1
|
Zharova NV, Osadchiy AS, Lobanova AK, Isakova TA, Zharov NA, Zharikov YO, Pontes-Silva A, Zharikova TS. Functional Anatomy of the Structures of the Limbic System Involved in the Development of Neuropsychiatric Disorders: A Review. Curr Behav Neurosci Rep 2025; 12:1. [DOI: 10.1007/s40473-024-00291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 05/03/2025]
|
2
|
Kesan A, Dey P, Khanra S, Singhai S, Boro M. Low dose baclofen and standard dose acamprosate had comparable changes in brain glutamate, brain Gamma amino butyric acid (GABA) and craving among patients with alcohol dependence syndrome: A 1H-MRS based open label randomized study. Ind Psychiatry J 2025; 34:25-31. [PMID: 40376631 PMCID: PMC12077627 DOI: 10.4103/ipj.ipj_187_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/14/2024] [Accepted: 01/02/2025] [Indexed: 05/18/2025] Open
Abstract
Background Understanding of the mechanism of action of Baclofen as anticraving inalcohol dependence syndrome (ADS) is limited. Aim Our study aimed to examine and compareearly changes in brain glutamate and GABA with Baclofen and Acamprosate among patients with alcohol dependence syndrome. Material and Methods Forty patients with ADS were recruited with purposive sampling and were randomized into two groups using computer-generated randomization. At the end of detoxification (CIWA-Ar <10) brain glutamate and GABA were measured with proton magnetic resonance spectroscopy (1H-MRS) in the anterior cingulate cortex (ACC) of the brain along with a measure of craving (PACS). Either Acamprosate or Baclofen was started. After 25 days of starting Baclofen or Acamprosate brain glutamate and brain GABA using 1H-MRS and PACS measures were repeat measured. Results Both groups had shown comparable changes in brain glutamate (F = 0.01, P = 0.92, ηp2 = 0.00) and GABA (F = 0.29, 26 P = 0.59, ηp2 = 0.008) and craving (F = 0.08, P = 0.77, ηp2 = 0.002) over time. Baclofen and Acamprosate showed a differential relation with the clinical characteristics of participants. Conclusion Our study has shown comparable changes in Glutamate and GABA during the early post-detoxification period both for baclofen and acamprosate. Effects of baclofen and acamprosate might correlate differently with the clinical profile of alcohol dependence syndrome which would help in choosing a particular anticraving medication.
Collapse
Affiliation(s)
- Akhil Kesan
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Pranjal Dey
- Department of Psychiatry, All India Institute of Medical Sciences, Guwahati, Assam, India
| | - Sourav Khanra
- Department of Addiction Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Samiksha Singhai
- Department of Psychiatry, LN Medical College and JK Hospital Bhopal, Madhya Pradesh, India
| | - Monalisa Boro
- Department of Psychiatry, All India Institute of Medical Sciences, Guwahati, Assam, India
| |
Collapse
|
3
|
Cai Y, Ge J, Pan ZZ. The projection from dorsal medial prefrontal cortex to basolateral amygdala promotes behaviors of negative emotion in rats. Front Neurosci 2024; 18:1331864. [PMID: 38327845 PMCID: PMC10847313 DOI: 10.3389/fnins.2024.1331864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
Brain circuits between medial prefrontal cortex (mPFC) and amygdala have been implicated in cortical control of emotion, especially anxiety. Studies in recent years focus on differential roles of subregions of mPFC and amygdala, and reciprocal pathways between mPFC and amygdala in regulation of emotional behaviors. It has been shown that, while the projection from ventral mPFC to basomedial amygdala has an anxiolytic effect, the reciprocal projections between dorsal mPFC (dmPFC) and basolateral amygdala (BLA) are generally involved in an anxiogenic effect in various conditions with increased anxiety. However, the function of the projection from dmPFC to BLA in regulation of general emotional behaviors under normal conditions remains unclear. In this study, we used optogenetic analysis to identify how this dmPFC-BLA pathway regulates various emotional behaviors in normal rats. We found that optogenetic stimulation of the dmPFC-BLA pathway promoted a behavioral state of negative emotion, increasing anxiety-like and depressive-like behaviors and producing aversive behavior of place avoidance. Conversely, optogenetic inhibition of this pathway produced opposite effects, reducing anxiety-like and depressive-like behaviors, and inducing behaviors of place preference of reward. These findings suggest that activity of the dmPFC-BLA pathway is sufficient to drive a negative emotion state and the mPFC-amygdala circuit is tonically active in cortical regulation of emotional behaviors.
Collapse
Affiliation(s)
| | | | - Zhizhong Z. Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
4
|
Melkumyan M, Silberman Y. Subregional Differences in Alcohol Modulation of Central Amygdala Neurocircuitry. Front Mol Neurosci 2022; 15:888345. [PMID: 35866156 PMCID: PMC9294740 DOI: 10.3389/fnmol.2022.888345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol use disorder is a highly significant medical condition characterized by an impaired ability to stop or control alcohol use, compulsive alcohol seeking behavior, and withdrawal symptoms in the absence of alcohol. Understanding how alcohol modulates neurocircuitry critical for long term and binge-like alcohol use, such as the central amygdala (CeA), may lead to the development of novel therapeutic strategies to treat alcohol use disorder. In clinical studies, reduction in the volume of the amygdala has been linked with susceptibility to relapse to alcohol use. Preclinical studies have shown the involvement of the CeA in the effects of alcohol use, with lesions of the amygdala showing a reduction in alcohol drinking, and manipulations of cells in the CeA altering alcohol drinking. A great deal of work has shown that acute alcohol, as well as chronic alcohol exposure via intake or dependence models, alters glutamatergic and GABAergic transmission in the CeA. The CeA, however, contains heterogeneous cell populations and distinct subregional differences in neurocircuit architecture which may influence the mechanism by which alcohol modulates CeA function overall. The current review aimed to parse out the differences in alcohol effects on the medial and lateral subregions of the CeA, and what role neuroinflammatory cells and markers, the endocannabinoid system, and the most commonly studied neuropeptide systems play in mediating these effects. A better understanding of alcohol effects on CeA subregional cell type and neurocircuit function may lead to development of more selective pharmacological interventions for alcohol use disorder.
Collapse
Affiliation(s)
- Mariam Melkumyan
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
| | - Yuval Silberman
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
5
|
Zuniga A, Smith ML, Caruso M, Ryabinin AE. Vesicular glutamate transporter 2-containing neurons of the centrally-projecting Edinger-Westphal nucleus regulate alcohol drinking and body temperature. Neuropharmacology 2021; 200:108795. [PMID: 34555367 DOI: 10.1016/j.neuropharm.2021.108795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/28/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022]
Abstract
Previous studies in rodents have repeatedly demonstrated that the centrally-projecting Edinger-Westphal nucleus (EWcp) is highly sensitive to alcohol and is also involved in regulating alcohol intake and body temperature. Historically, the EWcp has been known as the main site of Urocortin 1 (Ucn1) expression, a corticotropin-releasing factor-related peptide, in the brain. However, the EWcp also contains other populations of neurons, including neurons that express the vesicular glutamate transporter 2 (Vglut2). Here we transduced the EWcp with adeno-associated viruses (AAVs) encoding Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to test the role of the EWcp in alcohol drinking and in the regulation of body temperature. Activation of the EWcp with excitatory DREADDs inhibited alcohol intake in a 2-bottle choice procedure in male C57BL/6J mice, whereas inhibition of the EWcp with DREADDs had no effect. Surprisingly, analysis of DREADD expression indicated Ucn1-containing neurons of the EWcp did not express DREADDs. In contrast, AAVs transduced non-Ucn1-containing EWcp neurons. Subsequent experiments showed that the inhibitory effect of EWcp activation on alcohol intake was also present in male Ucn1 KO mice, suggesting that a Ucn1-devoid population of EWcp regulates alcohol intake. A final set of chemogenetic experiments showed that activation of Vglut2-expressing EWcp neurons inhibited alcohol intake and induced hypothermia in male and female mice. These studies expand on previous literature by indicating that a glutamatergic, Ucn1-devoid subpopulation of the EWcp regulates alcohol consumption and body temperature.
Collapse
Affiliation(s)
- Alfredo Zuniga
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| | - Monique L Smith
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Maya Caruso
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| |
Collapse
|
6
|
Holmgren EB, Wills TA. Regulation of glutamate signaling in the extended amygdala by adolescent alcohol exposure. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:223-250. [PMID: 34696874 DOI: 10.1016/bs.irn.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adolescence is a critical period for brain development and behavioral maturation, marked by increased risk-taking behavior and the initiation of drug use. There are significant changes in gray matter volume and pruning of synapses along with a shift in excitatory to inhibitory balance which marks the maturation of cognition and decision-making. Because of ongoing brain development, adolescents are particularly sensitive to the detrimental effects of drugs, including alcohol, which can cause long-lasting consequences into adulthood. The extended amygdala is a region critically implicated in withdrawal and negative affect such as anxiety and depression. As negative affective disorders develop during adolescence, the effects of adolescent alcohol exposure on extended amygdala circuitry needs further inquiry. Here we aim to provide a framework to discuss the existing literature on the extended amygdala, the neuroadaptations which result from alcohol use, and the intersection of factors which contribute to the long-lasting effects of this exposure.
Collapse
Affiliation(s)
- E B Holmgren
- Department of Cell Biology and Anatomy, LSU Health Sciences Center New Orleans, New Orleans, LA, United States
| | - T A Wills
- Department of Cell Biology and Anatomy, LSU Health Sciences Center New Orleans, New Orleans, LA, United States; Neuroscience Center of Excellence, LSU Health Sciences Center New Orleans, New Orleans, LA, United States.
| |
Collapse
|
7
|
Effects of N-acetylcysteine treatment on ethanol's rewarding properties and dopaminergic alterations in mesocorticolimbic and nigrostriatal pathways. Behav Pharmacol 2020; 32:239-250. [PMID: 33290342 DOI: 10.1097/fbp.0000000000000613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent reports have shown that N-acetylcysteine (N-AC) has beneficial effects in the treatment of cocaine and nicotine abuse. Considering the similar neurobiologic mechanisms involved in the development of addiction to different drugs, N-AC treatment could be useful in the treatment of ethanol abuse. The rewarding properties of the drugs of abuse plays an important role in the development of addiction and can be studied using the conditioned place preference (CPP) paradigm. Thus, to study the effects of N-AC treatment in the rewarding effects of ethanol, we investigated the effects of N-AC administration in the ethanol-induced CPP and neurochemical alterations within the mesocorticolimbic and the nigrostriatal dopaminergic pathways. Adult male Swiss mice were pretreated with N-AC (60 or 120 mg/kg intraperitoneal) and tested for the development, expression, or extinction of the ethanol-induced CPP. Another cohort of animals received N-AC (60 or 120 mg/kg intraperitoneal) 2-h before an acute administration of ethanol and had their brains removed for dopamine and its metabolites quantification in the mesocorticolimbic and nigrostriatal pathways. Pretreatment with N-AC (120 mg/kg) blocked the development of ethanol-induced CPP. On the other hand, N-AC at both doses did not alter the expression nor the extinction of ethanol-induced CPP. N-AC increased 3,4-dihydroxyphenylacetic acid content in the medial prefrontal cortex and dopaminergic turnover within the substantia nigra. Besides that, there was an increase in dopamine content in the nucleus accumbens of ethanol-treated animals. In summary, N-AC treatment blocked the development of ethanol CPP, without altering ethanol effects on dopaminergic neurotransmission.
Collapse
|
8
|
Amaral VCS, Morais-Silva G, Laverde CF, Marin MT. Susceptibility to extinction and reinstatement of ethanol-induced conditioned place preference is related to differences in astrocyte cystine-glutamate antiporter content. Neurosci Res 2020; 170:245-254. [PMID: 32653617 DOI: 10.1016/j.neures.2020.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 12/25/2022]
Abstract
Individual susceptibility to alcohol effects plays an important role in the development of alcohol addiction and studies have shown that glutamate release is altered after chronic ethanol consumption. The cystine-glutamate antiporter (xCT) is a protein that regulates glutamate release. However, little is known about the relationship between xCT levels and this individual susceptibility. Thus, this study aimed to evaluate the relationship between the extinction and stress-induced reinstatement of ethanol conditioned place preference (CPP) and xCT levels in the medial prefrontal cortex (mPFC), nucleus accumbens (NAcc) and amygdala (Amy). Male Swiss mice were submitted to a CPP procedure followed by an extinction protocol and then identified as those which extinguished the CPP and those that did not. In another cohort, mice that extinguished the CPP were submitted to a protocol of stress-induced reinstatement. Immediately after the tests, brains were removed for xCT quantification. The xCT levels were significantly lower in the mPFC and NAcc of mice that did not extinguish CPP. Moreover, mice that were susceptible to stress-induced reinstatement of CPP had lower levels of xCT in the NAcc. Our results suggest that individual susceptibility to the extinction and reinstatement of ethanol CPP is related to alterations in xCT levels.
Collapse
Affiliation(s)
- Vanessa Cristiane Santana Amaral
- Laboratory of Pharmacology and Toxicology of Natural and Synthetic Products, State University of Goias, Exact and Technological Sciences Campus, Anapolis, GO, Brazil; São Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, SP, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil
| | - Gessynger Morais-Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, SP, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil
| | - Celina F Laverde
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, SP, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil
| | - Marcelo T Marin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, SP, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil.
| |
Collapse
|
9
|
Hou YY, Cai YQ, Pan ZZ. GluA1 in Central Amygdala Promotes Opioid Use and Reverses Inhibitory Effect of Pain. Neuroscience 2019; 426:141-153. [PMID: 31863796 DOI: 10.1016/j.neuroscience.2019.11.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/22/2023]
Abstract
Increasing evidence suggests that long-term opioids and pain induce similar adaptive changes in the brain's reward circuits, however, how pain alters the addictive properties of opioids remains poorly understood. In this study using a rat model of morphine self-administration (MSA), we found that short-term pain, induced by an intraplantar injection of complete Freund's adjuvant (CFA), acutely decreased voluntary morphine intake, but not food intake, only at a morphine dose that did not affect pain itself. Pre-treatment with indomethacin, a non-opioid inhibitor of pain, before the pain induction blocked the decrease in morphine intake. In rats with steady MSA, the protein level of GluA1 subunits of glutamate AMPA receptors (AMPARs) was significantly increased, but that of GluA2 was decreased, resulting in an increased GluA1/GluA2 ratio in central nucleus of the amygdala (CeA). In contrast, pain decreased the GluA1/GluA2 ratio in the CeA of rats with MSA. Microinjection of NASPM, a selective inhibitor of homomeric GluA1-AMPARs, into CeA inhibited morphine intake. Furthermore, viral overexpression of GluA1 protein in CeA maintained morphine intake at a higher level than controls and reversed the pain-induced reduction in morphine intake. These findings suggest that CeA GluA1 promotes opioid use and its upregulation is sufficient to increase opioid consumption, which counteracts the acute inhibitory effect of pain on opioid intake. These results demonstrate that the CeA GluA1 is a shared target of opioid and pain in regulation of opioid use, which may aid in future development of therapeutic applications in opioid abuse.
Collapse
Affiliation(s)
- Yuan-Yuan Hou
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - You-Qing Cai
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Zhizhong Z Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Centanni SW, Bedse G, Patel S, Winder DG. Driving the Downward Spiral: Alcohol-Induced Dysregulation of Extended Amygdala Circuits and Negative Affect. Alcohol Clin Exp Res 2019; 43:2000-2013. [PMID: 31403699 PMCID: PMC6779502 DOI: 10.1111/acer.14178] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/07/2019] [Indexed: 12/17/2022]
Abstract
Alcohol use disorder (AUD) afflicts a large number of individuals, families, and communities globally. Affective disturbances, including stress, depression, and anxiety, are highly comorbid with AUD, contributing in some cases to initial alcohol use and continued use. Negative affect has a particularly strong influence on the withdrawal/abstinence stage of addiction as individuals with AUD frequently report stressful events, depression, and anxiety as key factors for relapse. Treatment options for negative affect associated with AUD are limited and often ineffective, highlighting the pressing need for preclinical studies examining the underlying neural circuitry driving AUD-associated negative affect. The extended amygdala (EA) is a set of brain areas collectively involved in generating and regulating affect, and extensive research has defined a critical role for the EA in all facets of substance use disorder. Here, we review the expansive historical literature examining the effects of ethanol exposure on the EA, with an emphasis on the complex EA neural circuitry driving negative affect in all phases of the alcohol addiction cycle. Specifically, this review focuses on the effects of alcohol exposure on the neural circuitry in 2 key components of the EA, the central nucleus of the amygdala and the bed nucleus of the stria terminalis. Additionally, future directions are proposed to advance our understanding of the relationship between AUD-associated negative affect and neural circuitry in the EA, with the long-term goal of developing better diagnostic tools and new pharmacological targets aimed at treating negative affect in AUD. The concepts detailed here will serve as the foundation for a companion review focusing on the potential for the endogenous cannabinoid system in the EA as a novel target for treating the stress, anxiety, and negative emotional state driving AUD.
Collapse
Affiliation(s)
- Samuel W. Centanni
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
| | - Gaurav Bedse
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| | - Sachin Patel
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| |
Collapse
|
11
|
Abstract
Ethanol produces intoxication through actions on numerous molecular and cellular targets. Adaptations involving these and other targets contribute to chronic drug actions that underlie continued and problematic drinking. Among the mechanisms involved in these ethanol actions are alterations in presynaptic mechanisms of synaptic transmission, including presynaptic protein function and excitation-secretion coupling. At synapses in the central nervous system (CNS), excitation-secretion coupling involves ion channel activation followed by vesicle fusion and neurotransmitter release. These mechanisms are altered by presynaptic neurotransmitter receptors and prominently by G protein-coupled receptors (GPCRs). Studies over the last 20-25 years have revealed that acute ethanol exposure alters neurotransmitter secretion, with especially robust effects on synapses that use the neurotransmitter gamma-aminobutyric acid (GABA). Intracellular signaling pathways involving second messengers such as cyclic AMP and calcium are implicated in these acute ethanol actions. Ethanol-induced release of neuropeptides and small molecule neurotransmitters that act on presynaptic GPCRs also contribute to presynaptic potentiation at synapses in the amygdala and hippocampus and inhibition of GABA release in the striatum. Prolonged exposure to ethanol alters neurotransmitter release at many CNS GABAergic and glutamatergic synapses, and changes in GPCR function are implicated in many of these neuroadaptations. These presynaptic neuroadaptations appear to involve compensation for acute drug effects at some synapses, but "allostatic" effects that result in long-term resetting of synaptic efficacy occur at others. Current investigations are determining how presynaptic neuroadaptations contribute to behavioral changes at different stages of alcohol drinking, with increasing focus on circuit adaptations underlying these behaviors. This chapter will discuss the acute and chronic presynaptic effects of ethanol in the CNS, as well as some of the consequences of these effects in amygdala and corticostriatal circuits that are related to excessive seeking/drinking and ethanol abuse.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| |
Collapse
|
12
|
Cuzon Carlson VC, Ford MM, Carlson TL, Lomniczi A, Grant KA, Ferguson B, Cervera-Juanes RP. Modulation of Gpr39, a G-protein coupled receptor associated with alcohol use in non-human primates, curbs ethanol intake in mice. Neuropsychopharmacology 2019; 44:1103-1113. [PMID: 30610192 PMCID: PMC6461847 DOI: 10.1038/s41386-018-0308-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/13/2018] [Accepted: 12/26/2018] [Indexed: 12/17/2022]
Abstract
Alcohol use disorder (AUD) is a chronic condition with devastating health and socioeconomic effects. Still, pharmacotherapies to treat AUD are scarce. In a prior study aimed at identifying novel AUD therapeutic targets, we investigated the DNA methylome of the nucleus accumbens core (NAcc) of rhesus macaques after chronic alcohol use. The G-protein coupled receptor 39 (GPR39) gene was hypermethylated and its expression downregulated in heavy alcohol drinking macaques. GPR39 encodes a Zn2+-binding metabotropic receptor known to modulate excitatory and inhibitory neurotransmission, the balance of which is altered in AUD. These prior findings suggest that a GPR39 agonist would reduce alcohol intake. Using a drinking-in-the-dark two bottle choice (DID-2BC) model, we showed that an acute 7.5 mg/kg dose of the GPR39 agonist, TC-G 1008, reduced ethanol intake in mice without affecting total fluid intake, locomotor activity or saccharin preference. Furthermore, repeated doses of the agonist prevented ethanol escalation in an intermittent access 2BC paradigm (IA-2BC). This effect was reversible, as ethanol escalation followed agonist "wash out". As observed during the DID-2BC study, a subsequent acute agonist challenge during the IA-2BC procedure reduced ethanol intake by ~47%. Finally, Gpr39 activation was associated with changes in Gpr39 and Bdnf expression, and in glutamate release in the NAcc. Together, our findings suggest that GPR39 is a promising target for the development of prevention and treatment therapies for AUD.
Collapse
Affiliation(s)
- Verginia C Cuzon Carlson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, USA
| | - Matthew M Ford
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, USA
| | - Timothy L Carlson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, USA
| | - Alejandro Lomniczi
- Division of Genetics, Oregon National Primate Research, Oregon Health and Sciences University, Beaverton, Oregon, USA
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, USA
| | - Betsy Ferguson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, USA
- Division of Genetics, Oregon National Primate Research, Oregon Health and Sciences University, Beaverton, Oregon, USA
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Rita P Cervera-Juanes
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, USA.
- Division of Genetics, Oregon National Primate Research, Oregon Health and Sciences University, Beaverton, Oregon, USA.
| |
Collapse
|
13
|
Agoglia AE, Herman MA. The center of the emotional universe: Alcohol, stress, and CRF1 amygdala circuitry. Alcohol 2018; 72:61-73. [PMID: 30220589 PMCID: PMC6165695 DOI: 10.1016/j.alcohol.2018.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/15/2018] [Accepted: 03/27/2018] [Indexed: 12/15/2022]
Abstract
The commonalities between different phases of stress and alcohol use as well as the high comorbidity between alcohol use disorders (AUDs) and anxiety disorders suggest common underlying cellular mechanisms governing the rewarding and aversive aspects of these related conditions. As an integrative center that assigns emotional salience to a wide variety of internal and external stimuli, the amygdala complex plays a major role in how alcohol and stress influence cellular physiology to produce disordered behavior. Previous work has illustrated the broad role of the amygdala in alcohol, stress, and anxiety. However, the challenge of current and future studies is to identify the specific dysregulations that occur within distinct amygdala circuits and subpopulations and the commonalities between these alterations in each disorder, with the long-term goal of identifying potential targets for therapeutic intervention. Specific intra-amygdala circuits and cell type-specific subpopulations are emerging as critical targets for stress- and alcohol-induced plasticity, chief among them the corticotropin releasing factor (CRF) and CRF receptor 1 (CRF1) system. CRF and CRF1 have been implicated in the effects of alcohol in several amygdala nuclei, including the basolateral (BLA) and central amygdala (CeA); however, the precise circuitry involved in these effects and the role of these circuits in stress and anxiety are only beginning to be understood.
Collapse
Affiliation(s)
- Abigail E Agoglia
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Melissa A Herman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
14
|
Logrip ML, Milivojevic V, Bertholomey ML, Torregrossa MM. Sexual dimorphism in the neural impact of stress and alcohol. Alcohol 2018; 72:49-59. [PMID: 30227988 PMCID: PMC6148386 DOI: 10.1016/j.alcohol.2018.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
Abstract
Alcohol use disorder is a widespread mental illness characterized by periods of abstinence followed by recidivism, and stress is the primary trigger of relapse. Despite the higher prevalence of alcohol use disorder in males, the relationship between stress and behavioral features of relapse, such as craving, is stronger in females. Given the greater susceptibility of females to stress-related psychiatric disorders, understanding sexual dimorphism in the relationship between stress and alcohol use is essential to identifying better treatments for both male and female alcoholics. This review addresses sex differences in the impact of stressors on alcohol drinking and seeking in rodents and humans. As these behavioral differences in alcohol use and relapse originate from sexual dimorphism in neuronal function, the impact of stressors and alcohol, and their interaction, on molecular adaptations and neural activity in males and females will also be discussed. Together, the data reviewed herein, arising from a symposium titled "Sex matters in stress-alcohol interactions" presented at the Fourth Volterra Conference on Stress and Alcohol, will highlight the importance of identifying sex differences to improve treatments for comorbid stress and alcohol use disorder in both sexes.
Collapse
Affiliation(s)
- Marian L Logrip
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States.
| | - Verica Milivojevic
- The Yale Stress Center, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Megan L Bertholomey
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Mary M Torregrossa
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA 15219, United States
| |
Collapse
|
15
|
Role of glutamatergic system and mesocorticolimbic circuits in alcohol dependence. Prog Neurobiol 2018; 171:32-49. [PMID: 30316901 DOI: 10.1016/j.pneurobio.2018.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Abstract
Emerging evidence demonstrates that alcohol dependence is associated with dysregulation of several neurotransmitters. Alterations in dopamine, glutamate and gamma-aminobutyric acid release are linked to chronic alcohol exposure. The effects of alcohol on the glutamatergic system in the mesocorticolimbic areas have been investigated extensively. Several studies have demonstrated dysregulation in the glutamatergic systems in animal models exposed to alcohol. Alcohol exposure can lead to an increase in extracellular glutamate concentrations in mesocorticolimbic brain regions. In addition, alcohol exposure affects the expression and functions of several glutamate receptors and glutamate transporters in these brain regions. In this review, we discussed the effects of alcohol exposure on glutamate receptors, glutamate transporters and glutamate homeostasis in each area of the mesocorticolimbic system. In addition, we discussed the genetic aspect of alcohol associated with glutamate and reward circuitry. We also discussed the potential therapeutic role of glutamate receptors and glutamate transporters in each brain region for the treatment of alcohol dependence. Finally, we provided some limitations on targeting the glutamatergic system for potential therapeutic options for the treatment alcohol use disorders.
Collapse
|
16
|
Lovinger DM, Abrahao KP. Synaptic plasticity mechanisms common to learning and alcohol use disorder. ACTA ACUST UNITED AC 2018; 25:425-434. [PMID: 30115764 PMCID: PMC6097767 DOI: 10.1101/lm.046722.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/21/2018] [Indexed: 11/24/2022]
Abstract
Alcohol use disorders include drinking problems that span a range from binge drinking to alcohol abuse and dependence. Plastic changes in synaptic efficacy, such as long-term depression and long-term potentiation are widely recognized as mechanisms involved in learning and memory, responses to drugs of abuse, and addiction. In this review, we focus on the effects of chronic ethanol (EtOH) exposure on the induction of synaptic plasticity in different brain regions. We also review findings indicating that synaptic plasticity occurs in vivo during EtOH exposure, with a focus on ex vivo electrophysiological indices of plasticity. Evidence for effects of EtOH-induced or altered synaptic plasticity on learning and memory and EtOH-related behaviors is also reviewed. As this review indicates, there is much work needed to provide more information about the molecular, cellular, circuit, and behavioral consequences of EtOH interactions with synaptic plasticity mechanisms.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892, USA
| | - Karina P Abrahao
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892, USA
| |
Collapse
|
17
|
Cai YQ, Wang W, Paulucci-Holthauzen A, Pan ZZ. Brain Circuits Mediating Opposing Effects on Emotion and Pain. J Neurosci 2018; 38:6340-6349. [PMID: 29941444 PMCID: PMC6041794 DOI: 10.1523/jneurosci.2780-17.2018] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 01/07/2023] Open
Abstract
The amygdala is important for processing emotion, including negative emotion such as anxiety and depression induced by chronic pain. Although remarkable progress has been achieved in recent years on amygdala regulation of both negative (fear) and positive (reward) behavioral responses, our current understanding is still limited regarding how the amygdala processes and integrates these negative and positive emotion responses within the amygdala circuits. In this study with optogenetic stimulation of specific brain circuits, we investigated how amygdala circuits regulate negative and positive emotion behaviors, using pain as an emotional assay in male rats. We report here that activation of the excitatory pathway from the parabrachial nucleus (PBN) that relays peripheral pain signals to the central nucleus of amygdala (CeA) is sufficient to cause behaviors of negative emotion including anxiety, depression, and aversion in normal rats. In strong contrast, activation of the excitatory pathway from basolateral amygdala (BLA) that conveys processed corticolimbic signals to CeA dramatically opposes these behaviors of negative emotion, reducing anxiety and depression, and induces behavior of reward. Surprisingly, activating the PBN-CeA pathway to simulate pain signals does not change pain sensitivity itself, but activating the BLA-CeA pathway inhibits basal and sensitized pain. These findings demonstrate that the pain signal conveyed through the PBN-CeA pathway is sufficient to drive negative emotion and that the corticolimbic signal via the BLA-CeA pathway counteracts the negative emotion, suggesting a top-down brain mechanism for cognitive control of negative emotion under stressful environmental conditions such as pain.SIGNIFICANCE STATEMENT It remains unclear how the amygdala circuits integrate both negative and positive emotional responses and the brain circuits that link peripheral pain to negative emotion are largely unknown. Using optogenetic stimulation, this study shows that the excitatory projection from the parabrachial nucleus to the central nucleus of amygdala (CeA) is sufficient to drive behaviors of negative emotion including anxiety, depression, and aversion in rats. Conversely, activation of the excitatory projection from basolateral amygdala to CeA counteracts each of these behaviors of negative emotion. Thus, this study identifies a brain pathway that mediates pain-driven negative emotion and a brain pathway that counteracts these emotion behaviors in a top-down mechanism for brain control of negative emotion.
Collapse
Affiliation(s)
- You-Qing Cai
- Departments of Anesthesiology and Pain Medicine and
| | - Wei Wang
- Departments of Anesthesiology and Pain Medicine and
| | | | | |
Collapse
|
18
|
Lebourgeois S, Vilpoux C, Jeanblanc J, Acher F, Marie N, Noble F, Naassila M. Pharmacological activation of mGlu4 and mGlu7 receptors, by LSP2-9166, reduces ethanol consumption and relapse in rat. Neuropharmacology 2018; 133:163-170. [DOI: 10.1016/j.neuropharm.2018.01.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/12/2018] [Accepted: 01/24/2018] [Indexed: 12/13/2022]
|
19
|
Abrahao KP, Salinas AG, Lovinger DM. Alcohol and the Brain: Neuronal Molecular Targets, Synapses, and Circuits. Neuron 2017; 96:1223-1238. [PMID: 29268093 PMCID: PMC6566861 DOI: 10.1016/j.neuron.2017.10.032] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/30/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
Ethanol is one of the most commonly abused drugs. Although environmental and genetic factors contribute to the etiology of alcohol use disorders, it is ethanol's actions in the brain that explain (1) acute ethanol-related behavioral changes, such as stimulant followed by depressant effects, and (2) chronic changes in behavior, including escalated use, tolerance, compulsive seeking, and dependence. Our knowledge of ethanol use and abuse thus relies on understanding its effects on the brain. Scientists have employed both bottom-up and top-down approaches, building from molecular targets to behavioral analyses and vice versa, respectively. This review highlights current progress in the field, focusing on recent and emerging molecular, cellular, and circuit effects of the drug that impact ethanol-related behaviors. The focus of the field is now on pinpointing which molecular effects in specific neurons within a brain region contribute to behavioral changes across the course of acute and chronic ethanol exposure.
Collapse
Affiliation(s)
- Karina P Abrahao
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Armando G Salinas
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Lee KM, Coehlo MA, Solton NR, Szumlinski KK. Negative Affect and Excessive Alcohol Intake Incubate during Protracted Withdrawal from Binge-Drinking in Adolescent, But Not Adult, Mice. Front Psychol 2017; 8:1128. [PMID: 28729845 PMCID: PMC5499357 DOI: 10.3389/fpsyg.2017.01128] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/19/2017] [Indexed: 01/10/2023] Open
Abstract
Binge-drinking is common in underage alcohol users, yet we know little regarding the biopsychological impact of binge-drinking during early periods of development. Prior work indicated that adolescent male C57BL6/J mice with a 2-week history of binge-drinking (PND28-41) are resilient to the anxiogenic effects of early alcohol withdrawal. Herein, we employed a comparable Drinking-in-the-Dark model to determine how a prior history of binge-drinking during adolescence (EtOHadolescents) influences emotionality (assayed with the light-dark box, marble burying test, and the forced swim test) and the propensity to consume alcohol in later life, compared to animals without prior drinking experience. For additional comparison, adult mice (EtOHadults) with comparable drinking history (PND56-69) were subdivided into groups tested for anxiety/drinking either on PND70 (24 h withdrawal) or PND98 (28 days withdrawal). Tissue from the nucleus accumbens shell (AcbSh) and central nucleus of the amygdala (CeA) was examined by immunoblotting for changes in the expression of glutamate-related proteins. EtOHadults exhibited some signs of hyperanxiety during early withdrawal (PND70), but not during protracted withdrawal (PND98). In contrast, EtOHadolescents exhibited robust signs of anxiety-l and depressive-like behaviors when tested as adults on PND70. While all alcohol-experienced animals subsequently consumed more alcohol than mice drinking for the first time, alcohol intake was greatest in EtOHadolescents. Independent of drinking age, the manifestation of withdrawal-induced hyperanxiety was accompanied by reduced Homer2b expression within the CeA and increased Group1 mGlu receptor expression within the AcbSh. The present data provide novel evidence that binge-drinking during adolescence produces a state characterized by profound negative affect and excessive alcohol consumption that incubates with the passage of time in withdrawal. These data extend our prior studies on the effects of subchronic binge-drinking during adulthood by demonstrating that the increase in alcoholism-related behaviors and glutamate-related proteins observed in early withdrawal dissipate with the passage of time. Our results to date highlight a critical interaction between the age of binge-drinking onset and the duration of alcohol withdrawal in glutamate-related neuroplasticity within the extended amygdala of relevance to the etiology of psychopathology, including pathological drinking, in later life.
Collapse
Affiliation(s)
- Kaziya M Lee
- Department of Psychological and Brain Sciences, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Michal A Coehlo
- Department of Psychological and Brain Sciences, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Noah R Solton
- Department of Psychological and Brain Sciences, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California, Santa BarbaraSanta Barbara, CA, United States.,Department of Molecular, Cellular and Developmental Biology and The Neuroscience Research Institute, University of California, Santa Barbara, Santa BarbaraCA, United States
| |
Collapse
|
21
|
Shah A, Zuo W, Kang S, Li J, Fu R, Zhang H, Bekker A, Ye JH. The lateral habenula and alcohol: Role of glutamate and M-type potassium channels. Pharmacol Biochem Behav 2017. [PMID: 28624587 DOI: 10.1016/j.pbb.2017.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder (AUD) or alcoholism is a chronic relapsing disorder. Our knowledge of alcoholism hinges on our understanding of its effects on the brain. This review will center on the effects of alcohol in the lateral habenula (LHb), an epithalamic structure that connects the forebrain with the midbrain and encodes aversive signaling. Like many addictive drugs, alcohol has both rewarding and aversive properties. While alcohol's euphoric property is believed to be important for the initiation of drinking, increasing evidence suggests that alcohol's negative affect plays a critical role in excessive drinking and alcohol dependence. During withdrawal and abstinence, alcoholics often experience anxiety and depressions, both of which have been implicated in relapse drinking. This review focuses on the recent accumulation of knowledge about the effects of acute and chronic alcohol exposure on the activity of and synaptic transmissions on LHb neurons, as well as the effects of manipulation of LHb function on alcohol consumption and related behaviors. Recent evidence highlights a critical role for the LHb in AUD and related psychiatric ailments. Multidisciplinary work in animals collectively suggests that LHb function and activity, including M-type potassium channels and glutamatergic transmission are altered by acute and repeated chronic alcohol exposure. We will also discuss how functional, pharmacological, and chemogenetic manipulation of the LHb affects ethanol drinking and psychiatric disorders occurring in animals withdrawn from chronic alcohol exposure. Conceivable mechanisms behind these effects and their potential as targets for therapies will also be discussed.
Collapse
Affiliation(s)
- Avi Shah
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Seungwoo Kang
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Jing Li
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Rao Fu
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Haifeng Zhang
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA.
| |
Collapse
|
22
|
Roberto M, Varodayan FP. Synaptic targets: Chronic alcohol actions. Neuropharmacology 2017; 122:85-99. [PMID: 28108359 DOI: 10.1016/j.neuropharm.2017.01.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/23/2016] [Accepted: 01/14/2017] [Indexed: 01/02/2023]
Abstract
Alcohol acts on numerous cellular and molecular targets to regulate neuronal communication within the brain. Chronic alcohol exposure and acute withdrawal generate prominent neuroadaptations at synapses, including compensatory effects on the expression, localization and function of synaptic proteins, channels and receptors. The present article reviews the literature describing the synaptic effects of chronic alcohol exposure and their relevance for synaptic transmission in the central nervous system. This review is not meant to be comprehensive, but rather to highlight the effects that have been observed most consistently and that are thought to contribute to the development of alcohol dependence and the negative aspects of withdrawal. Specifically, we will focus on the major excitatory and inhibitory neurotransmitters in the brain, glutamate and GABA, respectively, and how their neuroadaptations after chronic alcohol exposure contributes to alcohol reinforcement, dependence and withdrawal. This article is part of the Special Issue entitled "Alcoholism".
Collapse
|
23
|
D'Souza MS. Glutamatergic transmission in drug reward: implications for drug addiction. Front Neurosci 2015; 9:404. [PMID: 26594139 PMCID: PMC4633516 DOI: 10.3389/fnins.2015.00404] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022] Open
Abstract
Individuals addicted to drugs of abuse such as alcohol, nicotine, cocaine, and heroin are a significant burden on healthcare systems all over the world. The positive reinforcing (rewarding) effects of the above mentioned drugs play a major role in the initiation and maintenance of the drug-taking habit. Thus, understanding the neurochemical mechanisms underlying the reinforcing effects of drugs of abuse is critical to reducing the burden of drug addiction in society. Over the last two decades, there has been an increasing focus on the role of the excitatory neurotransmitter glutamate in drug addiction. In this review, pharmacological and genetic evidence supporting the role of glutamate in mediating the rewarding effects of the above described drugs of abuse will be discussed. Further, the review will discuss the role of glutamate transmission in two complex heterogeneous brain regions, namely the nucleus accumbens (NAcc) and the ventral tegmental area (VTA), which mediate the rewarding effects of drugs of abuse. In addition, several medications approved by the Food and Drug Administration that act by blocking glutamate transmission will be discussed in the context of drug reward. Finally, this review will discuss future studies needed to address currently unanswered gaps in knowledge, which will further elucidate the role of glutamate in the rewarding effects of drugs of abuse.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University Ada, OH, USA
| |
Collapse
|
24
|
Silberman Y, Fetterly TL, Awad EK, Milano EJ, Usdin TB, Winder DG. Ethanol produces corticotropin-releasing factor receptor-dependent enhancement of spontaneous glutamatergic transmission in the mouse central amygdala. Alcohol Clin Exp Res 2015; 39:2154-62. [PMID: 26503065 PMCID: PMC4624256 DOI: 10.1111/acer.12881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/14/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ethanol (EtOH) modulation of central amygdala (CeA) neurocircuitry plays a key role in the development of alcoholism via activation of the corticotropin-releasing factor (CRF) receptor (CRFR) system. Previous work has predominantly focused on EtOH × CRF interactions on the CeA GABA circuitry; however, our laboratory recently showed that CRF enhances CeA glutamatergic transmission. Therefore, this study sought to determine whether EtOH modulates CeA glutamate transmission via activation of CRF signaling. METHODS The effects of EtOH on spontaneous excitatory postsynaptic currents (sEPSCs) and basal resting membrane potentials were examined via standard electrophysiology methods in adult male C57BL/6J mice. Local ablation of CeA CRF neurons (CRF(CeAhDTR) ) was achieved by targeting the human diphtheria toxin receptor (hDTR) to CeA CRF neurons with an adeno-associated virus. Ablation was quantified post hoc with confocal microscopy. Genetic targeting of the diphtheria toxin active subunit to CRF neurons (CRF(DTA) mice) ablated CRF neurons throughout the central nervous system, as assessed by quantitative reverse transcriptase polymerase chain reaction quantification of CRF mRNA. RESULTS Acute bath application of EtOH significantly increased sEPSC frequency in a concentration-dependent manner in CeA neurons, and this effect was blocked by pretreatment of co-applied CRFR1 and CRFR2 antagonists. In experiments utilizing a CRF-tomato reporter mouse, EtOH did not significantly alter the basal membrane potential of CeA CRF neurons. The ability of EtOH to enhance CeA sEPSC frequency was not altered in CRF(CeAhDTR) mice despite a ~78% reduction in CeA CRF cell counts. The ability of EtOH to enhance CeA sEPSC frequency was also not altered in the CRF(DTA) mice despite a 3-fold reduction in CRF mRNA levels. CONCLUSIONS These findings demonstrate that EtOH enhances spontaneous glutamatergic transmission in the CeA via a CRFR-dependent mechanism. Surprisingly, our data suggest that this action may not require endogenous CRF.
Collapse
Affiliation(s)
- Yuval Silberman
- Molecular Physiology and Biophysics, Neuroscience Program, Vanderbilt University School of Medicine
| | - Tracy L. Fetterly
- Molecular Physiology and Biophysics, Neuroscience Program, Vanderbilt University School of Medicine
| | - Elias K. Awad
- Molecular Physiology and Biophysics, Neuroscience Program, Vanderbilt University School of Medicine
| | - Elana J. Milano
- Molecular Physiology and Biophysics, Neuroscience Program, Vanderbilt University School of Medicine
| | - Ted B. Usdin
- Section Fundamental Neuroscience, National Institute of Mental Health, National Institutes of Health
| | - Danny G. Winder
- Molecular Physiology and Biophysics, Neuroscience Program, Vanderbilt University School of Medicine
| |
Collapse
|
25
|
Agoglia AE, Holstein SE, Reid G, Hodge CW. CaMKIIα-GluA1 Activity Underlies Vulnerability to Adolescent Binge Alcohol Drinking. Alcohol Clin Exp Res 2015; 39:1680-90. [PMID: 26247621 DOI: 10.1111/acer.12819] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/18/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Binge drinking during adolescence is associated with increased risk for developing alcohol use disorders; however, the neural mechanisms underlying this liability are unclear. In this study, we sought to determine whether binge drinking alters expression or phosphorylation of 2 molecular mechanisms of neuroplasticity, calcium/calmodulin-dependent kinase II alpha (CaMKIIα) and the GluA1 subunit of AMPA receptors (AMPARs) in addiction-associated brain regions. We also asked whether activation of CaMKIIα-dependent AMPAR activity escalates binge-like drinking. METHODS To address these questions, CaMKIIαT286 and GluA1S831 protein phosphorylation and expression were assessed in the amygdala and striatum of adolescent and adult male C57BL/6J mice immediately after voluntary binge-like alcohol drinking (blood alcohol >80 mg/dl). In separate mice, effects of the CaMKIIα-dependent GluA1S831 phosphorylation (pGluA1S831 )-enhancing drug tianeptine were tested on binge-like alcohol consumption in both age groups. RESULTS Binge-like drinking decreased CaMKIIαT286 phosphorylation (pCaMKIIαT286 ) selectively in adolescent amygdala with no effect in adults. Alcohol also produced a trend for reduced pGluA1S831 expression in adolescent amygdala but differentially increased pGluA1S831 in adult amygdala. No effects were observed in the nucleus accumbens or dorsal striatum. Tianeptine increased binge-like alcohol consumption in adolescents but decreased alcohol consumption in adults. Sucrose consumption was similarly decreased by tianeptine pretreatment in both ages. CONCLUSIONS These data show that the adolescent and adult amygdalae are differentially sensitive to effects of binge-like alcohol drinking on plasticity-linked glutamate signaling molecules. Tianeptine-induced increases in binge-like drinking only in adolescents suggest that differential CaMKIIα-dependent AMPAR activation may underlie age-related escalation of binge drinking.
Collapse
Affiliation(s)
- Abigail E Agoglia
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina.,Curriculum in Neurobiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| | - Sarah E Holstein
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| | - Grant Reid
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| | - Clyde W Hodge
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina.,Curriculum in Neurobiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina.,Department of Psychiatry, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina.,Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
26
|
Silberman Y, Winder DG. Ethanol and corticotropin releasing factor receptor modulation of central amygdala neurocircuitry: An update and future directions. Alcohol 2015; 49:179-84. [PMID: 25716197 PMCID: PMC4414799 DOI: 10.1016/j.alcohol.2015.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 12/25/2022]
Abstract
The central amygdala is a critical brain region for many aspects of alcohol dependence. Much of the work examining the mechanisms by which the central amygdala mediates the development of alcohol dependence has focused on the interaction of acute and chronic ethanol with central amygdala corticotropin releasing factor signaling. This work has led to a great deal of success in furthering the general understanding of central amygdala neurocircuitry and its role in alcohol dependence. Much of this work has primarily focused on the hypothesis that ethanol utilizes endogenous corticotropin releasing factor signaling to upregulate inhibitory GABAergic transmission in the central amygdala. Work that is more recent suggests that corticotropin releasing factor also plays an important role in mediating anxiety-like behaviors via the enhancement of central amygdala glutamatergic transmission, implying that ethanol/corticotropin releasing factor interactions may modulate excitatory neurotransmission in this brain region. In addition, a number of studies utilizing optogenetic strategies or transgenic mouse lines have begun to examine specific central amygdala neurocircuit dynamics and neuronal subpopulations to better understand overall central amygdala neurocircuitry and the role of neuronal subtypes in mediating anxiety-like behaviors. This review will provide a brief update on this literature and describe some potential future directions that may be important for the development of better treatments for alcohol addiction.
Collapse
Affiliation(s)
- Yuval Silberman
- Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute, Neuroscience Program in Substance Abuse, Vanderbilt University Medical Center, 2200 Pierce Ave., Nashville, TN 37232, USA.
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute, Neuroscience Program in Substance Abuse, Vanderbilt University Medical Center, 2200 Pierce Ave., Nashville, TN 37232, USA
| |
Collapse
|
27
|
Rao PSS, Bell RL, Engleman EA, Sari Y. Targeting glutamate uptake to treat alcohol use disorders. Front Neurosci 2015; 9:144. [PMID: 25954150 PMCID: PMC4407613 DOI: 10.3389/fnins.2015.00144] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 04/07/2015] [Indexed: 01/05/2023] Open
Abstract
Alcoholism is a serious public health concern that is characterized by the development of tolerance to alcohol's effects, increased consumption, loss of control over drinking and the development of physical dependence. This cycle is often times punctuated by periods of abstinence, craving and relapse. The development of tolerance and the expression of withdrawal effects, which manifest as dependence, have been to a great extent attributed to neuroadaptations within the mesocorticolimbic and extended amygdala systems. Alcohol affects various neurotransmitter systems in the brain including the adrenergic, cholinergic, dopaminergic, GABAergic, glutamatergic, peptidergic, and serotonergic systems. Due to the myriad of neurotransmitter and neuromodulator systems affected by alcohol, the efficacies of current pharmacotherapies targeting alcohol dependence are limited. Importantly, research findings of changes in glutamatergic neurotransmission induced by alcohol self- or experimenter-administration have resulted in a focus on therapies targeting glutamatergic receptors and normalization of glutamatergic neurotransmission. Glutamatergic receptors implicated in the effects of ethanol include the ionotropic glutamate receptors (AMPA, Kainate, and NMDA) and some metabotropic glutamate receptors. Regarding glutamatergic homeostasis, ceftriaxone, MS-153, and GPI-1046, which upregulate glutamate transporter 1 (GLT1) expression in mesocorticolimbic brain regions, reduce alcohol intake in genetic animal models of alcoholism. Given the hyperglutamatergic/hyperexcitable state of the central nervous system induced by chronic alcohol abuse and withdrawal, the evidence thus far indicates that a restoration of glutamatergic concentrations and activity within the mesocorticolimbic system and extended amygdala as well as multiple memory systems holds great promise for the treatment of alcohol dependence.
Collapse
Affiliation(s)
- P S S Rao
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine Indianapolis, IN, USA
| | - Eric A Engleman
- Department of Psychiatry, Indiana University School of Medicine Indianapolis, IN, USA
| | - Youssef Sari
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| |
Collapse
|
28
|
Kyzar EJ, Pandey SC. Molecular mechanisms of synaptic remodeling in alcoholism. Neurosci Lett 2015; 601:11-9. [PMID: 25623036 DOI: 10.1016/j.neulet.2015.01.051] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 01/21/2023]
Abstract
Alcohol use and alcohol addiction represent dysfunctional brain circuits resulting from neuroadaptive changes during protracted alcohol exposure and its withdrawal. Alcohol exerts a potent effect on synaptic plasticity and dendritic spine formation in specific brain regions, providing a neuroanatomical substrate for the pathophysiology of alcoholism. Epigenetics has recently emerged as a critical regulator of gene expression and synaptic plasticity-related events in the brain. Alcohol exposure and withdrawal induce changes in crucial epigenetic processes in the emotional brain circuitry (amygdala) that may be relevant to the negative affective state defined as the "dark side" of addiction. Here, we review the literature concerning synaptic plasticity and epigenetics, with a particular focus on molecular events related to dendritic remodeling during alcohol abuse and alcoholism. Targeting epigenetic processes that modulate synaptic plasticity may yield novel treatments for alcoholism.
Collapse
Affiliation(s)
- Evan J Kyzar
- Department of Psychiatry, University of Illinois at Chicago, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Subhash C Pandey
- Department of Psychiatry, University of Illinois at Chicago, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
29
|
Jin Z, Bhandage AK, Bazov I, Kononenko O, Bakalkin G, Korpi ER, Birnir B. Expression of specific ionotropic glutamate and GABA-A receptor subunits is decreased in central amygdala of alcoholics. Front Cell Neurosci 2014; 8:288. [PMID: 25278838 PMCID: PMC4165314 DOI: 10.3389/fncel.2014.00288] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/29/2014] [Indexed: 01/20/2023] Open
Abstract
The central amygdala (CeA) has a role for mediating fear and anxiety responses. It is also involved in emotional imbalance caused by alcohol abuse and dependence and in regulating relapse to alcohol abuse. Growing evidences suggest that excitatory glutamatergic and inhibitory γ-aminobutyric acid-ergic (GABAergic) transmissions in the CeA are affected by chronic alcohol exposure. Human post-mortem CeA samples from male alcoholics (n = 9) and matched controls (n = 9) were assayed for the expression level of ionotropic glutamate and GABA-A receptors subunit mRNAs using quantitative real-time reverse transcription-PCR (RT-qPCR). Our data revealed that out of the 16 ionotropic glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA1 and GluA4; one kainate receptor subunit GluK2; one NMDA (N-methyl-D-aspartate) receptor subunit GluN2D and one delta receptor subunit GluD2 were significantly decreased in the CeA of alcoholics. In contrast, of the 19 GABA-A receptor subunits, only the mRNA encoding the α2 subunit was significantly down-regulated in the CeA of the alcoholics as compared with control subjects. Our findings imply that the down-regulation of specific ionotropic glutamate and GABA-A receptor subunits in the CeA of alcoholics may represent one of the molecular substrates underlying the new balance between excitatory and inhibitory neurotransmission in alcohol dependence.
Collapse
Affiliation(s)
- Zhe Jin
- Molecular Physiology and Neuroscience Unit, Neuroscience, Biomedical Center, Uppsala University Uppsala, Sweden
| | - Amol K Bhandage
- Molecular Physiology and Neuroscience Unit, Neuroscience, Biomedical Center, Uppsala University Uppsala, Sweden
| | - Igor Bazov
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Olga Kononenko
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Esa R Korpi
- Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland
| | - Bryndis Birnir
- Molecular Physiology and Neuroscience Unit, Neuroscience, Biomedical Center, Uppsala University Uppsala, Sweden
| |
Collapse
|
30
|
Zhang Z, Tao W, Hou YY, Wang W, Lu YG, Pan ZZ. Persistent pain facilitates response to morphine reward by downregulation of central amygdala GABAergic function. Neuropsychopharmacology 2014; 39:2263-71. [PMID: 24686896 PMCID: PMC4104345 DOI: 10.1038/npp.2014.77] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 01/11/2023]
Abstract
Opioid-based analgesics are widely used for treating chronic pain, but opioids are highly addictive when repeatedly used because of their strong rewarding effects. In recent years, abuse of prescription opioids has dramatically increased, including incidences of misuse of opioid drugs prescribed for pain control. Despite this issue in current clinical pain management, it remains unknown how pain influences the abuse liability of prescription opioids. Pain as aversive experience may affect opioid reward of positive emotion through common brain sites involved in emotion processing. In this study, on a rat model of chronic pain, we determined how persistent pain altered behavioral responses to morphine reward measured by the paradigm of unbiased conditioned place preference (CPP), focusing on GABAergic synaptic activity in neurons of the central nucleus of the amygdala (CeA), an important brain region for emotional processing of both pain and reward. We found that pain reduced the minimum number of morphine-conditioning sessions required for inducing CPP behavior. Both pain and morphine conditioning that elicited CPP inhibited GABA synaptic transmission in CeA neurons. Pharmacological activation of CeA GABAA receptors reduced the pain and inhibited CPP induced both by an effective dose of morphine and by a sub-threshold dose of morphine under pain condition. Furthermore, inhibition of CeA GABAA receptors mimicked the pain effect, rendering the sub-threshold dose of morphine effective in CPP induction. These findings suggest that pain facilitates behavioral responses to morphine reward by predisposing the inhibitory GABA function in the CeA circuitry involved in the behavior of opioid reward.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Anesthesiology and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA,Department of Neurobiology and Biophysics, Key Laboratory of Brain Functions and Diseases, School of Life Science, University of Science and Technology of China, Hefei, China,Key Laboratory of Brain Functions and Diseases, School of Life Science, University of Science and Technology of China, Hefei 230027, China. E-mail:
| | - Wenjuan Tao
- Department of Neurobiology and Biophysics, Key Laboratory of Brain Functions and Diseases, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Yuan-Yuan Hou
- Department of Anesthesiology and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Wang
- Department of Anesthesiology and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun-Gang Lu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhizhong Z Pan
- Department of Anesthesiology and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA,Department of Anesthesiology and Pain Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 110, Houston, TX 77030, USA, Tel: +713 792 5559, Fax: +713 745 3040, E-mail:
| |
Collapse
|
31
|
Logrip ML, Zorrilla EP. Differential changes in amygdala and frontal cortex Pde10a expression during acute and protracted withdrawal. Front Integr Neurosci 2014; 8:30. [PMID: 24782725 PMCID: PMC3986522 DOI: 10.3389/fnint.2014.00030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/18/2014] [Indexed: 01/08/2023] Open
Abstract
Alcohol use disorders are persistent problems with high recidivism rates despite repeated efforts to quit drinking. Neuroadaptations that result from alcohol exposure and that persist during periods of abstinence represent putative molecular determinants of the propensity to relapse. Previously we demonstrated a positive association between phosphodiesterase 10A (PDE10A) gene expression and elevations in relapse-like alcohol self-administration in rats with a history of stress exposure. Because alcohol withdrawal is characterized by heightened anxiety-like behavior, activation of stress-responsive brain regions and an elevated propensity to self-administer alcohol, we hypothesized that Pde10a expression also would be upregulated in reward- and stress-responsive brain regions during periods of acute (8-10 h) and protracted (6 weeks) alcohol withdrawal. During acute withdrawal, elevated Pde10a mRNA expression was found in the medial and basolateral amygdala (BLA), as well as the infralimbic and anterior cingulate subdivisions of the medial prefrontal cortex, relative to alcohol-naïve controls. The BLA was the only region with elevated Pde10a mRNA expression during both acute and protracted withdrawal. In contrast to the elevations, Pde10a mRNA levels tended to be reduced during protracted withdrawal in the dorsal striatum, prelimbic prefrontal cortex, and medial amygdala. Together these results implicate heightened PDE10A expression in the BLA as a lasting neuroadaptation associated with alcohol dependence.
Collapse
Affiliation(s)
- Marian L Logrip
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Eric P Zorrilla
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| |
Collapse
|
32
|
Rapamycin prevents drug seeking via disrupting reconsolidation of reward memory in rats. Int J Neuropsychopharmacol 2014; 17:127-36. [PMID: 24103337 DOI: 10.1017/s1461145713001156] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maladaptive drug memory developed between the drug-rewarding effect and environmental cues contributes to difficulty in preventing drug relapse. Established reward memories can be disrupted by pharmacologic interventions following their reactivation. Rapamycin, an inhibitor of mammalian target of rapamycin (mTOR) kinase, has been proved to be involved in various memory consolidation. However, it is less well characterized in drug memory reconsolidation. Using a conditioned place preference (CPP) procedure, we examined the effects of systemically administered rapamycin on reconsolidation of drug memory in rats. We found that systemically administered rapamycin (0.1 or 10 mg/kg, i.p.) after re-exposure to drug-paired environment, dose dependently decreased the expression of CPP 1 d later, and the effect lasted for up to 14 d and could not be reversed by a priming injection of morphine. The effect of rapamycin on morphine-associated memory was specific to drug-paired context, and rapamycin had no effect on subsequent CPP expression when rats were exposed to saline-paired context or homecage. These results indicated that systemic administration of rapamycin after memory reactivation can persistently inhibit the drug seeking behaviour via disruption of morphine memory reconsolidation in rats. Additionally, the effect of rapamycin on memory reconsolidation was reproduced in cocaine CPP and alcohol CPP. Furthermore, rapamycin did not induce conditioned place aversion and had no effect on locomotor activity and anxiety behaviour. These findings suggest that rapamycin could erase the acquired drug CPP in rats, and that mTOR activity plays an important role in drug reconsolidation and is required for drug relapse.
Collapse
|
33
|
Doyon WM, Thomas AM, Ostroumov A, Dong Y, Dani JA. Potential substrates for nicotine and alcohol interactions: a focus on the mesocorticolimbic dopamine system. Biochem Pharmacol 2013; 86:1181-93. [PMID: 23876345 DOI: 10.1016/j.bcp.2013.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 01/13/2023]
Abstract
Epidemiological studies consistently find correlations between nicotine and alcohol use, yet the neural mechanisms underlying their interaction remain largely unknown. Nicotine and alcohol (i.e., ethanol) share many common molecular and cellular targets that provide potential substrates for nicotine-alcohol interactions. These targets for interaction often converge upon the mesocorticolimbic dopamine system, where the link to drug self-administration and reinforcement is well documented. Both nicotine and alcohol activate the mesocorticolimbic dopamine system, producing downstream dopamine signals that promote the drug reinforcement process. While nicotine primarily acts via nicotinic acetylcholine receptors, alcohol acts upon a wider range of receptors and molecular substrates. The complex pharmacological profile of these two drugs generates overlapping responses that ultimately intersect within the mesocorticolimbic dopamine system to promote drug use. Here we will examine overlapping targets between nicotine and alcohol and provide evidence for their interaction. Based on the existing literature, we will also propose some potential targets that have yet to be directly tested. Mechanistic studies that examine nicotine-alcohol interactions would ultimately improve our understanding of the factors that contribute to the associations between nicotine and alcohol use.
Collapse
Affiliation(s)
- William M Doyon
- Center on Addiction, Learning, Memory, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
34
|
Luo YX, Xue YX, Shen HW, Lu L. Role of amygdala in drug memory. Neurobiol Learn Mem 2013; 105:159-73. [PMID: 23831499 DOI: 10.1016/j.nlm.2013.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/16/2013] [Accepted: 06/25/2013] [Indexed: 12/11/2022]
Abstract
Drug addiction is a chronic brain disorder with the hallmark of a high rate of relapse to compulsive drug seeking and drug taking even after long-term abstinence. Addiction has been considered as an aberrant memory that has been termed "addiction memory." Drug-related memory plays a critical role in the maintenance of learned addictive behaviors and emergence of relapse. Disrupting these long-lasting memories by administering amnestic agents or other manipulations during specific phases of drug memory is a promising strategy for relapse prevention. Recent studies on the processes of drug addiction and relapse have demonstrated that the amygdala is involved in associative drug addiction learning processes. In this review, we focus on preclinical studies that used conditioned place preference and self-administration models to investigate the differential roles of the amygdala in each phase of drug-related memory, including acquisition, consolidation, retrieval, reconsolidation, and extinction. These studies indicate that the amygdala plays a critical role in both cue-associative learning and the expression of cue-induced relapse to drug-seeking behavior.
Collapse
Affiliation(s)
- Yi-Xiao Luo
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | | | | | | |
Collapse
|
35
|
Xie G, Krnjević K, Ye JH. Salsolinol modulation of dopamine neurons. Front Behav Neurosci 2013; 7:52. [PMID: 23745110 PMCID: PMC3662897 DOI: 10.3389/fnbeh.2013.00052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/07/2013] [Indexed: 11/25/2022] Open
Abstract
Salsolinol, a tetrahydroisoquinoline present in the human and rat brains, is the condensation product of dopamine and acetaldehyde, the first metabolite of ethanol. Previous evidence obtained in vivo links salsolinol with the mesolimbic dopaminergic (DA) system: salsolinol is self-administered into the posterior of the ventral tegmental area (pVTA) of rats; intra-VTA administration of salsolinol induces a strong conditional place preference and increases dopamine release in the nucleus accumbens (NAc). However, the underlying neuronal mechanisms are unclear. Here we present an overview of some of the recent research on this topic. Electrophysiological studies reveal that DA neurons in the pVTA are a target of salsolinol. In acute brain slices from rats, salsolinol increases the excitability and accelerates the ongoing firing of dopamine neurons in the pVTA. Intriguingly, this action of salsolinol involves multiple pre- and post-synaptic mechanisms, including: (1) depolarizing dopamine neurons; (2) by activating μ opioid receptors on the GABAergic inputs to dopamine neurons – which decreases GABAergic activity – dopamine neurons are disinhibited; and (3) enhancing presynaptic glutamatergic transmission onto dopamine neurons via activation of dopamine type 1 receptors, probably situated on the glutamatergic terminals. These novel mechanisms may contribute to the rewarding/reinforcing properties of salsolinol observed in vivo.
Collapse
Affiliation(s)
- Guiqin Xie
- Department of Anesthesiology, Pharmacology, and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey Newark, NJ, USA ; Department of Physiology, Nanjing Medical University Nanjing, China
| | | | | |
Collapse
|
36
|
Cai YQ, Wang W, Hou YY, Zhang Z, Xie J, Pan ZZ. Central amygdala GluA1 facilitates associative learning of opioid reward. J Neurosci 2013; 33:1577-88. [PMID: 23345231 PMCID: PMC3711547 DOI: 10.1523/jneurosci.1749-12.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 12/11/2022] Open
Abstract
GluA1 subunits of AMPA glutamate receptors are implicated in the synaptic plasticity induced by drugs of abuse for behaviors of drug addiction, but GluA1 roles in emotional learning and memories of drug reward in the development of drug addiction remain unclear. In this study of the central nucleus of the amygdala (CeA), which is critical in emotional learning of drug reward, we investigated how adaptive changes in the expression of GluA1 subunits affected the learning process of opioid-induced context-reward association (associative learning) for the acquisition of reward-related behavior. In CeA neurons, we found that CeA GluA1 expression was significantly increased 2 h after conditioning treatment with morphine, but not 24 h after the conditioning when the behavior of conditioned place reference (CPP) was fully established in rats. Adenoviral overexpression of GluA1 subunits in CeA accelerated associative learning, as shown by reduced minimum time of morphine conditioning required for CPP acquisition and by facilitated CPP extinction through extinction training with no morphine involved. Adenoviral shRNA-mediated downregulation of CeA GluA1 produced opposite effects, inhibiting the processes of both CPP acquisition and CPP extinction. Adenoviral knockdown of CeA GluA2 subunits facilitated CPP acquisition, but did not alter CPP extinction. Whole-cell recording revealed enhanced electrophysiological properties of postsynaptic GluA2-lacking AMPA receptors in adenoviral GluA1-infected CeA neurons. These results suggest that increased GluA1 expression of CeA AMPA receptors facilitates the associative learning of context-drug reward, an important process in both development and relapse of drug-seeking behaviors in drug addiction.
Collapse
Affiliation(s)
- You-Qing Cai
- Department of Anesthesiology and Pain Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Wei Wang
- Department of Anesthesiology and Pain Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yuan-Yuan Hou
- Department of Anesthesiology and Pain Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Zhi Zhang
- Department of Anesthesiology and Pain Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jun Xie
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Zhizhong Z. Pan
- Department of Anesthesiology and Pain Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
37
|
Bie B, Wang Y, Cai YQ, Zhang Z, Hou YY, Pan ZZ. Upregulation of nerve growth factor in central amygdala increases sensitivity to opioid reward. Neuropsychopharmacology 2012; 37:2780-8. [PMID: 22871918 PMCID: PMC3499709 DOI: 10.1038/npp.2012.144] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The rewarding properties of opioids are essential driving force for compulsive drug-seeking and drug-taking behaviors in the development of opioid-mediated drug addiction. Prior drug use enhances sensitivity to the rewarding effects of subsequently used drugs, increasing vulnerability to relapse. The molecular mechanisms underlying this reward sensitization are still unclear. We report here that morphine that induced reward sensitization, as demonstrated by reinstatement of the behavior of conditioned place preference (CPP) with sub-threshold priming morphine, epigenetically upregulated the output activity of Ngf encoding the nerve growth factor (NGF) by increasing histone H4 acetylation in the rat central nucleus of the amygdala (CeA). NGF locally infused into the CeA mimicked the morphine effect in inducing new functional delta-opioid receptor (DOR) that was required for the reward sensitization, and morphine-induced reward sensitization was inhibited by blocking NGF receptor signaling in the CeA. Histone deacetylase inhibitors that increased the acetylation level at the Ngf promoter and NGF expression in the CeA also induced reward sensitization in a CeA NGF signaling- and DOR-dependent manner. Furthermore, CeA-applied NGF substituted prior morphine to induce reward sensitization in naive rats and also substituted priming morphine to reinstate the CPP induced by prior morphine. Thus, epigenetic upregulation of NGF activity in the CeA may promote the behavior of opioid reward and increase the sensitivity to the rewarding effect of subsequent opioids, a potentially important mechanism in drug addiction.
Collapse
Affiliation(s)
- Bihua Bie
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Wang
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - You-Qing Cai
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhi Zhang
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan-Yuan Hou
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhizhong Z Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Department of Anesthesiology and Pain Medicine, Unit 110, The University of Texas-MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA, Tel: +1 713 792 5559, Fax: +1 713 745 3040, E-mail:
| |
Collapse
|
38
|
Abstract
Ethanol (EtOH) has effects on numerous cellular molecular targets, and alterations in synaptic function are prominent among these effects. Acute exposure to EtOH activates or inhibits the function of proteins involved in synaptic transmission, while chronic exposure often produces opposing and/or compensatory/homeostatic effects on the expression, localization, and function of these proteins. Interactions between different neurotransmitters (e.g., neuropeptide effects on release of small molecule transmitters) can also influence both acute and chronic EtOH actions. Studies in intact animals indicate that the proteins affected by EtOH also play roles in the neural actions of the drug, including acute intoxication, tolerance, dependence, and the seeking and drinking of EtOH. This chapter reviews the literature describing these acute and chronic synaptic effects of EtOH and their relevance for synaptic transmission, plasticity, and behavior.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, NIAAA, 5625 Fishers Lane, Room TS-13A, Rockville, MD 20852, USA.
| | | |
Collapse
|
39
|
Ary AW, Cozzoli DK, Finn DA, Crabbe JC, Dehoff MH, Worley PF, Szumlinski KK. Ethanol up-regulates nucleus accumbens neuronal activity dependent pentraxin (Narp): implications for alcohol-induced behavioral plasticity. Alcohol 2012; 46:377-87. [PMID: 22444953 DOI: 10.1016/j.alcohol.2011.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/05/2011] [Accepted: 10/07/2011] [Indexed: 10/28/2022]
Abstract
Neuronal activity dependent pentraxin (Narp) interacts with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors to facilitate excitatory synapse formation by aggregating them at established synapses. Alcohol is well-characterized to influence central glutamatergic transmission, including AMPA receptor function. Herein, we examined the influence of injected and ingested alcohol upon Narp protein expression, as well as basal Narp expression in mouse lines selectively bred for high blood alcohol concentrations under limited access conditions. Alcohol up-regulated accumbens Narp levels, concomitant with increases in levels of the GluR1 AMPA receptor subunit. However, accumbens Narp or GluR1 levels did not vary as a function of selectively bred genotype. We next employed a Narp knock-out (KO) strategy to begin to understand the behavioral relevance of alcohol-induced changes in protein expression in several assays of alcohol reward. Compared to wild-type mice, Narp KO animals: fail to escalate daily intake of high alcohol concentrations under free-access conditions; shift their preference away from high alcohol concentrations with repeated alcohol experience; exhibit a conditioned place-aversion in response to the repeated pairing of 3 g/kg alcohol with a distinct environment and fail to exhibit alcohol-induced locomotor hyperactivity following repeated alcohol treatment. Narp deletion did not influence the daily intake of either food or water, nor did it alter any aspect of spontaneous or alcohol-induced motor activity, including the development of tolerance to its motor-impairing effects with repeated treatment. Taken together, these data indicate that Narp induction, and presumably subsequent aggregation of AMPA receptors, may be important for neuroplasticity within limbic subcircuits mediating or maintaining the rewarding properties of alcohol.
Collapse
|
40
|
Wakita M, Shin MC, Iwata S, Nonaka K, Akaike N. Effects of ethanol on GABA(A) receptors in GABAergic and glutamatergic presynaptic nerve terminals. J Pharmacol Exp Ther 2012; 341:809-19. [PMID: 22434676 DOI: 10.1124/jpet.111.189126] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ethanol (EtOH) has a number of behavioral effects, including intoxication, amnesia, and/or sedation, that are thought to relate to the activation of GABA(A) receptors. However, GABA(A) receptors at different cellular locations have different sensitivities to EtOH. The present study used the "synaptic bouton" preparation where we could stimulate nerve endings on mechanically dissociated single rat hippocampal CA1 and CA3 pyramidal neurons and investigate the effects of EtOH on presynaptic and postsynaptic GABA(A) receptors. Low concentrations of EtOH (10 mM) had no effect on postsynaptic GABA(A) and glutamate receptors or voltage-dependent Na(+) and Ca(2+) channels. Higher concentrations (≥100 mM) could significantly inhibit these current responses. EtOH at 10 mM had no direct effect on inhibitory postsynaptic currents (IPSCs) and excitatory postsynaptic currents (EPSCs) evoked by focal stimulation of single boutons [evoked IPSCs (eIPSCs) and evoked EPSCs (eEPSCs)]. However, coapplication of 10 mM EtOH with muscimol decreased the amplitude of eIPSCs and eEPSCs and increased their paired-pulse ratio. The effects on eEPSCs were reversed by bicuculline. Coapplication of muscimol and EtOH significantly increased the frequency of spontaneous IPSCs and EPSCs. The EtOH effects on the postsynaptic responses and eEPSCs were similar in neurons from neonatal and mature rats. These results revealed that low concentrations of EtOH can potentiate the activation of presynaptic GABA(A) receptors to inhibit evoked GABA and glutamate release. These results indicate a high sensitivity of presynaptic GABA(A) receptor to EtOH, which needs to be accounted for when considering the cellular mechanisms of EtOH's physiological responses.
Collapse
Affiliation(s)
- Masahito Wakita
- Research Division for Life Sciences, Kumamoto Health Science University, 325 Izumimachi, Kumamoto, 861-5598, Japan
| | | | | | | | | |
Collapse
|
41
|
Xie G, Ye JH. Salsolinol facilitates glutamatergic transmission to dopamine neurons in the posterior ventral tegmental area of rats. PLoS One 2012; 7:e36716. [PMID: 22590592 PMCID: PMC3349709 DOI: 10.1371/journal.pone.0036716] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/12/2012] [Indexed: 11/18/2022] Open
Abstract
Although in vivo evidence indicates that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse, the underlying mechanisms have not been fully elucidated. We have reported previously that salsolinol stimulates dopamine neurons in the posterior ventral tegmental area (p-VTA) partly by reducing inhibitory GABAergic transmission, and that ethanol increases glutamatergic transmission to VTA-dopamine neurons via the activation of dopamine D(1) receptors (D(1)Rs). In this study, we tested the hypothesis that salsolinol stimulates dopamine neurons involving activation of D(1)Rs. By using whole-cell recordings on p-VTA-dopamine neurons in acute brain slices of rats, we found that salsolinol-induced increase in spike frequency of dopamine neurons was substantially attenuated by DL-2-amino-5-phosphono-valeric acid and 6, 7-dinitroquinoxaline-2, 3-dione, the antagonists of glutamatergic N-Methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Moreover, salsolinol increased the amplitude of evoked excitatory postsynaptic currents (EPSCs) and the frequency but not the amplitude of spontaneous EPSCs. Additionally, SKF83566, a D(1)R antagonist attenuated the salsolinol-induced facilitation of EPSCs and of spontaneous firing of dopamine neurons. Our data reveal that salsolinol enhances glutamatergic transmission onto dopamine neurons via activation of D(1)Rs at the glutamatergic afferents in dopamine neurons, which contributes to salsolinol's stimulating effect on p-VTA dopamine neurons. This appears to be a novel mechanism which contributes toward rewarding properties of salsolinol.
Collapse
Affiliation(s)
- Guiqin Xie
- Department of Anesthesiology, Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
42
|
Möykkynen T, Korpi ER. Acute effects of ethanol on glutamate receptors. Basic Clin Pharmacol Toxicol 2012; 111:4-13. [PMID: 22429661 DOI: 10.1111/j.1742-7843.2012.00879.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/08/2012] [Indexed: 01/30/2023]
Abstract
Several studies have revealed that acute ethanol inhibits the function of glutamate receptors. Glutamate receptor-mediated synaptic plasticity, such as N-methyl-D-aspartate-dependent long-term potentiation, is also inhibited by ethanol. However, the inhibition seems to be restricted to certain brain areas such as the hippocampus, amygdala and striatum. Ethanol inhibition of glutamate receptors generally requires relatively high concentrations and may therefore explain consequences of severe ethanol intoxication such as impairment of motor performance and memory. Effects of ethanol on glutamate system of developing nervous system may have a role in causing foetal alcohol syndrome. Newly found regulatory proteins of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid AMPA receptors seem to affect ethanol inhibition thus opening new lines of research.
Collapse
Affiliation(s)
- Tommi Möykkynen
- Institute of Biomedicine, Pharmacology, University of Helsinki, Finland.
| | | |
Collapse
|
43
|
Thoma R, Mullins P, Ruhl D, Monnig M, Yeo RA, Caprihan A, Bogenschutz M, Lysne P, Tonigan S, Kalyanam R, Gasparovic C. Perturbation of the glutamate-glutamine system in alcohol dependence and remission. Neuropsychopharmacology 2011; 36:1359-65. [PMID: 21389979 PMCID: PMC3096805 DOI: 10.1038/npp.2011.20] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As acute ethanol exposure inhibits N-methyl-D-aspartate glutamate (Glu) receptors, sudden withdrawal from chronic alcohol use may lead to an increased activation of these receptors with excitotoxic effects. In the longer term, brain levels of Glu and its metabolites, such as glutamine (Gln), are likely to be chronically altered by alcohol, possibly providing a measure of overall abnormal Glu-Gln cycling. However, few studies have assessed concentrations of these metabolites in clinical populations of individuals with alcohol use disorders. Glu and Gln levels were compared in groups of 17 healthy controls and in 13 participants with alcohol dependence. Within the alcohol-dependent group, seven participants had current alcohol use disorder (AUD), and six had AUD in remission for at least 1 year (AUD-R). Neurometabolite concentrations were measured with proton magnetic resonance spectroscopy ((1)H-MRS) in a predominantly gray matter voxel that included the bilateral anterior cingulate gyri. Tissue segmentation provided an assessment of the proportion of gray matter in the (1)H-MRS voxel. The Drinker Inventory of Consequences (DrInC) and Form-90 were administered to all participants to quantify alcohol consequences and use. Glu level was lower and Gln level was higher in the AUD and AUD-R groups relative to the control group; creatine, choline, myo-inositol, and total N-acetyl groups, primarily N-acetylaspartate did not differ across groups. These results were not confounded by age, sex, or proportion of gray matter in the (1)H-MRS voxel. Neurometabolite concentrations did not differ between AUD and AUD-R groups. Subsequent regressions in the combined clinical group, treating voxel gray matter proportion as a covariate, revealed that total score on the DrInC was positively correlated with Gln but negatively correlated with both Glu and gray matter proportion. Regression analyses, including DrInC scores and smoking variables, identified a marginal independent effect of smoking on Gln. The current findings of higher Gln and lower Glu in the combined AUD and AUD-R groups might indicate a perturbation of the Glu-Gln cycle in alcohol use disorders. The absence of differences in mean Glu and Gln between the AUD and AUD-R groups suggests that altered Glu-Gln metabolism may either predate the onset of abuse or persist during prolonged abstinence.
Collapse
Affiliation(s)
| | - Paul Mullins
- Mind Research Network, Albuquerque, NM, USA,Bangor Imaging Center, School of Psychology, Bangor University, Gwynedd, UK
| | - David Ruhl
- Mind Research Network, Albuquerque, NM, USA
| | - Mollie Monnig
- Mind Research Network, Albuquerque, NM, USA,Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Ronald A Yeo
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | | | - Michael Bogenschutz
- Department of Psychiatry, Center for Neuropsychological Services, University of New Mexico, Albuquerque, NM, USA
| | - Per Lysne
- Mind Research Network, Albuquerque, NM, USA,Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Scott Tonigan
- Center on Alcoholism, Substance Abuse, and Addictions (CASAA), Albuquerque, NM, USA
| | | | - Charles Gasparovic
- Mind Research Network, Albuquerque, NM, USA,Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
44
|
Scavone JL, Asan E, Van Bockstaele EJ. Unraveling glutamate-opioid receptor interactions using high-resolution electron microscopy: implications for addiction-related processes. Exp Neurol 2011; 229:207-13. [PMID: 21459090 DOI: 10.1016/j.expneurol.2011.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/11/2011] [Accepted: 03/21/2011] [Indexed: 11/24/2022]
Abstract
Adaptive responses in glutamate and opioid receptor systems in limbic circuits are emerging as a critical component of the neural plasticity induced by chronic use of abused substances. The present commentary reviews findings from neuroanatomical studies, with superior spatial resolution, that support a cellular basis for prominent interactions of glutamate and opioid receptor systems in preclinical models of drug addiction. The review begins by highlighting the advantages of high-resolution electron microscopic immunohistochemistry for unraveling receptor interactions at the synapse. With an emphasis on a recent publication describing the anatomical relationship between the μ-opioid receptor (MOR) and the AMPA-GluR2 subunit (Beckerman, M. A., and Glass, M. J., 2011. Ultrastructural relationship between the AMPA-GluR2 receptor subunit and the mu-opioid receptor in the mouse central nucleus of the amygdala. Exp Neurol), we review the anatomical evidence for opioid-induced neural plasticity of glutamate receptors in selected brain circuits that are key integrative substrates in the brain's motivational system. The findings stress the importance of glutamate-opioid interactions as important neural mediators of adaptations to chronic use of abused drugs, particularly within the amygdaloid complex.
Collapse
Affiliation(s)
- Jillian L Scavone
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
45
|
Ethanol modulation of synaptic plasticity. Neuropharmacology 2010; 61:1097-108. [PMID: 21195719 DOI: 10.1016/j.neuropharm.2010.12.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/10/2010] [Accepted: 12/22/2010] [Indexed: 12/19/2022]
Abstract
Synaptic plasticity in the most general terms represents the flexibility of neurotransmission in response to neuronal activity. Synaptic plasticity is essential both for the moment-by-moment modulation of neural activity in response to dynamic environmental cues and for long-term learning and memory formation. These temporal characteristics are served by an array of pre- and post-synaptic mechanisms that are frequently modulated by ethanol exposure. This modulation likely makes significant contributions to both alcohol abuse and dependence. In this review, I discuss the modulation of both short-term and long-term synaptic plasticity in the context of specific ethanol-sensitive cellular substrates. A general discussion of the available preclinical, animal-model based neurophysiology literature provides a comparison between results from in vitro and in vivo studies. Finally, in the context of alcohol abuse and dependence, the review proposes potential behavioral contributions by ethanol modulation of plasticity.
Collapse
|
46
|
Pompili M, Serafini G, Innamorati M, Dominici G, Ferracuti S, Kotzalidis GD, Serra G, Girardi P, Janiri L, Tatarelli R, Sher L, Lester D. Suicidal behavior and alcohol abuse. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:1392-1431. [PMID: 20617037 PMCID: PMC2872355 DOI: 10.3390/ijerph7041392] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/15/2010] [Accepted: 03/19/2010] [Indexed: 12/22/2022]
Abstract
Suicide is an escalating public health problem, and alcohol use has consistently been implicated in the precipitation of suicidal behavior. Alcohol abuse may lead to suicidality through disinhibition, impulsiveness and impaired judgment, but it may also be used as a means to ease the distress associated with committing an act of suicide. We reviewed evidence of the relationship between alcohol use and suicide through a search of MedLine and PsychInfo electronic databases. Multiple genetically-related intermediate phenotypes might influence the relationship between alcohol and suicide. Psychiatric disorders, including psychosis, mood disorders and anxiety disorders, as well as susceptibility to stress, might increase the risk of suicidal behavior, but may also have reciprocal influences with alcohol drinking patterns. Increased suicide risk may be heralded by social withdrawal, breakdown of social bonds, and social marginalization, which are common outcomes of untreated alcohol abuse and dependence. People with alcohol dependence or depression should be screened for other psychiatric symptoms and for suicidality. Programs for suicide prevention must take into account drinking habits and should reinforce healthy behavioral patterns.
Collapse
Affiliation(s)
- Maurizio Pompili
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
- McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Gianluca Serafini
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Marco Innamorati
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Giovanni Dominici
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Stefano Ferracuti
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Giorgio D. Kotzalidis
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Giulia Serra
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Paolo Girardi
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Luigi Janiri
- Department of Psychiatry, Catholic University Medical School, Largo F. Vito 1, Rome 00168, Italy; E-Mail:
| | - Roberto Tatarelli
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Leo Sher
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; E-Mail:
| | - David Lester
- The Richard Stockton College of New Jersey, Pomona, NJ 08240-0195, USA; E-Mail:
| |
Collapse
|
47
|
Puglia MP, Valenzuela CF. Ethanol acutely inhibits ionotropic glutamate receptor-mediated responses and long-term potentiation in the developing CA1 hippocampus. Alcohol Clin Exp Res 2010; 34:594-606. [PMID: 20102565 DOI: 10.1111/j.1530-0277.2009.01128.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Developmental ethanol (EtOH) exposure damages the hippocampus, causing long-lasting alterations in learning and memory. Alterations in glutamatergic synaptic transmission and plasticity may play a role in the mechanism of action of EtOH. This signaling is fundamental for synaptogenesis, which occurs during the third trimester of human pregnancy (first 12 days of life in rats). METHODS Acute coronal brain slices were prepared from 7- to 9-day-old rats. Extracellular and patch-clamp electrophysiological recording techniques were used to characterize the acute effects of EtOH on alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR)- and N-methyl-D-aspartate receptor (NMDAR)-mediated responses and long-term potentiation (LTP) in the CA1 hippocampal region. RESULTS Ethanol (40 and 80 mM) inhibited AMPAR- and NMDAR-mediated field excitatory postsynaptic potentials (fEPSPs). EtOH (80 mM) also reduced AMPAR-mediated fEPSPs in the presence of an inhibitor of Ca2+ permeable AMPARs. The effect of 80 mM EtOH on NMDAR-mediated fEPSPs was significantly greater in the presence of Mg2+. EtOH (80 mM) neither affected the paired-pulse ratio of AMPAR-mediated fEPSPs nor the presynaptic volley. The paired-pulse ratio of AMPAR-mediated excitatory postsynaptic currents was not affected either, and the amplitude of these currents was inhibited to a lesser extent than that of fEPSPs. EtOH (80 mM) inhibited LTP of AMPAR-mediated fEPSPs. CONCLUSIONS Acute EtOH exposure during the third-trimester equivalent of human pregnancy inhibits hippocampal glutamatergic transmission and LTP induction, which could alter synapse refinement and ultimately contribute to the pathophysiology of fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Michael P Puglia
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131-0001, USA
| | | |
Collapse
|
48
|
McCool BA, Christian DT, Diaz MR, Läck AK. Glutamate plasticity in the drunken amygdala: the making of an anxious synapse. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:205-33. [PMID: 20813244 DOI: 10.1016/s0074-7742(10)91007-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Plasticity at glutamatergic synapses is believed to be the cellular correlate of learning and memory. Classic fear conditioning, for example, is dependent upon NMDA-type glutamate receptor activation in the lateral/basolateral amygdala followed by increased synaptic expression of AMPA-type glutamate receptors. This review provides an extensive comparison between the initiation and expression of glutamatergic plasticity during learning/memory and glutamatergic alterations associated with chronic ethanol exposure and withdrawal. The parallels between these neuro-adaptive processes suggest that long-term ethanol exposure might "chemically condition" amygdala-dependent fear/anxiety via the increased function of pre- and post-synaptic glutamate signaling.
Collapse
Affiliation(s)
- Brian A McCool
- Department of Physiology & Pharmcology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
49
|
Obara I, Bell RL, Goulding SP, Reyes CM, Larson LA, Ary AW, Truitt WA, Szumlinski KK. Differential effects of chronic ethanol consumption and withdrawal on homer/glutamate receptor expression in subregions of the accumbens and amygdala of P rats. Alcohol Clin Exp Res 2009; 33:1924-34. [PMID: 19673743 DOI: 10.1111/j.1530-0277.2009.01030.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Homer proteins are constituents of scaffolding complexes that regulate the trafficking and function of central Group1 metabotropic glutamate receptors (mGluRs) and N-methyl-d-aspartate (NMDA) receptors. Research supports the involvement of these proteins in ethanol-induced neuroplasticity in mouse. In this study, we examined the effects of short versus long-term withdrawal from chronic ethanol consumption on Homer and glutamate receptor protein expression within striatal and amygdala subregions of selectively bred, alcohol-preferring P rats. METHODS For 6 months, male P rats had concurrent access to 15% and 30% ethanol solutions under intermittent (IA: 4 d/wk) or continuous (CA: 7 d/wk) access conditions in their home cage. Rats were killed 24 hours (short withdrawal: SW) or 4 weeks (long withdrawal: LW) after termination of ethanol access, subregions of interest were micropunched and tissue processed for detection of Group1 mGluRs, NR2 subunits of the NMDA receptor and Homer protein expression. RESULTS Within the nucleus accumbens (NAC), limited changes in NR2a and NR2b expression were detected in the shell (NACsh), whereas substantial changes were observed for Homer2a/b, mGluRs as well as NR2a and NR2b subunits in the core (NACc). Within the amygdala, no changes were detected in the basolateral subregion, whereas substantial changes, many paralleling those observed in the NACc, were detected in the central nucleus (CeA) subregion. In addition, most of the changes observed in the CeA, but not NACc, were present in both SW and LW rats. CONCLUSIONS Overall, these subregion specific, ethanol-induced increases in mGluR/Homer2/NR2 expression within the NAC and amygdala suggest changes in glutamatergic plasticity had taken place. This may be a result of learning and subsequent memory formation of ethanol's rewarding effects in these brain structures, which may, in part, mediate the chronic relapsing nature of alcohol abuse.
Collapse
Affiliation(s)
- Ilona Obara
- Department of Psychology, University of California, Santa Barbara, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Möykkynen TP, Coleman SK, Keinänen K, Lovinger DM, Korpi ER. Ethanol increases desensitization of recombinant GluR-D AMPA receptor and TARP combinations. Alcohol 2009; 43:277-84. [PMID: 19560629 DOI: 10.1016/j.alcohol.2009.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/24/2009] [Accepted: 04/26/2009] [Indexed: 10/20/2022]
Abstract
Glutamate receptors are important target molecules of the acute effect of ethanol. We studied ethanol sensitivity of homomeric GluR-D receptors expressed in human embryonic kidney 293 cells and examined whether recently discovered transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor regulatory proteins (TARPs) affect ethanol sensitivity. Coexpression of the TARPs, stargazin, and gamma4 increased the time constant (tau-value) of current decay in the presence of agonist, thus slowing the onset of desensitization and increasing the steady-state current. Ethanol produced less inhibition of the peak current than the steady-state current for all types of the GluR-D receptors. In addition, ethanol concentration-dependently accelerated the rate of desensitization, measured as the tau-value of fast decay of peak current. This effect was enhanced with coexpression of TARPs. The recovery from desensitization was slowed down by coexpression of gamma4 but ethanol did not affect this process in any GluR-D combination. The results support the idea that increased desensitization is an important mechanism in the ethanol inhibition of AMPA receptors and indicate that coexpression of TARPs can alter this effect of ethanol.
Collapse
|