1
|
Raggio M, Conte I, de Girolamo P, D'Angelo L. Modelling orexinergic system in ageing in the African turquoise killifish. Biogerontology 2025; 26:72. [PMID: 40085285 PMCID: PMC11909093 DOI: 10.1007/s10522-025-10214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
The orexinergic system is anatomically and functionally conserved in almost all vertebrates, and the role in healthy ageing and age-associated diseases has been studied in mammals. Here, we review the main findings on the age-related regulation of orexinergic system in mammals, including human patients and highlights how the fish Nothobranchius furzeri serves as an exceptional model to spearhead research and unravel the intricate mechanisms underlying orexinergic regulation during ageing. The ageing brain of this teleost is characterized by the presence of neurodegenerative processes similar to those associated with human pathologies rather than those of healthy ageing. We present an in-depth summary and discussion on the groundbreaking advances in understanding the neuroanatomical organization of the orexinergic system, its pivotal role in mammalian and fish models, and its profound involvement in healthy ageing and age-associated diseases.
Collapse
Affiliation(s)
- Maria Raggio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Ivan Conte
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
2
|
Metha J, Ji Y, Braun C, Nicholson JR, De Lecea L, Murawski C, Hoyer D, Jacobson LH. Hypocretin-1 receptor antagonism improves inhibitory control during the Go/No-Go task in highly motivated, impulsive male mice. Psychopharmacology (Berl) 2024; 241:2171-2187. [PMID: 38886189 PMCID: PMC11442560 DOI: 10.1007/s00213-024-06628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
RATIONALE Motivation and inhibitory control are dominantly regulated by the dopaminergic (DA) and noradrenergic (NA) systems, respectively. Hypothalamic hypocretin (orexin) neurons provide afferent inputs to DA and NA nuclei and hypocretin-1 receptors (HcrtR1) are implicated in reward and addiction. However, the role of the HcrtR1 in inhibitory control is not well understood. OBJECTIVES To determine the effects of HcrtR1 antagonism and motivational state in inhibitory control using the go/no-go task in mice. METHODS n = 23 male C57Bl/6JArc mice were trained in a go/no-go task. Decision tree dendrogram analysis of training data identified more and less impulsive clusters of animals. A HcrtR1 antagonist (BI001, 12.5 mg/kg, per os) or vehicle were then administered 30 min before go/no-go testing, once daily for 5 days, under high (food-restricted) and low (free-feeding) motivational states in a latin-square crossover design. Compound exposure levels were assessed in a satellite group of animals. RESULTS HcrtR1 antagonism increased go accuracy and decreased no-go accuracy in free-feeding animals overall, whereas it decreased go accuracy and increased no-go accuracy only in more impulsive, food restricted mice. HcrtR1 antagonism also showed differential effects in premature responding, which was increased in response to the antagonist in free-feeding, less impulsive animals, and decreased in food restricted, more impulsive animals. HcrtR1 receptor occupancy by BI001 was estimated at ~ 66% during the task. CONCLUSIONS These data indicate that hypocretin signalling plays roles in goal-directed behaviour and inhibitory control in a motivational state-dependant manner. While likely not useful in all settings, HcrtR1 antagonism may be beneficial in improving inhibitory control in impulsive subpopulations.
Collapse
Affiliation(s)
- Jeremy Metha
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Department of Finance, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Yijun Ji
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
- Circadian Misalignment and Shift Work Laboratory, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Notting Hill, VIC, 3162, Australia
| | - Clemens Braun
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Janet R Nicholson
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Luis De Lecea
- Department of Psychiatry and Behavioural Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Carsten Murawski
- Department of Finance, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Daniel Hoyer
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Laura H Jacobson
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
3
|
Ten-Blanco M, Flores Á, Cristino L, Pereda-Pérez I, Berrendero F. Targeting the orexin/hypocretin system for the treatment of neuropsychiatric and neurodegenerative diseases: from animal to clinical studies. Front Neuroendocrinol 2023; 69:101066. [PMID: 37015302 DOI: 10.1016/j.yfrne.2023.101066] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
Orexins (also known as hypocretins) are neuropeptides located exclusively in hypothalamic neurons that have extensive projections throughout the central nervous system and bind two different G protein-coupled receptors (OX1R and OX2R). Since its discovery in 1998, the orexin system has gained the interest of the scientific community as a potential therapeutic target for the treatment of different pathological conditions. Considering previous basic science research, a dual orexin receptor antagonist, suvorexant, was the first orexin agent to be approved by the US Food and Drug Administration to treat insomnia. In this review, we discuss and update the main preclinical and human studies involving the orexin system with several psychiatric and neurodegenerative diseases. This system constitutes a nice example of how basic scientific research driven by curiosity can be the best route to the generation of new and powerful pharmacological treatments.
Collapse
Affiliation(s)
- Marc Ten-Blanco
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - África Flores
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona and Bellvitge University Hospital-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Berrendero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
4
|
Beckenstrom AC, Coloma PM, Dawson GR, Finlayson AK, Malik A, Post A, Steiner MA, Potenza MN. Use of experimental medicine approaches for the development of novel psychiatric treatments based on orexin receptor modulation. Neurosci Biobehav Rev 2023; 147:105107. [PMID: 36828161 PMCID: PMC10165155 DOI: 10.1016/j.neubiorev.2023.105107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Despite progress in understanding the pathological mechanisms underlying psychiatric disorders, translation from animal models into clinical use remains a significant bottleneck. Preclinical studies have implicated the orexin neuropeptide system as a potential target for psychiatric disorders through its role in regulating emotional, cognitive, and behavioral processes. Clinical studies are investigating orexin modulation in addiction and mood disorders. Here we review performance-outcome measures (POMs) arising from experimental medicine research methods which may show promise as markers of efficacy of orexin receptor modulators in humans. POMs provide objective measures of brain function, complementing patient-reported or clinician-observed symptom evaluation, and aid the translation from preclinical to clinical research. Significant challenges include the development, validation, and operationalization of these measures. We suggest that collaborative networks comprising clinical practitioners, academics, individuals working in the pharmaceutical industry, drug regulators, patients, patient advocacy groups, and other relevant stakeholders may provide infrastructure to facilitate validation of experimental medicine approaches in translational research and in the implementation of these approaches in real-world clinical practice.
Collapse
Affiliation(s)
- Amy C Beckenstrom
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK.
| | - Preciosa M Coloma
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Switzerland
| | - Gerard R Dawson
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK
| | - Ailidh K Finlayson
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK; Department of Psychology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Asad Malik
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK
| | - Anke Post
- Corlieve Therapeutics, Swiss Innovation Park, Hegenheimermattweg 167A, 4123 Allschwil, Switzerland
| | | | - Marc N Potenza
- Departments of Psychiatry and Neuroscience and the Child Study Center, Yale School of Medicine, 1 Church Street, Room 726, New Haven, CT 06510, USA; Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, USA; Connecticut Council on Problem Gambling, Wethersfield, CT, USA; The Wu Tsai Institute, Yale University, 100 College St, New Haven, CT 06510, USA
| |
Collapse
|
5
|
Ozdemir E, Baser T, Taskiran AS. Blockade of orexin receptor type-1 by SB-334867 and activation of orexin receptor type-2 attenuate morphine tolerance in rats. Physiol Int 2022; 109:457-474. [DOI: 10.1556/2060.2022.00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/17/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022]
Abstract
AbstractPurposeThe interaction of orexinergic neurons with the opioidergic system and their effects on morphine analgesia and tolerance have not been fully elucidated. The purpose of the study was to evaluate the effects of the orexin-1 and orexin-2 receptor (OX1R and OX2R) agonist and antagonist on morphine analgesia and tolerance in rats.Material and methodsA total of 90 Wistar albino male rats weighing 180–220 g were used in the experiments. To induce morphine tolerance, rats were injected with a single dose of morphine (50 mg kg−1, s.c.) for 3 days. Morphine tolerance was assessed on day 4 in randomly selected rats by analgesia tests. In order to evaluate morphine tolerance situation, orexin-A, SB-334867, orexin-B and TCS OX2 29 were administered together with morphine for 3 days. The analgesic effects of orexin-A (10 μg kg−1), OXR1 antagonist SB-334867 (10 mg kg−1), OXR2 agonist orexin-B (15 μg kg−1), OXR2 antagonist TCS OX2 29 (0.5 mg kg−1) and morphine (5 mg kg−1) were measured at 15 or 30-min intervals by tail-flick and hot-plate antinociceptive tests.ResultsThe results suggested that the combination of orexin-1 receptor antagonist SB-334867 and orexin-B with morphine significantly increased the analgesic effect compared to morphine-tolerant rats. In addition, administration of orexin-A and -B alone showed significant analgesic effects compared to the saline group. However, co-administration of orexin-A and -B with morphine did not increase the analgesic efficacy of morphine.ConclusionsThe results of this study demonstrated that co-administration of SB-334867 and orexin-B with morphine attenuated morphine tolerance. Further studies are needed to elucidate the details of the interaction between orexin receptors and the opioidergic system.
Collapse
Affiliation(s)
- Ercan Ozdemir
- Department of Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Tayfun Baser
- Department of Physiology, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey
| | - Ahmet Sevki Taskiran
- Department of Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
6
|
Stamos JP, Ma S, Pawlak AP, Engelhard N, Horvitz JC, West MO. Reward vs. motoric activations in Nucleus Accumbens Core of rats during pavlovian conditioning. Eur J Neurosci 2022; 56:3570-3590. [DOI: 10.1111/ejn.15680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua P. Stamos
- NeuroBehavioral Research Laboratory, VA New Jersey Health Care System, Research and Development (Mailstop 15) East Orange NJ USA
| | - Sisi Ma
- Institute for Health Informatics University of Minnesota Academic Health Center Minneapolis MN USA
| | - Anthony P. Pawlak
- Center of Alcohol and Substance Use Studies Rutgers University New Brunswick NJ USA
| | - Nofar Engelhard
- Department of Cell Biology and Neuroscience Rutgers University Piscataway NJ USA
| | - Jon C. Horvitz
- Program in Behavioral and Cognitive Neuroscience City University of New York New York NY USA
- Department of Psychology, CCNY New York NY USA
| | - Mark O. West
- Department of Psychology Rutgers University Piscataway NJ USA
| |
Collapse
|
7
|
Gugula A, Trenk A, Celary A, Cizio K, Tylko G, Blasiak A, Hess G. Early-life stress modifies the reactivity of neurons in the ventral tegmental area and lateral hypothalamus to acute stress in female rats. Neuroscience 2022; 490:49-65. [DOI: 10.1016/j.neuroscience.2022.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
|
8
|
Young CJ, Lyons D, Piggins HD. Circadian Influences on the Habenula and Their Potential Contribution to Neuropsychiatric Disorders. Front Behav Neurosci 2022; 15:815700. [PMID: 35153695 PMCID: PMC8831701 DOI: 10.3389/fnbeh.2021.815700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
The neural circadian system consists of the master circadian clock in the hypothalamic suprachiasmatic nuclei (SCN) communicating time of day cues to the rest of the body including other brain areas that also rhythmically express circadian clock genes. Over the past 16 years, evidence has emerged to indicate that the habenula of the epithalamus is a candidate extra-SCN circadian oscillator. When isolated from the SCN, the habenula sustains rhythms in clock gene expression and neuronal activity, with the lateral habenula expressing more robust rhythms than the adjacent medial habenula. The lateral habenula is responsive to putative SCN output factors as well as light information conveyed to the perihabenula area. Neuronal activity in the lateral habenula is altered in depression and intriguingly disruptions in circadian rhythms can elevate risk of developing mental health disorders including depression. In this review, we will principally focus on how circadian and light signals affect the lateral habenula and evaluate the possibility that alteration in these influences contribute to mental health disorders.
Collapse
|
9
|
Neurobiology of the Orexin System and Its Potential Role in the Regulation of Hedonic Tone. Brain Sci 2022; 12:brainsci12020150. [PMID: 35203914 PMCID: PMC8870430 DOI: 10.3390/brainsci12020150] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Orexin peptides comprise two neuropeptides, orexin A and orexin B, that bind two G-protein coupled receptors (GPCRs), orexin receptor 1 (OXR1) and orexin receptor 2 (OXR2). Although cell bodies that produce orexin peptides are localized in a small area comprising the lateral hypothalamus and adjacent regions, orexin-containing fibres project throughout the neuraxis. Although orexins were initially described as peptides that regulate feeding behaviour, research has shown that orexins are involved in diverse functions that range from the modulation of autonomic functions to higher cognitive functions, including reward-seeking, behaviour, attention, cognition, and mood. Furthermore, disruption in orexin signalling has been shown in mood disorders that are associated with low hedonic tone or anhedonia, including depression, anxiety, attention deficit hyperactivity disorder, and addiction. Notably, projections of orexin neurons overlap circuits involved in the modulation of hedonic tone. Evidence shows that orexins may potentiate hedonic behaviours by increasing the feeling of pleasure or reward to various signalling, whereas dysregulation of orexin signalling may underlie low hedonic tone or anhedonia. Further, orexin appears to play a key role in regulating behaviours in motivationally charged situations, such as food-seeking during hunger, or drug-seeking during withdrawal. Therefore, it would be expected that dysregulation of orexin expression or signalling is associated with changes in hedonic tone. Further studies investigating this association are warranted.
Collapse
|
10
|
Micioni Di Bonaventura E, Botticelli L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Cifani C, Micioni Di Bonaventura MV. Assessing the role of ghrelin and the enzyme ghrelin O-acyltransferase (GOAT) system in food reward, food motivation, and binge eating behavior. Pharmacol Res 2021; 172:105847. [PMID: 34438062 DOI: 10.1016/j.phrs.2021.105847] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
The peripheral peptide hormone ghrelin is a powerful stimulator of food intake, which leads to body weight gain and adiposity in both rodents and humans. The hormone, thus, increases the vulnerability to obesity and binge eating behavior. Several studies have revealed that ghrelin's functions are due to its interaction with the growth hormone secretagogue receptor type 1a (GHSR1a) in the hypothalamic area; besides, ghrelin also promotes the reinforcing properties of hedonic food, acting at extra-hypothalamic sites and interacting with dopaminergic, cannabinoid, opioid, and orexin signaling. The hormone is primarily present in two forms in the plasma and the enzyme ghrelin O-acyltransferase (GOAT) allows the acylation reaction which causes the transformation of des-acyl-ghrelin (DAG) to the active form acyl-ghrelin (AG). DAG has been demonstrated to show antagonist properties; it is metabolically active, and counteracts the effects of AG on glucose metabolism and lipolysis, and reduces food consumption, body weight, and hedonic feeding response. Both peptides seem to influence the hypothalamic-pituitary-adrenal (HPA) axis and the corticosterone/cortisol level that drive the urge to eat under stressful conditions. These findings suggest that DAG and inhibition of GOAT may be targets for obesity and bingeing-related eating disorders and that AG/DAG ratio may be an important potential biomarker to assess the risk of developing maladaptive eating behaviors.
Collapse
Affiliation(s)
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy.
| | | |
Collapse
|
11
|
Adamantidis AR, Schmidt MH, Carter ME, Burdakov D, Peyron C, Scammell TE. A circuit perspective on narcolepsy. Sleep 2021; 43:5699663. [PMID: 31919524 PMCID: PMC7215265 DOI: 10.1093/sleep/zsz296] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/13/2019] [Indexed: 01/25/2023] Open
Abstract
The sleep disorder narcolepsy is associated with symptoms related to either boundary state control that include excessive daytime sleepiness and sleep fragmentation, or rapid eye movement (REM) sleep features including cataplexy, sleep paralysis, hallucinations, and sleep-onset REM sleep events (SOREMs). Although the loss of Hypocretin/Orexin (Hcrt/Ox) peptides or their receptors have been associated with the disease, here we propose a circuit perspective of the pathophysiological mechanisms of these narcolepsy symptoms that encompasses brain regions, neuronal circuits, cell types, and transmitters beyond the Hcrt/Ox system. We further discuss future experimental strategies to investigate brain-wide mechanisms of narcolepsy that will be essential for a better understanding and treatment of the disease.
Collapse
Affiliation(s)
- A R Adamantidis
- Department of Neurology, Centre for Experimental Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland.,Department of Biomedical Research, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - M H Schmidt
- Department of Neurology, Centre for Experimental Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland.,Ohio Sleep Medicine Institute, Dublin, OH
| | - M E Carter
- Department of Biology, Program in Neuroscience, Williams College, Williamstown, MA
| | - D Burdakov
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - C Peyron
- Center for Research in Neuroscience of Lyon, SLEEP team, CNRS UMR5292, INSERM U1028, University Lyon 1, Bron, France
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Heinsbroek JA, De Vries TJ, Peters J. Glutamatergic Systems and Memory Mechanisms Underlying Opioid Addiction. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039602. [PMID: 32341068 DOI: 10.1101/cshperspect.a039602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in the brain and is of critical importance for the synaptic and circuit mechanisms that underlie opioid addiction. Opioid memories formed over the course of repeated drug use and withdrawal can become powerful stimuli that trigger craving and relapse, and glutamatergic neurotransmission is essential for the formation and maintenance of these memories. In this review, we discuss the mechanisms by which glutamate, dopamine, and opioid signaling interact to mediate the primary rewarding effects of opioids, and cover the glutamatergic systems and circuits that mediate the expression, extinction, and reinstatement of opioid seeking over the course of opioid addiction.
Collapse
Affiliation(s)
- Jasper A Heinsbroek
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Taco J De Vries
- Amsterdam Neuroscience, Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Faculty of Earth and Life Sciences, VU University, 1081HV Amsterdam, The Netherlands.,Amsterdam Neuroscience, Department of Anatomy and Neurosciences, VU University Medical Center, 1081HZ Amsterdam, The Netherlands
| | - Jamie Peters
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
13
|
Liu Y, McNally GP. Dopamine and relapse to drug seeking. J Neurochem 2021; 157:1572-1584. [PMID: 33486769 DOI: 10.1111/jnc.15309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
The actions of dopamine are essential to relapse to drug seeking but we still lack a precise understanding of how dopamine achieves these effects. Here we review recent advances from animal models in understanding how dopamine controls relapse to drug seeking. These advances have been enabled by important developments in understanding the basic neurochemical, molecular, anatomical, physiological and functional properties of the major dopamine pathways in the mammalian brain. The literature shows that although different forms of relapse to seeking different drugs of abuse each depend on dopamine, there are distinct dopamine mechanisms for relapse. Different circuit-level mechanisms, different populations of dopamine neurons and different activity profiles within these dopamine neurons, are important for driving different forms of relapse. This diversity highlights the need to better understand when, where and how dopamine contributes to relapse behaviours.
Collapse
Affiliation(s)
- Yu Liu
- School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
14
|
Minbashi Moeini M, Sadr SS, Riahi E. Deep Brain Stimulation of the Lateral Hypothalamus Facilitates Extinction and Prevents Reinstatement of Morphine Place Preference in Rats. Neuromodulation 2021; 24:240-247. [PMID: 33496024 DOI: 10.1111/ner.13320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We have previously shown that high-frequency (HF) deep brain stimulation (DBS) of the lateral hypothalamus (LH) during the acquisition phase of morphine-induced conditioned place preference (CPP) abolished the development of morphine reward. In the present study, we investigated the effect of DBS in the LH during the extinction phase of morphine CPP. MATERIALS AND METHODS Rats were implanted with electrodes in the LH and went through conditioning trials for morphine CPP (40 min each, for three days), followed by extinction trials (20 min, for nine days). DBS-like stimulation (square pulses at 13 or 130 Hz, 200 μA, 100 μsec) was applied during the extinction trials. RESULTS Rats that received HF-DBS (130 Hz) accomplished extinction of morphine place preference by day 5 of the phase, whereas those in sham-stimulation or low-frequency-DBS (LF-DBS, 13 Hz) groups reached the criterion for extinction at day 8. One day later, rats received a priming injection of morphine (2 mg/kg) to reinstate the extinguished preference. While rats in the sham-DBS and LF-DBS relapsed into the state of preferring morphine-associated context, those in the HF-DBS group did not show such preference. Rats were then proceeded into an additional phase of extinction training (20 min, once daily, three to five days) with DBS, followed by restraint stress-induced reinstatement test. Again, sham-DBS and LF-DBS had no effect on relapse to the morphine place preferring state, but HF-DBS completely prevented the relapse. CONCLUSION HF-DBS facilitated extinction of morphine place preference and disrupted drug priming- and stress-induced renewal of morphine place preference.
Collapse
Affiliation(s)
- Moein Minbashi Moeini
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Sagi D, de Lecea L, Appelbaum L. Heterogeneity of Hypocretin/Orexin Neurons. FRONTIERS OF NEUROLOGY AND NEUROSCIENCE 2021; 45:61-74. [PMID: 34052814 PMCID: PMC8961008 DOI: 10.1159/000514964] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/02/2021] [Indexed: 01/21/2023]
Abstract
The multifunctional, hypothalamic hypocretin/orexin (HCRT)-producing neurons regulate an array of physiological and behavioral states including arousal, sleep, feeding, emotions, stress, and reward. How a presumably uniform HCRT neuron population regulates such a diverse set of functions is not clear. The role of the HCRT neuropeptides may vary depending on the timing and localization of secretion and neuronal activity. Moreover, HCRT neuropeptides may not mediate all functions ascribed to HCRT neurons. Some could be orchestrated by additional neurotransmitters and neuropeptides that are expressed in HCRT neurons. We hypothesize that HCRT neurons are segregated into genetically, anatomically and functionally distinct subpopulations. We discuss accumulating data that suggest the existence of such HCRT neuron subpopulations that may effectuate the diverse functions of these neurons in mammals and fish.
Collapse
Affiliation(s)
- Dana Sagi
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Luis de Lecea
- Dept of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.,Corresponding author: Lior Appelbaum, Bar-Ilan University, Ramat-Gan 5290002, Israel. Telephone: +972-3-7384536,
| |
Collapse
|
16
|
Pantazis CB, James MH, Bentzley BS, Aston‐Jones G. The number of lateral hypothalamus orexin/hypocretin neurons contributes to individual differences in cocaine demand. Addict Biol 2020; 25:e12795. [PMID: 31297913 DOI: 10.1111/adb.12795] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/25/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
Lateral hypothalamus (LH) orexin neuron signaling has been implicated in the motivation to seek and take drugs of abuse. The number of LH orexin neurons has been shown to be upregulated with exposure to drugs of abuse. We sought to determine if the number of LH orexin neurons related to individual differences in motivation (demand) for cocaine in our behavioral economics (BE) paradigm, and whether knockdown of these cells predicted changes in economic demand. We quantified LH orexin cell numbers in animals immediately following our BE paradigm, as well as after a 2-week period of abstinence, to relate the number of LH orexin cells to economic demand for cocaine. We also knocked down LH orexin expression with an orexin morpholino antisense to determine how reduced orexin numbers impacted cocaine demand. We found that animals with greater baseline motivation for cocaine (lower demand elasticity) had more LH orexin neurons. Following a 2-week abstinence from cocaine, the number of LH orexin neurons predicted economic demand for cocaine prior to abstinence, indicating that orexin expression is a persistent marker for demand. Reducing LH orexin cell numbers with antisense decreased motivation for cocaine (increased demand elasticity) without affecting baseline consumption. In addition, the number of spared LH orexin neurons after antisense treatment correlated with individual motivation for cocaine. These studies point to a role for the endogenous number of LH orexin neurons in individual differences in motivation for cocaine.
Collapse
Affiliation(s)
- Caroline B. Pantazis
- Brain Health Institute Rutgers University/Rutgers Biomedical and Health Sciences Piscataway New Jersey USA
| | - Morgan H. James
- Brain Health Institute Rutgers University/Rutgers Biomedical and Health Sciences Piscataway New Jersey USA
- Florey Institute for Neuroscience and Mental Health Parkville Australia
| | - Brandon S. Bentzley
- Department of Psychiatry and Behavioral Sciences Stanford University Stanford California USA
| | - Gary Aston‐Jones
- Brain Health Institute Rutgers University/Rutgers Biomedical and Health Sciences Piscataway New Jersey USA
| |
Collapse
|
17
|
Flanigan ME, Aleyasin H, Li L, Burnett CJ, Chan KL, LeClair KB, Lucas EK, Matikainen-Ankney B, Durand-de Cuttoli R, Takahashi A, Menard C, Pfau ML, Golden SA, Bouchard S, Calipari ES, Nestler EJ, DiLeone RJ, Yamanaka A, Huntley GW, Clem RL, Russo SJ. Orexin signaling in GABAergic lateral habenula neurons modulates aggressive behavior in male mice. Nat Neurosci 2020; 23:638-650. [PMID: 32284606 PMCID: PMC7195257 DOI: 10.1038/s41593-020-0617-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/02/2020] [Indexed: 11/30/2022]
Abstract
Heightened aggression is characteristic of multiple neuropsychiatric disorders and can have various negative effects on patients, their families and the public. Recent studies in humans and animals have implicated brain reward circuits in aggression and suggest that, in subsets of aggressive individuals, domination of subordinate social targets is reinforcing. In this study, we showed that, in male mice, orexin neurons in the lateral hypothalamus activated a small population of glutamic acid decarboxylase 2 (GAD2)-expressing neurons in the lateral habenula (LHb) via orexin receptor 2 (OxR2) and that activation of these GAD2 neurons promoted male-male aggression and conditioned place preference for aggression-paired contexts. Moreover, LHb GAD2 neurons were inhibitory within the LHb and dampened the activity of the LHb as a whole. These results suggest that the orexin system is important for the regulation of inter-male aggressive behavior and provide the first functional evidence of a local inhibitory circuit within the LHb.
Collapse
Affiliation(s)
- Meghan E Flanigan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hossein Aleyasin
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Long Li
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C Joseph Burnett
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenny L Chan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine B LeClair
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth K Lucas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Bridget Matikainen-Ankney
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Romain Durand-de Cuttoli
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aki Takahashi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Caroline Menard
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Ville de Québec, QC, Canada
| | - Madeline L Pfau
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sam A Golden
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Sylvain Bouchard
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erin S Calipari
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ralph J DiLeone
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - George W Huntley
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roger L Clem
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
Freeman LR, Aston-Jones G. Activation of medial hypothalamic orexin neurons during a Go/No-Go task. Brain Res 2020; 1731:145928. [PMID: 30176242 PMCID: PMC6395540 DOI: 10.1016/j.brainres.2018.08.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 11/30/2022]
Abstract
Orexin neurons (Orx; also referred to as hypocretin) are found exclusively in the hypothalamus, and release the neuropeptides orexin A and orexin B (also referred to as hypocretin 1 and 2) throughout the CNS. With its widespread targets, the orexin system is involved in a number of functions including, but not limited to stress, reward, wakefulness, and food seeking. Our laboratory has previously proposed that the dorsomedial hypothalamus (DMH) and perifornical (PFA) orexin neurons function in stress and arousal whereas those in lateral hypothalamus (LH) participate in reward processes (Harris and Aston-Jones, 2006). In the current study, we compared Fos activation in orexin neurons located in medial hypothalamus (DMH and PFA) to those in LH during a Go/No-Go task for a highly palatable food reward, a task that would likely activate regions for arousal/attention as well as reward. The Go/No-Go paradigm is a useful behavioral tool to measure behavioral inhibition, impulsivity, learning, and reaction time. Our results revealed increased activation of medial hypothalamic orexin neurons correlated with greater accuracy on the Go/No-Go task. No correlation was found between Go/No-Go accuracy and activation of lateral hypothalamic orexin neurons. This study supports a functional dichotomy of medial vs lateral orexin neurons, and indicates a role for medial orexin neurons in behavioral performance that requires response inhibition.
Collapse
Affiliation(s)
- Linnea R Freeman
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, United States; Department of Biology, Furman University, Greenville, SC 29613, United States.
| | - Gary Aston-Jones
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, United States; Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, United States
| |
Collapse
|
19
|
Karkhanis AN, Al-Hasani R. Dynorphin and its role in alcohol use disorder. Brain Res 2020; 1735:146742. [PMID: 32114059 DOI: 10.1016/j.brainres.2020.146742] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
The dynorphin / kappa opioid receptor (KOR) system has been implicated in many aspects that influence neuropsychiatric disorders. Namely, this system modulates neural circuits that primarily regulate reward seeking, motivation processing, stress responsivity, and pain sensitivity, thus affecting the development of substance and alcohol use disorder (AUD). The effects of this system are often bidirectional and depend on projection targets. To date, a majority of the studies focusing on this system have examined the KOR function using agonists and antagonists. Indeed, there are studies that have examined prodynorphin and dynorphin levels by measuring mRNA and tissue content levels; however, static levels of the neuropeptide and its precursor do not explain complete and online function of the peptide as would be explained by measuring dynorphin transmission in real time. New and exciting methods using optogenetics, chemogenetics, genetic sensors, fast scan cyclic voltammetry are now being developed to detect various neuropeptides with a focus on opioid peptides, including dynorphin. In this review we discuss studies that examine dynorphin projections in areas involved in AUD, its functional involvement in AUD and vulnerability to develop AUD at various ages. Moreover, we discuss dynorphin's role in promoting AUD by dysregulation motivation circuits and how advancements in opioid peptide detection will further our understanding.
Collapse
Affiliation(s)
- Anushree N Karkhanis
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| | - Ream Al-Hasani
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, Department of Anesthesiology Washington University in St. Louis, Center for Clinical Pharmacology, Washington University School of Medicine & St. Louis College of Pharmacy 660 S.Euclid, Box 8054, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Reppucci CJ, Gergely CK, Bredewold R, Veenema AH. Involvement of orexin/hypocretin in the expression of social play behaviour in juvenile rats. INTERNATIONAL JOURNAL OF PLAY 2020; 9:108-127. [PMID: 33042634 PMCID: PMC7540609 DOI: 10.1080/21594937.2020.1720132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/03/2020] [Indexed: 05/04/2023]
Abstract
Social play is a highly rewarding and motivated behaviour displayed by juveniles of many mammalian species. We hypothesized that the orexin/hypocretin (ORX) system is involved in the expression of juvenile social play behaviour because this system is interconnected with brain regions that comprise the social behaviour and mesocorticolimbic reward networks. We found that exposure to social play increased recruitment of ORX-A neurons in juvenile rats. Furthermore, central administration of ORX-A decreased social play duration, while central blockade of ORX-1 receptors differentially altered social play duration in juvenile rats with low versus high baseline levels of social play (increasing social play in low baseline social play individuals and decreasing social play in high baseline social play individuals). Together, our results provided the first evidence of a role for the ORX system in the modulation of juvenile social play behaviour.
Collapse
Affiliation(s)
- Christina J. Reppucci
- Department of Psychology; Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Psychology, Boston College, Chestnut Hill, MA, USA University
| | | | - Remco Bredewold
- Department of Psychology; Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Psychology, Boston College, Chestnut Hill, MA, USA University
| | - Alexa H. Veenema
- Department of Psychology; Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Psychology, Boston College, Chestnut Hill, MA, USA University
| |
Collapse
|
21
|
Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020; 167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Hypocretin/orexin neurons are distributed restrictively in the hypothalamus, a brain region known to orchestrate diverse functions including sleep, reward processing, food intake, thermogenesis, and mood. Since the hypocretins/orexins were discovered more than two decades ago, extensive studies have accumulated concrete evidence showing the pivotal role of hypocretin/orexin in diverse neural modulation. New method of viral-mediated tracing system offers the possibility to map the monosynaptic inputs and detailed anatomical connectivity of Hcrt neurons. With the development of powerful research techniques including optogenetics, fiber-photometry, cell-type/pathway specific manipulation and neuronal activity monitoring, as well as single-cell RNA sequencing, the details of how hypocretinergic system execute functional modulation of various behaviors are coming to light. In this review, we focus on the function of neural pathways from hypocretin neurons to target brain regions. Anatomical and functional inputs to hypocretin neurons are also discussed. We further briefly summarize the development of pharmaceutical compounds targeting hypocretin signaling. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| |
Collapse
|
22
|
Richardson K, Sweatt N, Tran H, Apprey V, Uthayathas S, Taylor R, Gupta K. Significant Quantitative Differences in Orexin Neuronal Activation After Pain Assessments in an Animal Model of Sickle Cell Disease. Front Mol Biosci 2020; 7:5. [PMID: 32118032 PMCID: PMC7025496 DOI: 10.3389/fmolb.2020.00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
Sickle cell disease is a hemoglobinopathy that causes sickling of red blood cells, resulting in vessel blockage, stroke, anemia, inflammation, and extreme pain. The development and treatment of pain, in particular, neuropathic pain in sickle cell disease patients is poorly understood and impedes our progress toward the development of novel therapies to treat pain associated with sickle cell disease. The orexin/hypocretin system offers a novel approach to treat chronic pain and hyperalgesia. These neuropeptides are synthesized in three regions: perifornical area (PFA), lateral hypothalamus (LH), and dorsomedial hypothalamus (DMH). Data suggest that orexin-A neuropeptide has an analgesic effect on inflammatory pain and may affect mechanisms underlying the maintenance of neuropathic pain. The purpose of this study was to determine whether there are neuronal activation differences in the orexin system as a result of neuropathic pain testing in a mouse model of sickle cell disease. Female transgenic sickle mice that express exclusively (99%) human sickle hemoglobin (HbSS-BERK) and age-/gender-matched controls (HbAA-BERK mice; n = 10/group, 20-30 g) expressing normal human hemoglobin A were habituated to each test protocol and environment before collecting baseline measurements and testing. Four measures were used to assess pain-related behaviors: thermal/heat hyperalgesia, cold hyperalgesia, mechanical hyperalgesia, and deep-tissue hyperalgesia. Hypothalamic brain sections from HbAA-BERK and HbSS-BERK mice were processed to visualize orexin and c-Fos immunoreactivity and quantified. The percentage of double labeled neurons in the PFA was significantly higher than the percentage of double labeled neurons in the LH orexin field of HbAA-BERK mice (* p < 0.05). The percentages of double labeled neurons in PFA and DMH orexin fields are significantly higher than those neurons in the LH of HbSS-BERK mice (* p < 0.05). These data suggest that DMH orexin neurons were preferentially recruited during neuropathic pain testing and a more diverse distribution of orexin neurons may be required to produce analgesia in response to pain in the HbSS-BERK mice. Identifying specific orexin neuronal populations that are integral in neuropathic pain processing will allow us to elucidate mechanisms that provide a more selective, targeted approach in treating of neuropathic pain in sickle cell disease.
Collapse
Affiliation(s)
- Kimberlei Richardson
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Nia Sweatt
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Huy Tran
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Victor Apprey
- Department of Family Medicine, Howard University College of Medicine, Washington, DC, United States
| | - Subramaniam Uthayathas
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Robert Taylor
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Kalpna Gupta
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
- Division of Hematology/Oncology, Department of Medicine, University of California-Irvine School of Medicine, Irvine, CA, United States
| |
Collapse
|
23
|
Godfrey N, Borgland SL. Diversity in the lateral hypothalamic input to the ventral tegmental area. Neuropharmacology 2019; 154:4-12. [DOI: 10.1016/j.neuropharm.2019.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/15/2019] [Accepted: 05/13/2019] [Indexed: 12/29/2022]
|
24
|
James MH, Stopper CM, Zimmer BA, Koll NE, Bowrey HE, Aston-Jones G. Increased Number and Activity of a Lateral Subpopulation of Hypothalamic Orexin/Hypocretin Neurons Underlies the Expression of an Addicted State in Rats. Biol Psychiatry 2019; 85:925-935. [PMID: 30219208 PMCID: PMC7528037 DOI: 10.1016/j.biopsych.2018.07.022] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND The orexin (hypocretin) system is important for reward-driven motivation but has not been implicated in the expression of a multiphenotype addicted state. METHODS Rats were assessed for economic demand for cocaine before and after 14 days of short access, long access, or intermittent access (IntA) to cocaine. Rats were also assessed for a number of other DSM-5-relevant addiction criteria following differential access conditions. Orexin system function was assessed by quantification of numbers and activity of orexin cells, pharmacological blockade of the orexin-1 receptor, and subregion-specific knockdown of orexin cell populations. RESULTS IntA produced a cluster of addiction-like behaviors that closely recapitulate key diagnostic criteria for addiction to a greater extent than long access or short access. IntA was accompanied by an increase in number and activity of orexin-expressing neurons within the lateral hypothalamic subregion. This increase in orexin cell number and activity persisted during protracted withdrawal from cocaine for at least 150 days and was accompanied by enhanced incubation of craving in the same rats. Selective knockdown of lateral hypothalamic orexin neurons reduced motivation for cocaine, and orexin-1 receptor signaling played a larger role in drug seeking after IntA. CONCLUSIONS We provide the first evidence that lateral hypothalamic orexin system function extends beyond general reward seeking to play a critical role in expression of a multiphenotype addiction-like state. Thus, the orexin system is a potential novel target for pharmacotherapies designed to treat cocaine addiction. In addition, these data point to the IntA model as a preferred approach to modeling addiction-like behavior in rats.
Collapse
|
25
|
Linehan V, Rowe TM, Hirasawa M. Dopamine modulates excitatory transmission to orexin neurons in a receptor subtype-specific manner. Am J Physiol Regul Integr Comp Physiol 2018; 316:R68-R75. [PMID: 30462527 DOI: 10.1152/ajpregu.00150.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dopamine (DA) can promote or inhibit consummatory and reward-related behaviors by activating different receptor subtypes in the lateral hypothalamus and perifornical area (LH/PF). Because orexin neurons are involved in reward and localized in the LH/PF, DA may modulate these neurons to influence reward-related behaviors. To determine the cellular mechanism underlying dopaminergic modulation of orexin neurons, the effect of DA on excitatory transmission to these neurons was investigated using in vitro electrophysiology on rat brain slices. We found that low concentrations (0.1-1 µM) of DA increased evoked excitatory postsynaptic current amplitude while decreasing paired-pulse ratio. In contrast, high concentrations (10-100 µM) of DA did the opposite. The excitatory effect of low DA was blocked by the D1 receptor antagonist SCH-23390, whereas the inhibitory effect of high DA was blocked by the D2 receptor antagonist sulpiride. These results indicate distinct roles of D1 and D2 receptors in bidirectional presynaptic modulation of excitatory transmission. DA had stronger effects on isolated synaptic activity than repetitive ones, suggesting that sensitivity to dopaminergic modulation depends on the level of network activity. In orexin neurons from high-fat diet-fed rats, a high concentration of DA was less effective in suppressing repetitive synaptic activity compared with chow controls. Therefore, in diet-induced obesity, intense synaptic inputs may preferentially reach orexin neurons while intermittent signals are inhibited by high DA levels. In summary, our study provides a cellular mechanism by which DA may exert opposite behavioral effects in the LH/PF through bidirectional modulation of orexin neurons via different DA receptors.
Collapse
Affiliation(s)
- Victoria Linehan
- Division of Biomedical Sciences, Memorial University , St. John's, Newfoundland , Canada
| | - Todd M Rowe
- Division of Biomedical Sciences, Memorial University , St. John's, Newfoundland , Canada
| | - Michiru Hirasawa
- Division of Biomedical Sciences, Memorial University , St. John's, Newfoundland , Canada
| |
Collapse
|
26
|
Iyer M, Essner RA, Klingenberg B, Carter ME. Identification of discrete, intermingled hypocretin neuronal populations. J Comp Neurol 2018; 526:2937-2954. [PMID: 30019757 DOI: 10.1002/cne.24490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 01/04/2023]
Abstract
Neurons in the lateral hypothalamic area that express hypocretin (Hcrt) neuropeptides help regulate many behaviors including wakefulness and reward seeking. These neurons project throughout the brain, including to neural populations that regulate wakefulness, such as the locus coeruleus (LC) and tuberomammilary nucleus (TMN), as well as to populations that regulate reward, such as the nucleus accumbens (NAc) and ventral tegmental area (VTA). To address the roles of Hcrt neurons in seemingly disparate behaviors, it has been proposed that Hcrt neurons can be anatomically subdivided into at least two distinct subpopulations: a "medial group" that projects to the LC and TMN, and a "lateral group" that projects to the NAc and VTA. Here, we use a dual retrograde tracer strategy to test the hypotheses that Hcrt neurons can be classified based on their downstream projections and medial/lateral location within the hypothalamus. We found that individual Hcrt neurons were significantly more likely to project to both the LC and TMN or to both the VTA and NAc than would be predicted by chance. In contrast, we found that Hcrt neurons that projected to the LC or TMN were mostly distinct from Hcrt neurons that projected to the VTA or NAc. Interestingly, these two populations of Hcrt neurons are intermingled within the hypothalamus and cannot be classified into medial or lateral groups. These results suggest that Hcrt neurons can be distinguished based on their downstream projections but are intermingled within the hypothalamus.
Collapse
Affiliation(s)
- Manasi Iyer
- Department of Biology, Williams College, Williamstown, Massachusetts.,Program in Neuroscience, Williams College, Williamstown, Massachusetts
| | - Rachel A Essner
- Department of Biology, Williams College, Williamstown, Massachusetts.,Program in Neuroscience, Williams College, Williamstown, Massachusetts
| | - Bernhard Klingenberg
- Department of Mathematics and Statistics, Williams College, Williamstown, Massachusetts
| | - Matthew E Carter
- Department of Biology, Williams College, Williamstown, Massachusetts.,Program in Neuroscience, Williams College, Williamstown, Massachusetts
| |
Collapse
|
27
|
James MH, Bowrey HE, Stopper CM, Aston-Jones G. Demand elasticity predicts addiction endophenotypes and the therapeutic efficacy of an orexin/hypocretin-1 receptor antagonist in rats. Eur J Neurosci 2018; 50:2602-2612. [PMID: 30240516 DOI: 10.1111/ejn.14166] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 08/12/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022]
Abstract
Behavioral economics is a powerful, translational approach for measuring drug demand in both humans and animals. Here, we asked if demand for cocaine in rats with limited drug experience could be used to identify individuals most at risk of expressing an addiction phenotype following either long- or intermittent access self-administration schedules, both of which model the transition to uncontrolled drug-seeking. Because the orexin-1 receptor antagonist SB-334867 (SB) is particularly effective at reducing drug-seeking in highly motivated individuals, we also asked whether demand measured after prolonged drug experience could predict SB efficacy. Demand elasticity (α) measured immediately following acquisition of cocaine self-administration ('baseline α') was positively correlated with α assessed after 2w of long- or intermittent access. Baseline α also predicted the magnitude of compulsive responding for cocaine, drug-seeking in initial abstinence and cued reinstatement following long-, intermittent- or standard short access. When demand was measured after these differential access conditions, α predicted the same addiction endophenotypes predicted by baseline α, as well as primed reinstatement and the emergence of negative emotional mood behavior following abstinence. α also predicted the efficacy of SB, such that high demand rats showed greater reductions in motivation for cocaine following SB compared to low demand rats. Together, these findings indicate that α might serve as a behavioral biomarker to predict individuals most likely to progress from controlled to uncontrolled drug use, and to identify individuals most likely to benefit from orexin-based therapies for the treatment of addiction.
Collapse
Affiliation(s)
- Morgan H James
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.,The Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia
| | - Hannah E Bowrey
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.,Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Colin M Stopper
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| |
Collapse
|
28
|
Liu JJ, Mirabella VR, Pang ZP. Cell type- and pathway-specific synaptic regulation of orexin neurocircuitry. Brain Res 2018; 1731:145974. [PMID: 30296428 DOI: 10.1016/j.brainres.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]
Abstract
Orexin-expressing neurons are located exclusively in the lateral hypothalamic and perifornical areas and exhibit complex connectivity. The intricate wiring pattern is evident from a diverse function for orexin neurons in regulating many physiological processes and behaviors including sleep, metabolism, circadian cycles, anxiety, and reward. Nevertheless, the precise synaptic and circuitry-level mechanisms mediating these processes remain enigmatic, partially due to the wide spread connectivity of the orexin system, complex neurochemistry of orexin neurons, and previous lack of suitable tools to address its complexity. Here we summarize recent advances, focusing on synaptic regulatory mechanisms in the orexin neurocircuitry, including both the synaptic inputs to orexin neurons as well as their downstream targets in the brain. A clear and detailed elucidation of these mechanisms will likely provide novel insight into how dysfunction in orexin-mediated signaling leads to human disease and may ultimately be treated with more precise strategies.
Collapse
Affiliation(s)
- Jing-Jing Liu
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | - Vincent R Mirabella
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
29
|
Activation of lateral hypothalamic group III metabotropic glutamate receptors suppresses cocaine-seeking following abstinence and normalizes drug-associated increases in excitatory drive to orexin/hypocretin cells. Neuropharmacology 2018; 154:22-33. [PMID: 30253175 DOI: 10.1016/j.neuropharm.2018.09.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022]
Abstract
The perifornical/lateral hypothalamic area (LHA) orexin (hypocretin) system is involved in drug-seeking behavior elicited by drug-associated stimuli. Cocaine exposure is associated with presynaptic plasticity at LHA orexin cells such that excitatory input to orexin cells is enhanced acutely and into withdrawal. These changes may augment orexin cell reactivity to drug-related cues during abstinence and contribute to relapse-like behavior. Studies in hypothalamic slices from drug-naïve animals indicate that agonism of group III metabotropic glutamate receptors (mGluRs) reduces presynaptic glutamate release onto orexin cells. Therefore, we examined the group III mGluR system as a potential target to reduce orexin cell excitability in-vivo, including in animals with cocaine experience. First, we verified that group III mGluRs regulate orexin cell activity in behaving animals by showing that intra-LHA infusions of the selective agonist L-(+)-2-Amino-4-phosphonobutyric acid (L-AP4) reduces c-fos expression in orexin cells following 24 h food deprivation. Next, we extended these findings to show that intra-LHA L-AP4 infusions reduced discriminative stimulus-driven cocaine-seeking following withdrawal. Importantly, L-AP4 had no effect on lever pressing for sucrose pellets or general motoric behavior. Finally, using whole-cell patch-clamp recordings from identified orexin cells in orexin-GFP transgenic mice, we show enhanced presynaptic drive to orexin cells following 14d withdrawal and that this plasticity can be normalized by L-AP4. Together, these data indicate that activation of group III mGluRs in LHA reduces orexin cell activity in vivo and may be an effective strategy to suppress cocaine-seeking behavior following withdrawal. These effects are likely mediated, at least in part, by normalization of presynaptic plasticity at orexin cells that occurs as a result of cocaine exposure. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
|
30
|
Kami K, Tajima F, Senba E. Activation of mesolimbic reward system via laterodorsal tegmental nucleus and hypothalamus in exercise-induced hypoalgesia. Sci Rep 2018; 8:11540. [PMID: 30069057 PMCID: PMC6070570 DOI: 10.1038/s41598-018-29915-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/20/2018] [Indexed: 11/08/2022] Open
Abstract
Ventral tegmental area (VTA) dopamine (DA) neurons are the primary source of dopamine in target structures that constitute the mesolimbic reward system. Previous studies demonstrated that voluntary wheel running (VWR) by neuropathic pain (NPP) model mice produces exercise-induced hypoalgesia (EIH), and that activation of mesolimbic reward system may lead to EIH. However, the neuronal mechanism by which the mesolimbic reward system is activated by VWR is unknown. Here, we found that VWR produces EIH effects and reverses the marked reduction in activated lateral VTA (lVTA)-DA neurons induced by NPP. The proportions of activated laterodorsal tegmental nucleus (LDT)-cholinergic and lateral hypothalamus-orexin neurons were significantly enhanced by VWR. Retrograde tracing and dual immunostaining revealed that VWR activates lVTA-projecting LDT-cholinergic/non-cholinergic and lateral hypothalamic area (LHA)-orexin/non-orexin neurons. Therefore, EIH effects may be produced, at least in part, by activation of the mesolimbic reward system via activation of LDT and LHA neurons.
Collapse
Affiliation(s)
- Katsuya Kami
- Department of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, 641-8509, Japan.
| | - Fumihiro Tajima
- Department of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, 641-8509, Japan
| | - Emiko Senba
- Department of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, 641-8509, Japan
- Department of Physical Therapy, Osaka Yukioka College of Health Science, 1-1-41 Sojiji, Ibaraki City, Osaka, 567-0801, Japan
| |
Collapse
|
31
|
Moorman DE. The hypocretin/orexin system as a target for excessive motivation in alcohol use disorders. Psychopharmacology (Berl) 2018; 235:1663-1680. [PMID: 29508004 PMCID: PMC5949267 DOI: 10.1007/s00213-018-4871-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
Abstract
The hypocretin/orexin (ORX) system has been repeatedly demonstrated to regulate motivation for drugs of abuse, including alcohol. In particular, ORX seems to be critically involved in highly motivated behaviors, as is observed in high-seeking individuals in a population, in the seeking of highly palatable substances, and in models of dependence. It seems logical that this system could be considered as a potential target for treatment for addiction, particularly alcohol addiction, as ORX pharmacological manipulations significantly reduce drinking. However, the ORX system also plays a role in a wide range of other behaviors, emotions, and physiological functions and is disrupted in a number of non-dependence-associated disorders. It is therefore important to consider how the ORX system might be optimally targeted for potential treatment for alcohol use disorders either in combination with or separate from its role in other functions or diseases. This review will focus on the role of ORX in alcohol-associated behaviors and whether and how this system could be targeted to treat alcohol use disorders while avoiding impacts on other ORX-relevant functions. A brief overview of the ORX system will be followed by a discussion of some of the factors that makes it particularly intriguing as a target for alcohol addiction treatment, a consideration of some potential challenges associated with targeting this system and, finally, some future directions to optimize new treatments.
Collapse
Affiliation(s)
- David E Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, 528 Tobin Hall, 135 Hicks Way, Amherst, MA, 01003, USA.
| |
Collapse
|
32
|
Tsai MC, Huang TL. Orexin A in men with heroin use disorder undergoing methadone maintenance treatment. Psychiatry Res 2018; 264:412-415. [PMID: 29680730 DOI: 10.1016/j.psychres.2018.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022]
Abstract
Orexins have played a role in reward-seeking and addiction-related behavior. There are few reports in the literature on serum levels of orexins in patients with heroin use disorder (HUD) undergoing methadone maintenance treatment (MMT). The aim of this study was to investigate the serum levels of orexin A in HUD patients undergoing MMT. Fifty male HUD patients undergoing MMT and 25 healthy males were enrolled for this study. Serum orexin A were measured with assay kits. Using analysis of covariance (ANCOVA) with body mass index (BMI) adjustments, the serum levels of orexin A in HUD men undergoing MMT were found to be significantly higher than in healthy controls. In conclusion, our results suggest that MMT might increase orexin A levels in HUD patients.
Collapse
Affiliation(s)
- Meng-Chang Tsai
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC.
| |
Collapse
|
33
|
Papolos D, Frei M, Rossignol D, Mattis S, Hernandez-Garcia LC, Teicher MH. Clinical experience using intranasal ketamine in the longitudinal treatment of juvenile bipolar disorder with fear of harm phenotype. J Affect Disord 2018; 225:545-551. [PMID: 28866299 DOI: 10.1016/j.jad.2017.08.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/21/2017] [Accepted: 08/27/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Fear of Harm (FOH) is a pediatric onset phenotype of bipolar disorder (BD) characterized by BD plus treatment resistance, separation anxiety, aggressive obsessions, parasomnias, and thermal dysregulation. Intranasal ketamine (InK) in 12 youths with BD-FOH produced marked improvement during a two-week trial. Here we report on the open effectiveness and safety of InK in maintenance treatment of BD-FOH from the private practice of one author. METHODS As part of a chart review, patients 18 years or older and parents of younger children responded to a clinical effectiveness and safety survey. Effectiveness was assessed from analysis of responses to 49 questions on symptomatology plus qualitative content analyses of written reports and chart review. Adverse events (AEs) were analyzed by frequency, duration and severity. Peak InK doses ranged from 20 to 360mg per administration. RESULTS Surveys were completed on 45 patients treated with InK for 3 months to 6.5 years. Almost all patients were "much" to "very much" improved clinically and in ratings of social function and academic performance. Significant reductions were reported in all symptom categories. There were 13 reports of persistent AEs, none of which resulted in discontinuation. Acute emergence reactions were sporadically observed in up to 75%, but were mild and of brief duration. LIMITATIONS Retrospective review from a single practice without placebo control with potential for response and recall bias. CONCLUSIONS InK every 3-4 days at sub-anesthetic doses appeared to be a beneficial and well-tolerated treatment. Use of InK may be considered as a tertiary alternative in treatment refractory cases. Randomized control trials are warranted.
Collapse
Affiliation(s)
- Demitri Papolos
- Juvenile Bipolar Research Foundation, 277 Martine Avenue, Suite 226 White Plains, NY 10601, United States; Department of Psychiatry, Albert Einstein College of Medicine, New York, United States.
| | - Mark Frei
- Advanced Signal Analysis and Processing, 2360 Sterling Creek Pkwy, Oviedo, FL 32766, United States
| | - Daniel Rossignol
- Juvenile Bipolar Research Foundation, 277 Martine Avenue, White Plains, NY 10601, United States
| | - Steven Mattis
- Department of Psychiatry Cornell-Weil Medical College of Medicine, United States
| | - Laura C Hernandez-Garcia
- Developmental Biopsychiatry Research Program, McLean Hospital, Department of Psychiatry, Harvard Medical School, United States
| | - Martin H Teicher
- Developmental Biopsychiatry Research Program, McLean Hospital, Department of Psychiatry, Harvard Medical School, United States
| |
Collapse
|
34
|
Farahimanesh S, Zarrabian S, Haghparast A. Role of orexin receptors in the ventral tegmental area on acquisition and expression of morphine-induced conditioned place preference in the rats. Neuropeptides 2017; 66:45-51. [PMID: 28890208 DOI: 10.1016/j.npep.2017.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/08/2017] [Accepted: 08/25/2017] [Indexed: 01/28/2023]
Abstract
The orexins are hypothalamic neuropeptides and their role in reward processing and drug addiction has been demonstrated. The extent of involvement of each orexin receptor in the acquisition and expression of conditioned place preference (CPP) for morphine is still a matter of controversy. We investigated the functional differences between orexin-1 and -2 receptor blockade in the ventral tegmental area (VTA) on the acquisition and expression of morphine CPP. A total of 86 adult male Wistar rats weighing 250±30g (age 7-8weeks) received intra-VTA microinjection of either SB334867 (0.1, 1 and 10nM), a selective orexin-1 receptor (OX1R) antagonist, or TCS-OX2-29 (1, 5 and 25nM), a selective orexin-2 receptor (OX2R) antagonist. To measure the acquisition, the animals received each antagonist (SB334867 or TCS-OX2-29) 5min prior to subcutaneous injection of morphine (5mg/kg) during the conditioning phase. To measure the CPP expression, the animals received each antagonist on the post-conditioning phase. The CPP conditioning score was recorded by Ethovision software. Data showed that intra-VTA microinjection of OX1-R antagonist significantly attenuated morphine CPP acquisition, during the conditioning phase, and expression, during the post-conditioning phase. Intra-VTA microinjection of OX2-R antagonist also significantly attenuated morphine CPP acquisition and expression in the mentioned phases. Our results showed the orexin role in learning and memory and indicate that orexin receptors (OX1R and OX2R) function in the VTA is essential for both acquisition and expression of morphine reward in rats in the CPP model.
Collapse
Affiliation(s)
- Sharareh Farahimanesh
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute for cognitive Science Studies, Tehran, Iran
| | - Shahram Zarrabian
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Baimel C, Lau BK, Qiao M, Borgland SL. Projection-Target-Defined Effects of Orexin and Dynorphin on VTA Dopamine Neurons. Cell Rep 2017; 18:1346-1355. [PMID: 28178514 DOI: 10.1016/j.celrep.2017.01.030] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/29/2016] [Accepted: 01/13/2017] [Indexed: 12/29/2022] Open
Abstract
Circuit-specific signaling of ventral tegmental area (VTA) dopamine neurons drives different aspects of motivated behavior, but the neuromodulatory control of these circuits is unclear. We tested the actions of co-expressed lateral hypothalamic peptides, orexin A (oxA) and dynorphin (dyn), on projection-target-defined dopamine neurons in mice. We determined that VTA dopamine neurons that project to the nucleus accumbens lateral shell (lAcbSh), medial shell (mAcbSh), and basolateral amygdala (BLA) are largely non-overlapping cell populations with different electrophysiological properties. Moreover, the neuromodulatory effects of oxA and dyn on these three projections differed. OxA selectively increased firing in lAcbSh- and mAcbSh-projecting dopamine neurons. Dyn decreased firing in the majority of mAcbSh- and BLA-projecting dopamine neurons but reduced firing only in a small fraction of those that project to the lAcbSh. In conclusion, the oxA-dyn input to the VTA may drive reward-seeking behavior by tuning dopaminergic output in a projection-target-dependent manner.
Collapse
Affiliation(s)
- Corey Baimel
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada
| | - Benjamin K Lau
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada
| | - Min Qiao
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada
| | - Stephanie L Borgland
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
36
|
Role of orexin type-1 receptors in paragiganto-coerulear modulation of opioid withdrawal and tolerance: A site specific focus. Neuropharmacology 2017; 126:25-37. [DOI: 10.1016/j.neuropharm.2017.08.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 11/21/2022]
|
37
|
Baimel C, Borgland SL. Hypocretin/Orexin and Plastic Adaptations Associated with Drug Abuse. Curr Top Behav Neurosci 2017; 33:283-304. [PMID: 28303403 DOI: 10.1007/7854_2016_44] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dopamine neurons in the ventral tegmental area (VTA) are a critical part of the neural circuits that underlie reward learning and motivation. Dopamine neurons send dense projections throughout the brain and recent observations suggest that both the intrinsic properties and the functional output of dopamine neurons are dependent on projection target and are subject to neuromodulatory influences. Lateral hypothalamic hypocretin (also termed orexin) neurons project to the VTA and contain both hypocretin and dynorphin peptides in the same dense core vesicles suggesting they may be co-released. Hypocretin peptides act at excitatory Gαq protein-coupled receptors and dynorphin acts at inhibitory Gαi/o protein-coupled receptors, which are both expressed on subpopulations of dopamine neurons. This review describes a role for neuromodulation of dopamine neurons and the influence on motivated behaviour in response to natural and drug rewards.
Collapse
Affiliation(s)
- Corey Baimel
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada, T2N 4N1
| | - Stephanie L Borgland
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada, T2N 4N1.
| |
Collapse
|
38
|
James MH, Mahler SV, Moorman DE, Aston-Jones G. A Decade of Orexin/Hypocretin and Addiction: Where Are We Now? Curr Top Behav Neurosci 2017; 33:247-281. [PMID: 28012090 PMCID: PMC5799809 DOI: 10.1007/7854_2016_57] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One decade ago, our laboratory provided the first direct evidence linking orexin/hypocretin signaling with drug seeking by showing that activation of these neurons promotes conditioned morphine-seeking behavior. In the years since, contributions from many investigators have revealed roles for orexins in addiction for all drugs of abuse tested, but only under select circumstances. We recently proposed that orexins play a fundamentally unified role in coordinating "motivational activation" under numerous behavioral conditions, and here we unpack this hypothesis as it applies to drug addiction. We describe evidence collected over the past 10 years that elaborates the role of orexin in drug seeking under circumstances where high levels of effort are required to obtain the drug, or when motivation for drug reward is augmented by the presence of external stimuli like drug-associated cues/contexts or stressors. Evidence from studies using traditional self-administration and reinstatement models, as well as behavioral economic analyses of drug demand elasticity, clearly delineates a role for orexin in modulating motivational, rather than the primary reinforcing aspects of drug reward. We also discuss the anatomical interconnectedness of the orexin system with wider motivation and reward circuits, with a particular focus on how orexin modulates prefrontal and other glutamatergic inputs onto ventral tegmental area dopamine neurons. Last, we look ahead to the next decade of the research in this area, highlighting the recent FDA approval of the dual orexin receptor antagonist suvorexant (Belsomra®) for the treatment of insomnia as a promising sign of the potential clinical utility of orexin-based therapies for the treatment of addiction.
Collapse
Affiliation(s)
- Morgan H James
- Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 2337, Australia
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92967, USA
| | - David E Moorman
- Department of Psychological and Brain Sciences & Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA.
| |
Collapse
|
39
|
Barbier M, Houdayer C, Franchi G, Poncet F, Risold PY. Melanin-concentrating hormone axons, but not orexin or tyrosine hydroxylase axons, innervate the claustrum in the rat: An immunohistochemical study. J Comp Neurol 2016; 525:1489-1498. [PMID: 27580962 DOI: 10.1002/cne.24110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/12/2016] [Accepted: 08/24/2016] [Indexed: 01/16/2023]
Abstract
The claustrum is a small, elongated nucleus close to the external capsule and deep in the insular cortex. In rodents, this nucleus is characterized by a dense cluster of parvalbumin labeling. The claustrum is connected with the cerebral cortex. It does not project to the brainstem, but brainstem structures can influence this nucleus. To identify some specific projections from the lateral hypothalamus and midbrain, we analyzed the distribution of projections labeled with antibodies against tyrosine hydroxylase (TH), melanin-concentrating hormone (MCH), and hypocretin (Hcrt) in the region of the claustrum. The claustrum contains a significant projection by MCH axons, whereas it is devoid of TH projections. Unlike TH and MCH axons, Hcrt axons are scattered throughout the region. This observation is discussed mainly with regard to the role of the claustrum in cognitive functions and that of MCH in REM sleep. J. Comp. Neurol. 525:1489-1498, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie Barbier
- EA3922, UFR Sciences Médicales et Pharmaceutiques, IFR IBCT, Université de Bourgogne-Franche-Comté, 25030, Besançon, France
| | - Christophe Houdayer
- EA3922, UFR Sciences Médicales et Pharmaceutiques, IFR IBCT, Université de Bourgogne-Franche-Comté, 25030, Besançon, France
| | - Gabrielle Franchi
- EA3922, UFR Sciences Médicales et Pharmaceutiques, IFR IBCT, Université de Bourgogne-Franche-Comté, 25030, Besançon, France
| | - Fabrice Poncet
- EA3922, UFR Sciences Médicales et Pharmaceutiques, IFR IBCT, Université de Bourgogne-Franche-Comté, 25030, Besançon, France
| | - Pierre-Yves Risold
- EA3922, UFR Sciences Médicales et Pharmaceutiques, IFR IBCT, Université de Bourgogne-Franche-Comté, 25030, Besançon, France
| |
Collapse
|
40
|
Orexin/hypocretin-1 receptor antagonism reduces ethanol self-administration and reinstatement selectively in highly-motivated rats. Brain Res 2016; 1654:34-42. [PMID: 27771284 DOI: 10.1016/j.brainres.2016.10.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
The orexin/hypocretin (ORX) system regulates motivation for natural rewards and drugs of abuse such as alcohol. ORX receptor antagonists, most commonly OX1R antagonists including SB-334867 (SB), decrease alcohol drinking, self-administration and reinstatement in both genetically-bred alcohol-preferring and outbred strains of rats. Importantly, levels of alcohol seeking and drinking in outbred rats are variable, as they are in humans. We have shown that OX1R antagonism selectively decreases homecage alcohol drinking in high-, but not low-alcohol-preferring rats. It is unknown, however, whether this effect is selective to homecage drinking or whether it also applies to alcohol seeking paradigms such as self-administration and reinstatement following extinction, in which motivation is high in the absence of alcohol. Here we trained Sprague Dawley rats to self-administer 20% ethanol paired with a light-tone cue on an FR3 regimen. Rats were then extinguished and subjected to cue-induced reinstatement. Rats were segregated into high- and low-ethanol-responding groups (HR and LR) based on self-administration levels. During self-administration and cue-induced reinstatement, rats were given SB or vehicle prior to ethanol seeking. In both conditions, OX1R antagonism decreased responding selectively in HR, but not LR rats. There were no non-specific effects of SB treatment on arousal or general behavior. These data indicate that ORX signaling at the OX1R receptor specifically regulates high levels of motivation for alcohol, even in the absence of direct alcohol reinforcement. This implicates the ORX system in the pathological motivation underlying alcohol abuse and alcoholism and demonstrates that the OX1R may be an important target for treating alcohol abuse.
Collapse
|
41
|
Kim J, Ham S, Hong H, Moon C, Im HI. Brain Reward Circuits in Morphine Addiction. Mol Cells 2016; 39:645-53. [PMID: 27506251 PMCID: PMC5050528 DOI: 10.14348/molcells.2016.0137] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 12/30/2022] Open
Abstract
Morphine is the most potent analgesic for chronic pain, but its clinical use has been limited by the opiate's innate tendency to produce tolerance, severe withdrawal symptoms and rewarding properties with a high risk of relapse. To understand the addictive properties of morphine, past studies have focused on relevant molecular and cellular changes in the brain, highlighting the functional roles of reward-related brain regions. Given the accumulated findings, a recent, emerging trend in morphine research is that of examining the dynamics of neuronal interactions in brain reward circuits under the influence of morphine action. In this review, we highlight recent findings on the roles of several reward circuits involved in morphine addiction based on pharmacological, molecular and physiological evidences.
Collapse
Affiliation(s)
- Juhwan Kim
- Center for Neuroscience, Brain Science Institute, Seoul 02792,
Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Department of Veterinary Anatomy, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186,
Korea
| | - Suji Ham
- Center for Neuroscience, Brain Science Institute, Seoul 02792,
Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Department of Neuroscience, Korea University of Science and Technology (UST), Daejeon 34113,
Korea
| | - Heeok Hong
- Department of Medical Science, Konkuk University School of Medicine, Seoul 05029,
Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186,
Korea
| | - Heh-In Im
- Center for Neuroscience, Brain Science Institute, Seoul 02792,
Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Department of Neuroscience, Korea University of Science and Technology (UST), Daejeon 34113,
Korea
| |
Collapse
|
42
|
Guo SJ, Cui Y, Huang ZZ, Liu H, Zhang XQ, Jiang JX, Xin WJ. Orexin A-mediated AKT signaling in the dentate gyrus contributes to the acquisition, expression and reinstatement of morphine-induced conditioned place preference. Addict Biol 2016; 21:547-59. [PMID: 25757577 DOI: 10.1111/adb.12236] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accumulating evidence indicates that the hippocampal dentate gyrus (DG), a critical brain region contributing to learning and memory, is involved in the addiction and relapse to abused drugs. Emerging studies also suggest the role of orexin signaling in the rewarding behavior induced by repeated exposure to opiates. In the present study, we investigated the dynamic adaptation of orexin signaling in the DG and its functional significance in the acquisition, expression, maintenance of and relapse to rewarding behavior induced by morphine. Repeated place conditioning with morphine significantly increased the orexin A content released from the lateral hypothalamic area projecting neurons into the DG. Local infusions of orexin A into the DG sensitized the acquisition of and relapse to the conditioned place preference induced by morphine. The application of the orexin receptor type 1 (OXR1) antagonist SB334867 significantly abolished the acquisition, expression and maintenance of the conditioned place preference induced by repeated exposure to morphine. Furthermore, the significant increase of the phosphorylation of AKT in the DG was associated with preference for the morphine-paired chamber in rats, which was reversed by the local administration of an OXR1 antagonist. Thus, these findings suggested that the dynamic upregulation of orexin A signaling, via the AKT pathway in the DG, may promote the acquisition and maintenance of opioid-induced craving behaviors and may increase sensitivity to the rewarding effect of subsequent opioids.
Collapse
Affiliation(s)
- Sui-Jun Guo
- Department of Psychology; Guangzhou Medical University; China
| | - Yu Cui
- Department of Physiology and Pain Research Center; Zhongshan Medical School; Sun Yat-Sen University; China
| | - Zhen-Zhen Huang
- Department of Physiology and Pain Research Center; Zhongshan Medical School; Sun Yat-Sen University; China
| | - Huan Liu
- Department of Physiology and Pain Research Center; Zhongshan Medical School; Sun Yat-Sen University; China
| | - Xue-Qin Zhang
- Department of Psychology; Guangzhou Medical University; China
| | - Jin-Xiang Jiang
- Department of Psychology; Guangzhou Medical University; China
| | - Wen-Jun Xin
- Department of Physiology and Pain Research Center; Zhongshan Medical School; Sun Yat-Sen University; China
| |
Collapse
|
43
|
Moorman DE, James MH, Kilroy EA, Aston-Jones G. Orexin/hypocretin neuron activation is correlated with alcohol seeking and preference in a topographically specific manner. Eur J Neurosci 2016; 43:710-20. [PMID: 26750264 DOI: 10.1111/ejn.13170] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/09/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022]
Abstract
Orexin (ORX) (also known as hypocretin) neurons are located exclusively in the posterior hypothalamus, and are involved in a wide range of behaviours, including motivation for drugs of abuse such as alcohol. Hypothalamic subregions contain functionally distinct populations of ORX neurons that may play different roles in regulating drug-motivated and alcohol-motivated behaviours. To investigate the role of ORX neurons in ethanol (EtOH) seeking, we measured Fos activation of ORX neurons in rats following three different measures of EtOH seeking and preference: (i) context-induced reinstatement, or ABA renewal; (ii) cue-induced reinstatement of extinguished responding for EtOH; and (iii) a home cage task in which preference for EtOH (vs. water) was measured in the absence of either reinforcer. We found significant activation of ORX neurons in multiple subregions across all three behavioural tests. Notably, ORX neuron activation in the lateral hypothalamus correlated with the degree of seeking in context reinstatement and the degree of preference in home cage preference testing. In addition, Fos activation in ORX neurons in the dorsomedial hypothalamic and perifornical areas was correlated with context and home cage seeking/preference, respectively. Surprisingly, we found no relationship between the degree of cue-induced reinstatement and ORX neuron activation in any region, despite robust activation overall during reinstatement. These results demonstrate a strong relationship between ORX neuron activation and EtOH seeking/preference, but one that is differentially expressed across ORX field subregions, depending on reinstatement modality.
Collapse
Affiliation(s)
- David E Moorman
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Morgan H James
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Elisabeth A Kilroy
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Gary Aston-Jones
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
44
|
Engel JA, Nylander I, Jerlhag E. A ghrelin receptor (GHS-R1A) antagonist attenuates the rewarding properties of morphine and increases opioid peptide levels in reward areas in mice. Eur Neuropsychopharmacol 2015; 25:2364-71. [PMID: 26508707 DOI: 10.1016/j.euroneuro.2015.10.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/17/2015] [Accepted: 10/05/2015] [Indexed: 11/28/2022]
Abstract
Gut-brain hormones such as ghrelin have recently been suggested to have a role in reward regulation. Ghrelin was traditionally known to regulate food intake and body weight homoeostasis. In addition, recent work has pin-pointed that this peptide has a novel role in drug-induced reward, including morphine-induced increase in the extracellular levels of accumbal dopamine in rats. Herein the effect of the ghrelin receptor (GHS-R1A) antagonist, JMV2959, on morphine-induced activation of the mesolimbic dopamine system was investigated in mice. In addition, the effects of JMV2959 administration on opioid peptide levels in reward related areas were investigated. In the present series of experiment we showed that peripheral JMV2959 administration, at a dose with no effect per se, attenuates the ability of morphine to cause locomotor stimulation, increase the extracellular levels of accumbal dopamine and to condition a place preference in mice. JMV2959 administration significantly increased tissue levels of Met-enkephalin-Arg(6)Phe(7) in the ventral tegmental area, dynorphin B in hippocampus and Leu-enkephalin-Arg(6) in striatum. We therefore hypothesise that JMV2959 prevents morphine-induced reward via stimulation of delta receptor active peptides in striatum and ventral tegmental areas. In addition, hippocampal peptides that activate kappa receptor may be involved in JMV2959׳s ability to regulate memory formation of reward. Given that development of drug addiction depends, at least in part, of the effects of addictive drugs on the mesolimbic dopamine system the present data suggest that GHS-R1A antagonists deserve to be elucidated as novel treatment strategies of opioid addiction.
Collapse
Affiliation(s)
- Jörgen A Engel
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Nylander
- Neuropharmacology, Addiction and Behaviour, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
45
|
Otlivanchik O, Sanders NM, Dunn-Meynell A, Levin BE. Orexin signaling is necessary for hypoglycemia-induced prevention of conditioned place preference. Am J Physiol Regul Integr Comp Physiol 2015; 310:R66-73. [PMID: 26511522 DOI: 10.1152/ajpregu.00066.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 10/19/2015] [Indexed: 01/24/2023]
Abstract
While the neural control of glucoregulatory responses to insulin-induced hypoglycemia is beginning to be elucidated, brain sites responsible for behavioral responses to hypoglycemia are relatively poorly understood. To help elucidate central control mechanisms associated with hypoglycemia unawareness, we first evaluated the effect of recurrent hypoglycemia on a simple behavioral measure, the robust feeding response to hypoglycemia, in rats. First, food intake was significantly, and similarly, increased above baseline saline-induced intake (1.1 ± 0.2 g; n = 8) in rats experiencing a first (4.4 ± 0.3; n = 8) or third daily episode of recurrent insulin-induced hypoglycemia (IIH, 3.7 ± 0.3 g; n = 9; P < 0.05). Because food intake was not impaired as a result of prior IIH, we next developed an alternative animal model of hypoglycemia-induced behavioral arousal using a conditioned place preference (CPP) model. We found that hypoglycemia severely blunted previously acquired CPP in rats and that recurrent hypoglycemia prevented this blunting. Pretreatment with a brain penetrant, selective orexin receptor-1 antagonist, SB-334867A, blocked hypoglycemia-induced blunting of CPP. Recurrently hypoglycemic rats also showed decreased preproorexin expression in the perifornical hypothalamus (50%) but not in the adjacent lateral hypothalamus. Pretreatment with sertraline, previously shown to prevent hypoglycemia-associated glucoregulatory failure, did not prevent blunting of hypoglycemia-induced CPP prevention by recurrent hypoglycemia. This work describes the first behavioral model of hypoglycemia unawareness and suggests a role for orexin neurons in mediating behavioral responses to hypoglycemia.
Collapse
Affiliation(s)
- Oleg Otlivanchik
- Graduate School of Biomedical Sciences, Rutgers University, Newark, New Jersey; Department of Neurology, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | | | - Ambrose Dunn-Meynell
- Graduate School of Biomedical Sciences, Rutgers University, Newark, New Jersey; Department of Neurology, New Jersey Medical School, Rutgers University, Newark, New Jersey; Neurology Service, Veterans Affairs Medical Center, East Orange, New Jersey; and
| | - Barry E Levin
- Department of Neurology, New Jersey Medical School, Rutgers University, Newark, New Jersey; Neurology Service, Veterans Affairs Medical Center, East Orange, New Jersey; and
| |
Collapse
|
46
|
Rodríguez-Arias M, Aguilar MA, Miñarro J. Therapies in early development for the treatment of opiate addiction. Expert Opin Investig Drugs 2015; 24:1459-72. [PMID: 26414784 DOI: 10.1517/13543784.2015.1086746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Opiate drugs are psychoactive substances used to manage severe pain. However, their chronic use is associated with the development of addiction. Opiate addiction represents a significant public health concern. AREAS COVERED This review focuses on the most recent advances in the pharmacological treatment of opiate addiction, from those being tested in clinical trials (Phase I and II), to preclinical studies that point to new targets. Readers will gain knowledge of the wide variety of treatments used to treat opiate addiction, including their strengths and weaknesses, and the promising pharmacological targets identified by preclinical research. EXPERT OPINION Among the currently available agonist therapies, new dosage forms of buprenorphine can increase patient acceptability and compliance. New extended-release forms of naltrexone are building hope of retaining opiate-dependent subjects in a drug-free state. Unfortunately, the review of the literature shows that successful preclinical studies are often followed by discouraging results in human clinical trials. Nevertheless, all targets of potential interest should be tested exhaustively. Indeed, a number of new targets and research lines (genetics and neuroinflammation approaches) may lead to breakthroughs in the future.
Collapse
Affiliation(s)
- Marta Rodríguez-Arias
- a Universidad de Valencia, Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia , Avda. Blasco Ibáñez 21, 46010 Valencia, Spain +34 9 63 86 40 20 ; +34 9 63 86 46 68 ;
| | - María A Aguilar
- a Universidad de Valencia, Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia , Avda. Blasco Ibáñez 21, 46010 Valencia, Spain +34 9 63 86 40 20 ; +34 9 63 86 46 68 ;
| | - José Miñarro
- a Universidad de Valencia, Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia , Avda. Blasco Ibáñez 21, 46010 Valencia, Spain +34 9 63 86 40 20 ; +34 9 63 86 46 68 ;
| |
Collapse
|
47
|
Persistent Adaptations in Afferents to Ventral Tegmental Dopamine Neurons after Opiate Withdrawal. J Neurosci 2015; 35:10290-303. [PMID: 26180204 DOI: 10.1523/jneurosci.0715-15.2015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Protracted opiate withdrawal is accompanied by altered responsiveness of midbrain dopaminergic (DA) neurons, including a loss of DA cell response to morphine, and by behavioral alterations, including affective disorders. GABAergic neurons in the tail of the ventral tegmental area (tVTA), also called the rostromedial tegmental nucleus, are important for behavioral responses to opiates. We investigated the tVTA-VTA circuit in rats after chronic morphine exposure to determine whether tVTA neurons participate in the loss of opiate-induced disinhibition of VTA DA neurons observed during protracted withdrawal. In vivo recording revealed that VTA DA neurons, but not tVTA GABAergic neurons, are tolerant to morphine after 2 weeks of withdrawal. Optogenetic stimulation of tVTA neurons inhibited VTA DA neurons similarly in opiate-naive and long-term withdrawn rats. However, tVTA inactivation increased VTA DA activity in opiate-naive rats, but not in withdrawn rats, resembling the opiate tolerance effect in DA cells. Thus, although inhibitory control of DA neurons by tVTA is maintained during protracted withdrawal, the capacity for disinhibitory control is impaired. In addition, morphine withdrawal reduced both tVTA neural activity and tonic glutamatergic input to VTA DA neurons. We propose that these changes in glutamate and GABA inputs underlie the apparent tolerance of VTA DA neurons to opiates after chronic exposure. These alterations in the tVTA-VTA DA circuit could be an important factor in opiate tolerance and addiction. Moreover, the capacity of the tVTA to inhibit, but not disinhibit, DA cells after chronic opiate exposure may contribute to long-term negative affective states during withdrawal. SIGNIFICANCE STATEMENT Dopaminergic (DA) cells of the ventral tegmental area (VTA) are the origin of a brain reward system and are critically involved in drug abuse. Morphine has long been known to affect VTA DA cells via GABAergic interneurons. Recently, GABAergic neurons caudal to the VTA were discovered and named the tail of VTA (tVTA). Here, we show that tVTA GABA neurons lose their capacity to disinhibit, but not to inhibit, VTA DA cells after chronic opiate exposure. The failure of disinhibition was associated with a loss of glutamatergic input to DA neurons after chronic morphine. These findings reveal mechanisms by which the tVTA may play a key role in long-term negative affective states during opiate withdrawal.
Collapse
|
48
|
Blasiak A, Siwiec M, Grabowiecka A, Blasiak T, Czerw A, Blasiak E, Kania A, Rajfur Z, Lewandowski MH, Gundlach AL. Excitatory orexinergic innervation of rat nucleus incertus--Implications for ascending arousal, motivation and feeding control. Neuropharmacology 2015; 99:432-47. [PMID: 26265304 DOI: 10.1016/j.neuropharm.2015.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/17/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
Orexin/hypocretin peptides play a central role in the integrated control of feeding/reward and behavioural activation, principally via interactions with other neural systems. A brainstem area involved in behavioural activation is the nucleus incertus (NI), located in the posterior ventromedial central grey. Several studies have implicated NI in control of arousal/stress and reward/feeding responses. Orexin receptor mRNA expression identifies NI as a putative target of orexin modulation. Therefore, in this study we performed neural tract-tracing and immunofluorescence staining to characterise the orexinergic innervation of NI. Our results indicate a convergent innervation of the NI area by different orexin neuron populations, with an abundance of orexin-A-containing axons making putative synaptic contacts with relaxin-3-positive NI neurons. The influence of orexin-A on NI neuron activity was investigated using patch-clamp recordings. Orexin-A depolarised the majority (64%) of recorded neurons and this effect was maintained in the presence of tetrodotoxin and glutamate and GABA receptor antagonists, indicating a likely postsynaptic action. Voltage-clamp experiments revealed that in 'type I' NI neurons comprising relaxin-3-positive cells, orexin-A acted via L-type calcium channels, whereas in 'type II' relaxin-3-negative neurons, activation of a sodium/calcium exchanger was involved. A majority of the orexin-A sensitive neurons tested for the presence of orexin receptor mRNA, were OX2 mRNA-positive. Immunohistochemical staining for putative orexin receptors on NI neurons, confirmed stronger expression of OX2 than OX1 receptors. Our data demonstrate a strong influence of orexin-A on NI neurons, consistent with an important role for this hypothalamic/tegmental circuit in the regulation of arousal/vigilance and motivated behaviours.
Collapse
Affiliation(s)
- Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Marcin Siwiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387 Krakow, Poland
| | - Agnieszka Grabowiecka
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387 Krakow, Poland
| | - Tomasz Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387 Krakow, Poland
| | - Anna Czerw
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387 Krakow, Poland
| | - Ewa Blasiak
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Alan Kania
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387 Krakow, Poland
| | - Zenon Rajfur
- Faculty of Physics, Astronomy and Applied Computer Science, Institute of Physics, Jagiellonian University, 30-348 Krakow, Poland
| | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387 Krakow, Poland
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
49
|
Abstract
Dopamine neurons in the ventral tegmental area (VTA) are a key target of addictive drugs, and neuroplasticity in this region may underlie some of the core features of addiction. From the very first exposure, all drugs of abuse induce synaptic plasticity in the VTA. However, it is not well understood how this diverse group of drugs brings about common synaptic change. Orexin (also known as hypocretin) is a lateral hypothalamic neuropeptide released into the VTA that promotes drug-seeking behaviors and potentiates excitatory synaptic transmission onto VTA dopamine neurons. Here we show that signaling at orexin receptor type 1 (OxR1) in the VTA is required for morphine-induced plasticity of dopamine neurons. Systemic or intra-VTA administration of the OxR1 antagonist SB 334867 in rats blocked a morphine-induced increase in the AMPAR/NMDAR ratio, an increase in presynaptic glutamate release, and a postsynaptic change in AMPAR number or function, including a switch in subunit composition. Furthermore, SB 334867 blocked a morphine-induced decrease in presynaptic GABA release, and a morphine-induced shift in the balance of excitatory and inhibitory synaptic inputs to dopamine neurons. These findings identify a novel role for orexin in morphine-induced plasticity in the VTA and provide a mechanism by which orexin can gate the output of dopamine neurons.
Collapse
|
50
|
Abstract
Rewards are crucial objects that induce learning, approach behavior, choices, and emotions. Whereas emotions are difficult to investigate in animals, the learning function is mediated by neuronal reward prediction error signals which implement basic constructs of reinforcement learning theory. These signals are found in dopamine neurons, which emit a global reward signal to striatum and frontal cortex, and in specific neurons in striatum, amygdala, and frontal cortex projecting to select neuronal populations. The approach and choice functions involve subjective value, which is objectively assessed by behavioral choices eliciting internal, subjective reward preferences. Utility is the formal mathematical characterization of subjective value and a prime decision variable in economic choice theory. It is coded as utility prediction error by phasic dopamine responses. Utility can incorporate various influences, including risk, delay, effort, and social interaction. Appropriate for formal decision mechanisms, rewards are coded as object value, action value, difference value, and chosen value by specific neurons. Although all reward, reinforcement, and decision variables are theoretical constructs, their neuronal signals constitute measurable physical implementations and as such confirm the validity of these concepts. The neuronal reward signals provide guidance for behavior while constraining the free will to act.
Collapse
Affiliation(s)
- Wolfram Schultz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|