of Chieti-Pescara, Chieti, Italy
| | - Jacopo Vecchiet
- Medicine and Aging Sciences Department, 'G. d'Annunzio'University of Chieti-Pescara, Chieti, Italy
| | | | - Vincenzo Panichi
- Nephrology and Dialysis Unit, Unità Sanitaria Locale Toscana Nord Ovest-Versilia Hospital, Camaiore, Italy
| | - Nicola Origlia
- Neuroscience Institute, National Council of Research, Pisa, Italy
| | - Camillo Di Giulio
- Neurophysiology, Olfaction and Chemoreception Laboratory, Physiology and Physiopathology Section, Neuroscience, Imaging and Clinical Sciences Department, ‘G. d'Annunzio’ University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
21
|
Neural Isolation of the Olfactory Bulbs Severely Impairs Taste-Guided Behavior to Normally Preferred, But Not Avoided, Stimuli. eNeuro 2020; 7:ENEURO.0026-20.2020. [PMID: 32152061 PMCID: PMC7142272 DOI: 10.1523/eneuro.0026-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/02/2022] Open
Abstract
Here we systematically tested the hypothesis that motivated behavioral responsiveness to preferred and avoided taste compounds is relatively independent of the olfactory system in mice whose olfactory bulbs (main and accessory) were surgically disconnected from the rest of the brain [bulbotomy (BULBx)]. BULBx was confirmed histologically as well as functionally with the buried food test. In brief access taste tests, animals received 10-s trials of various concentrations of a taste compound delivered quasirandomly. BULBx C57BL/6 (B6) mice displayed severely blunted concentration-dependent licking for the disaccharide sucrose, the maltodextrin Maltrin, and the fat emulsion Intralipid relative to their sham-operated controls (SHAM B6). Licking for the noncaloric sweetener saccharin was also blunted by bulbotomy, but less so. As expected, mice lacking a functional “sweet” receptor [T1R2+T1R3 knockout (KO)] displayed concentration-dependent responsiveness to Maltrin and severely attenuated licking to sucrose. Like in B6 mice, responsiveness to both stimuli was exceptionally curtailed by bulbotomy. In contrast to these deficits in taste-guided behavior for unconditionally preferred stimuli, BULBx in B6 and KO mice did not alter concentration-dependent decreases for the representative avoided stimuli quinine and citric acid. Nor did it temper the intake of and preference for high concentrations of affectively positive stimuli when presented in long-term (23-h) two-bottle tests, demonstrating that the surgery does not lead to a generalized motivational deficit. Collectively, these behavioral results demonstrate that specific aspects of taste-guided ingestive motivation are profoundly disturbed by eliminating the anatomic connections between the main/accessory olfactory bulbs and the rest of the brain.
Collapse
|
22
|
Staszko SM, Boughter JD, Fletcher ML. Taste coding strategies in insular cortex. Exp Biol Med (Maywood) 2020; 245:448-455. [PMID: 32106700 DOI: 10.1177/1535370220909096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While the cortical representation of sensory stimuli is well described for some sensory systems, a clear understanding of the cortical representation of taste stimuli remains elusive. Recent investigations have focused on both spatial and temporal organization of taste responses in the putative taste region of insular cortex. This review highlights recent literature focused on spatiotemporal coding strategies in insular cortex. These studies are examined in the context of the organization and function of the entire insular cortex, rather than a specific gustatory region of insular cortex. In regard to a taste quality-specific map, imaging studies have reported conflicting results, whereas electrophysiology studies have described a broad distribution of taste-responsive neurons found throughout insular cortex with no spatial organization. The current collection of evidence suggests that insular cortex may be organized into a hedonic or “viscerotopic” map, rather than one ordered according to taste quality. Further, it has been proposed that cortical taste responses can be separated into temporal “epochs” representing stimulus identity and palatability. This coding strategy presents a potential framework, whereby the coordinated activity of a population of neurons allows for the same neurons to respond to multiple taste stimuli or even other sensory modalities, a well-documented phenomenon in insular cortex neurons. However, these representations may not be static, as several studies have demonstrated that both spatial representation and temporal dynamics of taste coding change with experience. Collectively, these studies suggest that cortical taste representation is not organized in a spatially discrete map, but rather is plastic and spatially dispersed, using temporal information to encode multiple types of information about ingested stimuli. Impact statement The organization of taste coding in insular cortex is widely debated. While early work has focused on whether taste quality is encoded via labeled line or ensemble mechanisms, recent work has attempted to delineate the spatial organization and temporal components of taste processing in insular cortex. Recent imaging and electrophysiology studies have reported conflicting results in regard to the spatial organization of cortical taste responses, and many studies ignore potentially important temporal dynamics when investigating taste processing. This review highlights the latest research in these areas and examines them in the context of the anatomy and physiology of the insular cortex in general to provide a more comprehensive description of taste coding in insular cortex.
Collapse
Affiliation(s)
- Stephanie M Staszko
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - John D Boughter
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Max L Fletcher
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
23
|
Weiss MS, Hajnal A, Czaja K, Di Lorenzo PM. Taste Responses in the Nucleus of the Solitary Tract of Awake Obese Rats Are Blunted Compared With Those in Lean Rats. Front Integr Neurosci 2019; 13:35. [PMID: 31417373 PMCID: PMC6683675 DOI: 10.3389/fnint.2019.00035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/11/2019] [Indexed: 12/26/2022] Open
Abstract
Taste perception changes with obesity but the underlying neural changes remain poorly understood. To address this issue, we recorded taste responses from single cells in the nucleus tractus solitarius (NTS, the first synapse in the central gustatory circuit) in awake, diet-induced obese [(DIO; ≥ 8 weeks on a high-energy diet (45%fat, 17% sugar; HED)], and lean rats. Rats were implanted with a bundle of microelectrodes in the NTS and allowed to recover. Water-deprived rats were allowed to freely lick various tastants in an experimental chamber. Taste stimuli included an array of sapid stimuli dissolved in artificial saliva (AS). Each taste trial consisted of five consecutive licks followed by five AS licks presented on a VR5 schedule. Results showed that taste responses (n = 49 for DIO; n = 74 for lean rats) in NTS cells in DIO rats were smaller in magnitude, shorter in duration, and longer in latency that those in lean rats. However, there were proportionately more taste-responsive cells in DIO than in lean rats. Lick coherence in DIO rats was significantly lower than in lean rats, both in taste-responsive, and lick-related cells (n = 172 in lean; n = 65 in DIO). Analyses of temporal coding showed that taste cells in DIO rats conveyed less information about taste quality than cells in lean rats. Collectively, results suggest that a HED produces blunted, but more prevalent, responses to taste in the NTS, and a weakened association of taste responses with ingestive behavior. These neural adaptations may represent both negative effects and compensatory mechanisms of a HED that may underlie deficits in taste-related behavior associated with obesity.
Collapse
Affiliation(s)
- Michael S Weiss
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Krzysztof Czaja
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
24
|
Ohla K, Yoshida R, Roper SD, Di Lorenzo PM, Victor JD, Boughter JD, Fletcher M, Katz DB, Chaudhari N. Recognizing Taste: Coding Patterns Along the Neural Axis in Mammals. Chem Senses 2019; 44:237-247. [PMID: 30788507 PMCID: PMC6462759 DOI: 10.1093/chemse/bjz013] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The gustatory system encodes information about chemical identity, nutritional value, and concentration of sensory stimuli before transmitting the signal from taste buds to central neurons that process and transform the signal. Deciphering the coding logic for taste quality requires examining responses at each level along the neural axis-from peripheral sensory organs to gustatory cortex. From the earliest single-fiber recordings, it was clear that some afferent neurons respond uniquely and others to stimuli of multiple qualities. There is frequently a "best stimulus" for a given neuron, leading to the suggestion that taste exhibits "labeled line coding." In the extreme, a strict "labeled line" requires neurons and pathways dedicated to single qualities (e.g., sweet, bitter, etc.). At the other end of the spectrum, "across-fiber," "combinatorial," or "ensemble" coding requires minimal specific information to be imparted by a single neuron. Instead, taste quality information is encoded by simultaneous activity in ensembles of afferent fibers. Further, "temporal coding" models have proposed that certain features of taste quality may be embedded in the cadence of impulse activity. Taste receptor proteins are often expressed in nonoverlapping sets of cells in taste buds apparently supporting "labeled lines." Yet, taste buds include both narrowly and broadly tuned cells. As gustatory signals proceed to the hindbrain and on to higher centers, coding becomes more distributed and temporal patterns of activity become important. Here, we present the conundrum of taste coding in the light of current electrophysiological and imaging techniques at several levels of the gustatory processing pathway.
Collapse
Affiliation(s)
- Kathrin Ohla
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Ryusuke Yoshida
- Section of Oral Neuroscience and OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama City, Japan
| | - Stephen D Roper
- Department of Physiology and Biophysics, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Jonathan D Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - John D Boughter
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Max Fletcher
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Donald B Katz
- Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Nirupa Chaudhari
- Department of Physiology and Biophysics, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
25
|
Abstract
The gustatory system contributes to the flavor of foods and beverages and communicates information about nutrients and poisons. This system has evolved to detect and ultimately respond to hydrophilic molecules dissolved in saliva. Taste receptor cells, located in taste buds and distributed throughout the oral cavity, activate nerve afferents that project to the brainstem. From here, information propagates to thalamic, subcortical, and cortical areas, where it is integrated with information from other sensory systems and with homeostatic, visceral, and affective processes. There is considerable divergence, as well as convergence, of information between multiple regions of the central nervous system that interact with the taste pathways, with reciprocal connections occurring between the involved regions. These widespread interactions among multiple systems are crucial for the perception of food. For example, memory, hunger, satiety, and visceral changes can directly affect and can be affected by the experience of tasting. In this chapter, we review the literature on the central processing of taste with a specific focus on the anatomic and physiologic responses of single neurons. Emphasis is placed on how information is distributed along multiple systems with the goal of better understanding how the rich and complex sensations associated with flavor emerge from large-scale, systems-wide, interactions.
Collapse
|
26
|
Denman AJ, Sammons JD, Victor JD, Di Lorenzo PM. Heterogeneity of neuronal responses in the nucleus of the solitary tract suggests sensorimotor integration in the neural code for taste. J Neurophysiol 2018; 121:634-645. [PMID: 30565959 DOI: 10.1152/jn.00578.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Theories of neural coding in the taste system typically rely exclusively on data gleaned from taste-responsive cells. However, even in the nucleus tractus solitarius (NTS), the first stage of central processing, neurons with taste selectivity coexist with neurons whose activity is linked to motor behavior related to ingestion. We recorded from a large ( n = 324) sample of NTS neurons recorded in awake rats, examining both their taste selectivity and the association of their activity with licking. All subjects were implanted with a bundle of microelectrodes aimed at the NTS and allowed to recover. Following moderate water deprivation, rats were placed in an experimental chamber where tastants or artificial saliva (AS) were delivered from a lick spout. Electrophysiological responses were recorded, and waveforms from single cells were isolated offline. Results showed that only a minority of NTS cells responded to taste stimuli as determined by conventional firing-rate measures. In contrast, most cells, including taste-responsive cells, tracked the lick pattern, as evidenced by significant lick coherence in the 5- to 7-Hz range. Several quantitative measures of taste selectivity and lick relatedness showed that the population formed a continuum, ranging from cells dominated by taste responses to those dominated by lick relatedness. Moreover, even neurons whose responses were highly correlated with lick activity could convey substantial information about taste quality. In all, data point to a blurred boundary between taste-dominated and lick-related cells in NTS, suggesting that information from the taste of food and from the movements it evokes are seamlessly integrated. NEW & NOTEWORTHY Neurons in the rostral nucleus of the solitary tract (NTS) are known to encode information about taste. However, recordings from awake rats reveal that only a minority of NTS cells respond exclusively to taste stimuli. The majority of neurons track behaviors associated with food consumption, and even strongly lick-related neurons could convey information about taste quality. These findings suggest that the NTS integrates information from both taste and behavior to identify food.
Collapse
Affiliation(s)
| | - Joshua D Sammons
- Department of Psychology, Binghamton University , Binghamton, New York
| | - Jonathan D Victor
- Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medical College , New York, New York
| | | |
Collapse
|
27
|
Follmann R, Goldsmith CJ, Stein W. Multimodal sensory information is represented by a combinatorial code in a sensorimotor system. PLoS Biol 2018; 16:e2004527. [PMID: 30321170 PMCID: PMC6201955 DOI: 10.1371/journal.pbio.2004527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/25/2018] [Accepted: 10/02/2018] [Indexed: 11/22/2022] Open
Abstract
A ubiquitous feature of the nervous system is the processing of simultaneously arriving sensory inputs from different modalities. Yet, because of the difficulties of monitoring large populations of neurons with the single resolution required to determine their sensory responses, the cellular mechanisms of how populations of neurons encode different sensory modalities often remain enigmatic. We studied multimodal information encoding in a small sensorimotor system of the crustacean stomatogastric nervous system that drives rhythmic motor activity for the processing of food. This system is experimentally advantageous, as it produces a fictive behavioral output in vitro, and distinct sensory modalities can be selectively activated. It has the additional advantage that all sensory information is routed through a hub ganglion, the commissural ganglion, a structure with fewer than 220 neurons. Using optical imaging of a population of commissural neurons to track each individual neuron's response across sensory modalities, we provide evidence that multimodal information is encoded via a combinatorial code of recruited neurons. By selectively stimulating chemosensory and mechanosensory inputs that are functionally important for processing of food, we find that these two modalities were processed in a distributed network comprising the majority of commissural neurons imaged. In a total of 12 commissural ganglia, we show that 98% of all imaged neurons were involved in sensory processing, with the two modalities being processed by a highly overlapping set of neurons. Of these, 80% were multimodal, 18% were unimodal, and only 2% of the neurons did not respond to either modality. Differences between modalities were represented by the identities of the neurons participating in each sensory condition and by differences in response sign (excitation versus inhibition), with 46% changing their responses in the other modality. Consistent with the hypothesis that the commissural network encodes different sensory conditions in the combination of activated neurons, a new combination of excitation and inhibition was found when both pathways were activated simultaneously. The responses to this bimodal condition were distinct from either unimodal condition, and for 30% of the neurons, they were not predictive from the individual unimodal responses. Thus, in a sensorimotor network, different sensory modalities are encoded using a combinatorial code of neurons that are activated or inhibited. This provides motor networks with the ability to differentially respond to categorically different sensory conditions and may serve as a model to understand higher-level processing of multimodal information.
Collapse
Affiliation(s)
- Rosangela Follmann
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | | | - Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| |
Collapse
|
28
|
Risco S, Mediavilla C. Orexin A in the ventral tegmental area enhances saccharin-induced conditioned flavor preference: The role of D1 receptors in central nucleus of amygdala. Behav Brain Res 2018; 348:192-200. [DOI: 10.1016/j.bbr.2018.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/24/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022]
|
29
|
Maharjan A, Wang E, Peng M, Cakmak YO. Improvement of Olfactory Function With High Frequency Non-invasive Auricular Electrostimulation in Healthy Humans. Front Neurosci 2018; 12:225. [PMID: 29740266 PMCID: PMC5928377 DOI: 10.3389/fnins.2018.00225] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
In past literature on animal models, invasive vagal nerve stimulation using high frequencies has shown to be effective at modulating the activity of the olfactory bulb (OB). Recent advances in invasive vagal nerve stimulation in humans, despite previous findings in animal models, used low frequency stimulation and found no effect on the olfactory functioning. The present article aimed to test potential effects of non-invasive, high and low frequency vagal nerve stimulation in humans, with supplementary exploration of the orbitofrontal cortex using near-infrared spectroscopy (NIRS). Healthy, male adult participants (n = 18) performed two olfactory tests [odor threshold test (OTT) and supra-threshold test (STT)] before and after receiving high-, low frequency vagal nerve stimulation and placebo (no stimulation). Participant's olfactory functioning was monitored using NIRS, and assessed with two behavioral olfactory tests. NIRS data of separate stimulation parameters were statistically analyzed using repeated-measures ANOVA across different stages. Data from olfactory tests were analyzed using paired parametric and non-parametric statistical tests. Only high frequency, non-invasive vagal nerve stimulation was able to positively modulate the performance of the healthy participants in the STT (p = 0.021, Wilcoxon sign-ranked test), with significant differences in NIRS (p = 0.014, post-hoc with Bonferroni correction) recordings of the right hemispheric, orbitofrontal cortex. The results from the current article implore further exploration of the neurocircuitry involved under vagal nerve stimulation and the effects of non-invasive, high frequency, vagal nerve stimulation toward olfactory dysfunction which showcase in Parkinson's and Alzheimer's Diseases. Despite the sufficient effect size (moderate effect, correlation coefficient (r): 0.39 for the STT) of the current study, future research should replicate the current findings with a larger cohort.
Collapse
Affiliation(s)
- Ashim Maharjan
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Eunice Wang
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Mei Peng
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Yusuf O Cakmak
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Dunedin, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland, New Zealand
| |
Collapse
|
30
|
Lemon CH. Modulation of taste processing by temperature. Am J Physiol Regul Integr Comp Physiol 2017; 313:R305-R321. [PMID: 28794101 DOI: 10.1152/ajpregu.00089.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 02/02/2023]
Abstract
Taste stimuli have a temperature that can stimulate thermosensitive neural machinery in the mouth during gustatory experience. Although taste and oral temperature are sometimes discussed as different oral sensory modalities, there is a body of literature that demonstrates temperature is an important component and modulator of the intensity of gustatory neural and perceptual responses. Available data indicate that the influence of temperature on taste, herein referred to as "thermogustation," can vary across taste qualities, can also vary among stimuli presumed to share a common taste quality, and is conditioned on taste stimulus concentration, with neuronal and psychophysical data revealing larger modulatory effects of temperature on gustatory responding to weakened taste solutions compared with concentrated. What is more, thermogustation is evidenced to involve interplay between mouth and stimulus temperature. Given these and other dependencies, identifying principles by which thermal input affects gustatory information flow in the nervous system may be important for ultimately unravelling the organization of neural circuits for taste and defining their involvement with multisensory processing related to flavor. Yet thermal effects are relatively understudied in gustatory neuroscience. Major gaps in our understanding of the mechanisms and consequences of thermogustation include delineating supporting receptors, the potential involvement of oral thermal and somatosensory trigeminal neurons in thermogustatory interactions, and the broader operational roles of temperature in gustatory processing. This review will discuss these and other issues in the context of the literature relevant to understanding thermogustation.
Collapse
|
31
|
Alvarado BA, Lemus M, Montero S, Melnikov V, Luquín S, García-Estrada J, Roces de Álvarez-Buylla E. Nitric oxide in the nucleus of the tractus solitarius is involved in hypoglycemic conditioned response. Brain Res 2017; 1667:19-27. [PMID: 28483509 DOI: 10.1016/j.brainres.2017.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/31/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
The repeated injection of insulin (unconditioned stimulus, UCS) immediately followed by exposure to sensory stimulation (e.g. sound or odor; conditioned stimulus, CS) results in a learned conditioned reflex in which the exposure to the CS alone lowers blood glucose. The brain regions participating in this hypoglycemic Pavlovian response remain unknown. Here we investigate if nitric oxide (NO) in the nucleus tractus solitarius (NTS), a nucleus known to be involved in glucose homeostasis, participates in this hypoglycemic reflex. Insulin injections (UCS) were paired with exposure to menthol odor (CS). After 8-10 reinforcements (4-5days training), rats acquire the learned hypoglycemic response. An increase in c-Fos expression was observed in the NTS, the ventrolateral hypothalamic nucleus (VLH) and other brain regions of conditioned rats. Microinjections of 3-(5'-hydroxymethyl-2'furyl)-1-benzyl indazole (YC-1) a stimulator of soluble guanylate cyclase (sGC) into NTS before the UCS accelerated the acquisition of the learned hypoglycemic response; 5-6 reinforcement produced pronounced glucose drop when exposed to the CS. In contrast, an inhibitor of NO synthase (NOS) Nω-Nitro-l-arginine methyl ester (L-NAME) in the NTS prolonged the required training period (11-15 reinforcements) to obtain the hypoglycemic reflex, and reduced the glycemic response. The number of c-Fos expressing cells in the NTS and VLH in rats receiving YC-1was significantly higher than that observed in rats receiving L-NAME. These findings suggest that NO-cGMP-PKG signaling in the NTS can modify the acquisition of conditioned hypoglycemia, and suggests that this nucleus directly participates in this reflex.
Collapse
Affiliation(s)
- Beatriz A Alvarado
- Department of Neuroendocrinology, University Center of Biomedical Research, Colima University, Colima, Mexico
| | - Mónica Lemus
- Department of Neuroendocrinology, University Center of Biomedical Research, Colima University, Colima, Mexico
| | - Sergio Montero
- Department of Neuroendocrinology, University Center of Biomedical Research, Colima University, Colima, Mexico; Faculty of Medicine, Colima University, Colima, Mexico
| | | | - Sonia Luquín
- Department of Neurosciences, University Center of Health Sciences, Guadalajara University, Guadalajara, Mexico
| | - Joaquín García-Estrada
- Department of Neurosciences, University Center of Health Sciences, Guadalajara University, Guadalajara, Mexico
| | | |
Collapse
|
32
|
|
33
|
Maier JX. Single-neuron responses to intraoral delivery of odor solutions in primary olfactory and gustatory cortex. J Neurophysiol 2016; 117:1293-1304. [PMID: 28003413 DOI: 10.1152/jn.00802.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/30/2016] [Accepted: 12/15/2016] [Indexed: 11/22/2022] Open
Abstract
Smell plays a major role in our perception of food. Odorants released inside the mouth during consumption are combined with taste and texture qualities of a food to guide flavor preference learning and food choice behavior. Here, we built on recent physiological findings that implicated primary sensory cortex in multisensory flavor processing. Specifically, we used extracellular recordings in awake rats to characterize responses of single neurons in primary olfactory (OC) and gustatory cortex (GC) to intraoral delivery of odor solutions and compare odor responses to taste and plain water responses. The data reveal responses to olfactory, oral somatosensory, and gustatory qualities of intraoral stimuli in both OC and GC. Moreover, modality-specific responses overlap in time, indicating temporal convergence of multisensory, flavor-related inputs. The results extend previous work suggesting a role for primary OC in mediating influences of taste on smell that characterize flavor perception and point to an integral role for GC in olfactory processing.NEW & NOTEWORTHY Food perception is inherently multisensory, taking into account taste, smell, and texture qualities. However, the neural mechanisms underlying flavor perception remain unknown. Recording neural activity directly from the rat brain while animals consume multisensory flavor stimuli, we demonstrate that information about odor, taste, and mouthfeel of food converges on primary taste and smell cortex. The results suggest that processing of naturalistic, multisensory information involves an interacting network of primary sensory areas.
Collapse
Affiliation(s)
- Joost X Maier
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, North Carolina
| |
Collapse
|
34
|
Vincis R, Fontanini A. Associative learning changes cross-modal representations in the gustatory cortex. eLife 2016; 5. [PMID: 27572258 PMCID: PMC5026467 DOI: 10.7554/elife.16420] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 08/16/2016] [Indexed: 01/03/2023] Open
Abstract
A growing body of literature has demonstrated that primary sensory cortices are not exclusively unimodal, but can respond to stimuli of different sensory modalities. However, several questions concerning the neural representation of cross-modal stimuli remain open. Indeed, it is poorly understood if cross-modal stimuli evoke unique or overlapping representations in a primary sensory cortex and whether learning can modulate these representations. Here we recorded single unit responses to auditory, visual, somatosensory, and olfactory stimuli in the gustatory cortex (GC) of alert rats before and after associative learning. We found that, in untrained rats, the majority of GC neurons were modulated by a single modality. Upon learning, both prevalence of cross-modal responsive neurons and their breadth of tuning increased, leading to a greater overlap of representations. Altogether, our results show that the gustatory cortex represents cross-modal stimuli according to their sensory identity, and that learning changes the overlap of cross-modal representations. DOI:http://dx.doi.org/10.7554/eLife.16420.001 Imagine that you are waiting for a cappuccino at your favorite café. You hear the sound of the steamer, and shortly afterwards the barista calls your name and announces that your cappuccino is ready. As they hand it to you, you see the foam sprinkled with cocoa and the aroma of the cappuccino reaches your nose. You can almost taste it. When you finally take your first sip, the taste is hardly a surprise; it is just as your eyes and nose predicted. How does the brain deal with such a rich and multisensory experience? How does it learn to associate the sight and smell of a cappuccino with its taste? Specialized regions of the brain called associative areas were traditionally thought to perform this task. These areas receive inputs from every sensory system and can link information from these different sources together. According to this view, the job of each individual sensory system is to pass along information relevant to one particular sense. More recent results, however, challenge this strict division of labor and suggest that individual sensory systems may be able to combine information from multiple senses. Thus the sights, sounds and odors associated with our cappuccino may also activate the area of the brain in charge of processing taste: the gustatory cortex. To investigate this possibility, Vincis and Fontanini set out to determine whether neurons in the gustatory cortex of rats can process stimuli belonging to senses other than taste. As predicted, neurons in the gustatory cortex did change their firing rates in response to odors, touch, sounds and light. However, more of the gustatory neurons responded to odors and touch than to sounds and light. In addition, of the four stimuli, the rats most easily learned to associate odors and touch with a sugary solution. This is consistent with the fact that rodents rely more upon their whiskers and their sense of smell to find food they do their eyes and ears. Finally, learning to associate a stimulus other than taste with a sugary solution increased the number of neurons in the gustatory cortex that subsequently responded to other senses and changed their response properties. Further studies are now required to answer three questions. Why can some senses more effectively influence the activity of the gustatory cortex than others? Can gustatory neurons distinguish between different stimuli of the same type – different odors, for example? What are the neural pathways that convey multisensory information to the gustatory cortex? Answering these questions will help us to better understand how sensory systems link information from multiple senses. DOI:http://dx.doi.org/10.7554/eLife.16420.002
Collapse
Affiliation(s)
- Roberto Vincis
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, United States
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, United States
| |
Collapse
|
35
|
Lemon CH, Kang Y, Li J. Separate functions for responses to oral temperature in thermo-gustatory and trigeminal neurons. Chem Senses 2016; 41:457-71. [PMID: 26976122 PMCID: PMC4910675 DOI: 10.1093/chemse/bjw022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oral temperature is a component and modifier of taste perception. Both trigeminal (V) and taste-sensitive cells, including those in the nucleus of the solitary tract (NTS), can respond to oral temperature. However, functional associations in thermal sensitivity between V and gustatory neurons are poorly understood. To study this we recorded electrophysiological responses to oral stimulation with cool (9, 15, 25, 32, and 34 °C) and warm (40 and 45 °C) temperatures from medullary V (n = 45) and taste-sensitive NTS (n = 27) neurons in anesthetized mice. Results showed temperatures below 34 °C activated the majority of V neurons but only a minority of NTS units. V neurons displayed larger responses to cooling and responded to temperatures that poorly stimulated NTS cells. Multivariate analyses revealed different temperatures induced larger differences in responses across V compared with NTS neurons, indicating V pathways possess greater capacity to signal temperature. Conversely, responses to temperature in NTS units associated with gustatory tuning. Further analyses identified two types of cooling-sensitive V neurons oriented toward innocuous or noxious cooling. Multivariate analyses indicated the combined response of these cells afforded distinction among a broad range of cool temperatures, suggesting multiple types of V neurons work together to represent oral cooling.
Collapse
Affiliation(s)
- Christian H Lemon
- Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Yi Kang
- Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Jinrong Li
- Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| |
Collapse
|
36
|
Sammons JD, Weiss MS, Victor JD, Di Lorenzo PM. Taste coding of complex naturalistic taste stimuli and traditional taste stimuli in the parabrachial pons of the awake, freely licking rat. J Neurophysiol 2016; 116:171-82. [PMID: 27121585 DOI: 10.1152/jn.01119.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/23/2016] [Indexed: 02/04/2023] Open
Abstract
Several studies have shown that taste-responsive cells in the brainstem taste nuclei of rodents respond to sensory qualities other than gustation. Such data suggest that cells in the classical gustatory brainstem may be better tuned to respond to stimuli that engage multiple sensory modalities than to stimuli that are purely gustatory. Here, we test this idea by recording the electrophysiological responses to complex, naturalistic stimuli in single neurons in the parabrachial pons (PbN, the second neural relay in the central gustatory pathway) in awake, freely licking rats. Following electrode implantation and recovery, we presented both prototypical and naturalistic taste stimuli and recorded the responses in the PbN. Prototypical taste stimuli (NaCl, sucrose, citric acid, and caffeine) and naturalistic stimuli (clam juice, grape juice, lemon juice, and coffee) were matched for taste quality and intensity (concentration). Umami (monosodium glutamate + inosine monophosphate) and fat (diluted heavy cream) were also tested. PbN neurons responded to naturalistic stimuli as much or more than to prototypical taste stimuli. Furthermore, they convey more information about naturalistic stimuli than about prototypical ones. Moreover, multidimensional scaling analyses showed that across unit responses to naturalistic stimuli were more widely separated than responses to prototypical taste stimuli. Interestingly, cream evoked a robust and widespread response in PbN cells. Collectively, these data suggest that natural foods are more potent stimulators of PbN cells than purely gustatory stimuli. Probing PbN cells with pure taste stimuli may underestimate the response repertoire of these cells.
Collapse
Affiliation(s)
- Joshua D Sammons
- Department of Psychology, Binghamton University, Binghamton, New York; and
| | - Michael S Weiss
- Department of Psychology, Binghamton University, Binghamton, New York; and
| | - Jonathan D Victor
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York
| | | |
Collapse
|