1
|
Büeler S, Anderson CE, Birkhäuser V, Freund P, Gross O, Kessler TM, Kündig CW, Leitner L, Mahnoor N, Mehnert U, Röthlisberger R, Stalder SA, van der Lely S, Zipser CM, David G, Liechti MD. Remote neurodegeneration in the lumbosacral cord one month after spinal cord injury: a cross-sectional MRI study. Ann Clin Transl Neurol 2025; 12:523-537. [PMID: 39869509 PMCID: PMC11920731 DOI: 10.1002/acn3.52298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/27/2024] [Accepted: 12/22/2024] [Indexed: 01/29/2025] Open
Abstract
OBJECTIVE To characterize structural integrity of the lumbosacral enlargement and conus medullaris within one month after spinal cord injury (SCI). METHODS Lumbosacral cord MRI data were acquired in patients with sudden onset (<7 days) SCI at the cervical or thoracic level approximately one month after injury and in healthy controls. Tissue integrity and loss were evaluated through diffusion tensor (DTI) and T2*-weighted imaging (cross-sectional area [CSA] measurements). Associations with the degree of neurological impairment were assessed using linear mixed-effects models. RESULTS Twenty-one patients with SCI showed lower white matter (WM) fractional anisotropy (FA) (≤-13.3%) and higher WM radial diffusivity (≤14.6%) compared to 27 healthy controls. Differences were most pronounced in the lateral columns of WM. CSA measurements revealed no group differences. For the lateral columns, lower FA values were associated with lower motor scores and lower amplitudes of motor evoked potentials. For the dorsal columns, lower FA values were associated with lower amplitudes of somatosensory evoked potentials from the lower extremities. INTERPRETATION One month after SCI, first signs of WM degeneration were apparent, without indication of tissue loss. The more pronounced differences observed in the lateral column could be attributed to anterograde degeneration of the motor tracts. The variability among DTI measurements remote from the lesion site can be partially explained by the degree of the SCI-induced neurological impairment. Together with previous studies, our findings indicate that impaired tissue integrity precedes tissue loss. The presented techniques have potential applications in monitoring the progression of various neurological diseases.
Collapse
Affiliation(s)
- Silvan Büeler
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Collene E. Anderson
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
- Swiss Paraplegic ResearchNottwilSwitzerland
- Faculty of Health Sciences and MedicineUniversity of LucerneLucerneSwitzerland
| | - Veronika Birkhäuser
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Patrick Freund
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Oliver Gross
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Thomas M. Kessler
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Christian W. Kündig
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Lorenz Leitner
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Nomah Mahnoor
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Ulrich Mehnert
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Raphael Röthlisberger
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Stephanie A. Stalder
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Stéphanie van der Lely
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Carl M. Zipser
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Gergely David
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Martina D. Liechti
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| |
Collapse
|
2
|
Bikmal S, Liu F, Moon CH, Urbin MA. Microstructure of the residual corticofugal projection from primary motor cortex in chronic stroke. Brain Commun 2025; 7:fcaf016. [PMID: 39898326 PMCID: PMC11786220 DOI: 10.1093/braincomms/fcaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
Movement dysfunction after stroke is largely due to the inability of cortical motor neurons to activate spinal motor neurons via transmission of descending motor commands along the corticofugal projection from the primary motor cortex. Pathophysiological processes that ensue following injury have mostly resolved and white matter volume within the remodelled tract has mostly stabilized by the chronic stage many months to years after symptom onset. Where along the cranial course of the residual corticofugal projection white matter microstructure explains potential to activate muscles weakened by stroke at this stage is still not well understood. Here, diffusion spectrum imaging was used to reconstruct the descending corticofugal projection and quantify its microstructure in stroke survivors (n = 25) with longstanding hand impairment (7.7 ± 6.5 years). Portions of the residual tract overlapping with abnormalities on structural images were defined as the 'Overlap' compartment, and portions above and below this compartment were defined as 'Rostral' and 'Caudal' compartments, respectively. Maximal precision grip force and size of motor-evoked potentials elicited by transcranial magnetic stimulation were used to quantify activation of paretic hand muscles. Coherence of fibre anisotropy and directional diffusivities between tracts in either cerebral hemisphere was reduced in stroke survivors relative to neurologically-intact controls, with most abnormal asymmetries observed in the 'Overlap' compartment. While differences in fibre anisotropy and diffusivity between residual and intact tracts were detected most prominently in the 'Overlap' compartment, the overall magnitude of unrestricted diffusion within the 'Caudal' compartment was most closely linked to paretic muscle activation. The ability of cortical motor neurons to access spinal motor neuron pools long after stroke onset is therefore associated with microstructural integrity in portions of the residual corticofugal projection subject to secondary degeneration. These findings expand knowledge on white matter adaptation in response to neurological injury and may inform applications that seek to reverse brain pathology long after stroke onset when movement dysfunction tends to persist.
Collapse
Affiliation(s)
- Saket Bikmal
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA
| | - Fang Liu
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh PA 15213, USA
| | - Chan Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA
| |
Collapse
|
3
|
Warstadt M, Winegar B, Shah LM. Imaging of Cervical Spine Trauma: Update of Techniques and Clinical Relevance. Clin Spine Surg 2024; 37:440-450. [PMID: 39315684 DOI: 10.1097/bsd.0000000000001677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Imaging of cervical spine trauma most commonly begins with computed tomography (CT) for initial osseous and basic soft tissue evaluation, followed by magnetic resonance imaging (MRI) for complementary evaluation of the neural structures (i.e., spinal cord, nerves) and soft tissues (i.e., ligaments). Although CT and conventional MRI sequences have been the mainstay of trauma imaging for decades, there have been significant advances in CT processing, imaging sequences and techniques made possible by hardware and software development, and artificial intelligence. These advancements may provide advantages in increasing sensitivity for detection of pathology as well as in decreasing imaging and interpretation time. Unquestionably, the most important role of imaging is to provide information to help direct patient care, including diagnosis, next steps in treatment plan, and prognosis. As such, there has been a growing body of research investigating the clinical relevance of imaging findings to clinical outcomes in the setting of spinal cord injury. This article will focus on these recent advances in imaging of cervical spinal trauma.
Collapse
Affiliation(s)
- Melissa Warstadt
- Department of Radiology, University of Utah, 30 N Mario Capecchi Dr. Salt Lake City, UT
| | | | | |
Collapse
|
4
|
Emmenegger T, David G, Mohammadi S, Ziegler G, Callaghan MF, Thompson A, Friston KJ, Weiskopf N, Killeen T, Freund P. Temporal dynamics of white and gray matter plasticity during motor skill acquisition: a comparative diffusion tensor imaging and multiparametric mapping analysis. Cereb Cortex 2024; 34:bhae344. [PMID: 39214853 PMCID: PMC11364465 DOI: 10.1093/cercor/bhae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Learning new motor skills relies on neural plasticity within motor and limbic systems. This study uniquely combined diffusion tensor imaging and multiparametric mapping MRI to detail these neuroplasticity processes. We recruited 18 healthy male participants who underwent 960 min of training on a computer-based motion game, while 14 were scanned without training. Diffusion tensor imaging, which quantifies tissue microstructure by measuring the capacity for, and directionality of, water diffusion, revealed mostly linear changes in white matter across the corticospinal-cerebellar-thalamo-hippocampal circuit. These changes related to performance and reflected different responses to upper- and lower-limb training in brain areas with known somatotopic representations. Conversely, quantitative MRI metrics, sensitive to myelination and iron content, demonstrated mostly quadratic changes in gray matter related to performance and reflecting somatotopic representations within the same brain areas. Furthermore, while myelin and iron-sensitive multiparametric mapping MRI was able to describe time lags between different cortical brain systems, diffusion tensor imaging detected time lags within the white matter of the motor systems. These findings suggest that motor skill learning involves distinct phases of white and gray matter plasticity across the sensorimotor network, with the unique combination of diffusion tensor imaging and multiparametric mapping MRI providing complementary insights into the underlying neuroplastic responses.
Collapse
Affiliation(s)
- Tim Emmenegger
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 380, 8008 Zürich, Switzerland
| | - Gergely David
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 380, 8008 Zürich, Switzerland
| | - Siawoosh Mohammadi
- Max Planck Research Group MR Physics, Max Planck Institute for Human Development, Lentzeallee 9414195 Berlin, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1AD-04103 Leipzig, Germany
- Department of Neuroradiology, University Hospital Schleswig-Holstein and University of Lübeck, Ratzeburger Allee 16023538 Lübeck, Germany
| | - Gabriel Ziegler
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44/Haus 64, 39120 Magdeburg, Germany
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, United Kingdom
| | - Alan Thompson
- Department of Neuroinflammation, UCL Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, United Kingdom
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1AD-04103 Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, United Kingdom
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth System Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - Tim Killeen
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 380, 8008 Zürich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 380, 8008 Zürich, Switzerland
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, United Kingdom
| |
Collapse
|
5
|
Morris S, Swift-LaPointe T, Yung A, Prevost V, George S, Bauman A, Kozlowski P, Samadi-Bahrami Z, Fournier C, Mattu PS, Parker L, Streijger F, Hirsch-Reinshagen V, Moore GRW, Kwon BK, Laule C. Advanced Magnetic Resonance Imaging Biomarkers of the Injured Spinal Cord: A Comparative Study of Imaging and Histology in Human Traumatic Spinal Cord Injury. J Neurotrauma 2024; 41:1223-1239. [PMID: 38318802 DOI: 10.1089/neu.2023.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
A significant problem in the diagnosis and management of traumatic spinal cord injury (tSCI) is the heterogeneity of secondary injury and the prediction of neurological outcome. Imaging biomarkers specific to myelin loss and inflammation after tSCI would enable detailed assessment of the pathophysiological processes underpinning secondary damage to the cord. Such biomarkers could be used to biologically stratify injury severity and better inform prognosis for neurological recovery. While much work has been done to establish magnetic resonance imaging (MRI) biomarkers for SCI in animal models, the relationship between imaging findings and the underlying pathology has been difficult to discern in human tSCI because of the paucity of human spinal cord tissue. We utilized post-mortem spinal cords from individuals who had a tSCI to examine this relationship by performing ex vivo MRI scans before histological analysis. We investigated the correlation between the histological distribution of myelin loss and inflammatory cells in the injured spinal cord and a number of myelin and inflammation-sensitive MRI measures: myelin water fraction (MWF), inhomogeneous magnetization transfer ratio (ihMTR), and diffusion tensor and diffusion kurtosis imaging-derived fractional anisotropy (FA) and axial, radial, and mean diffusivity (AD, RD, MD). The histological features were analyzed by staining with Luxol Fast Blue (LFB) for myelin lipids and Class II major histocompatibility complex (Class II MHC) and CD68 for microglia and macrophages. Both MWF and ihMTR were strongly correlated with LFB staining for myelin, supporting the use of both as biomarkers for myelin loss after SCI. A decrease in ihMTR was also correlated with the presence of Class II MHC positive immune cells. FA and RD correlated with both Class II MHC and CD68 and may therefore be useful biomarkers for inflammation after tSCI. Our work demonstrates the utility of advanced MRI techniques sensitive to biological tissue damage after tSCI, which is an important step toward using these MRI techniques in the clinic to aid in decision-making.
Collapse
Affiliation(s)
- Sarah Morris
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Taylor Swift-LaPointe
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Andrew Yung
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Valentin Prevost
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Shana George
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Andrew Bauman
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Zahra Samadi-Bahrami
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Caron Fournier
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | | | - Lisa Parker
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Veronica Hirsch-Reinshagen
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - G R Wayne Moore
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Vancouver Spine Surgery Institute, Vancouver, British Columbia, Canada
- Orthopaedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Cornelia Laule
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Jang YJ, Choi MG, Yoo BJ, Lee KJ, Jung WB, Kim SG, Park SA. Interaction Between a High-Fat Diet and Tau Pathology in Mice: Implications for Alzheimer's Disease. J Alzheimers Dis 2024; 97:485-506. [PMID: 38108353 DOI: 10.3233/jad-230927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
BACKGROUND Obesity is a modifiable risk factor for Alzheimer's disease (AD). However, its relation with tau pathology (i.e., aberrant tau protein behavior in tauopathies such as AD) has been inconclusive. OBJECTIVE This study investigated the interaction between a high-fat diet (HFD) and tau pathology in adult male mice. METHODS Transgenic mice overexpressing human P301S Tau (those with the pathology) and wild-type (WT) littermates were subjected to behavioral tests, functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and western blotting analysis to investigate the effects of prolonged HFD versus regular diet during adulthood. RESULTS HFD increased body weight in both WT and P301S mice but had minimal effect on blood glucose levels. The brain response to HFD was tau genotype-specific. WT mice exhibited decreased recognition memory and enhanced network connectivity in fMRI, while P301S mice exhibited white matter tract disorganization in DTI as the sole significant finding. The reduction of insulin receptor β, insulin downstream signaling, neuronal nuclear protein, CD68-positive phagocytic activity, and myelin basic protein level were confined to the cortex of WT mice. In contrast to P301S mice, WT mice showed significant changes in the tau protein and its phosphorylation levels along with increased soluble neurofilament light levels in the hippocampus. CONCLUSIONS HFD-induced brain dysfunction and pathological changes were blunted in mice with the pathology and more profound in healthy mice. Our findings highlight the need to consider this interaction between obesity and tau pathology when tailoring treatment strategies for AD and other tauopathies.
Collapse
Affiliation(s)
- Yu Jung Jang
- Lab for Neurodegenerative Dementia, Department of Anatomy, Ajou University School of Medicine, Suwon, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Min Gyu Choi
- Lab for Neurodegenerative Dementia, Department of Anatomy, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Byung Jae Yoo
- Lab for Neurodegenerative Dementia, Department of Anatomy, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Jae Lee
- Lab for Neurodegenerative Dementia, Department of Anatomy, Ajou University School of Medicine, Suwon, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Won Beom Jung
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sun Ah Park
- Lab for Neurodegenerative Dementia, Department of Anatomy, Ajou University School of Medicine, Suwon, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
7
|
Chen LM, Wang F, Mishra A, Yang PF, Sengupta A, Reed JL, Gore JC. Longitudinal multiparametric MRI of traumatic spinal cord injury in animal models. Magn Reson Imaging 2023; 102:184-200. [PMID: 37343904 PMCID: PMC10528214 DOI: 10.1016/j.mri.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Multi-parametric MRI (mpMRI) technology enables non-invasive and quantitative assessments of the structural, molecular, and functional characteristics of various neurological diseases. Despite the recognized importance of studying spinal cord pathology, mpMRI applications in spinal cord research have been somewhat limited, partly due to technical challenges associated with spine imaging. However, advances in imaging techniques and improved image quality now allow longitudinal investigations of a comprehensive range of spinal cord pathological features by exploiting different endogenous MRI contrasts. This review summarizes the use of mpMRI techniques including blood oxygenation level-dependent (BOLD) functional MRI (fMRI), diffusion tensor imaging (DTI), quantitative magnetization transfer (qMT), and chemical exchange saturation transfer (CEST) MRI in monitoring different aspects of spinal cord pathology. These aspects include cyst formation and axonal disruption, demyelination and remyelination, changes in the excitability of spinal grey matter and the integrity of intrinsic functional circuits, and non-specific molecular changes associated with secondary injury and neuroinflammation. These approaches are illustrated with reference to a nonhuman primate (NHP) model of traumatic cervical spinal cord injuries (SCI). We highlight the benefits of using NHP SCI models to guide future studies of human spinal cord pathology, and demonstrate how mpMRI can capture distinctive features of spinal cord pathology that were previously inaccessible. Furthermore, the development of mechanism-based MRI biomarkers from mpMRI studies can provide clinically useful imaging indices for understanding the mechanisms by which injured spinal cords progress and repair. These biomarkers can assist in the diagnosis, prognosis, and evaluation of therapies for SCI patients, potentially leading to improved outcomes.
Collapse
Affiliation(s)
- Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anirban Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
8
|
Hermens DF, Jamieson D, Fitzpatrick L, Sacks DD, Iorfino F, Crouse JJ, Guastella AJ, Scott EM, Hickie IB, Lagopoulos J. Sex differences in fronto-limbic white matter tracts in youth with mood disorders. Psychiatry Clin Neurosci 2022; 76:481-489. [PMID: 35730893 DOI: 10.1111/pcn.13440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/22/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
AIMS Patients with depression and bipolar disorder have previously been shown to have impaired white matter (WM) integrity compared with healthy controls. This study aimed to investigate potential sex differences that may provide further insight into the pathophysiology of these highly debilitating mood disorders. METHODS Participants aged 17 to 30 years (168 with depression [60% females], 107 with bipolar disorder [74% females], and 61 controls [64% females]) completed clinical assessment, self-report measures, and a neuropsychological assessment battery. Participants also underwent magnetic resonance imaging from which diffusion tensor imaging data were collected among five fronto-limbic WM tracts: cingulum bundle (cingulate gyrus and hippocampus subsections), fornix, stria terminalis, and the uncinate fasciculus. Mean fractional anisotropy (FA) scores were compared between groups using analyses of variance with sex and diagnosis as fixed factors. RESULTS Among the nine WM tracts analyzed, one revealed a significant interaction between sex and diagnosis, controlling for age. Male patients with bipolar disorder had significantly lower FA scores in the fornix compared with the other groups. Furthermore, partial correlations revealed a significant positive association between FA scores for the fornix and psychomotor speed. CONCLUSIONS Our findings suggest that males with bipolar disorder may be at increased risk of disruptions in WM integrity, especially in the fornix, which is thought to be responsible for a range of cognitive functions. More broadly, our findings suggest that sex differences may exist in WM integrity and thereby alter our understanding of the pathophysiology of mood disorders.
Collapse
Affiliation(s)
- Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Daniel Jamieson
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Lauren Fitzpatrick
- Youth Mental Health & Technology Team, Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Dashiell D Sacks
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Frank Iorfino
- Youth Mental Health & Technology Team, Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Jacob J Crouse
- Youth Mental Health & Technology Team, Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Adam J Guastella
- Youth Mental Health & Technology Team, Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Elizabeth M Scott
- Youth Mental Health & Technology Team, Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Ian B Hickie
- Youth Mental Health & Technology Team, Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| |
Collapse
|
9
|
Hirata T, Itokazu T, Sasaki A, Sugihara F, Yamashita T. Humanized Anti-RGMa Antibody Treatment Promotes Repair of Blood-Spinal Cord Barrier Under Autoimmune Encephalomyelitis in Mice. Front Immunol 2022; 13:870126. [PMID: 35784362 PMCID: PMC9241446 DOI: 10.3389/fimmu.2022.870126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
The lack of established biomarkers which reflect dynamic neuropathological alterations in multiple sclerosis (MS) makes it difficult to determine the therapeutic response to the tested drugs and to identify the key biological process that mediates the beneficial effect of them. In the present study, we applied high-field MR imaging in locally-induced experimental autoimmune encephalomyelitis (EAE) mice to evaluate dynamic changes following treatment with a humanized anti-repulsive guidance molecule-a (RGMa) antibody, a potential drug for MS. Based on the longitudinal evaluation of various MRI parameters including white matter, axon, and myelin integrity as well as blood-spinal cord barrier (BSCB) disruption, anti-RGMa antibody treatment exhibited a strong and prompt therapeutic effect on the disrupted BSCB, which was paralleled by functional improvement. The antibody’s effect on BSCB repair was also suggested via GeneChip analysis. Moreover, immunohistochemical analysis revealed that EAE-induced vascular pathology which is characterized by aberrant thickening of endothelial cells and perivascular type I/IV collagen deposits were attenuated by anti-RGMa antibody treatment, further supporting the idea that the BSCB is one of the key therapeutic targets of anti-RGMa antibody. Importantly, the extent of BSCB disruption detected by MRI could predict late-phase demyelination, and the predictability of myelin integrity based on the extent of acute-phase BSCB disruption was compromised following anti-RGMa antibody treatment. These results strongly support the concept that longitudinal MRI with simultaneous DCE-MRI and DTI analysis can be used as an imaging biomarker and is useful for unbiased prioritization of the key biological process that mediates the therapeutic effect of tested drugs.
Collapse
Affiliation(s)
- Takeshi Hirata
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Takahide Itokazu
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
- *Correspondence: Toshihide Yamashita, ; Takahide Itokazu,
| | - Atsushi Sasaki
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Fuminori Sugihara
- Central Instrumentation Laboratory, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Molecular Neuroscience, World Premier International Research Center Initiative (WPI)-Immunology Frontier Research Center, Osaka University, Suita, Japan
- *Correspondence: Toshihide Yamashita, ; Takahide Itokazu,
| |
Collapse
|
10
|
Imaging of Thoracolumbar Spine Traumas. Eur J Radiol 2022; 154:110343. [DOI: 10.1016/j.ejrad.2022.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022]
|
11
|
David G, Vallotton K, Hupp M, Curt A, Freund P, Seif M. Extent of cord pathology in the lumbosacral enlargement in non-traumatic versus traumatic spinal cord injury. J Neurotrauma 2022; 39:639-650. [PMID: 35018824 DOI: 10.1089/neu.2021.0389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study compares remote neurodegenerative changes caudal to a cervical injury in degenerative cervical myelopathy (DCM) (i.e., non-traumatic) and incomplete traumatic spinal cord injury (tSCI) patients, using MRI-based tissue area measurements and diffusion tensor imaging (DTI). Eighteen mild to moderate DCM patients with sensory impairments (mJOA score: 16.2±1.9), 14 incomplete tetraplegic tSCI patients (AIS C&D), and 20 healthy controls were recruited. All participants received DTI and T2*-weighted scans in the lumbosacral enlargement (caudal to injury) and at C2/C3 (rostral to injury). MRI readouts included DTI metrics in the white matter (WM) columns and cross-sectional WM and gray matter area. One-way ANOVA with Tukey's post-hoc comparison (p<0.05) was used to assess group differences. In the lumbosacral enlargement, compared to DCM, tSCI patients exhibited decreased fractional anisotropy in the lateral (tSCI vs. DCM, -11.9%, p=0.007) and ventral WM column (-8.0%, p=0.021), and showed trend toward lower values in the dorsal column (-8.9%, p=0.068). At C2/C3, compared to controls, fractional anisotropy was lower in both groups in the dorsal (DCM vs. controls, -7.9%, p=0.024; tSCI vs. controls, -10.0%, p=0.007) and in the lateral column (DCM: -6.2%, p=0.039; tSCI: -13.3%, p<0.001), while tSCI patients had lower fractional anisotropy than DCM patients in the lateral column (-7.6%, p=0.029). WM areas were not different between patient groups but were lower compared to controls in the lumbosacral enlargement (DCM: -16.9%, p<0.001; tSCI, -10.5%, p=0.043) and at C2/C3 (DCM: -16.0%, p<0.001; tSCI: -18.1%, p<0.001). In conclusion, mild to moderate DCM and incomplete tSCI lead to similar degree of degeneration of the dorsal and lateral columns at C2/C3, but tSCI results in more widespread white matter damage in the lumbosacral enlargement. These remote changes are likely to contribute to the patients' impairment and recovery. DTI is a sensitive tool to assess remote pathological changes in DCM and tSCI patients.
Collapse
Affiliation(s)
- Gergely David
- University of Zurich, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.,University Medical Center Hamburg-Eppendorf, 37734, Department of Systems Neuroscience, Hamburg, Germany;
| | - Kevin Vallotton
- University of Zurich, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland;
| | - Markus Hupp
- University of Zurich, 27217, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland;
| | - Armin Curt
- University of Zurich, 27217, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland;
| | - Patrick Freund
- University of Zurich, 27217, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.,UCL Institute of Neurology, 61554, Department of Brain Repair and Rehabilitation, London, United Kingdom of Great Britain and Northern Ireland.,UCL Institute of Neurology, 61554, Wellcome Trust Centre for Neuroimaging, London, United Kingdom of Great Britain and Northern Ireland.,Max Planck Institute for Human Cognitive and Brain Sciences, 27184, Department of Neurophysics, Leipzig, Germany;
| | - Maryam Seif
- University of Zurich, 27217, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.,Max Planck Institute for Human Cognitive and Brain Sciences, 27184, Leipzig, Department of Neurophysics, Germany;
| |
Collapse
|
12
|
Rao JS, Zhao C, Bao SS, Feng T, Xu M. MRI metrics at the epicenter of spinal cord injury are correlated with the stepping process in rhesus monkeys. Exp Anim 2021; 71:139-149. [PMID: 34789621 PMCID: PMC9130044 DOI: 10.1538/expanim.21-0154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Clinical evaluations of long-term outcomes in the early-stage spinal cord injury (SCI) focus on macroscopic motor performance and are limited in their prognostic precision. This study was designed to investigate the sensitivity of the magnetic resonance imaging (MRI) indexes to the data-driven gait process after SCI. Ten adult female rhesus monkeys were subjected to thoracic SCI. Kinematics-based gait examinations were performed at 1 (early stage) and 12 (chronic stage) months post-SCI. The proportion of stepping (PS) and gait stability (GS) were calculated as the outcome measures. MRI metrics, which were derived from structural imaging (spinal cord cross-sectional area, SCA) and diffusion tensor imaging (fractional anisotropy, FA; axial diffusivity, λ//), were acquired in the early stage and compared with functional outcomes by using correlation analysis and stepwise multivariable linear regression. Residual tissue SCA at the injury epicenter and residual tissue FA/remote normal-like tissue FA were correlated with the early-stage PS and GS. The extent of lesion site λ///residual tissue λ// in the early stage after SCI was correlated with the chronic-stage GS. The ratios of lesion site λ// to residual tissue λ// and early-stage GS were predictive of the improvement in the PS at follow-up. Similarly, the ratios of lesion site λ// to residual tissue λ// and early-stage PS best predicted chronic GS recovery. Our findings demonstrate the predictive power of MRI combined with the early data-driven gait indexes for long-term outcomes. Such an approach may help clinicians to predict functional recovery accurately.
Collapse
Affiliation(s)
- Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute.,School of Rehabilitation, Capital Medical University
| | - Shu-Sheng Bao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University
| | - Ting Feng
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University
| | - Meng Xu
- Department of Orthopedics, The First Medical Center of PLA General Hospital
| |
Collapse
|
13
|
Bhoi SK, Naik S, Purkait S. Pure Neuritic Leprosy with Bilateral Foot Drop and Central Nervous Involvement: A Clinical, Electrophysiological, and MR Correlation. Neurol India 2021; 69:1349-1353. [PMID: 34747810 DOI: 10.4103/0028-3886.329620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Central nervous system (CNS) involvement in leprosy is sparsely documented. Neurophysiological tests and magnetic resonance imaging (MRI) helps in demonstrating CNS involvement in the patient of pure neuritic leprosy. OBJECTIVES To demonstrate CNS involvement in pure neuritic leprosy. METHODS Detailed clinical presentation and skin lesions were evaluated. Sural nerve biopsy, MRI diffusion tensor imaging of spinal cord and optic nerve were performed. Visual evoked potential and tibial somatosensory evoked potential were done. Their clinical, electrophysiological, and MRI were done at follow-up visits. RESULTS We report three patients of pure neuritic leprosy with bilateral foot drop as the initial presentation. MRI T2W sequence of cervico dorsal cord showed dorsal column hyperintensity in two patients. Diffusion-weighted MR revealed decrease fractional anisotropy and an increase in the apparent diffusion coefficient. Similar findings were also noted in the optic nerves. The patients were managed with multidrug therapy multibacillary regimen and steroid in tapering dose. At follow-up, they showed clinical improvement in vision and power of ankle dorsiflexor. CONCLUSIONS Patients of pure neuritic leprosy may manifest with bilateral foot drop with the involvement of posterior column and cranial nerves.
Collapse
Affiliation(s)
- Sanjeev K Bhoi
- Department of Neurology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Suprava Naik
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Suvendu Purkait
- Department of Pathology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
14
|
Nolan AL, Petersen C, Iacono D, Mac Donald CL, Mukherjee P, van der Kouwe A, Jain S, Stevens A, Diamond BR, Wang R, Markowitz AJ, Fischl B, Perl DP, Manley GT, Keene CD, Diaz-Arrastia R, Edlow BL. Tractography-Pathology Correlations in Traumatic Brain Injury: A TRACK-TBI Study. J Neurotrauma 2021; 38:1620-1631. [PMID: 33412995 PMCID: PMC8165468 DOI: 10.1089/neu.2020.7373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diffusion tractography magnetic resonance imaging (MRI) can infer changes in network connectivity in patients with traumatic brain injury (TBI), but the pathological substrates of disconnected tracts have not been well defined because of a lack of high-resolution imaging with histopathological validation. We developed an ex vivo MRI protocol to analyze tract terminations at 750-μm isotropic resolution, followed by histopathological evaluation of white matter pathology, and applied these methods to a 60-year-old man who died 26 days after TBI. Analysis of 74 cerebral hemispheric white matter regions revealed a heterogeneous distribution of tract disruptions. Associated histopathology identified variable white matter injury with patchy deposition of amyloid precursor protein (APP), loss of neurofilament-positive axonal processes, myelin dissolution, astrogliosis, microgliosis, and perivascular hemosiderin-laden macrophages. Multiple linear regression revealed that tract disruption strongly correlated with the density of APP-positive axonal swellings and neurofilament loss. Ex vivo diffusion MRI can detect tract disruptions in the human brain that reflect axonal injury.
Collapse
Affiliation(s)
- Amber L. Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Cathrine Petersen
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, California, USA
| | - Diego Iacono
- Department of Pathology, Uniformed Services University (USU), Bethesda, Maryland, USA
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland, USA
- DoD/USU Brain Tissue Repository (BTR) & Neuropathology Core, Uniformed Services University (USU), Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
- Complex Neurodegenerative Disorders, Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | - Allison Stevens
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bram R. Diamond
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ruopeng Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Amy J. Markowitz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Health Sciences and Technology, Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daniel P. Perl
- Department of Pathology, Uniformed Services University (USU), Bethesda, Maryland, USA
- DoD/USU Brain Tissue Repository (BTR) & Neuropathology Core, Uniformed Services University (USU), Bethesda, Maryland, USA
| | - Geoffrey T. Manley
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian L. Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Benjamini D, Hutchinson EB, Komlosh ME, Comrie CJ, Schwerin SC, Zhang G, Pierpaoli C, Basser PJ. Direct and specific assessment of axonal injury and spinal cord microenvironments using diffusion correlation imaging. Neuroimage 2020; 221:117195. [PMID: 32726643 PMCID: PMC7805019 DOI: 10.1016/j.neuroimage.2020.117195] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
We describe a practical two-dimensional (2D) diffusion MRI framework to deliver specificity and improve sensitivity to axonal injury in the spinal cord. This approach provides intravoxel distributions of correlations of water mobilities in orthogonal directions, revealing sub-voxel diffusion components. Here we use it to investigate water diffusivities along axial and radial orientations within spinal cord specimens with confirmed, tract-specific axonal injury. First, we show using transmission electron microscopy and immunohistochemistry that tract-specific axonal beading occurs following Wallerian degeneration in the cortico-spinal tract as direct sequelae to closed head injury. We demonstrate that although some voxel-averaged diffusion tensor imaging (DTI) metrics are sensitive to this axonal injury, they are non-specific, i.e., they do not reveal an underlying biophysical mechanism of injury. Then we employ 2D diffusion correlation imaging (DCI) to improve discrimination of different water microenvironments by measuring and mapping the joint water mobility distributions perpendicular and parallel to the spinal cord axis. We determine six distinct diffusion spectral components that differ according to their microscopic anisotropy and mobility. We show that at the injury site a highly anisotropic diffusion component completely disappears and instead becomes more isotropic. Based on these findings, an injury-specific MR image of the spinal cord was generated, and a radiological-pathological correlation with histological silver staining % area was performed. The resulting strong and significant correlation (r=0.70,p < 0.0001) indicates the high specificity with which DCI detects injury-induced tissue alterations. We predict that the ability to selectively image microstructural changes following axonal injury in the spinal cord can be useful in clinical and research applications by enabling specific detection and increased sensitivity to injury-induced microstructural alterations. These results also encourage us to translate DCI to higher spatial dimensions to enable assessment of traumatic axonal injury, and possibly other diseases and disorders in the brain.
Collapse
Affiliation(s)
- Dan Benjamini
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20817, USA; The Center for Neuroscience and Regenerative Medicine, Uniformed Service University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Elizabeth B Hutchinson
- The Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, USA
| | - Michal E Komlosh
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20817, USA; The Center for Neuroscience and Regenerative Medicine, Uniformed Service University of the Health Sciences, Bethesda, MD 20814, USA
| | - Courtney J Comrie
- The Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, USA
| | - Susan C Schwerin
- The Center for Neuroscience and Regenerative Medicine, Uniformed Service University of the Health Sciences, Bethesda, MD 20814, USA; Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Guofeng Zhang
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20817, USA
| | - Carlo Pierpaoli
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20817, USA
| | - Peter J Basser
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20817, USA
| |
Collapse
|
16
|
Mancini M, Karakuzu A, Cohen-Adad J, Cercignani M, Nichols TE, Stikov N. An interactive meta-analysis of MRI biomarkers of myelin. eLife 2020; 9:e61523. [PMID: 33084576 PMCID: PMC7647401 DOI: 10.7554/elife.61523] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Several MRI measures have been proposed as in vivo biomarkers of myelin, each with applications ranging from plasticity to pathology. Despite the availability of these myelin-sensitive modalities, specificity and sensitivity have been a matter of discussion. Debate about which MRI measure is the most suitable for quantifying myelin is still ongoing. In this study, we performed a systematic review of published quantitative validation studies to clarify how different these measures are when compared to the underlying histology. We analyzed the results from 43 studies applying meta-analysis tools, controlling for study sample size and using interactive visualization (https://neurolibre.github.io/myelin-meta-analysis). We report the overall estimates and the prediction intervals for the coefficient of determination and find that MT and relaxometry-based measures exhibit the highest correlations with myelin content. We also show which measures are, and which measures are not statistically different regarding their relationship with histology.
Collapse
Affiliation(s)
- Matteo Mancini
- Department of Neuroscience, Brighton and Sussex Medical School, University of SussexBrightonUnited Kingdom
- NeuroPoly Lab, Polytechnique MontrealMontrealCanada
- CUBRIC, Cardiff UniversityCardiffUnited Kingdom
| | | | - Julien Cohen-Adad
- NeuroPoly Lab, Polytechnique MontrealMontrealCanada
- Functional Neuroimaging Unit, CRIUGM, Université de MontréalMontrealCanada
| | - Mara Cercignani
- Department of Neuroscience, Brighton and Sussex Medical School, University of SussexBrightonUnited Kingdom
- Neuroimaging Laboratory, Fondazione Santa LuciaRomeItaly
| | - Thomas E Nichols
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of OxfordOxfordUnited Kingdom
- Big Data Institute, University of OxfordOxfordUnited Kingdom
| | - Nikola Stikov
- NeuroPoly Lab, Polytechnique MontrealMontrealCanada
- Montreal Heart Institute, Université de MontréalMontrealCanada
| |
Collapse
|
17
|
Labounek R, Valošek J, Horák T, Svátková A, Bednařík P, Vojtíšek L, Horáková M, Nestrašil I, Lenglet C, Cohen-Adad J, Bednařík J, Hluštík P. HARDI-ZOOMit protocol improves specificity to microstructural changes in presymptomatic myelopathy. Sci Rep 2020; 10:17529. [PMID: 33067520 PMCID: PMC7567840 DOI: 10.1038/s41598-020-70297-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) proved promising in patients with non-myelopathic degenerative cervical cord compression (NMDCCC), i.e., without clinically manifested myelopathy. Aim of the study is to present a fast multi-shell HARDI-ZOOMit dMRI protocol and validate its usability to detect microstructural myelopathy in NMDCCC patients. In 7 young healthy volunteers, 13 age-comparable healthy controls, 18 patients with mild NMDCCC and 15 patients with severe NMDCCC, the protocol provided higher signal-to-noise ratio, enhanced visualization of white/gray matter structures in microstructural maps, improved dMRI metric reproducibility, preserved sensitivity (SE = 87.88%) and increased specificity (SP = 92.31%) of control-patient group differences when compared to DTI-RESOLVE protocol (SE = 87.88%, SP = 76.92%). Of the 56 tested microstructural parameters, HARDI-ZOOMit yielded significant patient-control differences in 19 parameters, whereas in DTI-RESOLVE data, differences were observed in 10 parameters, with mostly lower robustness. Novel marker the white-gray matter diffusivity gradient demonstrated the highest separation. HARDI-ZOOMit protocol detected larger number of crossing fibers (5–15% of voxels) with physiologically plausible orientations than DTI-RESOLVE protocol (0–8% of voxels). Crossings were detected in areas of dorsal horns and anterior white commissure. HARDI-ZOOMit protocol proved to be a sensitive and practical tool for clinical quantitative spinal cord imaging.
Collapse
Affiliation(s)
- René Labounek
- Department of Biomedical Engineering, University Hospital Olomouc, 779 00, Olomouc, Czech Republic.,Department of Neurology, Palacký University, 779 00, Olomouc, Czech Republic.,Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Jan Valošek
- Department of Biomedical Engineering, University Hospital Olomouc, 779 00, Olomouc, Czech Republic.,Department of Neurology, Palacký University, 779 00, Olomouc, Czech Republic
| | - Tomáš Horák
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Neurology, University Hospital Brno, 625 00, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Alena Svátková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, 1090, Vienna, Austria.,Department of Imaging Methods, Faculty of Medicine, University of Ostrava, 701 03, Ostrava, Czech Republic
| | - Petr Bednařík
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,High Field MR Centre, Medical University of Vienna, Vienna, Austria
| | - Lubomír Vojtíšek
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Magda Horáková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Neurology, University Hospital Brno, 625 00, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Igor Nestrašil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA.,Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Julien Cohen-Adad
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada
| | - Josef Bednařík
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Neurology, University Hospital Brno, 625 00, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Petr Hluštík
- Department of Neurology, Palacký University, 779 00, Olomouc, Czech Republic. .,Department of Neurology, University Hospital Olomouc, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
18
|
Longitudinal changes in DTI parameters of specific spinal white matter tracts correlate with behavior following spinal cord injury in monkeys. Sci Rep 2020; 10:17316. [PMID: 33057016 PMCID: PMC7560889 DOI: 10.1038/s41598-020-74234-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
This study aims to evaluate how parameters derived from diffusion tensor imaging reflect axonal disruption and demyelination in specific white matter tracts within the spinal cord of squirrel monkeys following traumatic injuries, and their relationships to function and behavior. After a unilateral section of the dorsal white matter tract of the cervical spinal cord, we found that both lesioned dorsal and intact lateral tracts on the lesion side exhibited prominent disruptions in fiber orientation, integrity and myelination. The degrees of pathological changes were significantly more severe in segments below the lesion than above. The lateral tract on the opposite (non-injured) side was minimally affected by the injury. Over time, RD, FA, and AD values of the dorsal and lateral tracts on the injured side closely tracked measurements of the behavioral recovery. This unilateral section of the dorsal spinal tract provides a realistic model in which axonal disruption and demyelination occur together in the cord. Our data show that specific tract and segmental FA and RD values are sensitive to the effects of injury and reflect specific behavioral changes, indicating their potential as relevant indicators of recovery or for assessing treatment outcomes. These observations have translational value for guiding future studies of human subjects with spinal cord injuries.
Collapse
|
19
|
Lewis MJ, Early PJ, Mariani CL, Munana KR, Olby NJ. Influence of Duration of Injury on Diffusion Tensor Imaging in Acute Canine Spinal Cord Injury. J Neurotrauma 2020; 37:2261-2267. [PMID: 32586187 DOI: 10.1089/neu.2019.6786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diffusion tensor imaging (DTI) quantifies microstructural lesion characteristics, but impact of the interval between spinal cord injury (SCI) and examination on imaging characteristics is unclear. Our objective was to investigate the impact of duration of injury on DTI indices in dogs with acute, spontaneous SCI from thoracolumbar intervertebral disc herniation (IVDH) and explore associations with clinical severity. Twenty-six dogs with acute thoracolumbar IVDH of variable severity who underwent DTI were included. Neurological severity was graded using the modified Frankel Score (0-V). Fractional anisotropy (FA) and mean diffusivity (MD) were calculated on regions of interest within and adjacent to the lesion epicenter. Relationships between FA or MD and duration (injury to imaging interval) or neurological severity were determined using regression analysis and Wilcoxon rank sum. Median age was 6.8 years (1-13), median duration was 1.5 days (1-9), and neurological signs ranged from ambulatory paraparesis (MFS II) to paraplegia with absent pain perception (MFS V). Mean FA was 0.61 ± 0.09 cranial to the lesion, 0.57 ± 0.12 at the epicenter and 0.55 ± 0.10 caudally. Mean MD was 1.18 × 10-3 ± 0.0002 cranially, 1.09 × 10-3 ± 0.0002 at the epicenter, and 1.14 × 10-3 ± 0.0002 caudally. Accounting for neurological severity and age, FA caudal to the epicenter decreased with increasing duration of injury (p = 0.02). Lower MD within the lesion epicenter was associated with worse neurological severity (p = 0.01). Duration of injury should be considered when interpreting DTI results in dogs with acute thoracolumbar IVDH. The MD might differentiate injury severity in the acute setting and be worthy of development as an imaging biomarker.
Collapse
Affiliation(s)
- Melissa J Lewis
- Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Peter J Early
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Christopher L Mariani
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Karen R Munana
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Natasha J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
20
|
Bleyenheuft Y, Dricot L, Ebner-Karestinos D, Paradis J, Saussez G, Renders A, De Volder A, Araneda R, Gordon AM, Friel KM. Motor Skill Training May Restore Impaired Corticospinal Tract Fibers in Children With Cerebral Palsy. Neurorehabil Neural Repair 2020; 34:533-546. [PMID: 32407247 DOI: 10.1177/1545968320918841] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. In children with unilateral cerebral palsy (UCP), the fibers of the corticospinal tract (CST) emerging from the lesioned hemisphere are damaged following the initial brain injury. The extent to which the integrity of these fibers is restorable with training is unknown. Objective. To assess changes in CST integrity in children with UCP following Hand-and-Arm-Bimanual-Intensive-Therapy-Including-Lower-Extremity (HABIT-ILE) compared to a control group. Methods. Forty-four children with UCP participated in this study. Integrity of the CSTs was measured using diffusion tensor imaging before and after 2 weeks of HABIT-ILE (treatment group, n = 23) or 2 weeks apart without intensive treatment (control group, n = 18). Fractional anisotropy (FA) and mean diffusivity (MD) were the endpoints for assessing the integrity of CST. Results. As highlighted in our whole tract analysis, the FA of the CST originating from the nonlesioned and lesioned hemispheres increased significantly after therapy in the treatment group compared to the control group (group * test session interaction: P < .001 and P = .049, respectively). A decrease in MD was also observed in the CST emerging from the nonlesioned and lesioned hemispheres (group * time interaction: both P < .001). In addition, changes in manual ability correlated with changes in FA in both CSTs (r = 0.463, P = .024; r = 0.643, P < .001) and changes in MD in CST emerging from nonlesioned hemisphere (r = -0.662, P < .001). Conclusions. HABIT-ILE improves FA/MD in the CST and hand function of children with UCP, suggesting that CST fibers retain a capacity for functional restoration. This finding supports the application of intensive motor skill training in clinical practice for the benefit of numerous patients.
Collapse
Affiliation(s)
- Yannick Bleyenheuft
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Laurence Dricot
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | | | - Julie Paradis
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Geoffroy Saussez
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Anne Renders
- Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Anne De Volder
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Rodrigo Araneda
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | | | - Kathleen M Friel
- Teachers College, Columbia University, New York, NY, USA.,Burke-Cornell Medical Research Institute, White Plains, NY, USA
| |
Collapse
|
21
|
Zaninovich OA, Avila MJ, Kay M, Becker JL, Hurlbert RJ, Martirosyan NL. The role of diffusion tensor imaging in the diagnosis, prognosis, and assessment of recovery and treatment of spinal cord injury: a systematic review. Neurosurg Focus 2020; 46:E7. [PMID: 30835681 DOI: 10.3171/2019.1.focus18591] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVEDiffusion tensor imaging (DTI) is an MRI tool that provides an objective, noninvasive, in vivo assessment of spinal cord injury (SCI). DTI is significantly better at visualizing microstructures than standard MRI sequences. In this imaging modality, the direction and amplitude of the diffusion of water molecules inside tissues is measured, and this diffusion can be measured using a variety of parameters. As a result, the potential clinical application of DTI has been studied in several spinal cord pathologies, including SCI. The aim of this study was to describe the current state of the potential clinical utility of DTI in patients with SCI and the challenges to its use as a tool in clinical practice.METHODSA search in the PubMed database was conducted for articles relating to the use of DTI in SCI. The citations of relevant articles were also searched for additional articles.RESULTSAmong the most common DTI metrics are fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. Changes in these metrics reflect changes in tissue integrity. Several DTI metrics and combinations thereof have demonstrated significant correlations with clinical function both in model species and in humans. Its applications encompass the full spectrum of the clinical assessment of SCI including diagnosis, prognosis, recovery, and efficacy of treatments in both the spinal cord and potentially the brain.CONCLUSIONSDTI and its metrics have great potential to become a powerful clinical tool in SCI. However, the current limitations of DTI preclude its use beyond research and into clinical practice. Further studies are needed to significantly improve and resolve these limitations as well as to determine reliable time-specific changes in multiple DTI metrics for this tool to be used accurately and reliably in the clinical setting.
Collapse
Affiliation(s)
| | | | - Matthew Kay
- 3Department of Medical Imaging, University of Arizona, Tucson, Arizona
| | - Jennifer L Becker
- 3Department of Medical Imaging, University of Arizona, Tucson, Arizona
| | | | | |
Collapse
|
22
|
Wade RG, Tanner SF, Teh I, Ridgway JP, Shelley D, Chaka B, Rankine JJ, Andersson G, Wiberg M, Bourke G. Diffusion Tensor Imaging for Diagnosing Root Avulsions in Traumatic Adult Brachial Plexus Injuries: A Proof-of-Concept Study. Front Surg 2020; 7:19. [PMID: 32373625 PMCID: PMC7177010 DOI: 10.3389/fsurg.2020.00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/23/2020] [Indexed: 01/09/2023] Open
Abstract
Cross-sectional MRI has modest diagnostic accuracy for diagnosing traumatic brachial plexus root avulsions. Consequently, patients either undergo major exploratory surgery or months of surveillance to determine if and what nerve reconstruction is needed. This study aimed to develop a diffusion tensor imaging (DTI) protocol at 3 Tesla to visualize normal roots and identify traumatic root avulsions of the brachial plexus. Seven healthy adults and 12 adults with known (operatively explored) unilateral traumatic brachial plexus root avulsions were scanned. DTI was acquired using a single-shot echo-planar imaging sequence at 3 Tesla. The brachial plexus was visualized by deterministic tractography. Fractional anisotropy (FA) and mean diffusivity (MD) were calculated for injured and avulsed roots in the lateral recesses of the vertebral foramen. Compared to healthy nerves roots, the FA of avulsed nerve roots was lower (mean difference 0.1 [95% CI 0.07, 0.13]; p < 0.001) and the MD was greater (mean difference 0.32 × 10-3 mm2/s [95% CI 0.11, 0.53]; p < 0.001). Deterministic tractography reconstructed both normal roots and root avulsions of the brachial plexus; the negative-predictive value for at least one root avulsion was 100% (95% CI 78, 100). Therefore, DTI might help visualize both normal and injured roots of the brachial plexus aided by tractography. The precision of this technique and how it relates to neural microstructure will be further investigated in a prospective diagnostic accuracy study of patients with acute brachial plexus injuries.
Collapse
Affiliation(s)
- Ryckie G. Wade
- Department of Plastic and Reconstructive Surgery, Leeds Teaching Hospitals Trust, Leeds, United Kingdom
- Faculty of Medicine and Health Sciences, University of Leeds, Leeds, United Kingdom
| | - Steven F. Tanner
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds, United Kingdom
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals Trust, Leeds, United Kingdom
| | - Irvin Teh
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - John P. Ridgway
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds, United Kingdom
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals Trust, Leeds, United Kingdom
| | - David Shelley
- The Advanced Imaging Centre, Leeds Teaching Hospitals Trust, Leeds, United Kingdom
| | - Brian Chaka
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds, United Kingdom
| | - James J. Rankine
- Department of Radiology, Leeds Teaching Hospitals Trust, Leeds, United Kingdom
| | - Gustav Andersson
- Department of Integrative Medical Biology (Anatomy), Faculty of Medicine, Umeå University, Umeå, Sweden
- Department of Surgical and Perioperative Science (Hand and Plastic Surgery), Faculty of Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Mikael Wiberg
- Department of Integrative Medical Biology (Anatomy), Faculty of Medicine, Umeå University, Umeå, Sweden
- Department of Surgical and Perioperative Science (Hand and Plastic Surgery), Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Grainne Bourke
- Department of Plastic and Reconstructive Surgery, Leeds Teaching Hospitals Trust, Leeds, United Kingdom
- Faculty of Medicine and Health Sciences, University of Leeds, Leeds, United Kingdom
- Department of Integrative Medical Biology (Anatomy), Faculty of Medicine, Umeå University, Umeå, Sweden
- Department of Surgical and Perioperative Science (Hand and Plastic Surgery), Faculty of Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
23
|
Association between diffusivity measures and language and cognitive-control abilities from early toddler’s age to childhood. Brain Struct Funct 2020; 225:1103-1122. [DOI: 10.1007/s00429-020-02062-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 03/20/2020] [Indexed: 12/20/2022]
|
24
|
Wilkins N, Skinner NP, Motovylyak A, Schmit BD, Kurpad S, Budde MD. Evolution of Magnetic Resonance Imaging as Predictors and Correlates of Functional Outcome after Spinal Cord Contusion Injury in the Rat. J Neurotrauma 2020; 37:889-898. [PMID: 31830856 DOI: 10.1089/neu.2019.6731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Clinical methods for determining the severity of traumatic spinal cord injury (SCI) and long-term functional outcome in the acute setting are limited in their prognostic accuracy because of the heterogeneity of injury and dynamic injury progression. The aim of this study was to evaluate the time course and sensitivity of advanced magnetic resonance imaging (MRI) methods to neurological function after SCI in a rat contusion model. Rats received a graded contusion injury at T10 using a weight-drop apparatus. MRI consisted of morphological measures from T2-weighted imaging, quantitative T2 imaging, and diffusion-weighted imaging (DWI) at 1, 30, and 90 days post-injury (dpi). The derived metrics were compared with neurological function assessed using weekly Basso, Beattie, and Bresnahan (BBB) locomotor scoring and return of reflexive micturition function. At the acute time point (1 dpi), diffusion metrics sensitive to axonal injury at the injury epicenter had the strongest correlation with time-matched BBB scores and best predicted 90-dpi BBB scores. At 30 dpi, axonal water fraction derived from DWI and T2 values were both correlated with time-matched locomotor scores. At the chronic time point (90 dpi), cross-sectional area was most closely correlated to BBB. Overall, the results demonstrate differential sensitivity of MRI metrics at different time points after injury, but the metrics follow the expected pathology of acute axonal injury followed by continued degeneration and finally a terminal level of atrophy. Specificity of DWI in the acute setting may make it impactful as a prognostic tool while T2 imaging provided the most information about injury severity in chronic injury.
Collapse
Affiliation(s)
- Natasha Wilkins
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nathan P Skinner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alice Motovylyak
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian D Schmit
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shekar Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
25
|
David G, Mohammadi S, Martin AR, Cohen-Adad J, Weiskopf N, Thompson A, Freund P. Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nat Rev Neurol 2019; 15:718-731. [PMID: 31673093 DOI: 10.1038/s41582-019-0270-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 01/23/2023]
Abstract
Pathophysiological changes in the spinal cord white and grey matter resulting from injury can be observed with MRI techniques. These techniques provide sensitive markers of macrostructural and microstructural tissue integrity, which correlate with histological findings. Spinal cord MRI findings in traumatic spinal cord injury (tSCI) and nontraumatic spinal cord injury - the most common form of which is degenerative cervical myelopathy (DCM) - have provided important insights into the pathophysiological processes taking place not just at the focal injury site but also rostral and caudal to the spinal injury. Although tSCI and DCM have different aetiologies, they show similar degrees of spinal cord pathology remote from the injury site, suggesting the involvement of similar secondary degenerative mechanisms. Advanced quantitative MRI protocols that are sensitive to spinal cord pathology have the potential to improve diagnosis and, more importantly, predict outcomes in patients with tSCI or nontraumatic spinal cord injury. This Review describes the insights into tSCI and DCM that have been revealed by neuroimaging and outlines current activities and future directions for the field.
Collapse
Affiliation(s)
- Gergely David
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Siawoosh Mohammadi
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Allan R Martin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Nikolaus Weiskopf
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alan Thompson
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland. .,Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK. .,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. .,Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK. .,Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
26
|
Mustapha M, Nassir CMNCM, Aminuddin N, Safri AA, Ghazali MM. Cerebral Small Vessel Disease (CSVD) - Lessons From the Animal Models. Front Physiol 2019; 10:1317. [PMID: 31708793 PMCID: PMC6822570 DOI: 10.3389/fphys.2019.01317] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 09/30/2019] [Indexed: 12/28/2022] Open
Abstract
Cerebral small vessel disease (CSVD) refers to a spectrum of clinical and imaging findings resulting from pathological processes of various etiologies affecting cerebral arterioles, perforating arteries, capillaries, and venules. Unlike large vessels, it is a challenge to visualize small vessels in vivo, hence the difficulty to directly monitor the natural progression of the disease. CSVD might progress for many years during the early stage of the disease as it remains asymptomatic. Prevalent among elderly individuals, CSVD has been alarmingly reported as an important precursor of full-blown stroke and vascular dementia. Growing evidence has also shown a significant association between CSVD's radiological manifestation with dementia and Alzheimer's disease (AD) pathology. Although it remains contentious as to whether CSVD is a cause or sequelae of AD, it is not far-fetched to posit that effective therapeutic measures of CSVD would mitigate the overall burden of dementia. Nevertheless, the unifying theory on the pathomechanism of the disease remains elusive, hence the lack of effective therapeutic approaches. Thus, this chapter consolidates the contemporary insights from numerous experimental animal models of CSVD, to date: from the available experimental animal models of CSVD and its translational research value; the pathomechanical aspects of the disease; relevant aspects on systems biology; opportunities for early disease biomarkers; and finally, converging approaches for future therapeutic directions of CSVD.
Collapse
Affiliation(s)
- Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Niferiti Aminuddin
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Amanina Ahmad Safri
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mazira Mohamad Ghazali
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
27
|
Taquet M, Jankovski A, Rensonnet G, Jacobs D, des Rieux A, Macq B, Warfield SK, Scherrer B. Extra-axonal restricted diffusion as an in-vivo marker of reactive microglia. Sci Rep 2019; 9:13874. [PMID: 31554896 PMCID: PMC6761095 DOI: 10.1038/s41598-019-50432-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 09/03/2019] [Indexed: 02/03/2023] Open
Abstract
Reactive microgliosis is an important pathological component of neuroinflammation and has been implicated in a wide range of brain diseases including brain tumors, multiple sclerosis, Parkinson's disease, Alzheimer's disease, and schizophrenia. Mapping reactive microglia in-vivo is often performed with PET scanning whose resolution, cost, and availability prevent its widespread use. The advent of diffusion compartment imaging (DCI) to probe tissue microstructure in vivo holds promise to map reactive microglia using MRI scanners. But this potential has never been demonstrated. In this paper, we performed longitudinal DCI in rats that underwent dorsal root axotomy triggering Wallerian degeneration of axons-a pathological process which reliably activates microglia. After the last DCI at 51 days, rats were sacrificed and histology with Iba-1 immunostaining for microglia was performed. The fraction of extra-axonal restricted diffusion from DCI was found to follow the expected temporal dynamics of reactive microgliosis. Furthermore, a strong and significant correlation between this parameter and histological measurement of microglial density was observed. These findings strongly suggest that extra-axonal restricted diffusion is an in-vivo marker of reactive microglia. They pave the way for MRI-based microglial mapping which may be important to characterize the pathogenesis of neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Maxime Taquet
- Computational Radiology Laboratory, Boston Children's Hospital, Harvard Medical School, Boston, USA.
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, USA.
- ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.
| | - Aleksandar Jankovski
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Department of Neurosurgery, Université catholique de Louvain, CHU UCL Namur, Yvoir, Belgium
| | - Gaëtan Rensonnet
- ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Damien Jacobs
- ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute, Université catholique de Louvain, Woluwe-Saint-Lambert, Belgium
| | - Benoît Macq
- ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Simon K Warfield
- Computational Radiology Laboratory, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Benoît Scherrer
- Computational Radiology Laboratory, Boston Children's Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
28
|
Howell BR, Ahn M, Shi Y, Godfrey JR, Hu X, Zhu H, Styner M, Sanchez MM. Disentangling the effects of early caregiving experience and heritable factors on brain white matter development in rhesus monkeys. Neuroimage 2019; 197:625-642. [PMID: 30978495 PMCID: PMC7179761 DOI: 10.1016/j.neuroimage.2019.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/30/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022] Open
Abstract
Early social experiences, particularly maternal care, shape behavioral and physiological development in primates. Thus, it is not surprising that adverse caregiving, such as child maltreatment leads to a vast array of poor developmental outcomes, including increased risk for psychopathology across the lifespan. Studies of the underlying neurobiology of this risk have identified structural and functional alterations in cortico-limbic brain circuits that seem particularly sensitive to these early adverse experiences and are associated with anxiety and affective disorders. However, it is not understood how these neurobiological alterations unfold during development as it is very difficult to study these early phases in humans, where the effects of maltreatment experience cannot be disentangled from heritable traits. The current study examined the specific effects of experience ("nurture") versus heritable factors ("nature") on the development of brain white matter (WM) tracts with putative roles in socioemotional behavior in primates from birth through the juvenile period. For this we used a randomized crossfostering experimental design in a naturalistic rhesus monkey model of infant maltreatment, where infant monkeys were randomly assigned at birth to either a mother with a history of maltreating her infants, or a competent mother. Using a longitudinal diffusion tensor imaging (DTI) atlas-based tract-profile approach we identified widespread, but also specific, maturational changes on major brain tracts, as well as alterations in a measure of WM integrity (fractional anisotropy, FA) in the middle longitudinal fasciculus (MdLF) and the inferior longitudinal fasciculus (ILF), of maltreated animals, suggesting decreased structural integrity in these tracts due to early adverse experience. Exploratory voxelwise analyses confirmed the tract-based approach, finding additional effects of early adversity, biological mother, social dominance rank, and sex in other WM tracts. These results suggest tract-specific effects of postnatal maternal care experience versus heritable or biological factors on primate WM microstructural development. Further studies are needed to determine the specific behavioral outcomes and biological mechanisms associated with these alterations in WM integrity.
Collapse
Affiliation(s)
- Brittany R Howell
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Institute of Child Development, University of Minnesota, Minneapolis, MN, USA.
| | - Mihye Ahn
- Department of Mathematics and Statistics, University of Nevada, Reno, NV, USA; Department of Biostatistics and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Yundi Shi
- Department. of Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Jodi R Godfrey
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Xiaoping Hu
- Biomedical Imaging Technology Center, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Hongtu Zhu
- Department of Biostatistics and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Martin Styner
- Department. of Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Mar M Sanchez
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
29
|
Aspirin suppresses neuronal apoptosis, reduces tissue inflammation, and restrains astrocyte activation by activating the Nrf2/HO-1 signaling pathway. Neuroreport 2019; 29:524-531. [PMID: 29381509 DOI: 10.1097/wnr.0000000000000969] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element signaling pathway plays a substantial role in preventing oxidative stress-related diseases. Aspirin has been shown to exert several pharmacological effects by inducing the expression of the heme oxygenase-1 (HO-1) protein. However, the effects of aspirin on spinal cord injury (SCI) have rarely been studied. Therefore, we sought to investigate the neuroprotective effects of aspirin after SCI. We employed a spinal cord contusion model in Sprague-Dawley rats, and aspirin was administered intraperitoneally for 7 days. Nissl staining showed that the aspirin treatment significantly reduced the loss of motor neurons after SCI compared with vehicle-treated animals. The expression of Nrf2, quinine oxidoreductase 1, and HO-1 proteins was increased in aspirin-treated animals after SCI compared with the vehicle group. In addition, aspirin simultaneously decreased the expression of inflammation-related proteins, such as tumor necrosis factor-α and interleukin-6 after SCI. Moreover, the ratio of apoptotic neurons in the anterior horn and the levels of the apoptosis-related proteins caspase-3, cleaved caspase-3, and Bax were significantly decreased in the aspirin group compared with the vehicle group. Immunofluorescence staining was used to detect the colocalization of NeuN and HO-1, and the results showed that aspirin significantly increased expression of the HO-1 protein in neurons. In addition, western blots and immunofluorescence staining showed aspirin restrained astrocyte activation. In conclusion, aspirin induces neuroprotective effects by inhibiting astrocyte activation and apoptosis after SCI through the activation of the Nrf2/HO-1 signaling pathway.
Collapse
|
30
|
David G, Seif M, Huber E, Hupp M, Rosner J, Dietz V, Weiskopf N, Mohammadi S, Freund P. In vivo evidence of remote neural degeneration in the lumbar enlargement after cervical injury. Neurology 2019; 92:e1367-e1377. [PMID: 30770423 PMCID: PMC6511094 DOI: 10.1212/wnl.0000000000007137] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/07/2018] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To characterize remote secondary neurodegeneration of spinal tracts and neurons below a cervical spinal cord injury (SCI) and its relation to the severity of injury, the integrity of efferent and afferent pathways, and clinical impairment. METHODS A comprehensive high-resolution MRI protocol was acquired in 17 traumatic cervical SCI patients and 14 controls at 3T. At the cervical lesion, a sagittal T2-weighted scan provided information on the width of preserved midsagittal tissue bridges. In the lumbar enlargement, high-resolution T2*-weighted and diffusion-weighted scans were used to calculate tissue-specific cross-sectional areas and diffusion indices, respectively. Regression analyses determined associations between MRI readouts and the electrophysiologic and clinical measures. RESULTS At the cervical injury level, preserved midsagittal tissue bridges were present in the majority of patients. In the lumbar enlargement, neurodegeneration-in terms of macrostructural and microstructural MRI changes-was evident in the white matter and ventral and dorsal horns. Patients with thinner midsagittal tissue bridges had smaller ventral horn area, higher radial diffusivity in the gray matter, smaller motor evoked potential amplitude from the lower extremities, and lower motor score. In addition, smaller width of midsagittal tissue bridges was also associated with smaller tibialis sensory evoked potential amplitude and lower light-touch score. CONCLUSIONS This study shows extensive tissue-specific cord pathology in infralesional spinal networks following cervical SCI, its magnitude relating to lesion severity, electrophysiologic integrity, and clinical impairment of the lower extremity. The clinical eloquence of remote neurodegenerative changes speaks to the application of neuroimaging biomarkers in diagnostic workup and planning of clinical trials.
Collapse
Affiliation(s)
- Gergely David
- From the Spinal Cord Injury Center Balgrist (G.D., M.S., E.H., M.H., J.R., V.D., P.F.), University Hospital Zurich, University of Zurich, Switzerland; Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, London, UK; Department of Neurophysics (M.S., N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maryam Seif
- From the Spinal Cord Injury Center Balgrist (G.D., M.S., E.H., M.H., J.R., V.D., P.F.), University Hospital Zurich, University of Zurich, Switzerland; Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, London, UK; Department of Neurophysics (M.S., N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eveline Huber
- From the Spinal Cord Injury Center Balgrist (G.D., M.S., E.H., M.H., J.R., V.D., P.F.), University Hospital Zurich, University of Zurich, Switzerland; Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, London, UK; Department of Neurophysics (M.S., N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Hupp
- From the Spinal Cord Injury Center Balgrist (G.D., M.S., E.H., M.H., J.R., V.D., P.F.), University Hospital Zurich, University of Zurich, Switzerland; Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, London, UK; Department of Neurophysics (M.S., N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Rosner
- From the Spinal Cord Injury Center Balgrist (G.D., M.S., E.H., M.H., J.R., V.D., P.F.), University Hospital Zurich, University of Zurich, Switzerland; Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, London, UK; Department of Neurophysics (M.S., N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volker Dietz
- From the Spinal Cord Injury Center Balgrist (G.D., M.S., E.H., M.H., J.R., V.D., P.F.), University Hospital Zurich, University of Zurich, Switzerland; Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, London, UK; Department of Neurophysics (M.S., N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolaus Weiskopf
- From the Spinal Cord Injury Center Balgrist (G.D., M.S., E.H., M.H., J.R., V.D., P.F.), University Hospital Zurich, University of Zurich, Switzerland; Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, London, UK; Department of Neurophysics (M.S., N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Siawoosh Mohammadi
- From the Spinal Cord Injury Center Balgrist (G.D., M.S., E.H., M.H., J.R., V.D., P.F.), University Hospital Zurich, University of Zurich, Switzerland; Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, London, UK; Department of Neurophysics (M.S., N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Freund
- From the Spinal Cord Injury Center Balgrist (G.D., M.S., E.H., M.H., J.R., V.D., P.F.), University Hospital Zurich, University of Zurich, Switzerland; Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, London, UK; Department of Neurophysics (M.S., N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
31
|
Hermens DF, Hatton SN, White D, Lee RSC, Guastella AJ, Scott EM, Naismith SL, Hickie IB, Lagopoulos J. A data-driven transdiagnostic analysis of white matter integrity in young adults with major psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:73-83. [PMID: 30171994 DOI: 10.1016/j.pnpbp.2018.08.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/12/2018] [Accepted: 08/29/2018] [Indexed: 01/08/2023]
Abstract
Diffusion tensor imaging (DTI) has been utilized to index white matter (WM) integrity in the major psychiatric disorders. However, the findings within and across such disorders have been mixed. Given this, transdiagnostic sampling with data-driven statistical approaches may lead to new and better insights about the clinical and functional factors associated with WM abnormalities. Thus, we undertook a cross-sectional DTI study of 401 young adult (18-30 years old) outpatients with a major psychiatric (depressive, bipolar, psychotic, or anxiety) disorder and 61 healthy controls. Participants also completed self-report questionnaires and underwent neuropsychological assessment. Fractional anisotropy (FA) as well as axial (AD) and radial (RD) diffusivity was determined via a whole brain voxel-wise approach (tract-based spatial statistics). Hierarchical cluster analysis was performed on FA scores in patients only, obtained from 20 major WM tracts (that is, association, projection and commissural fibers). The three cluster groups derived were distinguished by having consistently increased or decreased FA scores across all tracts. Compared to controls, the largest cluster (N = 177) showed significantly increased FA in 55% of tracts, the second cluster (N = 169) demonstrated decreased FA (in 90% of tracts) and the final cluster (N = 55) exhibited the most increased FA (in 95% of tracts). Importantly, the distribution of primary diagnosis did not significantly differ among the three clusters. Furthermore, the clusters showed comparable functional, clinical and neuropsychological measures, with the exception of alcohol use, medication status and verbal fluency. Overall, this study provides evidence that among young adults with a major psychiatric disorder there are subgroups with either abnormally high or low FA and that either pattern is associated with suboptimal functioning. Importantly, these neuroimaging-based subgroups appear despite diagnostic and clinical factors, suggesting differential treatment strategies are warranted.
Collapse
Affiliation(s)
- Daniel F Hermens
- Youth Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia; Sunshine Coast Mind and Neuroscience Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia.
| | - Sean N Hatton
- Youth Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia; Department of Psychiatry, University of California, San Diego, CA, USA
| | - Django White
- Youth Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Rico S C Lee
- Brain and Mental Health Laboratory, Monash University, Melbourne, VIC, Australia
| | - Adam J Guastella
- Youth Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Elizabeth M Scott
- School of Medicine, University of Notre Dame, Sydney, NSW, Australia
| | - Sharon L Naismith
- Youth Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Ian B Hickie
- Youth Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Jim Lagopoulos
- Sunshine Coast Mind and Neuroscience Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| |
Collapse
|
32
|
Hsu YC, Yang FC, Hsu HH, Huang GS. Diffusion tensor imaging findings of the median nerve before and after carpal tunnel corticosteroid injection in patients with carpal tunnel syndrome: a preliminary study. Acta Radiol 2019; 60:347-355. [PMID: 29979105 DOI: 10.1177/0284185118784977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Corticosteroid injections are a popular technique for carpal tunnel syndrome (CTS) treatment and are believed to provide rapid symptom relief. PURPOSE To use magnetic resonance diffusion tensor imaging (MR-DTI) to determine the association between diffusion values of the median nerve (MN) at several anatomic locations and symptom relief in patients with CTS following corticosteroid injection. MATERIAL AND METHODS MR-DTI was performed on 15 wrists of 12 patients with CTS before and two weeks after ultrasound-guided corticosteroid injections. We recorded the patients' clinical data including sex, age, side of injection, satisfaction, and symptom relief. Satisfaction and symptom relief were rated using a Likert scale and the Boston Carpal Tunnel Syndrome Questionnaire (BCTQ) scale. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of the MN at the levels of the distal radioulnar joint (DRUJ), pisiform bone, and hamate bone were determined. RESULTS All patients had ≥50% satisfaction on the injection side. In comparison with baseline values, post-injection ADC was significantly lower ( P = 0.001) but FA was not significantly higher ( P = 0.11) at the pisiform bone level on the injected wrists. At the DRUJ and hamate bone levels, no obvious inter-scan change in FA and ADC ( P > 0.05) was observed. The decrease in ADC at the pisiform bone level strongly correlated with the decrease in BCTQ scores (r = 0.628; P = 0.012). CONCLUSION Symptom relief in patients with CTS receiving corticosteroid injection is related to the change in ADC of the median nerve at the level of the pisiform bone, as determined using MR-DTI.
Collapse
Affiliation(s)
- Yi-Chih Hsu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsian-He Hsu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Guo-Shu Huang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
33
|
Evaluation of select biocompatible markers for labelling peripheral nerves on 11.7 T MRI. J Neurosci Methods 2019; 315:6-13. [PMID: 30630001 DOI: 10.1016/j.jneumeth.2018.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Peripheral nerve injury is often followed by a highly variable recovery process with respect to both rapidity and efficacy. Identifying post-nerve injury phenomena is key to assessing the merit and timing of surgery as well as to tracking nerve recovery postoperatively. Diffusion Tensor Imaging (DTI) has been investigated in the clinical and research settings as a noninvasive technique to both assess and monitor each patient's unique case of peripheral nerve damage. NEW METHOD We identify a MRI-suitable marker for tracking the exact site of either nerve injury or coaptation following surgical repair to aid with DTI analysis. RESULTS Due to artefact and disruption of tractography, silver wire and microvascular clips were not suitable markers. AxoGuard®, 4-0 vicryl suture, and 10-0 polyamide suture, although detectable, did not produce a signal easily distinguished from post-surgical changes. Silicone was easily identifiable and stable in both the acute and delayed time points, exhibited negligible impact on DTI parameters, and possessed geometry to prevent nerve strangulation. COMPARISON WITH EXISTING METHOD Prior studies have not assessed the efficacy of other markers nor have they assessed silicone for potential artefact with DTI parameter analysis. Furthermore, this work demonstrates the reliability and compatibility of silicone in the delayed postoperative time period and includes its unique imaging appearance on high-resolution 11.7 MRI. CONCLUSION Semi-cylindrical silicone tubing can be used as a safe, reliable, and readily available radiological marker to visualize and monitor a region of interest on a rodent's peripheral nerve for aiding assessments with diffusion tensor imaging.
Collapse
|
34
|
Shabani S, Kaushal M, Budde M, Kurpad SN. Correlation of magnetic resonance diffusion tensor imaging parameters with American Spinal Injury Association score for prognostication and long-term outcomes. Neurosurg Focus 2019; 46:E2. [DOI: 10.3171/2018.12.focus18595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/13/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVEConventional MRI is routinely used to demonstrate the anatomical site of spinal cord injury (SCI). However, quantitative and qualitative imaging parameters have limited use in predicting neurological outcomes. Currently, there are no reliable neuroimaging biomarkers to predict short- and long-term outcome after SCI.METHODSA prospective cohort of 23 patients with SCI (19 with cervical SCI [CSCI] and 4 with thoracic SCI [TSCI]) treated between 2007 and 2014 was included in the study. The American Spinal Injury Association (ASIA) score was determined at the time of arrival and at 1-year follow-up. Only 15 patients (12 with CSCI and 3 with TSCI) had 1-year follow-up. Whole-cord fractional anisotropy (FA) was determined at C1–2, following which C1–2 was divided into upper, middle, and lower segments and the corresponding FA value at each of these segments was calculated. Correlation analysis was performed between FA and ASIA score at time of arrival and 1-year follow-up.RESULTSCorrelation analysis showed a positive but nonsignificant correlation (p = 0.095) between FA and ASIA score for all patients (CSCI and TCSI) at the time of arrival. Additional regression analysis consisting of only patients with CSCI showed a significant correlation (p = 0.008) between FA and ASIA score at time of arrival as well as at 1-year follow-up (p = 0.025). Furthermore, in case of patients with CSCI, a significant correlation between FA value at each of the segments (upper, middle, and lower) of C1–2 and ASIA score at time of arrival was found (p = 0.017, p = 0.015, and p = 0.002, respectively).CONCLUSIONSIn patients with CSCI, the measurement of diffusion anisotropy of the high cervical cord (C1–2) correlates significantly with injury severity and long-term follow-up. However, this correlation is not seen in patients with TSCI. Therefore, FA can be used as an imaging biomarker for evaluating neural injury and monitoring recovery in patients with CSCI.
Collapse
|
35
|
Tóth E, Faragó P, Király A, Szabó N, Veréb D, Kocsis K, Kincses B, Sandi D, Bencsik K, Vécsei L, Kincses ZT. The Contribution of Various MRI Parameters to Clinical and Cognitive Disability in Multiple Sclerosis. Front Neurol 2019; 9:1172. [PMID: 30728801 PMCID: PMC6351478 DOI: 10.3389/fneur.2018.01172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/18/2018] [Indexed: 11/13/2022] Open
Abstract
Next to the disseminated clinical symptoms, cognitive dysfunctions are common features of multiple sclerosis (MS). Over the recent years several different MRI measures became available representing the various features of the pathology, but the contribution to various clinical and cognitive functions is not yet fully understood. In this multiparametric MRI study we set out to identify the set of parameters that best predict the clinical and cognitive disability in MS. High resolution T1 weighted structural and high angular resolution diffusion MRI images were measured in 53 patients with relapsing remitting MS and 53 healthy controls. Clinical disability was inflicted by EDSS and cognitive functions were evaluated with the BICAMS tests. The contribution of lesion load, partial brain, white matter, gray matter and subcortical volumes as well as the diffusion parameters in the area of the lesions and the normal appearing white matter were examined by model free, partial least square (PLS) approach. Significance of the predictors was tested with Variable Importance in the Projection (VIP) score and 1 was used for threshold of significance. The PLS analysis indicated that the axial diffusivity of the NAWM contributed the most to the clinical disability (VIP score: 1.979). For the visuo-spatial working memory the most critical contributor was the size of the bilateral hippocampi (VIP scores: 1.183 and 1.2 left and right respectively). For the verbal memory the best predictors were the size of the right hippocampus (VIP score: 1.972), lesion load (VIP score: 1.274) and the partial brain volume (VIP score: 1.119). In case of the information processing speed the most significant contribution was from the diffusion parameters (fractional anisotropy, mean and radial diffusivity, VIP scores: 1.615, 1.321 respectively) of the normal appearing white matter. Our results indicate that various MRI measurable factors of MS pathology contribute differently to clinical and cognitive disability. These results point out the importance of the volumetry of the subcortical structures and the diffusion measures of the white matter in understanding the disability progression.
Collapse
Affiliation(s)
- Eszter Tóth
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Péter Faragó
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - András Király
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Nikoletta Szabó
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Dániel Veréb
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Krisztián Kocsis
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Bálint Kincses
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Dániel Sandi
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Krisztina Bencsik
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
| | - Zsigmond Tamás Kincses
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary.,Department of Radiology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
36
|
Gustavson DE, Hatton SN, Elman JA, Panizzon MS, Franz CE, Hagler DJ, Fennema-Notestine C, Eyler LT, McEvoy LK, Neale MC, Gillespie N, Dale AM, Lyons MJ, Kremen WS. Predominantly global genetic influences on individual white matter tract microstructure. Neuroimage 2019; 184:871-880. [PMID: 30296555 PMCID: PMC6289256 DOI: 10.1016/j.neuroimage.2018.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/06/2018] [Accepted: 10/04/2018] [Indexed: 01/30/2023] Open
Abstract
Individual differences in white matter tract microstructure, measured with diffusion tensor imaging (DTI), demonstrate substantial heritability. However, it is unclear to what extent this heritability reflects global genetic influences or tract-specific genetic influences. The goal of the current study was to quantify the proportion of genetic and environmental variance in white matter tracts attributable to global versus tract-specific influences. We assessed fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) across 11 tracts and 22 subdivisions of these tracts in 392 middle-aged male twins from the Vietnam Era Twin Study of Aging (VETSA). In principal component analyses of the 11 white matter tracts, the first component, which represents the global signal, explained 50.1% and 62.5% of the variance in FA and MD, respectively. Similarly, the first principal component of the 22 tract subdivisions explained 38.4% and 47.0% of the variance in FA and MD, respectively. Twin modeling revealed that DTI measures of all tracts and subdivisions were heritable, and that genetic influences on global FA and MD accounted for approximately half of the heritability in the tracts or tract subdivisions. Similar results were observed for the AD and RD diffusion metrics. These findings underscore the importance of controlling for DTI global signals when measuring associations between specific tracts and outcomes such as cognitive ability, neurological and psychiatric disorders, and brain aging.
Collapse
Affiliation(s)
- Daniel E Gustavson
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA.
| | - Sean N Hatton
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Jeremy A Elman
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Matthew S Panizzon
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Donald J Hagler
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Lisa T Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Mental Illness Research, Education, And Clinical Center, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Linda K McEvoy
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Nathan Gillespie
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Anders M Dale
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA; Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| |
Collapse
|
37
|
Rensonnet G, Scherrer B, Girard G, Jankovski A, Warfield SK, Macq B, Thiran JP, Taquet M. Towards microstructure fingerprinting: Estimation of tissue properties from a dictionary of Monte Carlo diffusion MRI simulations. Neuroimage 2019; 184:964-980. [PMID: 30282007 PMCID: PMC6230496 DOI: 10.1016/j.neuroimage.2018.09.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Many closed-form analytical models have been proposed to relate the diffusion-weighted magnetic resonance imaging (DW-MRI) signal to microstructural features of white matter tissues. These models generally make assumptions about the tissue and the diffusion processes which often depart from the biophysical reality, limiting their reliability and interpretability in practice. Monte Carlo simulations of the random walk of water molecules are widely recognized to provide near groundtruth for DW-MRI signals. However, they have mostly been limited to the validation of simpler models rather than used for the estimation of microstructural properties. This work proposes a general framework which leverages Monte Carlo simulations for the estimation of physically interpretable microstructural parameters, both in single and in crossing fascicles of axons. Monte Carlo simulations of DW-MRI signals, or fingerprints, are pre-computed for a large collection of microstructural configurations. At every voxel, the microstructural parameters are estimated by optimizing a sparse combination of these fingerprints. Extensive synthetic experiments showed that our approach achieves accurate and robust estimates in the presence of noise and uncertainties over fixed or input parameters. In an in vivo rat model of spinal cord injury, our approach provided microstructural parameters that showed better correspondence with histology than five closed-form models of the diffusion signal: MMWMD, NODDI, DIAMOND, WMTI and MAPL. On whole-brain in vivo data from the human connectome project (HCP), our method exhibited spatial distributions of apparent axonal radius and axonal density indices in keeping with ex vivo studies. This work paves the way for microstructure fingerprinting with Monte Carlo simulations used directly at the modeling stage and not only as a validation tool.
Collapse
Affiliation(s)
- Gaëtan Rensonnet
- ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium; Signal Processing Lab (LTS5), École polytechnique fédérale de Lausanne, Lausanne, Switzerland.
| | - Benoît Scherrer
- Computational Radiology Laboratory, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriel Girard
- Signal Processing Lab (LTS5), École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Aleksandar Jankovski
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium; Department of Neurosurgery, Centre hospitalier universitaire Dinant Godinne, Université catholique de Louvain, Namur, Belgium
| | - Simon K Warfield
- Computational Radiology Laboratory, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benoît Macq
- ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Philippe Thiran
- Signal Processing Lab (LTS5), École polytechnique fédérale de Lausanne, Lausanne, Switzerland; Radiology Department, Centre hospitalier universitaire vaudois and University of Lausanne, Lausanne, Switzerland
| | - Maxime Taquet
- ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium; Computational Radiology Laboratory, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Skinner NP, Lee SY, Kurpad SN, Schmit BD, Muftuler LT, Budde MD. Filter-probe diffusion imaging improves spinal cord injury outcome prediction. Ann Neurol 2018; 84:37-50. [PMID: 29752739 PMCID: PMC6119508 DOI: 10.1002/ana.25260] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Diffusion-weighted imaging (DWI) is a powerful tool for investigating spinal cord injury (SCI), but has limited specificity for axonal damage, which is the most predictive feature of long-term functional outcome. In this study, a technique designed to detect acute axonal injury, filter-probe double diffusion encoding (FP-DDE), is compared with standard DWI for predicting long-term functional and cellular outcomes. METHODS This study extends FP-DDE to predict long-term functional and histological outcomes in a rat SCI model of varying severities (n = 58). Using a 9.4T magnetic resonance imaging (MRI) system, a whole-cord FP-DDE spectroscopic voxel was acquired in 3 minutes at the lesion site and compared to DWI at 48 hours postinjury. Relationships with chronic (30-day) locomotor and histological outcomes were evaluated with linear regression. RESULTS The FP-DDE measure of parallel diffusivity (ADC|| ) was significantly related to chronic hind limb locomotor functional outcome (R2 = 0.63, p < 0.0001), and combining this measurement with acute functional scores demonstrated prognostic benefit versus functional testing alone (p = 0.0007). Acute ADC|| measurements were also more closely related to the number of injured axons measured 30 days after the injury than standard DWI. Furthermore, acute FP-DDE images showed a clear and easily interpretable pattern of injury that closely corresponded with chronic MRI and histology observations. INTERPRETATION Collectively, these results demonstrate FP-DDE benefits from greater specificity for acute axonal damage in predicting functional and histological outcomes with rapid acquisition and fully automated analysis, improving over standard DWI. FP-DDE is a promising technique compatible with clinical settings, with potential research and clinical applications for evaluation of spinal cord pathology. Ann Neurol 2018;83:37-50.
Collapse
Affiliation(s)
- Nathan P Skinner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI
| | - Seung-Yi Lee
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI
- Neuroscience Doctoral Program, Medical College of Wisconsin, Milwaukee, WI
- Biophysics Graduate Program, Medical College of Wisconsin, Milwaukee, WI
| | - Shekar N Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI
| | - L Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
39
|
Yoon H, Moon WJ, Nahm SS, Kim J, Eom K. Diffusion Tensor Imaging of Scarring, Necrosis, and Cavitation Based on Histopathological Findings in Dogs with Chronic Spinal Cord Injury: Evaluation of Multiple Diffusion Parameters and Their Correlations with Histopathological Findings. J Neurotrauma 2018; 35:1387-1397. [DOI: 10.1089/neu.2017.5409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Hakyoung Yoon
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Sang-Soep Nahm
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jaehwan Kim
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Kidong Eom
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
40
|
Characterization of spinal cord diffusion tensor imaging metrics in clinically asymptomatic pediatric subjects with incidental congenital lesions. Spinal Cord Ser Cases 2018; 4:41. [PMID: 29928513 DOI: 10.1038/s41394-018-0073-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/09/2018] [Accepted: 03/31/2018] [Indexed: 11/08/2022] Open
Abstract
Study design Retrospective study. Objectives To perform quantitative DTI measurements of the entire cervical and thoracic spinal cord (SC) in typically developing (TD) pediatric subjects with incidental findings of syringomyelia or hydromyelia on conventional MRI and in a TD population without any abnormalities. Setting USA. Methods 26 TD recruited as part of large SC DTI study, four of these had incidental findings. Axial DTI images were acquired on 3T MR scanner to cover the cervical and thoracic SC. We performed group analysis of DTI values in the cord above and below the MR-defined lesion. For single-subject analysis, the cord above and below the lesion was compared to average values of TD population. A standard least squares regression model was used to compare DTI parameters fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) between TD population and subjects with hydromyelia and syringomyelia. A p value of 0.05 was used for statistical significance. Results In group analysis, MD and AD were significantly different in cord above the lesion in subjects with hydromyelia and syringomyelia (n = 4) compared to TD population (n = 22). For single-subject analysis, DTI parameters were significantly different in cord above the syringomyelia and below the syringomyelia; MD, AD, and RD were significantly different. A subject with hydromyelia showed significant difference in FA below the lesion. Conclusions This study demonstrates that DTI has the potential to be used as an imaging biomarker to evaluate SC above and below the congenital lesion in syringohydromyelia subjects.
Collapse
|
41
|
Cohen-Adad J. Microstructural imaging in the spinal cord and validation strategies. Neuroimage 2018; 182:169-183. [PMID: 29635029 DOI: 10.1016/j.neuroimage.2018.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/02/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
In vivo histology using magnetic resonance imaging (MRI) is a newly emerging research field that aims to non-invasively characterize tissue microstructure. The implications of in vivo histology are many, from discovering novel biomarkers to studying human development, to providing tools for disease diagnosis and monitoring the effects of novel treatments on tissue. This review focuses on quantitative MRI (qMRI) techniques that are used to map spinal cord microstructure. Opening with a rationale for non-invasive imaging of the spinal cord, this article continues with a brief overview of the existing MRI techniques for axon and myelin imaging, followed by the specific challenges and potential solutions for acquiring and processing such data. The final part of this review focuses on histological validation, with suggested tissue preparation, acquisition and processing protocols for large-scale microscopy.
Collapse
Affiliation(s)
- J Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
42
|
Cerebellar Pathways in Mouse Model of Purkinje Cell Degeneration Detected by High-Angular Resolution Diffusion Imaging Tractography. THE CEREBELLUM 2018; 16:648-655. [PMID: 28102462 DOI: 10.1007/s12311-016-0842-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cerebellar MR imaging has several challenging aspects, due to the fine, repetitive layered structure of cortical folia with underlying axonal pathways. In this MR study, we imaged with high-angular resolution diffusion imaging (HARDI) abnormal cerebellar cortical structure (gray matter) and myelinated axonal pathways (white matter) of a mouse spontaneous mutation, Purkinje cell degeneration (pcd), in which almost all Purkinje neurons degenerate, mainly between postnatal days 20 and 35. Mouse brains at postnatal day 20 (P20) and at 8 months were scanned, and known or expected abnormalities, such as reduction of the white matter volume, disorganized pathways likely linked to parallel fibers, mossy fibers, and other fibers running from/to the cerebellar cortex were observed in mutant mice. Such abnormalities were detected at both an early and a fully advanced degeneration stage. These results suggest that our diffusion MR tractography is useful for early detection and tracking of neuropathology in the cerebellum.
Collapse
|
43
|
Hatton SN, Panizzon MS, Vuoksimaa E, Hagler DJ, Fennema‐Notestine C, Rinker D, Eyler LT, Franz CE, Lyons MJ, Neale MC, Tsuang MT, Dale AM, Kremen WS. Genetic relatedness of axial and radial diffusivity indices of cerebral white matter microstructure in late middle age. Hum Brain Mapp 2018; 39:2235-2245. [PMID: 29427332 PMCID: PMC5895525 DOI: 10.1002/hbm.24002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 01/30/2023] Open
Abstract
Two basic neuroimaging-based characterizations of white matter tracts are the magnitude of water diffusion along the principal tract orientation (axial diffusivity, AD) and water diffusion perpendicular to the principal orientation (radial diffusivity, RD). It is generally accepted that decreases in AD reflect disorganization, damage, or loss of axons, whereas increases in RD are indicative of disruptions to the myelin sheath. Previous reports have detailed the heritability of individual AD and RD measures, but have not examined the extent to which the same or different genetic or environmental factors influence these two phenotypes (except for corpus callosum). We implemented bivariate twin analyses to examine the shared and independent genetic influences on AD and RD. In the Vietnam Era Twin Study of Aging, 393 men (mean age = 61.8 years, SD = 2.6) underwent diffusion-weighted magnetic resonance imaging. We derived fractional anisotropy (FA), mean diffusivity (MD), AD, and RD estimates for 11 major bilateral white matter tracts and the mid-hemispheric corpus callosum, forceps major, and forceps minor. Separately, AD and RD were each highly heritable. In about three-quarters of the tracts, genetic correlations between AD and RD were >.50 (median = .67) and showed both unique and common variance. Genetic variance of FA and MD were predominately explained by RD over AD. These findings are important for informing genetic association studies of axonal coherence/damage and myelination/demyelination. Thus, genetic studies would benefit from examining the shared and unique contributions of AD and RD.
Collapse
Affiliation(s)
- Sean N. Hatton
- Department of PsychiatryUniversity of California, San DiegoLa JollaCalifornia,Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCalifornia
| | - Matthew S. Panizzon
- Department of PsychiatryUniversity of California, San DiegoLa JollaCalifornia,Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCalifornia
| | - Eero Vuoksimaa
- Institute for Molecular Medicine Finland, University of HelsinkiFinland
| | - Donald J. Hagler
- Department of RadiologyUniversity of California, San DiegoLa JollaCalifornia
| | - Christine Fennema‐Notestine
- Department of PsychiatryUniversity of California, San DiegoLa JollaCalifornia,Department of RadiologyUniversity of California, San DiegoLa JollaCalifornia
| | - Daniel Rinker
- Department of PsychiatryUniversity of California, San DiegoLa JollaCalifornia,Department of RadiologyUniversity of California, San DiegoLa JollaCalifornia,Imaging Genetics CenterInstitute for Neuroimaging and Informatics, University of Southern CaliforniaLos AngelesCalifornia
| | - Lisa T. Eyler
- Department of PsychiatryUniversity of California, San DiegoLa JollaCalifornia,Mental Illness Research Education and Clinical Center, VA San Diego Healthcare SystemSan DiegoCalifornia
| | - Carol E. Franz
- Department of PsychiatryUniversity of California, San DiegoLa JollaCalifornia,Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCalifornia
| | - Michael J. Lyons
- Department of Psychological and Brain SciencesBoston UniversityBostonMassachusetts
| | - Michael C. Neale
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of MedicineRichmondVirginia
| | - Ming T. Tsuang
- Department of PsychiatryUniversity of California, San DiegoLa JollaCalifornia,Center for Behavior GenomicsUniversity of California, San DiegoLa JollaCalifornia,Institute for Genomic Medicine, University of California, San DiegoLa JollaCalifornia
| | - Anders M. Dale
- Department of RadiologyUniversity of California, San DiegoLa JollaCalifornia,Department of NeurosciencesUniversity of California, San DiegoLa JollaCalifornia
| | - William S. Kremen
- Department of PsychiatryUniversity of California, San DiegoLa JollaCalifornia,Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCalifornia,Center of Excellence for Stress and Mental Health, VA San Diego Healthcare SystemLa JollaCalifornia
| |
Collapse
|
44
|
Martin AR, Tadokoro N, Tetreault L, Arocho-Quinones EV, Budde MD, Kurpad SN, Fehlings MG. Imaging Evaluation of Degenerative Cervical Myelopathy. Neurosurg Clin N Am 2018; 29:33-45. [DOI: 10.1016/j.nec.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
45
|
Lewis MJ, Yap PT, McCullough S, Olby NJ. The Relationship between Lesion Severity Characterized by Diffusion Tensor Imaging and Motor Function in Chronic Canine Spinal Cord Injury. J Neurotrauma 2017; 35:500-507. [PMID: 28974151 DOI: 10.1089/neu.2017.5255] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lesion heterogeneity among chronically paralyzed dogs after acute, complete thoracolumbar spinal cord injury (TLSCI) is poorly described. We hypothesized that lesion severity quantified by diffusion tensor imaging (DTI) is associated with hindlimb motor function. Our objectives were to quantify lesion severity with fractional anisotropy (FA), mean diffusivity (MD), and tractography and investigate associations with motor function. Twenty-two dogs with complete TLSCI in the chronic stage were enrolled and compared with six control dogs. All underwent thoracolumbar magnetic resonance imaging (MRI) with DTI and gait analysis. FA and MD were calculated on regions of interest (ROI) at the lesion epicenter and cranial and caudal to the visible lesion on conventional MRI and in corresponding ROI in controls. Tractography was performed to detect translesional fibers. Gait was quantified using an ordinal scale (OFS). FA and MD values were compared between cases and controls, and relationships between FA, MD, presence of translesional fibers and OFS were investigated. The FA at the epicenter (median: 0.228, 0.107-0.320), cranial (median: 0.420, 0.391-0.561), and caudal to the lesion (median: 0.369, 0.265-0.513) was lower than combined ROI in controls (median: 0.602, 0.342-0.826, p < 0.0001). The MD at the epicenter (median: 2.06 × 10-3, 1.33-2.96 × 10-3) and cranially (median: 1.52 × 10-3, 1.03-1.87 × 10-3) was higher than combined ROI in controls (median: 1.28 × 10-3, 0.81-1.44 × 10-3, p ≤ 0.001). Four dogs had no translesional fibers. Median OFS was 2 (0-6). The FA at the lesion epicenter and presence of translesional fibers were associated with OFS (p ≤ 0.0299). DTI can detect degeneration and physical transection after severe TLSCI. Findings suggest DTI quantifies injury severity and suggests motor recovery in apparently complete dogs is because of supraspinal input.
Collapse
Affiliation(s)
- Melissa J Lewis
- 1 Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University , Raleigh, North Carolina.,2 Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina
| | - Pew-Thian Yap
- 3 Department of Radiology, School of Medicine, University of North Carolina , Chapel Hill, North Carolina
| | - Susan McCullough
- 4 Animal Scan Advanced Veterinary Imaging , Raleigh, North Carolina
| | - Natasha J Olby
- 1 Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University , Raleigh, North Carolina.,2 Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina
| |
Collapse
|
46
|
Zhao C, Rao JS, Pei XJ, Lei JF, Wang ZJ, Zhao W, Wei RH, Yang ZY, Li XG. Diffusion tensor imaging of spinal cord parenchyma lesion in rat with chronic spinal cord injury. Magn Reson Imaging 2017; 47:25-32. [PMID: 29154896 DOI: 10.1016/j.mri.2017.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/09/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Adequate evaluation of spinal cord parenchyma and accurate identification of injury range are considered two premises for the research and treatment of chronic spinal cord injury (SCI). Diffusion tensor imaging (DTI) provides information about water diffusion in spinal cord, and thus makes it possible to realize these premises. METHOD In this study, we conducted magnetic resonance imaging (MRI) for Wistar rats 84days after spinal cord contusion. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) from different positions of the injured cord were collected, analyzed, and compared with the histological results and locomotor outcomes. Moreover, we performed fiber tractography, and examined the difference in cavity percentage obtained respectively via conventional MRI, DTI and histology. RESULTS Results showed that the chronic SCI rats had the largest changes of all DTI metrics at the epicenter; the farther away from the epicenter, the smaller the variation. FA, AD and RD were all influenced by SCI in a greater space range than MD. The good consistency of FA values and histological results in specific regions evidenced FA's capability of reflecting Wallerian degeneration after SCI. DTI metrics at the epicenter in ventral funiculus also showed a close correlation with the BBB scores. Additionally, supported by the histological results, DTI enables a more accurate measurement of cavity percentage compared to the conventional MRI. CONCLUSION DTI parameters might comprehensively reflect the post-SCI pathological status of spinal cord parenchyma at the epicenter and distal parts during the chronic stage, while showing good consistency with locomotor performance. DTI combined with tractography could intuitively display the distribution of spared fibers after SCI and accurately provide information such as cavity area. This may shed light on the research and treatment of chronic SCI.
Collapse
Affiliation(s)
- Can Zhao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiao-Jiao Pei
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, China
| | - Jian-Feng Lei
- Medical Experiment and Test Center, Capital Medical University, Beijing 100069, China
| | - Zhan-Jing Wang
- Medical Experiment and Test Center, Capital Medical University, Beijing 100069, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Rui-Han Wei
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhao-Yang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiao-Guang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
47
|
Gajamange S, Raffelt D, Dhollander T, Lui E, van der Walt A, Kilpatrick T, Fielding J, Connelly A, Kolbe S. Fibre-specific white matter changes in multiple sclerosis patients with optic neuritis. NEUROIMAGE-CLINICAL 2017. [PMID: 29527473 PMCID: PMC5842545 DOI: 10.1016/j.nicl.2017.09.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Long term irreversible disability in multiple sclerosis (MS) is thought to be primarily driven by axonal degeneration. Axonal degeneration leads to degenerative atrophy, therefore early markers of axonal degeneration are required to predict clinical disability and treatment efficacy. Given that additional pathologies such as inflammation, demyelination and oedema are also present in MS, it is essential to develop axonal markers that are not confounded by these processes. The present study investigated a novel method for measuring axonal degeneration in MS based on high angular resolution diffusion magnetic resonance imaging. Unlike standard methods, this novel method involved advanced acquisition and modelling for improved axonal sensitivity and specificity. Recent work has developed analytical methods, two novel axonal markers, fibre density and cross-section, that can be estimated for each fibre direction in each voxel (termed a “fixel”). This technique, termed fixel-based analysis, thus simultaneously estimates axonal density and white matter atrophy from specific white matter tracts. Diffusion-weighted imaging datasets were acquired for 17 patients with a history of acute unilateral optic neuritis (35.3 ± 10.2 years, 11 females) and 14 healthy controls (32.7 ± 4.8 years, 8 females) on a 3 T scanner. Fibre density values were compared to standard diffusion tensor imaging parameters (fractional anisotropy and mean diffusivity) in lesions and normal appearing white matter. Group comparisons were performed for each fixel to assess putative differences in fibre density and fibre cross-section. Fibre density was observed to have a comparable sensitivity to fractional anisotropy for detecting white matter pathology in MS, but was not affected by crossing axonal fibres. Whole brain fixel-based analysis revealed significant reductions in fibre density and fibre cross-section in the inferior fronto-occipital fasciculus (including the optic radiations) of patients compared to controls. We interpret this result to indicate that this fixel-based approach is able to detect early loss of fibre density and cross-section in the optic radiations in MS patients with a history of optic neuritis. Fibre-specific markers of axonal degeneration should be investigated further for use in early stage therapeutic trials, or to monitor axonal injury in early stage MS. Fibre density is reduced in lesions and normal-appearing white matter in MS Fibre density detects white matter pathology in regions of crossing fibres Loss of fibre density and cross-section selectively evident in visual pathways of optic neuritis patients.
Collapse
Affiliation(s)
- Sanuji Gajamange
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - David Raffelt
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Thijs Dhollander
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Elaine Lui
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Australia
| | | | - Trevor Kilpatrick
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Joanne Fielding
- School of Psychological Sciences, Monash University, Australia
| | - Alan Connelly
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Scott Kolbe
- Department of Anatomy and Neuroscience, University of Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia.
| |
Collapse
|
48
|
Zhang J, Zhang F, Xiao F, Xiong Z, Liu D, Hua T, Indima N, Tang G. Quantitative Evaluation of the Compressed L5 and S1 Nerve Roots in Unilateral Lumbar Disc Herniation by Using Diffusion Tensor Imaging. Clin Neuroradiol 2017; 28:529-537. [DOI: 10.1007/s00062-017-0621-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
|
49
|
Yoon H, Kim J, Moon WJ, Nahm SS, Zhao J, Kim HM, Eom K. Characterization of Chronic Axonal Degeneration Using Diffusion Tensor Imaging in Canine Spinal Cord Injury: A Quantitative Analysis of Diffusion Tensor Imaging Parameters According to Histopathological Differences. J Neurotrauma 2017; 34:3041-3050. [PMID: 28173745 DOI: 10.1089/neu.2016.4886] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Diffusion tensor imaging (DTI) is more sensitive than conventional magnetic resonance imaging (MRI) for the identification of axonal degeneration. However, no study to date has used DTI to evaluate the severity of axonal degeneration in canine spinal cord injury (SCI). Therefore, the aim of this study was to characterize multi-grade axonal degeneration (mild, moderate, and severe) in a canine model of spinal cord compression injury using DTI. MRI data were obtained from 6 normal dogs and 5 dogs with lumbar SCI 78 days after SCI (L1-L3) using a 3 Tesla MRI scanner. For DTI, transverse multi-shot echo planar imaging sequences (b-value = 0; 800 s/mm2; 12 directions) were used. Regions of interest on DTI maps were selected based on areas of normal white matter (NWM) and mild, moderate, and severe axonal degeneration (AxD) on histopathological images. Statistically significant differences were observed between NWM and AxD, and among different severities of AxD. The severity of AxD demonstrated a negative linear correlation with fractional anisotropy and positive linear correlations with spherical index and radial diffusivity; additionally, positive U-shaped correlations were identified between the severity of AxD and mean diffusivity and axial diffusity (AD). These results demonstrate a potential clinical application for DTI in the noninvasive monitoring of histological changes post-SCI. DTI could be utilized for the early diagnosis and assessment of SCI and, ultimately, used to optimize the treatment and rehabilitation of SCI patients.
Collapse
Affiliation(s)
- Hakyoung Yoon
- 1 Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University , Seoul, Korea
| | - Jaehwan Kim
- 1 Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University , Seoul, Korea
| | - Won-Jin Moon
- 2 Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine , Seoul, Korea
| | - Sang-Soep Nahm
- 3 Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Konkuk University , Seoul, Korea
| | - Jun Zhao
- 4 Department of Applied Statistics, Konkuk University , Seoul, Korea
| | - Hyoung-Moon Kim
- 4 Department of Applied Statistics, Konkuk University , Seoul, Korea
| | - Kidong Eom
- 1 Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University , Seoul, Korea
| |
Collapse
|
50
|
Wood ET, Ercan E, Sati P, Cortese ICM, Ronen I, Reich DS. Longitudinal MR spectroscopy of neurodegeneration in multiple sclerosis with diffusion of the intra-axonal constituent N-acetylaspartate. Neuroimage Clin 2017; 15:780-788. [PMID: 28702353 PMCID: PMC5496488 DOI: 10.1016/j.nicl.2017.06.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/08/2017] [Accepted: 06/20/2017] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis (MS) is a pathologically complex CNS disease: inflammation, demyelination, and neuroaxonal degeneration occur concurrently and may depend on one another. Current therapies are aimed at the immune-mediated, inflammatory destruction of myelin, whereas axonal degeneration is ongoing and not specifically targeted. Diffusion-weighted magnetic resonance spectroscopy can measure the diffusivity of metabolites in vivo, such as the axonal/neuronal constituent N-acetylaspartate, allowing compartment-specific assessment of disease-related changes. Previously, we found significantly lower N-acetylaspartate diffusivity in people with MS compared to healthy controls (Wood et al., 2012) suggesting that this technique can measure axonal degeneration and could be useful in developing neuroprotective agents. In this longitudinal study, we found that N-acetylaspartate diffusivity decreased by 8.3% (p < 0.05) over 6 months in participants who were experiencing clinical or MRI evidence of inflammatory activity (n = 13), whereas there was no significant change in N-acetylaspartate diffusivity in the context of clinical and radiological stability (n = 6). As N-acetylaspartate diffusivity measurements are thought to more specifically reflect the intra-axonal space, these data suggest that N-acetylaspartate diffusivity can report on axonal health on the background of multiple pathological processes in MS, both cross-sectionally and longitudinally.
Collapse
Key Words
- Axonopathy
- DW-MRS, diffusion-weighted magnetic resonance spectroscopy
- Diffusion-weighted magnetic resonance spectroscopy
- EDSS, Expanded Disability Scale Score
- HV, healthy volunteer
- ICV, intracranial volume
- MS, multiple sclerosis
- Multiple sclerosis
- NAA, N-acetylaspartate
- PASAT, Paced Auditory Symbol Addition Test
- T, Tesla
- VOI, volume of interest
- WM, white matter
- White matter
Collapse
Affiliation(s)
- Emily Turner Wood
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ece Ercan
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Irene C M Cortese
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Itamar Ronen
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|