1
|
Wu K, Shao S, Dong YT, Liu YY, Chen XH, Cheng P, Qin X, Peng XH, Zhang YM. Spinal astrocyte-derived M-CSF mediates microglial reaction and drives visceral hypersensitivity following DSS-induced colitis. Neuropharmacology 2025; 270:110373. [PMID: 39978590 DOI: 10.1016/j.neuropharm.2025.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
Visceral hypersensitivity is one of the most prevalent symptoms of inflammatory bowel disease (IBD), and it can be difficult to cure despite achieving endoscopic remission. Accumulating studies have described that macrophage colony-stimulating factor (M-CSF) modulates neuroinflammation in the central nervous system (CNS) and the development of chronic pain, while the underlying mechanism for whether and how M-CSF/CSF1R signaling pathway regulates visceral hypersensitivity following colitis remains unknown. In the present study, using the dextran sulfate sodium (DSS)-induced colitis model, we determined that microglial accumulation occurred in the spinal dorsal horn during remission phase. The reactive microglia released inflammatory factor, increased neuronal excitability in the dorsal horn, and produced chronic visceral pain behaviors in DSS-treated adult male mice. In addition, we also found significantly increased signaling mediated by astrocytic M-CSF and microglial CSF1R in dorsal horn in the mice with colitis. Exogenous M-CSF induced microglial activation, neuronal hyperactivity and behavioral hypersensitivity in the control group, inhibition of astrocyte/microglia by fluorocitrate/minocycline significantly suppressed microglial and neuronal activity, and relieved the visceral hypersensitivity in the model mice. Overall, our experimental study uncovers the critical involvement of spinal astrocyte-derived M-CSF and reactive microglia in the initiation and maintenance of visceral hypersensitivity following colitis, thereby identifying spinal M-CSF as a target for treating chronic visceral pain. This may provide more accurate theoretical guidance for clinical patients with IBD.
Collapse
Affiliation(s)
- Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Department of Anesthesia, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuai Shao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yu-Ting Dong
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yue-Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xing-Han Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Peng Cheng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xia Qin
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Han Peng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Department of Anesthesia, Xuzhou Cancer Hospital, Xuzhou, China
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Nasir A, Afridi M, Afridi OK, Khan MA, Khan A, Zhang J, Qian B. The persistent pain enigma: Molecular drivers behind acute-to-chronic transition. Neurosci Biobehav Rev 2025; 173:106162. [PMID: 40239909 DOI: 10.1016/j.neubiorev.2025.106162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
The transition from acute to chronic pain is a complex and multifactorial process that presents significant challenges in both diagnosis and treatment. Key mechanisms of peripheral and central sensitization, neuroinflammation, and altered synaptic plasticity contribute to the amplification of pain signals and the persistence of pain. Glial cell activation, particularly microglia and astrocytes, is pivotal in developing chronic pain by releasing pro-inflammatory cytokines that enhance pain sensitivity. This review explores the molecular, cellular, and systemic mechanisms underlying the transition from acute to chronic pain, offering new insights into the molecular and neurobiological mechanisms involved, which are often underexplored in existing literature. It also addresses emerging therapeutic strategies beyond traditional pain management, offering valuable perspectives for future research and clinical applications.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Maryam Afridi
- Department of Pharmacy, Qurtuba University, Peshawar, KP, Pakistan
| | | | | | - Amir Khan
- Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jun Zhang
- Department of Pain, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Bai Qian
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
3
|
Bagó-Mas A, Korimová A, Bretová K, Deulofeu M, Verdú E, Fiol N, Dubový P, Boadas-Vaello P. Repeated Administrations of Polyphenolic Extracts Prevent Chronic Reflexive and Non-Reflexive Neuropathic Pain Responses by Modulating Gliosis and CCL2-CCR2/CX3CL1-CX3CR1 Signaling in Spinal Cord-Injured Female Mice. Int J Mol Sci 2025; 26:3325. [PMID: 40244217 PMCID: PMC11989601 DOI: 10.3390/ijms26073325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Neuropathic pain after spinal cord injury lacks any effective treatments, often leading to chronic pain. This study tested whether the daily administration of fully characterized polyphenolic extracts from grape stalks and coffee could prevent both reflexive and non-reflexive chronic neuropathic pain in spinal cord-injured mice by modulating the neuroimmune axis. Female CD1 mice underwent mild spinal cord contusion and received intraperitoneal extracts in weeks one, three, and six post-surgery. Reflexive pain responses were assessed weekly for up to 10 weeks, and non-reflexive pain was evaluated at the study's end. Neuroimmune crosstalk was investigated, focusing on glial activation and the expression of CCL2/CCR2 and CX3CL1/CX3CR1 in supraspinal pain-related areas, including the periaqueductal gray, rostral ventromedial medulla, anterior cingulate cortex, and amygdala. Repeated treatments prevented mechanical allodynia and thermal hyperalgesia, and also modulated non-reflexive pain. Moreover, they reduced supraspinal gliosis and regulated CCL2/CCR2 and CX3CL1/CX3CR1 signaling. Overall, the combination of polyphenols in these extracts may offer a promising pharmacological strategy to prevent chronic reflexive and non-reflexive pain responses by modifying central sensitization markers, not only at the contusion site but also in key supraspinal regions implicated in neuropathic pain. Overall, these data highlight the potential of polyphenolic extracts for spinal cord injury-induced chronic neuropathic pain.
Collapse
Affiliation(s)
- Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17071 Girona, Catalonia, Spain; (A.B.-M.); (M.D.); (E.V.)
- Division of Neuroanatomy, Department of Anatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.K.); (K.B.)
| | - Andrea Korimová
- Division of Neuroanatomy, Department of Anatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.K.); (K.B.)
| | - Karolína Bretová
- Division of Neuroanatomy, Department of Anatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.K.); (K.B.)
| | - Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17071 Girona, Catalonia, Spain; (A.B.-M.); (M.D.); (E.V.)
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17071 Girona, Catalonia, Spain; (A.B.-M.); (M.D.); (E.V.)
| | - Núria Fiol
- Department of Chemical Engineering, Agriculture and Food Technology, Polytechnic School, University of Girona, 17003 Girona, Catalonia, Spain;
| | - Petr Dubový
- Division of Neuroanatomy, Department of Anatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.K.); (K.B.)
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17071 Girona, Catalonia, Spain; (A.B.-M.); (M.D.); (E.V.)
| |
Collapse
|
4
|
Chen X, Mi W, Gao T, Ding F, Wang W. Astrocytes in the rostral ventromedial medulla mediate the analgesic effect of electroacupuncture in a rodent model of chemotherapy-induced peripheral neuropathic pain. Pain 2025; 166:916-926. [PMID: 39432736 DOI: 10.1097/j.pain.0000000000003433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
ABSTRACT Chemotherapy-induced peripheral neuropathic pain aggravates cancer survivors' life burden. Electroacupuncture (EA) has exhibited promising analgesic effects on neuropathic pain in previous studies. We investigated whether EA was effective in a paclitaxel-induced neuropathic pain mouse model. We further explored the functional role of astrocytes in the rostral ventromedial medulla (RVM), a well-established pain modulation center, in the process of neuropathic pain as well as the analgesic effect of EA. We found that paclitaxel induced mechanical allodynia, astrocytic calcium signaling, and neuronal activation in the RVM and spinal cord, which could be suppressed by EA treatment. Electroacupuncture effectively alleviated paclitaxel-induced mechanical allodynia, and the effect was attenuated by the chemogenetic activation of astrocytes in the RVM. In addition, inhibiting astrocytic calcium activity by using either IP 3 R2 knockout (IP 3 R2 KO) mice or microinjection of AAV-mediated hPMCA2 w/b into the RVM to reduce non-IP 3 R2-dependent Ca 2+ signaling in astrocytes exhibited an analgesic effect on neuropathic pain, which mimicked the EA effect. The current study revealed the pivotal role of the RVM astrocytes in mediating the analgesic effects of EA on chemotherapy-induced peripheral neuropathic pain.
Collapse
Affiliation(s)
- Xuejiao Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianchi Gao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fengfei Ding
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Yuan X, Lu Y, Zhang X, Tang Y, Wen S, Lai W, Long H. Effect of autophagy blockage on trigeminal neuropathic pain in rats: Role of microglia. Eur J Oral Sci 2025; 133:e13029. [PMID: 39628135 DOI: 10.1111/eos.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/12/2024] [Indexed: 02/01/2025]
Abstract
Microglia activation and autophagy changes are associated with the regulation of pain, but no study to date has been designed to address whether these features apply to trigeminal neuropathic pain. This study aimed to investigate how alterations in autophagy affect nociceptive behaviors may be associated with microglia activation in the caudal part of the spinal trigeminal nucleus (SpVC) in a rat model of trigeminal neuropathic pain. This model was established by chronic constriction injury of the infraorbital nerve. Autophagy inhibitors and agonists were injected into the lateral ventricle to regulate autophagy. The autophagy markers microtubule-associated protein light chain 3 I (LC3-I), LC3-II, sequestosome1 (p62), and LC-3 were examined by western blotting and/or immunofluorescence. The microglia marker ionized calcium binding adapter molecule 1 (Iba-1) was examined by immunohistochemistry. Nociceptive behavior changes were detected by measuring the mechanical thresholds and face-grooming duration. The results showed that microglia in SpVC were activated, and autophagy flux was blocked in the trigeminal neuropathic pain model. Autophagy agonists inhibited microglia activation and alleviated nociceptive behaviors. In contrast, autophagy inhibitors further activated microglia and exacerbated nociceptive behaviors. In a rat model of trigeminal neuropathic pain, autophagy blockage leads to microglia activation, which significantly influences nociceptive processes.
Collapse
Affiliation(s)
- Xuechun Yuan
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yanzhu Lu
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqi Zhang
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yufei Tang
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shangyou Wen
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wenli Lai
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hu Long
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Quiñonez-Bastidas GN, Grijalva-Contreras LE, Patiño-Camacho SI, Navarrete A. Emerging Psychotropic Drug for the Treatment of Trigeminal Pain: Salvinorin A. Pharmaceuticals (Basel) 2024; 17:1619. [PMID: 39770461 PMCID: PMC11728561 DOI: 10.3390/ph17121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Trigeminal neuralgia (TN) is chronic pain caused by damage to the somatosensorial system on the trigeminal nerve or its branches, which involves peripheral and central dysfunction pain pathways. Trigeminal pain triggers disruptive pain in regions of the face, including within and around the mouth. Besides clinical experiences, translating the language of suffering into scientific terminology presents substantial challenges. Due to the complex and multifactorial pathophysiology underlying trigeminal pain, elucidating its social impact presents significant difficulties. Carbamazepine and oxcarbazepine are first-line treatments for TN, achieving approximately 50% pain reduction in 60-70% of treated patients. However, their efficacy is often limited by common side effects, such as dizziness, vertigo, nausea, seizures, and cognitive symptoms. In some cases, patients experience severe side effects, including myelosuppression, hyponatremia, hormonal imbalances, liver toxicity, suicidal ideation, teratogenicity, and other adverse reactions. Given these clinical limitations, the search for new painkiller candidates continues. Hence, we focused this review on salvinorin A (SalA), a natural agonist of κ-opioid receptors (KORs), which demonstrated anti-nociceptive, anti-inflammatory, and anti-neuropathic properties in various experimental models of the spinal sensory system. Furthermore, preclinical evidence indicates that SalA does not induce dependence and demonstrates a favorable toxicological and safety profile in comparison with currently marketed opioid drugs. We propose Salvinorin A as a promising candidate for treating trigeminal neuralgia, offering the potential for reduced adverse effects.
Collapse
Affiliation(s)
- Geovanna Nallely Quiñonez-Bastidas
- Centro de Investigación y Docencia en Ciencias de la Salud, Universidad Autónoma de Sinaloa, Eustaquio Buelna 91, Burócrata, Culiacan 80030, Mexico
| | - Lucia Elhy Grijalva-Contreras
- Programa de Licenciatura en Fisioterapia, Universidad Estatal de Sonora, Unidad Académica Hermosillo, Hermosillo 83100, Mexico;
| | - Selene Isabel Patiño-Camacho
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacan 80013, Mexico;
| | - Andrés Navarrete
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de Mexico 04510, Mexico;
| |
Collapse
|
7
|
Feng HN, Zhong LQY, Xu CX, Wang TT, Wu H, Wang L, Traub RJ, Chen X, Cao DY. Up-regulation of IL-1β and sPLA2-III in the medial prefrontal cortex contributes to orofacial and somatic hyperalgesia induced by malocclusion via glial-neuron crosstalk. Eur J Pharmacol 2024; 982:176933. [PMID: 39182540 DOI: 10.1016/j.ejphar.2024.176933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The medial prefrontal cortex (mPFC) has been identified as a key brain region involved in the modulation of chronic pain. Our recent study demonstrated that unilateral anterior crossbite (UAC) developed the comorbidity model of temporomandibular disorders (TMD) and fibromyalgia syndrome (FMS), which was characterized by both orofacial and somatic hyperalgesia. In the present study, UAC rats exhibited significant changes in gene expression in the mPFC. Enrichment analysis revealed that the significantly involved pathways were cytokines-cytokine receptor interaction and immune response. The expression of group III secretory phospholipase A2 (sPLA2-III) was significantly increased in the mPFC of UAC rats. Silencing sPLA2-III expression in the mPFC blocked the orofacial and somatic hyperalgesia. Immunofluorescence showed that sPLA2-III was mainly localized in neurons. The expression of interleukin-1β (IL-1β) in the mPFC significantly increased after UAC. Injection of IL-1β antibody into the mPFC blocked orofacial and somatic hyperalgesia. IL-1β was mainly localized in microglia cells. Furthermore, injection of IL-1β antibody significantly reduced the expression of sPLA2-III. These results indicate that neuroinflammatory cascade responses induced by glial-neuron crosstalk in the mPFC may contribute to the development of TMD and FMS comorbidity, and IL-1β and sPLA2-III are identified as novel potential therapeutic targets for the treatment of chronic pain in the comorbidity of TMD and FMS.
Collapse
Affiliation(s)
- Hai-Nan Feng
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Liang-Qiu-Yue Zhong
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Chen-Xi Xu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Ting-Ting Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Hao Wu
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Lu Wang
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Richard J Traub
- Department of Neural and Pain Sciences, School of Dentistry, the UM Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Xi Chen
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China; Department of Neural and Pain Sciences, School of Dentistry, the UM Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, USA.
| |
Collapse
|
8
|
Liao JX, Huang QM, Pan ZC, Wu J, Zhang WJ. The anti-inflammatory and immunomodulatory effects of olfactory ensheathing cells transplantation in spinal cord injury and concomitant pathological pain. Eur J Pharmacol 2024; 982:176950. [PMID: 39214270 DOI: 10.1016/j.ejphar.2024.176950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Spinal cord injury (SCI) is a serious and disabling injury that is often accompanied by neuropathic pain (NeP), which severely affects patients' motor and sensory functions and reduces their quality of life. Currently, there is no specific treatment for treating SCI and relieving the accompanying pain, and we can only rely on medication and physical rehabilitation, both of which are ineffective. Researchers have recently identified a novel class of glial cells, olfactory ensheathing cells (OECs), which originate from the olfactory system. Transplantation of OECs into damaged spinal cords has demonstrated their capacity to repair damaged nerves, improve the microenvironment at the point of injury, and They can also restore neural connectivity and alleviate the patient's NeP to a certain extent. Although the effectiveness of OECs transplantation has been confirmed in experiments, the specific mechanisms by which it repairs the spinal cord and relieves pain have not been articulated. Through a review of the literature, it has been established that the ability of OECs to repair and relieve pain is inextricably linked to its anti-inflammatory and immunomodulatory effects. In this regard, it is imperative to gain a deeper understanding of how OECs exert their anti-inflammatory and immunomodulatory effects. The objective of this paper is to provide a comprehensive overview of the mechanisms by which OECs exert anti-inflammatory and immunomodulatory effects. We aim to manipulate the immune microenvironment at the transplantation site through the intervention of cytokines and immune cells, with the goal of enhancing OECs' function or creating a conducive microenvironment for OECs' survival. This approach is expected to improve the therapeutic efficacy of OECs in clinical settings. However, numerous fundamental and clinical challenges remain to be addressed if OEC transplantation therapy is to become a standardized treatment in clinical practice.
Collapse
Affiliation(s)
- Jun-Xiang Liao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Qi-Ming Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Zhi-Cheng Pan
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Jie Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China.
| |
Collapse
|
9
|
Mokhtari T, Irandoost E, Sheikhbahaei F. Stress, pain, anxiety, and depression in endometriosis-Targeting glial activation and inflammation. Int Immunopharmacol 2024; 132:111942. [PMID: 38565045 DOI: 10.1016/j.intimp.2024.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Endometriosis (EM) is a gynecological inflammatory disease often accompanied by stress, chronic pelvic pain (CPP), anxiety, and depression, leading to a diminished quality of life. This review aims to discuss the relationship between systemic and local inflammatory responses in the central nervous system (CNS), focusing on glial dysfunctions (astrocytes and microglia) as in critical brain regions involved in emotion, cognition, pain processing, anxiety, and depression. The review presents that EM is connected to increased levels of pro-inflammatory cytokines in the circulation. Additionally, chronic stress and CPP as stressors may contribute to the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, depleting the production of inflammatory mediators in the circulatory system and the brain. The systemic cytokines cause blood-brain barrier (BBB) breakdown, activate microglia in the brain, and lead to neuroinflammation. Furthermore, CPP may induce neuronal morphological alterations in critical regions through central sensitization and the activation of glial cells. The activation of glial cells, particularly the polarization of microglia, leads to the activation of the NLRP3 inflammasome and the overproduction of inflammatory cytokines. These inflammatory cytokines interact with the signaling pathways involved in neural plasticity. Additionally, persistent inflammatory conditions in the brain lead to neuronal death, which is correlated with a reduced volume of key brain regions such as the hippocampus. This review highlights the involvement of glial cells in the pathogenesis of the mental comorbidities of EM (i.e., pain, anxiety, and depression) and to discuss potential therapeutic approaches for targeting the inflammation and activation of microglia in key brain regions.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- Department of Pharmacology, Hubei University of Medicine, Shiyan, China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Elnaz Irandoost
- Sarem Women's Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Fatemeh Sheikhbahaei
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
10
|
Mazzitelli M, Ponomareva O, Presto P, John J, Neugebauer V. Impaired amygdala astrocytic signaling worsens neuropathic pain-associated neuronal functions and behaviors. Front Pharmacol 2024; 15:1368634. [PMID: 38576475 PMCID: PMC10991799 DOI: 10.3389/fphar.2024.1368634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction: Pain is a clinically relevant health care issue with limited therapeutic options, creating the need for new and improved analgesic strategies. The amygdala is a limbic brain region critically involved in the regulation of emotional-affective components of pain and in pain modulation. The central nucleus of amygdala (CeA) serves major output functions and receives nociceptive information via the external lateral parabrachial nucleus (PB). While amygdala neuroplasticity has been linked causally to pain behaviors, non-neuronal pain mechanisms in this region remain to be explored. As an essential part of the neuroimmune system, astrocytes that represent about 40-50% of glia cells within the central nervous system, are required for physiological neuronal functions, but their role in the amygdala remains to be determined for pain conditions. In this study, we measured time-specific astrocyte activation in the CeA in a neuropathic pain model (spinal nerve ligation, SNL) and assessed the effects of astrocyte inhibition on amygdala neuroplasticity and pain-like behaviors in the pain condition. Methods and Results: Glial fibrillary acidic protein (GFAP, astrocytic marker) immunoreactivity and mRNA expression were increased at the chronic (4 weeks post-SNL), but not acute (1 week post-SNL), stage of neuropathic pain. In order to determine the contribution of astrocytes to amygdala pain-mechanisms, we used fluorocitric acid (FCA), a selective inhibitor of astrocyte metabolism. Whole-cell patch-clamp recordings were performed from neurons in the laterocapsular division of the CeA (CeLC) obtained from chronic neuropathic rats. Pre-incubation of brain slices with FCA (100 µM, 1 h), increased excitability through altered hyperpolarization-activated current (Ih) functions, without significantly affecting synaptic responses at the PB-CeLC synapse. Intra-CeA injection of FCA (100 µM) had facilitatory effects on mechanical withdrawal thresholds (von Frey and paw pressure tests) and emotional-affective behaviors (evoked vocalizations), but not on facial grimace score and anxiety-like behaviors (open field test), in chronic neuropathic rats. Selective inhibition of astrocytes by FCA was confirmed with immunohistochemical analyses showing decreased astrocytic GFAP, but not NeuN, signal in the CeA. Discussion: Overall, these results suggest a complex modulation of amygdala pain functions by astrocytes and provide evidence for beneficial functions of astrocytes in CeA in chronic neuropathic pain.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Julia John
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
11
|
Han S, Jiang B, Ren J, Gao F, Wen J, Zhou T, Wang L, Wei X. Impaired Lactate Release in Dorsal CA1 Astrocytes Contributed to Nociceptive Sensitization and Comorbid Memory Deficits in Rodents. Anesthesiology 2024; 140:538-557. [PMID: 37651459 DOI: 10.1097/aln.0000000000004756] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
BACKGROUND Memory deficits are a common comorbid disorder in patients suffering from neuropathic pain. The mechanisms underlying the comorbidities remain elusive. The hypothesis of this study was that impaired lactate release from dysfunctional astrocytes in dorsal hippocampal CA1 contributed to memory deficits. METHODS A spared nerve injury model was established to induce both pain and memory deficits in rats and mice of both sexes. von Frey tests, novel object recognition, and conditioned place preference tests were applied to evaluate the behaviors. Whole-cell recording, fiber photometry, Western blotting, and immunohistochemistry combined with intracranial injections were used to explore the underlying mechanisms. RESULTS Animals with spared sciatic nerve injury that had displayed nociception sensitization or memory deficit comorbidities demonstrated a reduction in the intrinsic excitability of pyramidal neurons, accompanied by reduced Ca2+ activation in astrocytes (ΔF/F, sham: 6 ± 2%; comorbidity: 2 ± 0.4%) and a decrease in the expression of glial fibrillary acidic protein and lactate levels in the dorsal CA1. Exogenous lactate supply or increasing endogenous lactate release by chemogenetic activation of astrocytes alleviated this comorbidity by enhancing the cell excitability (129 ± 4 vs. 88 ± 10 for 3.5 mM lactate) and potentiating N-methyl-d-aspartate receptor-mediated excitatory postsynaptic potentials of pyramidal neurons. In contrast, inhibition of lactate synthesis, blocking lactate transporters, or chemogenetic inhibition of astrocytes resulted in comorbidity-like behaviors in naive animals. Notably, β2-adrenergic receptors in astrocytes but not neurons were downregulated in dorsal CA1 after spared nerve injury. Microinjection of a β2 receptor agonist into dorsal CA1 or activation of the noradrenergic projections onto the hippocampus from the locus coeruleus alleviated the comorbidity, possibly by increasing lactate release. CONCLUSIONS Impaired lactate release from dysfunctional astrocytes, which could be rescued by activation of the locus coeruleus, led to nociception and memory deficits after peripheral nerve injury. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Shuang Han
- Department of Human Anatomy and Physiology, and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bin Jiang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, and Department of Human Anatomy and Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiale Ren
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Feng Gao
- Department of Human Anatomy and Physiology, and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junjian Wen
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Taihe Zhou
- Department of Human Anatomy and Physiology, and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Laijian Wang
- Department of Human Anatomy and Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuhong Wei
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Human Anatomy and Physiology, and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Moreau N, Peirs C, Dallel R, Boucher Y. [Specificities of orofacial neuropathic pain]. Med Sci (Paris) 2024; 40:64-71. [PMID: 38299905 DOI: 10.1051/medsci/2023197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Head pain and notably orofacial pain differs from spinal pain on pathophysiological, clinical, therapeutic and prognostic levels. Its high prevalence, important impact on quality of life and significant socio-economical burden justify specific study of such type of pain. Among them, neuropathic orofacial pain resulting from disease or trauma of the trigeminal nervous system is among the most difficult types of pain to diagnose and to treat. Deciphering of underlying peripheral and central mechanisms has allowed numerous conceptual, clinical and therapeutic advances, notably the role of neural and non neural cell types, such as glia, immunocytes, vascular endothelial cells or the role of trigeminal sensory complex neural circuitry reconfiguration in the development of post-traumatic trigeminal neuropathic pain. Cellular interactions within the trigeminal ganglion, allowing a better understanding of several painful dental, ocular or cephalalgic comorbidities, are also described.
Collapse
Affiliation(s)
- Nathan Moreau
- Laboratoire de neurobiologie orofaciale, EA 7543, Université Paris Cité, Paris, France - Hôpital Bretonneau, Service de médecine bucco-dentaire, AP-HP, Paris, France
| | - Cédric Peirs
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Radhouane Dallel
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Yves Boucher
- Laboratoire de neurobiologie orofaciale, EA 7543, Université Paris Cité, Paris, France - Hôpital Pitié-Salpêtrière, Service de médecine bucco-dentaire, AP-HP, Paris, France
| |
Collapse
|
13
|
Wang C, Wu L, Zhou R, Song C, Chen P, Huang S, Ali Khan A, Lu D, Hu Y, Chen L. Integration of microbiota and metabolomics reveals the analgesic mechanisms of emodin against neuropathic pain. Int Immunopharmacol 2023; 125:111170. [PMID: 37944218 DOI: 10.1016/j.intimp.2023.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Neuropathic pain (NeP) induced dysbiosis of intestinal microbiota in chronic constriction injury (CCI) rats. Emodin has analgesic effect but the detailed mechanism is not clear at the present time. This study aims to explore the underling mechanism of action of emodin against NeP with in CCI model. METHODS Male SD rats (180-220 g) were randomly divided into three groups: sham group, CCI group, and emodin group. Behavioral tests were performed to evaluate the therapeutic effects of emodin on CCI model. Feces and spinal cords of all rats were collected 15 days after surgery. 16S rDNA sequencing, untargeted metabolomics, qPCR and ELISA were performed. RESULTS Mechanical withdrawal thresholds (MWT), thermal withdrawal latency (TWL) and Sciatic functional index (SFI) in emodin group were significantly higher than CCI group (P < 0.05). Emodin not only inhibited the expression of pro-inflammatory cytokines in the spinal cords and colonic tissue, but also increased the expression of tight junction protein in colonic tissue. 16S rDNA sequencing showed that emodin treatment changed the community structure of intestinal microbiota in CCI rats. Untargeted metabolomics analysis showed that 33 differential metabolites were screened out between CCI group and emodin group. After verification, we found that emodin increased the level of S-adenosylmethionine (SAM) and Histamine in the spinal cord of CCI rats. CONCLUSION Emodin was effective in relieving neuropathic pain, which is linked to inhibition inflammatory response, increasing the proportion of beneficial bacteria and beneficial metabolites.
Collapse
Affiliation(s)
- Chen Wang
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lulu Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Runjin Zhou
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cuiwen Song
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Shiying Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ahsan Ali Khan
- Section of Neurosurgery, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan
| | - Deng Lu
- Department of Neurosurgery, The Second People's Hospital of Pingnan, Pingnan, Guangxi, China
| | - Yong Hu
- Department of Orthopedics and Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Cramer N, Ji Y, Kane MA, Pilli NR, Castro A, Posa L, Van Patten G, Masri R, Keller A. Elevated Serotonin in Mouse Spinal Dorsal Horn Is Pronociceptive. eNeuro 2023; 10:ENEURO.0293-23.2023. [PMID: 37945351 PMCID: PMC10698626 DOI: 10.1523/eneuro.0293-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Serotonergic neurons in the rostral ventral medulla (RVM) contribute to bidirectional control of pain through modulation of spinal and trigeminal nociceptive networks. Deficits in this pathway are believed to contribute to pathologic pain states, but whether changes in serotonergic mechanisms are pro- or antinociceptive is debated. We used a combination of optogenetics and fiber photometry to examine these mechanisms more closely. We find that optogenetic activation of RVM serotonergic afferents in the spinal cord of naive mice produces mechanical hypersensitivity and conditioned place aversion (CPA). Neuropathic pain, produced by chronic constriction injury of the infraorbital nerve (CCI-ION), evoked a tonic increase in serotonin (5HT) concentrations within the spinal trigeminal nucleus caudalis (SpVc), measured with liquid chromatography-tandem mass spectroscopy (LC-MS/MS). By contract, CCI-ION had no effect on the phasic serotonin transients in SpVc, evoked by noxious pinch, and measured with fiber photometry of a serotonin sensor. These findings suggest that serotonin release in the spinal cord is pronociceptive and that an increase in sustained serotonin signaling, rather than phasic or event driven increases, potentiate nociception in models of chronic pain.
Collapse
Affiliation(s)
- Nathan Cramer
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
- University of Maryland - Medicine Institute for Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Yadong Ji
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Nageswara R Pilli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Alberto Castro
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Luca Posa
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Gabrielle Van Patten
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Radi Masri
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201
- University of Maryland - Medicine Institute for Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Asaf Keller
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
- University of Maryland - Medicine Institute for Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
15
|
Daigo E, Daigo Y, Idogaki J, Fukuoka H, Fukuoka N, Ishikawa M, Takahashi K. Photobiomodulation Activates Microglia/Astrocytes and Relieves Neuropathic Pain in Inferior Alveolar Nerve Injury. Photobiomodul Photomed Laser Surg 2023; 41:694-702. [PMID: 38085185 DOI: 10.1089/photob.2023.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Objective: This study aimed to determine microglial/astrocyte changes and their associated analgesic effect in inferior alveolar nerve injury (IANI) model rats treated with photobiomodulation therapy (PBMT) using a 940-nm diode laser. Background: Very few basic studies have investigated microglial/astrocyte dynamics following PBMT aimed at relieving neuropathic pain caused by IANI. Methods: Rats were divided into an IANI-PBM group, IANI+PBM group, and sham+PBM group. Observations were made on the day before IANI or the sham operation and on postoperative days 3, 5, 7, 14, and 28. PBMT was delivered for 7 consecutive days, with an energy density of 8 J/cm2. Behavioral analysis was performed to determine pain thresholds, and immunohistological staining was performed for the microglia marker Iba1 and astrocyte marker glial fibrillary acidic protein, which are observed in the spinal trigeminal nucleus. Results: Behavioral analysis showed that the pain threshold returned to the preoperative level on postoperative day 14 in the IANI+PBM group, but decreased starting from postoperative day 1 and did not improve thereafter in the IANI-PBM group (p ≤ 0.001). Immunological analysis showed that microglial and astrocyte cell counts were similar in the IANI+PBM group and IANI-PBM group shortly after IANI (day 3), but the expression area was larger (p ≤ 0.001) and hypertrophy of microglia and astrocyte cell bodies and end-feet extension (i.e., indicators of activation) were more prominent in the IANI+PBM group. Conclusions: PBMT after IANI prevented hyperalgesia and allodynia by promoting glial cell activation shortly after injury.
Collapse
Affiliation(s)
| | - Yuki Daigo
- Department of Geriatric Dentistry, Osaka Dental University, Osaka City, Japan
| | - Jun Idogaki
- Department of Geriatric Dentistry, Osaka Dental University, Osaka City, Japan
| | | | | | | | - Kazuya Takahashi
- Department of Geriatric Dentistry, Osaka Dental University, Osaka City, Japan
| |
Collapse
|
16
|
Duan Y, Li Q, Zhou Y, Chen S, Li Y, Zang Y. Activation of the TNF-α-Necroptosis Pathway in Parvalbumin-Expressing Interneurons of the Anterior Cingulate Cortex Contributes to Neuropathic Pain. Int J Mol Sci 2023; 24:15454. [PMID: 37895135 PMCID: PMC10607712 DOI: 10.3390/ijms242015454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
The hyperexcitability of the anterior cingulate cortex (ACC) has been implicated in the development of chronic pain. As one of the key causes of ACC hyperexcitation, disinhibition of the ACC may be closely related to the dysfunction of inhibitory parvalbumin (PV)-expressing interneurons (PV-INs). However, the molecular mechanism underlying the ACC PV-INs injury remains unclear. The present study demonstrates that spared sciatic nerve injury (SNI) induces an imbalance in the excitation and inhibition (E/I) of the ACC. To test whether tumor necrosis factor-α (TNF-α) upregulation in the ACC after SNI activates necroptosis and participates in PV-INs damage, we performed a differential analysis of transcriptome sequencing using data from neuropathic pain models and found that the expression of genes key to the TNF-α-necroptosis pathway were upregulated. TNF-α immunoreactivity (IR) signals in the ACCs of SNI rats were co-located with p-RIP3- and PV-IR, or p-MLKL- and PV-IR signals. We then systematically detected the expression and cell localization of necroptosis-related proteins, including kinase RIP1, RIP3, MLKL, and their phosphorylated states, in the ACC of SNI rats. Except for RIP1 and MLKL, the levels of these proteins were significantly elevated in the contralateral ACC and mainly expressed in PV-INs. Blocking the ACC TNF-α-necroptosis pathway by microinjecting TNF-α neutralizing antibody or using an siRNA knockdown to block expression of MLKL in the ACC alleviated SNI-induced pain hypersensitivity and inhibited the upregulation of TNF-α and p-MLKL. Targeting TNF-α-triggered necroptosis within ACC PV-INs may help to correct PV-INs injury and E/I imbalance in the ACC in neuropathic pain.
Collapse
Affiliation(s)
- Yiwen Duan
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Pain Research Center, Department of Physiology, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou 510080, China; (Y.D.); (Q.L.); (Y.Z.); (Y.L.)
| | - Qiaoyun Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Pain Research Center, Department of Physiology, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou 510080, China; (Y.D.); (Q.L.); (Y.Z.); (Y.L.)
| | - Yaohui Zhou
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Pain Research Center, Department of Physiology, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou 510080, China; (Y.D.); (Q.L.); (Y.Z.); (Y.L.)
| | - Shaoxia Chen
- State Key Laboratory of Oncology in South China, Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, China;
| | - Yongyong Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Pain Research Center, Department of Physiology, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou 510080, China; (Y.D.); (Q.L.); (Y.Z.); (Y.L.)
| | - Ying Zang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Pain Research Center, Department of Physiology, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou 510080, China; (Y.D.); (Q.L.); (Y.Z.); (Y.L.)
| |
Collapse
|
17
|
Rogness VM, Juliette J, Khasabova IA, Gupta K, Khasabov SG, Simone DA. Descending Facilitation of Nociceptive Transmission From the Rostral Ventromedial Medulla Contributes to Hyperalgesia in Mice with Sickle Cell Disease. Neuroscience 2023; 526:1-12. [PMID: 37330194 PMCID: PMC10528639 DOI: 10.1016/j.neuroscience.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/26/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Sickle cell disease (SCD) is an inherited blood disorder that is associated with acute episodic and chronic pain. Mice with SCD have robust hyperalgesia mediated, in part, by sensitization of spinal dorsal horn neurons. However, underlying mechanisms are not fully understood. Since the rostral ventromedial medulla (RVM) is a major component of descending circuitry that modulates nociceptive transmission in the spinal cord, we examined if the RVM contributes to hyperalgesia in mice with SCD. Injection of lidocaine, but not vehicle, into the RVM eliminated mechanical and heat hyperalgesia in sickle (HbSS-BERK) mice without altering mechanical and heat sensitivity in naïve C57B mice. These data indicate that the RVM contributes to the maintenance of hyperalgesia in mice with SCD. In electrophysiological studies, we determined the changes in response properties of RVM neurons that might contribute to hyperalgesia in sickle mice. Recordings were made from single ON, OFF, and Neutral cells in the RVM of sickle and control (HbAA-BERK) mice. Spontaneous activity and responses of ON, OFF and Neutral cells evoked by heat (50 °C) and mechanical (26 g) stimuli applied to the hind paw were compared between sickle and control mice. Although there were no differences in the proportions of functionally-identified neurons or spontaneous activity between sickle and control mice, evoked responses of ON cells to heat and mechanical stimuli were increased approximately 3-fold in sickle mice as compared to control mice. Thus, the RVM contributes to hyperalgesia in sickle mice via a specific ON cell-dependent descending facilitation of nociceptive transmission.
Collapse
Affiliation(s)
- Victoria M Rogness
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph Juliette
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Iryna A Khasabova
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kalpna Gupta
- Hematology/Oncology, Department of Medicine, University of California, Irvine and Southern California Institute for Research and Education, VA Medical Center, Long Beach, CA, USA
| | - Sergey G Khasabov
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Donald A Simone
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
18
|
Cramer N, Ji Y, Kane M, Pilli N, Posa L, Patten GV, Masri R, Keller A. Elevated serotonin in mouse spinal dorsal horn is pronociceptive. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552838. [PMID: 37645759 PMCID: PMC10461991 DOI: 10.1101/2023.08.10.552838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Serotonergic neurons in the rostral ventral medulla (RVM) contribute to bidirectional control of pain through modulation of spinal and trigeminal nociceptive networks. Deficits in this pathway are believed to contribute to pathological pain states, but whether changes in serotonergic mechanisms are pro or anti-nociceptive are debated. We used a combination of optogenetics and fiber photometry to examine these mechanisms more closely. We find that optogenetic activation of RVM serotonergic afferents in the spinal cord of naïve mice produces mechanical hypersensitivity and conditioned place aversion. Neuropathic pain, produced by chronic constriction injury of the infraorbital nerve (CCI-ION), evoked a tonic increase in serotonin concentrations within the spinal trigeminal nucleus caudalis (SpVc), measured with liquid chromatography-tandem mass spectroscopy (LC-MS/MS). By contract, CCI-ION had no effect on the phasic serotonin transients in SpVc, evoked by noxious pinch, and measured with fiber photometry of a serotonin sensor. These findings suggest that serotonin release in the spinal cord is pronociceptive and that an increase is sustained serotonin signaling, rather than phasic or event driven increases, potentiate nociception in models of chronic pain.
Collapse
Affiliation(s)
- Nathan Cramer
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- UM-MIND, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yadong Ji
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201
| | - Maureen Kane
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Nageswara Pilli
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Luca Posa
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Gabrielle Van Patten
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Radi Masri
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201
- UM-MIND, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Asaf Keller
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- UM-MIND, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
19
|
Zhang SB, Zhao GH, Lv TR, Gong CY, Shi YQ, Nan W, Zhang HH. Bibliometric and visual analysis of microglia-related neuropathic pain from 2000 to 2021. Front Mol Neurosci 2023; 16:1142852. [PMID: 37273906 PMCID: PMC10233022 DOI: 10.3389/fnmol.2023.1142852] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023] Open
Abstract
Background Microglia has gradually gained researchers' attention in the past few decades and has shown its promising prospect in treating neuropathic pain. Our study was performed to comprehensively evaluate microglia-related neuropathic pain via a bibliometric approach. Methods We retrospectively reviewed publications focusing on microglia-related neuropathic pain from 2000 to 2021 in WoSCC. VOS viewer software and CiteSpace software were used for statistical analyses. Results A total of 2,609 articles were finally included. A steady increase in the number of relevant publications was observed in the past two decades. China is the most productive country, while the United States shares the most-cited and highest H-index country. The University of London, Kyushu University, and the University of California are the top 3 institutions with the highest number of publications. Molecular pain and Pain are the most productive and co-cited journals, respectively. Inoue K (Kyushu University) is the most-contributed researcher and Ji RR (Duke University) ranks 1st in both average citations per article and H-index. Keywords analyses revealed that pro-inflammatory cytokines shared the highest burst strength. Sex differences, neuroinflammation, and oxidative stress are the emerging keywords in recent years. Conclusion In the field of microglia-related neuropathic pain, China is the largest producer and the United States is the most influential country. The signaling communication between microglia and neurons has continued to be vital in this field. Sexual dimorphism, neuroinflammation, and stem-cell therapies might be emerging trends that should be closely monitored.
Collapse
Affiliation(s)
- Shun-Bai Zhang
- Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Guang-Hai Zhao
- Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Tian-Run Lv
- Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Chao-Yang Gong
- Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Yong-Qiang Shi
- Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Wei Nan
- Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| |
Collapse
|
20
|
Mussetto V, Moen A, Trofimova L, Sandkühler J, Hogri R. Differential activation of spinal and parabrachial glial cells in a neuropathic pain model. Front Cell Neurosci 2023; 17:1163171. [PMID: 37082205 PMCID: PMC10110840 DOI: 10.3389/fncel.2023.1163171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 04/22/2023] Open
Abstract
The clinical burden faced by chronic pain patients is compounded by affective comorbidities, such as depression and anxiety disorders. Emerging evidence suggests that reactive glial cells in the spinal cord dorsal horn play a key role in the chronification of pain, while supraspinal glia are important for psychological aspects of chronic pain. The lateral parabrachial nucleus (LPBN) in the brainstem is a key node in the ascending pain system, and is crucial for the emotional dimension of pain. Yet, whether astrocytes and microglia in the LPBN are activated during chronic pain is unknown. Here, we evaluated the occurrence of glial activation in the LPBN of male Sprague-Dawley rats 1, 4, and 7 weeks after inducing a chronic constriction injury (CCI) of the sciatic nerve, a prevalent neuropathic pain model. CCI animals developed mechanical and thermal hypersensitivity that persisted for at least 4 weeks, and was mostly reversed after 7 weeks. Using immunohistochemical staining and confocal imaging, we found that CCI caused a strong increase in the expression of the astrocytic marker GFAP and the microglial marker Iba1 in the ipsilateral spinal dorsal horn, with peak expression observed 1 week post-injury. Moreover, morphology analysis revealed changes in microglial phenotype, indicative of microglia activation. In contrast, CCI did not induce any detectable changes in either astrocytes or microglia in the LPBN, at any time point. Thus, our results indicate that while neuropathic pain induces a robust glial reaction in the spinal dorsal horn, it fails to activate glial cells in the LPBN.
Collapse
Affiliation(s)
| | | | | | | | - Roni Hogri
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
de Almeida LS, Cunha-Rodrigues MC, Araujo PC, de Almeida OM, Barradas PC. Effects of prenatal hypoxia-ischemia on male rat periaqueductal gray matter: Hyperalgesia, astrogliosis and nitrergic system impairment. Neurochem Int 2023; 164:105500. [PMID: 36731728 DOI: 10.1016/j.neuint.2023.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023]
Abstract
Prenatal hypoxic-ischemic insult (HI) may lead to a variety of neurological consequences that may persist throughout adulthood. In the most severe cases, HI is known to increase pain sensitivity which profoundly impacts quality of life. Periaqueductal gray matter (PAG) is a relevant region of the descending pain pathway and its function may be modulated by a complex network that includes nitrergic neurons and glial response, among other factors. Astrocytes, central players in pain modulation, are known to respond to HI by inducing hyperplasia, hypertrophy and increasing the number of their processes and the staining of glial fibrillary acidic protein (GFAP). In this work we investigated the effects of prenatal HI on touch and pain sensitivity, besides the distribution of the neuronal isoform of Nitric Oxide Synthase (nNOS) and GFAP in the PAG of young and adult male rats. At 18 days of gestation, rats had their uterine arteries clamped for 45 min (HI group). SHAM-operated animals were also generated (SHAM group). At post-natal day 30 (P30) or 90 (P90), the offspring was submitted to the behavioral tests of Von Frey and formalin or histological processing to perform immunohistochemistry for nNOS and GFAP. Although there was no significant difference between the groups concerning touch sensitivity, we observed an increase in pain sensitivity in HI P30 and HI P90. The number of nNOS + cells was reduced in HI adult animals in dlPAG and vlPAG. GFAP immunostaining was increased in HI P90 in dlPAG and dmPAG. Our results demonstrated for the first time an increase in pain sensitivity as a consequence of prenatal HI in an animal model. It reinforces the relevance of this model to mimic the effects of prenatal HI, as hyperalgesia.
Collapse
Affiliation(s)
- L S de Almeida
- Universidade do Estado do Rio de Janeiro, Pharmacology and Psychobiology, Rio de Janeiro, Brazil
| | - M C Cunha-Rodrigues
- Universidade do Estado do Rio de Janeiro, Pharmacology and Psychobiology, Rio de Janeiro, Brazil
| | - P C Araujo
- Universidade do Estado do Rio de Janeiro, Pharmacology and Psychobiology, Rio de Janeiro, Brazil
| | - O M de Almeida
- Universidade do Estado do Rio de Janeiro, Pharmacology and Psychobiology, Rio de Janeiro, Brazil
| | - P C Barradas
- Universidade do Estado do Rio de Janeiro, Pharmacology and Psychobiology, Rio de Janeiro, Brazil.
| |
Collapse
|
22
|
Liu S, Crawford J, Tao F. Assessing Orofacial Pain Behaviors in Animal Models: A Review. Brain Sci 2023; 13:390. [PMID: 36979200 PMCID: PMC10046781 DOI: 10.3390/brainsci13030390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Orofacial pain refers to pain occurring in the head and face, which is highly prevalent and represents a challenge to clinicians, but its underlying mechanisms are not fully understood, and more studies using animal models are urgently needed. Currently, there are different assessment methods for analyzing orofacial pain behaviors in animal models. In order to minimize the number of animals used and maximize animal welfare, selecting appropriate assessment methods can avoid repeated testing and improve the reliability and accuracy of research data. Here, we summarize different methods for assessing spontaneous pain, evoked pain, and relevant accompanying dysfunction, and discuss their advantages and disadvantages. While the behaviors of orofacial pain in rodents are not exactly equivalent to the symptoms displayed in patients with orofacial pain, animal models and pain behavioral assessments have advanced our understanding of the pathogenesis of such pain.
Collapse
Affiliation(s)
| | | | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
23
|
Di Maio G, Villano I, Ilardi CR, Messina A, Monda V, Iodice AC, Porro C, Panaro MA, Chieffi S, Messina G, Monda M, La Marra M. Mechanisms of Transmission and Processing of Pain: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3064. [PMID: 36833753 PMCID: PMC9964506 DOI: 10.3390/ijerph20043064] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Knowledge about the mechanisms of transmission and the processing of nociceptive information, both in healthy and pathological states, has greatly expanded in recent years. This rapid progress is due to a multidisciplinary approach involving the simultaneous use of different branches of study, such as systems neurobiology, behavioral analysis, genetics, and cell and molecular techniques. This narrative review aims to clarify the mechanisms of transmission and the processing of pain while also taking into account the characteristics and properties of nociceptors and how the immune system influences pain perception. Moreover, several important aspects of this crucial theme of human life will be discussed. Nociceptor neurons and the immune system play a key role in pain and inflammation. The interactions between the immune system and nociceptors occur within peripheral sites of injury and the central nervous system. The modulation of nociceptor activity or chemical mediators may provide promising novel approaches to the treatment of pain and chronic inflammatory disease. The sensory nervous system is fundamental in the modulation of the host's protective response, and understanding its interactions is pivotal in the process of revealing new strategies for the treatment of pain.
Collapse
Affiliation(s)
- Girolamo Di Maio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Ines Villano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Ciro Rosario Ilardi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Department of Psychology, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Vincenzo Monda
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Ashlei Clara Iodice
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 71100 Foggia, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Sergio Chieffi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 71100 Foggia, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Marco La Marra
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
24
|
Astrocyte reactivity in the glia limitans superficialis of the rat medial prefrontal cortex following sciatic nerve injury. Histochem Cell Biol 2023; 159:185-198. [PMID: 36326875 DOI: 10.1007/s00418-022-02161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The glia limitans superficialis (GLS) on the rodent cortical surface consists of astrocyte bodies intermingled with their cytoplasmic processes. Many studies have observed astrocyte reactivity in the medial prefrontal cortex (mPFC) parenchyma induced by a peripheral nerve injury, while the response of GLS astrocytes is still not fully understood. The aim of our study was to identify the reactivity of rat GLS astrocytes in response to sciatic nerve compression (SNC) over different time periods. The alteration of GLS astrocyte reactivity was monitored using immunofluorescence (IF) intensities of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and NFκBp65. Our results demonstrated that SNC induced GLS astrocyte reactivity seen as increased intensities of GFAP-IF, and longer extensions of cytoplasmic processes into lamina I. First significant increase of GFAP-IF was observed on post-operation day 7 (POD7) after SNC with further increases on POD14 and POD21. In contrast, dynamic alteration of the extension of cytoplasmic processes into lamina I was detected as early as POD1 and continued throughout the monitored survival periods of both sham and SNC operations. The reactivity of GLS astrocytes was not associated with their proliferation. In addition, GLS astrocytes also displayed a significant decrease in GS immunofluorescence (GS-IF) and NFκB immunofluorescence (NFκB-IF) in response to sham and SNC operation compared with naïve control rats. These results suggest that damaged peripheral tissues (following sham operation as well as peripheral nerve lesions) may induce significant changes in GLS astrocyte reactivity. The signaling mechanism from injured peripheral tissue and nerve remains to be elucidated.
Collapse
|
25
|
Zheng W, Huang X, Wang J, Gao F, Chai Z, Zeng J, Li S, Yu C. The chronification mechanism of orofacial inflammatory pain: Facilitation by GPER1 and microglia in the rostral ventral medulla. Front Mol Neurosci 2023; 15:1078309. [PMID: 36683848 PMCID: PMC9853019 DOI: 10.3389/fnmol.2022.1078309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 01/08/2023] Open
Abstract
Background Chronic orofacial pain is a common and incompletely defined clinical condition. The role of G protein-coupled estrogen receptor 1 (GPER1) as a new estrogen receptor in trunk and visceral pain regulation is well known. Here, we researched the role of GPER1 in the rostral ventral medulla (RVM) during chronic orofacial pain. Methods and Results A pain model was established where rats were injected in the temporomandibular joint with complete Freund's adjuvant (CFA) to simulate chronic orofacial pain. Following this a behavioral test was performed to establish pain threshold and results showed that the rats injected with CFA had abnormal pain in the orofacial regions. Additional Immunostaining and blot analysis indicated that microglia were activated in the RVM and GPER1 and c-Fos were significantly upregulated in the rats. Conversely, when the rats were injected with G15 (a GPER1 inhibitor) the abnormal pain the CFA rats were experiencing was alleviated and microglia activation was prevented. In addition, we found that G15 downregulated the expression of phospholipase C (PLC) and protein kinase C (PKC), inhibited the expression of GluA1, restores aberrant synaptic plasticity and reduces the overexpression of the synapse-associated proteins PSD-95 and syb-2 in the RVM of CFA rats. Conclusion The findings indicate that GPER1 mediates chronic orofacial pain through modulation of the PLC-PKC signal pathway, sensitization of the RVM region and enhancement of neural plasticity. These results of this study therefore suggest that GPER1 may serve as a potential therapeutic target for chronic orofacial pain.
Collapse
Affiliation(s)
- Wenwen Zheng
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xilu Huang
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jing Wang
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Feng Gao
- The Sixth People’s Hospital of Chongqing, Anesthesiology, Chongqing, China
| | - Zhaowu Chai
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jie Zeng
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Sisi Li
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Cong Yu
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China,*Correspondence: Cong Yu, ✉
| |
Collapse
|
26
|
Liu X, Bae C, Gelman BB, Chung JM, Tang SJ. A neuron-to-astrocyte Wnt5a signal governs astrogliosis during HIV-associated pain pathogenesis. Brain 2022; 145:4108-4123. [PMID: 35040478 PMCID: PMC10200293 DOI: 10.1093/brain/awac015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 10/21/2023] Open
Abstract
Chronic pain is the most common neurological disorder of HIV patients. Multiple neuropathologies were identified in the pain pathway. Among them is the prominent astrocytic reaction (also know an astrogliosis). However, the pathogenic role and mechanism of the astrogliosis are unclear. Here, we show that the astrogliosis is crucial for the pain development induced by a key neurotoxic HIV protein gp120 and that a neuron-to-astrocyte Wnt5a signal controls the astrogliosis. Ablation of astrogliosis blocked the development of gp120-induced mechanical hyperalgesia, and concomitantly the expression of neural circuit polarization in the spinal dorsal horn. We demonstrated that conditional knockout of either Wnt5a in neurons or its receptor ROR2 in astrocytes abolished not only gp120-induced astrogliosis but also hyperalgesia and neural circuit polarization. Furthermore, we found that the astrogliosis promoted expression of hyperalgesia and NCP via IL-1β regulated by a Wnt5a-ROR2-MMP2 axis. Our results shed light on the role and mechanism of astrogliosis in the pathogenesis of HIV-associated pain.
Collapse
Affiliation(s)
- Xin Liu
- Stony Brook University Pain and Analgesia Research Center (SPARC) and Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chilman Bae
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University, Carbondale, IL 62901, USA
| | - Benjamin B Gelman
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jin Mo Chung
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shao-Jun Tang
- Stony Brook University Pain and Analgesia Research Center (SPARC) and Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
27
|
Kinoshita PF, Orellana AM, Andreotti DZ, de Souza GA, de Mello NP, de Sá Lima L, Kawamoto EM, Scavone C. Consequences of the Lack of TNFR1 in Ouabain Response in the Hippocampus of C57BL/6J Mice. Biomedicines 2022; 10:biomedicines10112937. [PMID: 36428505 PMCID: PMC9688030 DOI: 10.3390/biomedicines10112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ouabain is a cardiac glycoside that has a protective effect against neuroinflammation at low doses through Na+/K+-ATPase signaling and that can activate tumor necrosis factor (TNF) in the brain. TNF plays an essential role in neuroinflammation and regulates glutamate receptors by acting on two different receptors (tumor necrosis factor receptor 1 [TNFR1] and TNFR2) that have distinct functions and expression. The activation of constitutively and ubiquitously expressed TNFR1 leads to the expression of pro-inflammatory cytokines. Thus, this study aimed to elucidate the effects of ouabain in a TNFR1 knockout (KO) mouse model. Interestingly, the hippocampus of TNFR1 KO mice showed a basal increase in both TNFR2 membrane expression and brain-derived neurotrophic factor (BDNF) release, suggesting a compensatory mechanism. Moreover, ouabain activated TNF-α-converting enzyme/a disintegrin and metalloprotease 17 (TACE/ADAM17), decreased N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A) expression, and induced anxiety-like behavior in both genotype animals, independent of the presence of TNFR1. However, ouabain induced an increase in interleukin (IL)-1β in the hippocampus, a decrease in IL-6 in serum, and an increase in NMDA receptor subunit 1 (NR1) only in wild-type (WT) mice, indicating that TNFR1 or TNFR2 expression may be important for some effects of ouabain. Collectively, our results indicate a connection between ouabain signaling and TNFR1, with the effect of ouabain partially dependent on TNFR1.
Collapse
Affiliation(s)
- Paula Fernanda Kinoshita
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Ana Maria Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Diana Zukas Andreotti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Giovanna Araujo de Souza
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Natalia Prudente de Mello
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Correspondence:
| |
Collapse
|
28
|
Astrocytes in Chronic Pain: Cellular and Molecular Mechanisms. Neurosci Bull 2022; 39:425-439. [PMID: 36376699 PMCID: PMC10043112 DOI: 10.1007/s12264-022-00961-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/17/2022] [Indexed: 11/15/2022] Open
Abstract
AbstractChronic pain is challenging to treat due to the limited therapeutic options and adverse side-effects of therapies. Astrocytes are the most abundant glial cells in the central nervous system and play important roles in different pathological conditions, including chronic pain. Astrocytes regulate nociceptive synaptic transmission and network function via neuron–glia and glia–glia interactions to exaggerate pain signals under chronic pain conditions. It is also becoming clear that astrocytes play active roles in brain regions important for the emotional and memory-related aspects of chronic pain. Therefore, this review presents our current understanding of the roles of astrocytes in chronic pain, how they regulate nociceptive responses, and their cellular and molecular mechanisms of action.
Collapse
|
29
|
Proinflammatory cytokines and their receptors as druggable targets to alleviate pathological pain. Pain 2022; 163:S79-S98. [DOI: 10.1097/j.pain.0000000000002737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
|
30
|
Pike CK, Kim M, Schnitzer K, Mercaldo N, Edwards R, Napadow V, Zhang Y, Morrissey EJ, Alshelh Z, Evins AE, Loggia ML, Gilman JM. Study protocol for a phase II, double-blind, randomised controlled trial of cannabidiol (CBD) compared with placebo for reduction of brain neuroinflammation in adults with chronic low back pain. BMJ Open 2022; 12:e063613. [PMID: 36123113 PMCID: PMC9486315 DOI: 10.1136/bmjopen-2022-063613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/02/2022] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Chronic pain is a debilitating medical problem that is difficult to treat. Neuroinflammatory pathways have emerged as a potential therapeutic target, as preclinical studies have demonstrated that glial cells and neuroglial interactions play a role in the establishment and maintenance of pain. Recently, we used positron emission tomography (PET) to demonstrate increased levels of 18 kDa translocator protein (TSPO) binding, a marker of glial activation, in patients with chronic low back pain (cLBP). Cannabidiol (CBD) is a glial inhibitor in animal models, but studies have not assessed whether CBD reduces neuroinflammation in humans. The principal aim of this trial is to evaluate whether CBD, compared with placebo, affects neuroinflammation, as measured by TSPO levels. METHODS AND ANALYSIS This is a double-blind, randomised, placebo-controlled, phase II clinical trial. Eighty adults (aged 18-75) with cLBP for >6 months will be randomised to either an FDA-approved CBD medication (Epidiolex) or matching placebo for 4 weeks using a dose-escalation design. All participants will undergo integrated PET/MRI at baseline and after 4 weeks of treatment to evaluate neuroinflammation using [11C]PBR28, a second-generation radioligand for TSPO. Our primary hypothesis is that participants randomised to CBD will demonstrate larger reductions in thalamic [11C]PBR28 signal compared with those receiving placebo. We will also assess the effect of CBD on (1) [11C]PBR28 signal from limbic regions, which our prior work has linked to depressive symptoms and (2) striatal activation in response to a reward task. Additionally, we will evaluate self-report measures of cLBP intensity and bothersomeness, depression and quality of life at baseline and 4 weeks. ETHICS AND DISSEMINATION This protocol is approved by the Massachusetts General Brigham Human Research Committee (protocol number: 2021P002617) and FDA (IND number: 143861) and registered with ClinicalTrials.gov. Results will be published in peer-reviewed journals and presented at conferences. TRIAL REGISTRATION NUMBER NCT05066308; ClinicalTrials.gov.
Collapse
Affiliation(s)
- Chelsea K Pike
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Minhae Kim
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Kristina Schnitzer
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathaniel Mercaldo
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Edwards
- Department of Anesthesiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Vitaly Napadow
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
| | - Yi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erin Janas Morrissey
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Zeynab Alshelh
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - A Eden Evins
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Marco L Loggia
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jodi M Gilman
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Pei P, Cui S, Zhang S, Hu S, Wang L, Yang W. Effect of Electroacupuncture at Fengchi on Facial Allodynia, Microglial Activation, and Microglia-Neuron Interaction in a Rat Model of Migraine. Brain Sci 2022; 12:brainsci12081100. [PMID: 36009163 PMCID: PMC9405615 DOI: 10.3390/brainsci12081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of the work was to investigate whether electroacupuncture (EA) could ameliorate migraine central sensitization by modulating microglial activation and the subsequent release of inflammatory cytokines in the trigeminal nucleus caudalis (TNC) in a rat model. Establishment of a rat model of recurrent migraine was achieved through repeated dural electrical stimulation (DES). After nine sessions of acupuncture treatment at Fengchi (GB20), facial mechanical thresholds were measured by electronic von Frey measurements. Microglial activation and cytokine receptors of TNC were evaluated by immunofluorescence staining. The expression of microglial biological marker Ibal-1, proinflammatory cytokines, and cytokine receptors in the TNC were evaluated by Western blot and/or real-time polymerase chain reaction. In addition, the effects of inhibition of microglial activation on facial thresholds and neuronal activation (i.e., expression of c-Fos in the TNC) induced by DES were observed. After consecutive EA-GB20 treatments, the facial withdrawal threshold was significantly higher than in the model group at different time points (p < 0.05). The hyperreactivity of microglia induced by DES was significantly inhibited, and the expressions of Ibal-1, interleukin-1β, tumor necrosis factor-α, and their receptors in the TNC were also significantly decreased (p < 0.05). Inhibition of microglia by minocycline demonstrated an acupuncture-like role, which was manifested by ameliorated mechanical hyperalgesia and decreased neuronal expression of c-Fos, Iba-1, and inflammatory factors. EA at GB20 could ameliorate migraine facial allodynia by inhibiting microglial activation and the subsequent release of inflammatory cytokines and their receptors in the TNC.
Collapse
Affiliation(s)
- Pei Pei
- Neurology Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Shengwei Cui
- Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei 230012, China
| | - Shuaishuai Zhang
- Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei 230012, China
| | - Sheng Hu
- Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei 230012, China
| | - Linpeng Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Correspondence: (L.W.); (W.Y.)
| | - Wenming Yang
- Neurology Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
- Correspondence: (L.W.); (W.Y.)
| |
Collapse
|
32
|
Su PYP, Zhang L, He L, Zhao N, Guan Z. The Role of Neuro-Immune Interactions in Chronic Pain: Implications for Clinical Practice. J Pain Res 2022; 15:2223-2248. [PMID: 35957964 PMCID: PMC9359791 DOI: 10.2147/jpr.s246883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic pain remains a public health problem and contributes to the ongoing opioid epidemic. Current pain management therapies still leave many patients with poorly controlled pain, thus new or improved treatments are desperately needed. One major challenge in pain research is the translation of preclinical findings into effective clinical practice. The local neuroimmune interface plays an important role in the initiation and maintenance of chronic pain and is therefore a promising target for novel therapeutic development. Neurons interface with immune and immunocompetent cells in many distinct microenvironments along the nociceptive circuitry. The local neuroimmune interface can modulate the activity and property of the neurons to affect peripheral and central sensitization. In this review, we highlight a specific subset of many neuroimmune interfaces. In the central nervous system, we examine the interface between neurons and microglia, astrocytes, and T lymphocytes. In the periphery, we profile the interface between neurons in the dorsal root ganglion with T lymphocytes, satellite glial cells, and macrophages. To bridge the gap between preclinical research and clinical practice, we review the preclinical studies of each neuroimmune interface, discuss current clinical treatments in pain medicine that may exert its action at the neuroimmune interface, and highlight opportunities for future clinical research efforts.
Collapse
Affiliation(s)
- Po-Yi Paul Su
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Lingyi Zhang
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Liangliang He
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Na Zhao
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
33
|
Neuroimmune Mechanisms Underlying Neuropathic Pain: The Potential Role of TNF-α-Necroptosis Pathway. Int J Mol Sci 2022; 23:ijms23137191. [PMID: 35806192 PMCID: PMC9266916 DOI: 10.3390/ijms23137191] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
The neuroimmune mechanism underlying neuropathic pain has been extensively studied. Tumor necrosis factor-alpha (TNF-α), a key pro-inflammatory cytokine that drives cytokine storm and stimulates a cascade of other cytokines in pain-related pathways, induces and modulates neuropathic pain by facilitating peripheral (primary afferents) and central (spinal cord) sensitization. Functionally, TNF-α controls the balance between cell survival and death by inducing an inflammatory response and two programmed cell death mechanisms (apoptosis and necroptosis). Necroptosis, a novel form of programmed cell death, is receiving increasing attraction and may trigger neuroinflammation to promote neuropathic pain. Chronic pain is often accompanied by adverse pain-associated emotional reactions and cognitive disorders. Overproduction of TNF-α in supraspinal structures such as the anterior cingulate cortex (ACC) and hippocampus plays an important role in pain-associated emotional disorders and memory deficits and also participates in the modulation of pain transduction. At present, studies reporting on the role of the TNF-α–necroptosis pathway in pain-related disorders are lacking. This review indicates the important research prospects of this pathway in pain modulation based on its role in anxiety, depression and memory deficits associated with other neurodegenerative diseases. In addition, we have summarized studies related to the underlying mechanisms of neuropathic pain mediated by TNF-α and discussed the role of the TNF-α–necroptosis pathway in detail, which may represent an avenue for future therapeutic intervention.
Collapse
|
34
|
Yang QQ, Li HN, Xia YT, Tian X, Feng F, Yang J, Xu YL, Guo J, Li XQ, Wang JY, Zeng XY. Red Nucleus Interleukin-6 Evokes Tactile Allodynia in Male Rats Through Modulating Spinal Pro-inflammatory and Anti-inflammatory Cytokines. Front Mol Neurosci 2022; 15:820664. [PMID: 35465093 PMCID: PMC9026175 DOI: 10.3389/fnmol.2022.820664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Our previous studies have clarified that red nucleus (RN) interleukin (IL)-6 is involved in the maintenance of neuropathic pain and produces a facilitatory effect by activating JAK2/STAT3 and ERK pathways. In this study, we further explored the immune molecular mechanisms of rubral IL-6-mediated descending facilitation at the spinal cord level. IL-6-evoked tactile allodynia was established by injecting recombinant IL-6 into the unilateral RN of naive male rats. Following intrarubral administration of IL-6, obvious tactile allodynia was evoked in the contralateral hindpaw of rats. Meanwhile, the expressions of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), IL-1β, and IL-6 were elevated in the contralateral spinal dorsal horn (L4–L6), blocking spinal TNF-α, IL-1β, or IL-6 with neutralizing antibodies relieved IL-6-evoked tactile allodynia. Conversely, the levels of anti-inflammatory cytokines transforming growth factor-β (TGF-β) and IL-10 were reduced in the contralateral spinal dorsal horn (L4–L6), an intrathecal supplement of exogenous TGF-β, or IL-10 attenuated IL-6-evoked tactile allodynia. Further studies demonstrated that intrarubral pretreatment with JAK2/STAT3 inhibitor AG490 suppressed the elevations of spinal TNF-α, IL-1β, and IL-6 and promoted the expressions of TGF-β and IL-10 in IL-6-evoked tactile allodynia rats. However, intrarubral pretreatment with ERK inhibitor PD98059 only restrained the increase in spinal TNF-α and enhanced the expression of spinal IL-10. These findings imply that rubral IL-6 plays descending facilitation and produces algesic effect through upregulating the expressions of spinal pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 and downregulating the expressions of spinal anti-inflammatory cytokines TGF-β and IL-10 by activating JAK2/STAT3 and/or ERK pathways, which provides potential therapeutic targets for the treatment of pathological pain.
Collapse
Affiliation(s)
- Qing-Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Hao-Nan Li
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yu-Tong Xia
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xue Tian
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Fan Feng
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jian Yang
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Ya-Li Xu
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Juan Guo
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiao-Qi Li
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jun-Yang Wang
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Jun-Yang Wang,
| | - Xiao-Yan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Xiao-Yan Zeng,
| |
Collapse
|
35
|
Mirabelli E, Elkabes S. Neuropathic Pain in Multiple Sclerosis and Its Animal Models: Focus on Mechanisms, Knowledge Gaps and Future Directions. Front Neurol 2022; 12:793745. [PMID: 34975739 PMCID: PMC8716468 DOI: 10.3389/fneur.2021.793745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a multifaceted, complex and chronic neurological disease that leads to motor, sensory and cognitive deficits. MS symptoms are unpredictable and exceedingly variable. Pain is a frequent symptom of MS and manifests as nociceptive or neuropathic pain, even at early disease stages. Neuropathic pain is one of the most debilitating symptoms that reduces quality of life and interferes with daily activities, particularly because conventional pharmacotherapies do not adequately alleviate neuropathic pain. Despite advances, the mechanisms underlying neuropathic pain in MS remain elusive. The majority of the studies investigating the pathophysiology of MS-associated neuropathic pain have been performed in animal models that replicate some of the clinical and neuropathological features of MS. Experimental autoimmune encephalomyelitis (EAE) is one of the best-characterized and most commonly used animal models of MS. As in the case of individuals with MS, rodents affected by EAE manifest increased sensitivity to pain which can be assessed by well-established assays. Investigations on EAE provided valuable insights into the pathophysiology of neuropathic pain. Nevertheless, additional investigations are warranted to better understand the events that lead to the onset and maintenance of neuropathic pain in order to identify targets that can facilitate the development of more effective therapeutic interventions. The goal of the present review is to provide an overview of several mechanisms implicated in neuropathic pain in EAE by summarizing published reports. We discuss current knowledge gaps and future research directions, especially based on information obtained by use of other animal models of neuropathic pain such as nerve injury.
Collapse
Affiliation(s)
- Ersilia Mirabelli
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States.,Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Stella Elkabes
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
36
|
Lu ZY, Fan J, Yu LH, Ma B, Cheng LM. The Up-regulation of TNF-α Maintains Trigeminal Neuralgia by Modulating MAPKs Phosphorylation and BKCa Channels in Trigeminal Nucleus Caudalis. Front Cell Neurosci 2021; 15:764141. [PMID: 34899191 PMCID: PMC8657151 DOI: 10.3389/fncel.2021.764141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/18/2021] [Indexed: 12/30/2022] Open
Abstract
Trigeminal neuralgia (TN) is a severe chronic neuropathic pain. Despite numerous available medical interventions, the therapeutic effects are not ideal. To control the pain attacks, the need for more contemporary drugs continues to be a real challenge. Our previous study reported that Ca2+-activated K+ channels (BKCa) channels modulated by mitogen-activated protein kinases (MAPKs) in the trigeminal ganglia (TG) neurons play crucial roles in regulating TN, and some research studies demonstrated that inflammatory cytokine tumor necrosis factor alpha (TNF-α) could promote neuropathic pain. Meanwhile, the trigeminal nucleus caudalis (TNC), the first central site of the trigeminal nociceptive pathway, is responsible for processing sensory and pain signals from the peripheral orofacial area. Thus, this study is aimed to further investigate whether TNF-α and MAPKs phosphorylation in the TNC could mediate the pathogenesis of TN by modulating BKCa channels. The results showed that TNF-α of the TNC region is upregulated significantly in the chronic constriction injury of infraorbital nerve (ION-CCI) rats model, which displayed persistent facial mechanical allodynia. The normal rats with target injection of exogenous TNF-α to the fourth brain ventricle behaved just like the ION-CCI model rats, the orofacial mechanical pain threshold decreased clearly. Meanwhile, the exogenous TNF-α increased the action potential frequency and reduced the BKCa currents of TNC neurons significantly, which could be reversed by U0126 and SB203580, the inhibitors of MAPK. In addition, U0126, SB203580, and another MAPK inhibitor SP600125 could relieve the facial mechanical allodynia by being injected into the fourth brain ventricle of ION-CCI model rats, respectively. Taken together, our work suggests that the upregulation of TNF-α in the TNC region would cause the increase of MAPKs phosphorylation and then the negative regulation of BKCa channels, resulting in the TN.
Collapse
Affiliation(s)
- Zhan-Ying Lu
- Experimental Training Center of Basic Medical Science, Naval Medical University, Shanghai, China
| | - Juan Fan
- Experimental Training Center of Basic Medical Science, Naval Medical University, Shanghai, China
| | - Li-Hua Yu
- Experimental Training Center of Basic Medical Science, Naval Medical University, Shanghai, China
| | - Bei Ma
- Experimental Training Center of Basic Medical Science, Naval Medical University, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Division of Spine Surgery, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Li-Ming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Division of Spine Surgery, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Dou B, Li Y, Ma J, Xu Z, Fan W, Tian L, Chen Z, Li N, Gong Y, Lyu Z, Fang Y, Liu Y, Xu Y, Wang S, Chen B, Guo Y, Guo Y, Lin X. Role of Neuroimmune Crosstalk in Mediating the Anti-inflammatory and Analgesic Effects of Acupuncture on Inflammatory Pain. Front Neurosci 2021; 15:695670. [PMID: 34408622 PMCID: PMC8366064 DOI: 10.3389/fnins.2021.695670] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammatory pain is caused by peripheral tissue injury and inflammation. Inflammation leads to peripheral sensitization, which may further cause central sensitization, resulting in chronic pain and progressive functional disability. Neuroimmune crosstalk plays an essential role in the development and maintenance of inflammatory pain. Studies in recent years have shown that acupuncture can exert anti-inflammatory and analgesic effects by regulating peripheral (i.e., involving local acupoints and inflamed regions) and central neuroimmune interactions. At the local acupoints, acupuncture can activate the TRPV1 and TRPV2 channels of mast cells, thereby promoting degranulation and the release of histamine, adenosine, and other immune mediators, which interact with receptors on nerve endings and initiate neuroimmune regulation. At sites of inflammation, acupuncture enables the recruitment of immune cells, causing the release of opioid peptides, while also exerting direct analgesic effects via nerve endings. Furthermore, acupuncture promotes the balance of immune cells and regulates the release of inflammatory factors, thereby reducing the stimulation of nociceptive receptors in peripheral organs. Acupuncture also alleviates peripheral neurogenic inflammation by inhibiting the release of substance P (SP) and calcitonin gene-related peptide from the dorsal root ganglia. At the central nervous system level, acupuncture inhibits the crosstalk between glial cells and neurons by inhibiting the p38 MAPK, ERK, and JNK signaling pathways and regulating the release of inflammatory mediators. It also reduces the excitability of the pain pathway by reducing the release of excitatory neurotransmitters and promoting the release of inhibitory neurotransmitters from neurons and glial cells. In conclusion, the regulation of neuroimmune crosstalk at the peripheral and central levels mediates the anti-inflammatory and analgesic effects of acupuncture on inflammatory pain in an integrated manner. These findings provide novel insights enabling the clinical application of acupuncture in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Baomin Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanan Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jie Ma
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Fan
- Department of Rehabilitation Physical Therapy Course, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Lixin Tian
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhongxi Lyu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shenjun Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongming Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
38
|
Mills EP, Keay KA, Henderson LA. Brainstem Pain-Modulation Circuitry and Its Plasticity in Neuropathic Pain: Insights From Human Brain Imaging Investigations. FRONTIERS IN PAIN RESEARCH 2021; 2:705345. [PMID: 35295481 PMCID: PMC8915745 DOI: 10.3389/fpain.2021.705345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Acute pain serves as a protective mechanism that alerts us to potential tissue damage and drives a behavioural response that removes us from danger. The neural circuitry critical for mounting this behavioural response is situated within the brainstem and is also crucial for producing analgesic and hyperalgesic responses. In particular, the periaqueductal grey, rostral ventromedial medulla, locus coeruleus and subnucleus reticularis dorsalis are important structures that directly or indirectly modulate nociceptive transmission at the primary nociceptive synapse. Substantial evidence from experimental animal studies suggests that plasticity within this system contributes to the initiation and/or maintenance of chronic neuropathic pain, and may even predispose individuals to developing chronic pain. Indeed, overwhelming evidence indicates that plasticity within this circuitry favours pro-nociception at the primary synapse in neuropathic pain conditions, a process that ultimately contributes to a hyperalgesic state. Although experimental animal investigations have been crucial in our understanding of the anatomy and function of the brainstem pain-modulation circuitry, it is vital to understand this system in acute and chronic pain states in humans so that more effective treatments can be developed. Recent functional MRI studies have identified a key role of this system during various analgesic and hyperalgesic responses including placebo analgesia, offset analgesia, attentional analgesia, conditioned pain modulation, central sensitisation and temporal summation. Moreover, recent MRI investigations have begun to explore brainstem pain-modulation circuitry plasticity in chronic neuropathic pain conditions and have identified altered grey matter volumes and functioning throughout the circuitry. Considering the findings from animal investigations, it is likely that these changes reflect a shift towards pro-nociception that ultimately contributes to the maintenance of neuropathic pain. The purpose of this review is to provide an overview of the human brain imaging investigations that have improved our understanding of the pain-modulation system in acute pain states and in neuropathic conditions. Our interpretation of the findings from these studies is often guided by the existing body of experimental animal literature, in addition to evidence from psychophysical investigations. Overall, understanding the plasticity of this system in human neuropathic pain conditions alongside the existing experimental animal literature will ultimately improve treatment options.
Collapse
|
39
|
Sun YM, Shen Y, Huang H, Liu Q, Chen C, Ma LH, Wan J, Sun YY, Zhou CH, Wu YQ. Downregulated SIRT1 in the CeA is involved in chronic pain-depression comorbidity. Brain Res Bull 2021; 174:339-348. [PMID: 34245841 DOI: 10.1016/j.brainresbull.2021.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/27/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022]
Abstract
Comorbid chronic pain and depression are increasingly becoming a concerning public problem, but the underlying mechanisms remain unclear. Here, we demonstrate that pain-related depression-like behaviors are induced in a rat model of chronic constriction injury (CCI). Using this model, we found that chronic neuropathic pain decreased the activity and expression of sirtuin 1 (SIRT1, an NAD+-dependent deacetylase) in the central nucleus of the amygdala (CeA). In addition, the pharmacologic activation of SIRT1 in the CeA could alleviate the depression-like behaviors associated with chronic pain while relieving sensory pain. Accordingly, adeno-associated virus (AAV)-mediated SIRT1 overexpression in the CeA produced a positive effect on the easement of chronic pain and comorbid depression. Taken together, these findings highlight the role of SIRT1 in the CeA in chronic pain and depression states and reveal that the upregulation of SIRT1 may be a potential therapy for the treatment of pain-depression comorbidities.
Collapse
Affiliation(s)
- Yi-Man Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Ying Shen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Hui Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Lin-Hui Ma
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Jie Wan
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Yin-Ying Sun
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, PR China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China.
| |
Collapse
|
40
|
Abstract
BACKGROUND Pain and depression have a high impact on caring for the people who need palliative care, but both of these are neglected compared with the approach for other symptoms encountered by these patients. AREAS OF UNCERTAINTY There are few studies in humans that support the existence of common neural circuits between depression and pain that also explore the use of drugs with effects in both conditions. More knowledge is needed about the relationship of these clinical entities that will lead to the optimization of the treatment and improvement of quality of life. DATA SOURCES We conducted a search in PubMed to identify relevant articles and reviews that have been published in the last 5 years, concerning the topic of common pathways between depression and pain (2014-April 2019). THERAPEUTIC ADVANCES The connections between the 2 clinical entities start at the level of the cortical regions. The hippocampus is the main site of neural changes, modification of the immune system, neuromodulators, neurotransmitters, and signaling pathways implicated in both conditions. Increased levels of peripheral proinflammatory cytokines and neuroinflammatory changes are related to the physiopathology of these entities. Inflammation links depression and pain by altering neural circuits and changes in their common cortical regions. Antidepressants are used to treat depression and chronic, pain but more experimental studies are needed to determine which antidepressant drugs are the most effective in treating the 2 entities. CONCLUSIONS Pharmacological and nonpharmacological interventions targeting cortical changes in pain and depression are promising, but more clinical studies are needed to validate their usefulness.
Collapse
|
41
|
Kimura LF, Novaes LS, Picolo G, Munhoz CD, Cheung CW, Camarini R. How environmental enrichment balances out neuroinflammation in chronic pain and comorbid depression and anxiety disorders. Br J Pharmacol 2021; 179:1640-1660. [PMID: 34076891 DOI: 10.1111/bph.15584] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/05/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Depression and anxiety commonly occur in chronic pain states and the coexistence of these diseases worsens outcomes for both disorders and may reduce treatment adherence and response. Despite the advances in the knowledge of chronic pain mechanisms, pharmacological treatment is still unsatisfactory. Research based on exposure to environmental enrichment is currently under investigation and seems to offer a promising low-cost strategy with no side effects. In this review, we discuss the role of inflammation as a major biological substrate and aetiological factor of chronic pain and depression/anxiety and report a collection of preclinical evidence of the effects and mechanisms of environmental enrichment. As microglia participates in the development of both conditions, we also discuss microglia as a potential target underlying the beneficial actions of environmental enrichment in chronic pain and comorbid depression/anxiety. We also discuss how alternative interventions under clinical guidelines, such as environmental enrichment, may improve treatment compliance and patient outcomes.
Collapse
Affiliation(s)
- Louise F Kimura
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil
| | - Leonardo S Novaes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gisele Picolo
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil
| | - Carolina D Munhoz
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Chi W Cheung
- Department of Anesthesiology, University of Hong Kong, Hong Kong
| | - Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Mo SY, Bai SS, Xu XX, Liu Y, Fu KY, Sessle BJ, Cao Y, Xie QF. Astrocytes in the rostral ventromedial medulla contribute to the maintenance of oro-facial hyperalgesia induced by late removal of dental occlusal interference. J Oral Rehabil 2021; 49:207-218. [PMID: 34042200 DOI: 10.1111/joor.13211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/29/2021] [Accepted: 05/18/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Astrocytes in the rostral ventromedial medulla (RVM) contribute to descending pain modulation, but their role in oro-facial pain induced by persistent experimental dental occlusal interference (PEOI) or following EOI removal (REOI) is unknown. OBJECTIVE To explore the involvement of RVM astrocytes in PEOI-induced oro-facial hyperalgesia or its maintenance following REOI. METHODS Male rats were randomly assigned into five groups: sham-EOI, postoperative day 6 and 14 of PEOI (PEOI 6 d and PEOI 14 d), postoperative day 6 following REOI on day 3 (REOI 3 d) and postoperative day 14 following REOI on day 8 (REOI 8 d). The nociceptive head withdrawal threshold (HWT) and activities of RVM ON- or OFF-cells were recorded before and after intra-RVM astrocyte gap junction blocker carbenoxolone (CBX) microinjection. RVM astrocytes were labelled immunohistochemically with glial fibrillary acidic protein (GFAP) and analysed semi-quantitatively. RESULTS Persistent experimental dental occlusal interference-induced oro-facial hyperalgesia, as reflected in decreased HWTs, was partially inhibited by REOI at day 3 but not at day 8 after EOI placement. Increased GFAP-staining area occurred only in REOI 8 d group in which CBX could inhibit the maintained hyperalgesia; CBX was ineffective in inhibiting hyperalgesia in PEOI 14 d group. OFF-cell activities showed no change, but the spontaneous activity and responses of ON-cells were significantly enhanced that could be suppressed by CBX in REOI 8 d group. CONCLUSION Rostral ventromedial medulla astrocytes may not participate in PEOI-induced oro-facial hyperalgesia or hyperalgesia inhibition by early REOI but are involved in the maintenance of oro-facial hyperalgesia by late REOI.
Collapse
Affiliation(s)
- Si-Yi Mo
- Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Shan-Shan Bai
- Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xiao-Xiang Xu
- Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yun Liu
- Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Kai-Yuan Fu
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, China
| | - Barry J Sessle
- Faculty of Dentistry, and Department of Physiology, Faculty of Medicine, and Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| | - Ye Cao
- Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qiu-Fei Xie
- Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
43
|
WeiWei Y, WenDi F, Mengru C, Tuo Y, Chen G. The cellular mechanism by which the rostral ventromedial medulla acts on the spinal cord during chronic pain. Rev Neurosci 2021; 32:545-558. [PMID: 33565739 DOI: 10.1515/revneuro-2020-0121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/18/2020] [Indexed: 11/15/2022]
Abstract
Clinical therapies for chronic pain are limited. While targeted drugs are promising therapies for chronic pain, they exhibit insufficient efficacy and poor targeting. The occurrence of chronic pain partly results from central changes caused by alterations in neurons in the rostral ventromedial medulla (RVM) in the brainstem regulatory pathway. The RVM, which plays a key role in the descending pain control pathway, greatly contributes to the development and maintenance of pain. However, the exact roles of the RVM in chronic pain remain unclear, making it difficult to develop new drugs targeting the RVM and related pathways. Here, we first discuss the roles of the RVM and related circuits in chronic pain. Then, we analyze synaptic transmission between RVM neurons and spinal cord neurons, specifically focusing on the release of neurotransmitters, to explore the cellular mechanisms by which the RVM regulates chronic pain. Finally, we propose some ideas for the development of drugs targeting the RVM.
Collapse
Affiliation(s)
- Yu WeiWei
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| | - Fei WenDi
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| | - Cui Mengru
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong226001, China
| | - Yang Tuo
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun130033, China
| | - Gang Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong226001, China.,Department of Tissue and Embryology, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| |
Collapse
|
44
|
Duan H, Shen F, Li L, Tu Z, Chen P, Chen P, Wang Z, Liang W, Wang Y. Activation of the Notch signaling pathway in the anterior cingulate cortex is involved in the pathological process of neuropathic pain. Pain 2021; 162:263-274. [PMID: 32701650 PMCID: PMC7737863 DOI: 10.1097/j.pain.0000000000002014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 12/29/2022]
Abstract
Plastic changes in the anterior cingulate cortex (ACC) are critical in pain hypersensitivity caused by peripheral nerves injury. The Notch signaling pathway has been shown to regulate synaptic differentiation and transmission. Therefore, this study was to investigate the function of the Notch signaling pathway in the ACC during nociceptive transmission induced by neuropathic pain. We adopted Western blotting, N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) microinjections, RNA interference targeting Notch1, Hairy and enhancer of split (Hes) 1 or Hes5, electrophysiological recordings, and behavioral tests to verify the link between Notch signaling in ACC and neuropathic pain with adult male Sprague-Dawley rats. Levels of the Notch intracellular domain were increased in ACC on day 7 after chronic constriction injury surgery or spared nerve injury. Meanwhile, the mRNA level of the downstream effector of Notch signaling Hes1 was increased, whereas the level of Hes5 mRNA did not change. Microinjection of DAPT, a γ-secretase (a key enzyme involved in Notch pathway) inhibitor, into ACC significantly reversed neuropathic pain behaviors. Intra-ACC injection of short hairpin RNA-Notch reduced Notch intracellular domain expression and decreased the potentiation of synaptic transmission in the ACC. Moreover, pain perceptions were also alleviated in rats subjected to chronic constriction injury or spared nerve injury. This process was mainly mediated by the downstream effector Hes1, but not Hes5. Based on these results, the activation of the Notch/Hes1 signaling pathway in the ACC participates in the development of neuropathic pain, indicating that the Notch pathway may be a new therapeutic target for treating chronic pain.
Collapse
Affiliation(s)
- Haifeng Duan
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengyan Shen
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Li
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiyi Tu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping Chen
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Pei Chen
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiru Wang
- Key Laboratory of Brain Functional Genomics-Ministry of Education, School of Life Science, East China Normal University, Shanghai, China
| | - Weimin Liang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Zhang W, Ma J, Wang S, Huang T, Xia M. Tranilast attenuates neuropathic pain during type-2 diabetes by inhibiting hypoxia-induced pro-inflammatory cytokines in Zucker diabetic fatty rat model. Arch Physiol Biochem 2020; 129:i-x. [PMID: 33307841 DOI: 10.1080/13813455.2020.1854309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND The modulatory effect of tranilast on neuropathic pain in type-2 diabetes (T2DM) remains unclear. METHODS We monitored interleukin (IL)-1β, nuclear factor-κB (NF-κB) and tumour necrosis factor-α (TNF-α) levels during the progression of T2DM induced neuropathic pain in rats, and assessed the impact of tranilast treatment of increasing concentrations (0, 200 and 400 mg/kg/day via oral gavage in 1% NaHCO3 delivered as 100 mg/kg twice a day) on the levels of cytokine production, as well as on the thermal hyperalgesia and mechanical allodynia. RESULTS The rats developed hyperglycaemia accompanied with elevated levels of NF-κB, IL-1β and TNF-α in the rostral ventromedial medulla at the age of 16 weeks. Tranilast administration dose dependently alleviated thermal hyperalgesia as well as mechanical allodynia, which was associated with its ability in inhibiting hypoxia-induced levels of NF-κB, IL-1β and TNF-α. CONCLUSION Tranilast plays crucial roles in modulating T2DM-related neuropathic pain, likely through inhibiting hypoxia.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Anesthesiology, Anhui Provincial Hospital, the First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Jun Ma
- Department of Anesthesiology, Anhui Provincial Hospital, the First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Shan Wang
- Department of Anesthesiology, Anhui Provincial Hospital, the First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Tao Huang
- Department of Urology, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Min Xia
- Department of Anesthesiology, Anhui Provincial Hospital, the First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| |
Collapse
|
46
|
Teixeira-Santos L, Albino-Teixeira A, Pinho D. Neuroinflammation, oxidative stress and their interplay in neuropathic pain: Focus on specialized pro-resolving mediators and NADPH oxidase inhibitors as potential therapeutic strategies. Pharmacol Res 2020; 162:105280. [PMID: 33161139 DOI: 10.1016/j.phrs.2020.105280] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
Neuropathic pain (NP) is a chronic condition that results from a lesion or disease of the nervous system, greatly impacting patients' quality of life. Current pharmacotherapy options deliver inadequate and/or insufficient responses and thus a significant unmet clinical need remains for alternative treatments in NP. Neuroinflammation, oxidative stress and their reciprocal relationship are critically involved in NP pathophysiology. In this context, new pharmacological approaches, aiming at enhancing the resolution phase of inflammation and/or restoring redox balance by targeting specific reactive oxygen species (ROS) sources, are emerging as potential therapeutic strategies for NP, with improved efficacy and safety profiles. Several reports have demonstrated that administration of exogenous specialized pro-resolving mediators (SPMs) ameliorates NP pathophysiology. Likewise, deletion or inhibition of the ROS-generating enzyme NADPH oxidase (NOX), particularly its isoforms 2 and 4, results in beneficial effects in NP models. Notably, SPMs also modulate oxidative stress and NOX also regulates neuroinflammation. By targeting neuroinflammatory and oxidative pathways, both SPMs analogues and isoform-specific NOX inhibitors are promising therapeutic strategies for NP.
Collapse
Affiliation(s)
- Luísa Teixeira-Santos
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Portugal.
| | - António Albino-Teixeira
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Portugal.
| | - Dora Pinho
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Portugal.
| |
Collapse
|
47
|
Are glia targets for neuropathic orofacial pain therapy? J Am Dent Assoc 2020; 152:774-779. [PMID: 32921390 DOI: 10.1016/j.adaj.2020.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 01/06/2023]
|
48
|
Li CX, Liu J, Zhou KX, Zhao WJ, Zhao Y, Jin ZL, Gu ZX. Involvement of astrocytes activation in orofacial hyperalgesia induced by experimental tooth movement. Orthod Craniofac Res 2020; 24:147-154. [PMID: 32767851 DOI: 10.1111/ocr.12418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The study aimed to investigate the involvement of astrocytes in the medullary dorsal horn (MDH) in the orofacial hyperalgesia induced by experimental tooth movement (ETM) and related mechanism. MATERIALS AND METHODS Experimental tooth movement was produced with nickel-titanium alloy closed-coil spring fixed between the left maxillary first molar and the left upper incisor. Fluorocitrate was administrated through medullary subarachnoid at 3 days after ETM. Pressure pain threshold (PPT) in masseter cutaneous area was measured. The expression of glial fibrillary acidic protein (GFAP) and c-Fos in MDH was measured using immunofluoroscence staining. The expression of interleukin-1β (IL-1β) and phosphorylated N-methyl-D-aspartic acid (NMDA) receptor subunit NR1 (p-NR1) was measured with Western blotting. RESULTS Experimental tooth movement-induced orofacial hyperalgesia from 1 to 9 days as the PPT was significantly reduced (P < .05). Immunofluoroscence staining showed that the expression of c-Fos in MDH was dramatically upregulated at 1 day and 3 days after ETM, while GFAP expression with both immunofluoroscence staining and Western blotting was significantly enhanced at 3 days and 7 days after ETM. Western blotting analysis indicated that the expression of IL-1β and p-NR1 in MDH was significantly enhanced at 3 days after ETM. Furthermore, we found that fluorocitrate administration at 3 days after ETM could markedly suppress the expression of c-Fos, GFAP, IL-1β and p-NR1 and attenuate the reduction of PPT induced by ETM. CONCLUSION Astrocyte activation in MDH is involved in the mechanical hyperalgesia, and the subsequent upregulated IL-1β and overexpression of p-NR1 may participate in this process.
Collapse
Affiliation(s)
- Cui-Xia Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jia Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Kai-Xiang Zhou
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Wen-Jun Zhao
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Yan Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zuo-Lin Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Ze-Xu Gu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
49
|
Litvin DG, Denstaedt SJ, Borkowski LF, Nichols NL, Dick TE, Smith CB, Jacono FJ. Peripheral-to-central immune communication at the area postrema glial-barrier following bleomycin-induced sterile lung injury in adult rats. Brain Behav Immun 2020; 87:610-633. [PMID: 32097765 PMCID: PMC8895345 DOI: 10.1016/j.bbi.2020.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/02/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
The pathways for peripheral-to-central immune communication (P → C I-comm) following sterile lung injury (SLI) are unknown. SLI evokes systemic and central inflammation, which alters central respiratory control and viscerosensory transmission in the nucleus tractus solitarii (nTS). These functional changes coincide with increased interleukin-1 beta (IL-1β) in the area postrema, a sensory circumventricular organ that connects P → C I-comm to brainstem circuits that control homeostasis. We hypothesize that IL-1β and its downstream transcriptional target, cyclooxygenase-2 (COX-2), mediate P → C I-comm in the nTS. In a rodent model of SLI induced by intratracheal bleomycin (Bleo), the sigh frequency and duration of post-sigh apnea increased in Bleo- compared to saline- treated rats one week after injury. This SLI-dependent change in respiratory control occurred concurrently with augmented IL-1β and COX-2 immunoreactivity (IR) in the funiculus separans (FS), a barrier between the AP and the brainstem. At this barrier, increases in IL-1β and COX-2 IR were confined to processes that stained for glial fibrillary acidic protein (GFAP) and that projected basolaterally to the nTS. Further, FS radial-glia did not express TNF-α or IL-6 following SLI. To test our hypothesis, we blocked central COX-1/2 activity by intracerebroventricular (ICV) infusion of Indomethacin (Ind). Continuous ICV Ind treatment prevented Bleo-dependent increases in GFAP + and IL-1β + IR, and restored characteristics of sighs that reset the rhythm. These data indicate that changes in sighs following SLI depend partially on activation of a central COX-dependent P → C I-comm via radial-glia of the FS.
Collapse
Affiliation(s)
- David G Litvin
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Scott J Denstaedt
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Lauren F Borkowski
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Nicole L Nichols
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Corey B Smith
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
50
|
Sawicki CM, Humeidan ML, Sheridan JF. Neuroimmune Interactions in Pain and Stress: An Interdisciplinary Approach. Neuroscientist 2020; 27:113-128. [PMID: 32441204 DOI: 10.1177/1073858420914747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mounting evidence indicates that disruptions in bidirectional communication pathways between the central nervous system (CNS) and peripheral immune system underlie the etiology of pathologic pain conditions. The purpose of this review is to focus on the cross-talk between these two systems in mediating nociceptive circuitry under various conditions, including nervous system disorders. Elevated and prolonged proinflammatory signaling in the CNS is argued to play a role in psychiatric illnesses and chronic pain states. Here we review current research on the dynamic interplay between altered nociceptive mechanisms, both peripheral and central, and physiological and behavioral changes associated with CNS disorders.
Collapse
Affiliation(s)
- Caroline M Sawicki
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Michelle L Humeidan
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - John F Sheridan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.,Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|