1
|
Tan CX, Bindu DS, Hardin EJ, Sakers K, Baumert R, Ramirez JJ, Savage JT, Eroglu C. δ-Catenin controls astrocyte morphogenesis via layer-specific astrocyte-neuron cadherin interactions. J Cell Biol 2023; 222:e202303138. [PMID: 37707499 PMCID: PMC10501387 DOI: 10.1083/jcb.202303138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
Astrocytes control the formation of specific synaptic circuits via cell adhesion and secreted molecules. Astrocyte synaptogenic functions are dependent on the establishment of their complex morphology. However, it is unknown if distinct neuronal cues differentially regulate astrocyte morphogenesis. δ-Catenin was previously thought to be a neuron-specific protein that regulates dendrite morphology. We found δ-catenin is also highly expressed by astrocytes and required both in astrocytes and neurons for astrocyte morphogenesis. δ-Catenin is hypothesized to mediate transcellular interactions through the cadherin family of cell adhesion proteins. We used structural modeling and biochemical analyses to reveal that δ-catenin interacts with the N-cadherin juxtamembrane domain to promote N-cadherin surface expression. An autism-linked δ-catenin point mutation impaired N-cadherin cell surface expression and reduced astrocyte complexity. In the developing mouse cortex, only lower-layer cortical neurons express N-cadherin. Remarkably, when we silenced astrocytic N-cadherin throughout the cortex, only lower-layer astrocyte morphology was disrupted. These findings show that δ-catenin controls astrocyte-neuron cadherin interactions that regulate layer-specific astrocyte morphogenesis.
Collapse
Affiliation(s)
- Christabel Xin Tan
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | | | - Evelyn J. Hardin
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Kristina Sakers
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Ryan Baumert
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Juan J. Ramirez
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Justin T. Savage
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Townes-Anderson E, Halász É, Sugino I, Davidow AL, Frishman LJ, Fritzky L, Yousufzai FAK, Zarbin M. Injury to Cone Synapses by Retinal Detachment: Differences from Rod Synapses and Protection by ROCK Inhibition. Cells 2023; 12:1485. [PMID: 37296606 PMCID: PMC10253016 DOI: 10.3390/cells12111485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Attachment of a detached retina does not always restore vision to pre-injury levels, even if the attachment is anatomically successful. The problem is due in part to long-term damage to photoreceptor synapses. Previously, we reported on damage to rod synapses and synaptic protection using a Rho kinase (ROCK) inhibitor (AR13503) after retinal detachment (RD). This report documents the effects of detachment, reattachment, and protection by ROCK inhibition on cone synapses. Conventional confocal and stimulated emission depletion (STED) microscopy were used for morphological assessment and electroretinograms for functional analysis of an adult pig model of RD. RDs were examined 2 and 4 h after injury or two days later when spontaneous reattachment had occurred. Cone pedicles respond differently than rod spherules. They lose their synaptic ribbons, reduce invaginations, and change their shape. ROCK inhibition protects against these structural abnormalities whether the inhibitor is applied immediately or 2 h after the RD. Functional restoration of the photopic b-wave, indicating cone-bipolar neurotransmission, is also improved with ROCK inhibition. Successful protection of both rod and cone synapses with AR13503 suggests this drug will (1) be a useful adjunct to subretinal administration of gene or stem cell therapies and (2) improve recovery of the injured retina when treatment is delayed.
Collapse
Affiliation(s)
- Ellen Townes-Anderson
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA;
| | - Éva Halász
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA;
| | - Ilene Sugino
- Institute of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, 90 Bergen Street, Newark, NJ 07103, USA; (I.S.); (M.Z.)
| | - Amy L. Davidow
- Department of Biostatistics, New York University School of Global Public Health, 708 Broadway, New York, NY 10003, USA;
| | - Laura J. Frishman
- Department of Vision Sciences, College of Optometry, University of Houston, Martin Luther King Blvd, Houston, TX 77204, USA;
| | - Luke Fritzky
- Cellular Imaging and Histology Core, Rutgers New Jersey Medical School, 205 South Orange Avenue, Newark, NJ 07103, USA; (L.F.); (F.A.K.Y.)
| | - Fawad A. K. Yousufzai
- Cellular Imaging and Histology Core, Rutgers New Jersey Medical School, 205 South Orange Avenue, Newark, NJ 07103, USA; (L.F.); (F.A.K.Y.)
| | - Marco Zarbin
- Institute of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, 90 Bergen Street, Newark, NJ 07103, USA; (I.S.); (M.Z.)
| |
Collapse
|
3
|
Dissanayake WC, Shepherd PR. β-cells retain a pool of insulin-containing secretory vesicles regulated by adherens junctions and the cadherin binding protein p120 catenin. J Biol Chem 2022; 298:102240. [PMID: 35809641 PMCID: PMC9358467 DOI: 10.1016/j.jbc.2022.102240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/03/2022] Open
Abstract
The β-cells of the islets of Langerhans are the sole producers of insulin in the human body. In response to rising glucose levels, insulin-containing vesicles inside β-cells fuse with the plasma membrane and release their cargo. However, the mechanisms regulating this process are only partly understood. Previous evidence indicated reductions in α-catenin elevate insulin release, while reductions in β-catenin decrease insulin release. α- and β-catenin contribute to cellular regulation in a range of ways but one is as members of the adherens junction complex and these contribute to the development of cell polarity in b-cells. Therefore, we investigated the effects of adherens junctions on insulin release. We show in INS-1E β-cells knockdown of either E- or N-cadherin had only small effects on insulin secretion, but simultaneous knockout of both cadherins resulted in a significant increase in basal insulin release to the same level as glucose-stimulated release. This double knockdown also significantly attenuated levels of p120 catenin, a cadherin binding partner involved in regulating cadherin turnover. Conversely, reducing p120 catenin levels with siRNA destabilized both E- and N-cadherin, and this was also associated with an increase in levels of insulin secreted from INS-1E cells. Furthermore, there were also changes in these cells consistent with higher insulin release, namely reductions in levels of F-actin and increased intracellular free Ca2+ levels in response to KCl-induced membrane depolarization. Taken together, these data provide evidence that adherens junctions play important roles in retaining a pool of insulin secretory vesicles within the cell and establish a role for p120 catenin in regulating this process.
Collapse
Affiliation(s)
- Waruni C Dissanayake
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
4
|
García-Morales V, Gento-Caro Á, Portillo F, Montero F, González-Forero D, Moreno-López B. Lysophosphatidic Acid and Several Neurotransmitters Converge on Rho-Kinase 2 Signaling to Manage Motoneuron Excitability. Front Mol Neurosci 2021; 14:788039. [PMID: 34938160 PMCID: PMC8685439 DOI: 10.3389/fnmol.2021.788039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Intrinsic membrane excitability (IME) sets up neuronal responsiveness to synaptic drive. Several neurotransmitters and neuromodulators, acting through G-protein-coupled receptors (GPCRs), fine-tune motoneuron (MN) IME by modulating background K+ channels TASK1. However, intracellular partners linking GPCRs to TASK1 modulation are not yet well-known. We hypothesized that isoform 2 of rho-kinase (ROCK2), acting as downstream GPCRs, mediates adjustment of MN IME via TASK1. Electrophysiological recordings were performed in hypoglossal MNs (HMNs) obtained from adult and neonatal rats, neonatal knockout mice for TASK1 (task1–/–) and TASK3 (task3–/–, the another highly expressed TASK subunit in MNs), and primary cultures of embryonic spinal cord MNs (SMNs). Small-interfering RNA (siRNA) technology was also used to knockdown either ROCK1 or ROCK2. Furthermore, ROCK activity assays were performed to evaluate the ability of various physiological GPCR ligands to stimulate ROCK. Microiontophoretically applied H1152, a ROCK inhibitor, and siRNA-induced ROCK2 knockdown both depressed AMPAergic, inspiratory-related discharge activity of adult HMNs in vivo, which mainly express the ROCK2 isoform. In brainstem slices, intracellular constitutively active ROCK2 (aROCK2) led to H1152-sensitive HMN hyper-excitability. The aROCK2 inhibited pH-sensitive and TASK1-mediated currents in SMNs. Conclusively, aROCK2 increased IME in task3–/–, but not in task1–/– HMNs. MN IME was also augmented by the physiological neuromodulator lysophosphatidic acid (LPA) through a mechanism entailing Gαi/o-protein stimulation, ROCK2, but not ROCK1, activity and TASK1 inhibition. Finally, two neurotransmitters, TRH, and 5-HT, which are both known to increase MN IME by TASK1 inhibition, stimulated ROCK2, and depressed background resting currents via Gαq/ROCK2 signaling. These outcomes suggest that LPA and several neurotransmitters impact MN IME via Gαi/o/Gαq-protein-coupled receptors, downstream ROCK2 activation, and subsequent inhibition of TASK1 channels.
Collapse
Affiliation(s)
- Victoria García-Morales
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Ángela Gento-Caro
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Federico Portillo
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Fernando Montero
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - David González-Forero
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Bernardo Moreno-López
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| |
Collapse
|
5
|
Carlson AL, Bennett NK, Francis NL, Halikere A, Clarke S, Moore JC, Hart RP, Paradiso K, Wernig M, Kohn J, Pang ZP, Moghe PV. Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds. Nat Commun 2016; 7:10862. [PMID: 26983594 PMCID: PMC4800432 DOI: 10.1038/ncomms10862] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 01/27/2016] [Indexed: 01/04/2023] Open
Abstract
Cell replacement therapy with human pluripotent stem cell-derived neurons has the potential to ameliorate neurodegenerative dysfunction and central nervous system injuries, but reprogrammed neurons are dissociated and spatially disorganized during transplantation, rendering poor cell survival, functionality and engraftment in vivo. Here, we present the design of three-dimensional (3D) microtopographic scaffolds, using tunable electrospun microfibrous polymeric substrates that promote in situ stem cell neuronal reprogramming, neural network establishment and support neuronal engraftment into the brain. Scaffold-supported, reprogrammed neuronal networks were successfully grafted into organotypic hippocampal brain slices, showing an ∼3.5-fold improvement in neurite outgrowth and increased action potential firing relative to injected isolated cells. Transplantation of scaffold-supported neuronal networks into mouse brain striatum improved survival ∼38-fold at the injection site relative to injected isolated cells, and allowed delivery of multiple neuronal subtypes. Thus, 3D microscale biomaterials represent a promising platform for the transplantation of therapeutic human neurons with broad neuro-regenerative relevance. Human pluripotent stem cell derived neurons have the potential for cell replacement therapy for brain injury and disease but problems on transplantation need to be overcome. Here, the authors use a microtopographic scaffold to graft neurons into both hippocampal organoids and the mouse brain striatum.
Collapse
Affiliation(s)
- Aaron L Carlson
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Neal K Bennett
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Nicola L Francis
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Apoorva Halikere
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 89 French Street, New Brunswick, New Jersey 08854, USA.,Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, New Brunswick, New Jersey 08854, USA
| | - Stephen Clarke
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey 08854, USA
| | - Jennifer C Moore
- Human Genetics Institute of New Jersey, 145 Bevier Road, Piscataway, New Jersey 08854, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey 08854, USA.,Human Genetics Institute of New Jersey, 145 Bevier Road, Piscataway, New Jersey 08854, USA
| | - Kenneth Paradiso
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey 08854, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joachim Kohn
- Department of Chemistry and Chemical Biology, New Jersey Center for Biomaterials, 145 Bevier Road, Piscataway, New Jersey 08854, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 89 French Street, New Brunswick, New Jersey 08854, USA.,Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, New Brunswick, New Jersey 08854, USA
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA.,Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey 08854, USA
| |
Collapse
|
6
|
Rousset M, Cens T, Menard C, Bowerman M, Bellis M, Brusés J, Raoul C, Scamps F, Charnet P. Regulation of neuronal high-voltage activated Ca(V)2 Ca(2+) channels by the small GTPase RhoA. Neuropharmacology 2015; 97:201-9. [PMID: 26044639 DOI: 10.1016/j.neuropharm.2015.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/12/2015] [Accepted: 05/16/2015] [Indexed: 11/29/2022]
Abstract
High-Voltage-Activated (HVA) Ca(2+) channels are known regulators of synapse formation and transmission and play fundamental roles in neuronal pathophysiology. Small GTPases of Rho and RGK families, via their action on both cytoskeleton and Ca(2+) channels are key molecules for these processes. While the effects of RGK GTPases on neuronal HVA Ca(2+) channels have been widely studied, the effects of RhoA on the HVA channels remains however elusive. Using heterologous expression in Xenopus laevis oocytes, we show that RhoA activity reduces Ba(2+) currents through CaV2.1, CaV2.2 and CaV2.3 Ca(2+) channels independently of CaVβ subunit. This inhibition occurs independently of RGKs activity and without modification of biophysical properties and global level of expression of the channel subunit. Instead, we observed a marked decrease in the number of active channels at the plasma membrane. Pharmacological and expression studies suggest that channel expression at the plasma membrane is impaired via a ROCK-sensitive pathway. Expression of constitutively active RhoA in primary culture of spinal motoneurons also drastically reduced HVA Ca(2+) current amplitude. Altogether our data revealed that HVA Ca(2+) channels regulation by RhoA might govern synaptic transmission during development and potentially contribute to pathophysiological processes when axon regeneration and growth cone kinetics are impaired.
Collapse
Affiliation(s)
- Matthieu Rousset
- IBMM, CNRS UMR 5247, Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Thierry Cens
- IBMM, CNRS UMR 5247, Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Claudine Menard
- IBMM, CNRS UMR 5247, Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Melissa Bowerman
- Institut des Neurosciences, INSERM U1051, 80 rue Augustin Fliche, 34091 Montpellier, France
| | - Michel Bellis
- IBMM, CNRS UMR 5247, Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Juan Brusés
- Department of Natural Sciences, Mercy College, Dobbs Ferry, NY 10522, USA; Institute for Cell Biology and Neuroscience (CONICET-UBA), Buenos Aires, Argentina
| | - Cedric Raoul
- Institut des Neurosciences, INSERM U1051, 80 rue Augustin Fliche, 34091 Montpellier, France
| | - Frédérique Scamps
- Institut des Neurosciences, INSERM U1051, 80 rue Augustin Fliche, 34091 Montpellier, France
| | - Pierre Charnet
- IBMM, CNRS UMR 5247, Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France.
| |
Collapse
|
7
|
Sheng L, Leshchyns'ka I, Sytnyk V. Cell adhesion and intracellular calcium signaling in neurons. Cell Commun Signal 2013; 11:94. [PMID: 24330678 PMCID: PMC3878801 DOI: 10.1186/1478-811x-11-94] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/05/2013] [Indexed: 01/10/2023] Open
Abstract
Cell adhesion molecules (CAMs) play indispensable roles in the developing and mature brain by regulating neuronal migration and differentiation, neurite outgrowth, axonal fasciculation, synapse formation and synaptic plasticity. CAM-mediated changes in neuronal behavior depend on a number of intracellular signaling cascades including changes in various second messengers, among which CAM-dependent changes in intracellular Ca2+ levels play a prominent role. Ca2+ is an essential secondary intracellular signaling molecule that regulates fundamental cellular functions in various cell types, including neurons. We present a systematic review of the studies reporting changes in intracellular Ca2+ levels in response to activation of the immunoglobulin superfamily CAMs, cadherins and integrins in neurons. We also analyze current experimental evidence on the Ca2+ sources and channels involved in intracellular Ca2+ increases mediated by CAMs of these families, and systematically review the role of the voltage-dependent Ca2+ channels (VDCCs) in neurite outgrowth induced by activation of these CAMs. Molecular mechanisms linking CAMs to VDCCs and intracellular Ca2+ stores in neurons are discussed.
Collapse
Affiliation(s)
| | | | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
8
|
Jidigam VK, Gunhaga L. Development of cranial placodes: insights from studies in chick. Dev Growth Differ 2012; 55:79-95. [PMID: 23278869 DOI: 10.1111/dgd.12027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 12/19/2022]
Abstract
This review focuses on how research, using chick as a model system, has contributed to our knowledge regarding the development of cranial placodes. This review highlights when and how molecular signaling events regulate early specification of placodal progenitor cells, as well as the development of individual placodes including morphological movements. In addition, we briefly describe various techniques used in chick that are important for studies in cell and developmental biology.
Collapse
Affiliation(s)
- Vijay K Jidigam
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | | |
Collapse
|
9
|
Flannery RJ, Brusés JL. N-cadherin induces partial differentiation of cholinergic presynaptic terminals in heterologous cultures of brainstem neurons and CHO cells. Front Synaptic Neurosci 2012; 4:6. [PMID: 23227006 PMCID: PMC3514636 DOI: 10.3389/fnsyn.2012.00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/16/2012] [Indexed: 11/18/2022] Open
Abstract
N-cadherin is a calcium-sensitive cell adhesion molecule commonly expressed at synaptic junctions and contributes to formation and maturation of synaptic contacts. This study used heterologous cell cultures of brainstem cholinergic neurons and transfected Chinese Hamster Ovary (CHO) cells to examine whether N-cadherin is sufficient to induce differentiation of cholinergic presynaptic terminals. Brainstem nuclei isolated from transgenic mice expressing enhanced green fluorescent protein (EGFP) under the control of choline acetyltransferase (ChAT) transcriptional regulatory elements (ChATBACEGFP) were cultured as tissue explants for 5 days and cocultured with transfected CHO cells for an additional 2 days. Immunostaining for synaptic vesicle proteins SV2 and synapsin I revealed a ~3-fold increase in the area of SV2 immunolabeling over N-cadherin expressing CHO cells, and this effect was enhanced by coexpression of p120-catenin. Synapsin I immunolabeling per axon length was also increased on N-cadherin expressing CHO cells but required coexpression of p120-catenin. To determine whether N-cadherin induces formation of neurotransmitter release sites, whole-cell voltage-clamp recordings of CHO cells expressing α3 and β4 nicotinic acetylcholine receptor (nAChR) subunits in contact with cholinergic axons were used to monitor excitatory postsynaptic potentials (EPSPs) and miniature EPSPs (mEPSPs). EPSPs and mEPSPs were not detected in both, control and in N-cadherin expressing CHO cells in the absence or presence of tetrodotoxin (TTX). These results indicate that expression of N-cadherin in non-neuronal cells is sufficient to initiate differentiation of presynaptic cholinergic terminals by inducing accumulation of synaptic vesicles; however, development of readily detectable mature cholinergic release sites and/or clustering of postsynaptic nAChR may require expression of additional synaptogenic proteins.
Collapse
Affiliation(s)
- Richard J Flannery
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine Kansas City, KS, USA
| | | |
Collapse
|
10
|
Santos-Silva JC, Carvalho CPDF, de Oliveira RB, Boschero AC, Collares-Buzato CB. Cell-to-cell contact dependence and junctional protein content are correlated with in vivo maturation of pancreatic beta cells. Can J Physiol Pharmacol 2012; 90:837-50. [DOI: 10.1139/y2012-064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we investigated the cellular distribution of junctional proteins and the dependence on cell–cell contacts of pancreatic beta cells during animal development. Fetus and newborn rat islets, which display a relatively poor insulin secretory response to glucose, present an immature morphology and cytoarchitecture when compared with young and adult islets that are responsive to glucose. At the perinatal stage, beta cells display a low junctional content of neural cell adhesion molecule (N-CAM), α- and β-catenins, ZO-1, and F-actin, while a differential distribution of N-CAM and Pan-cadherin was seen in beta cells and nonbeta cells only from young and adult islets. In the absence of intercellular contacts, the glucose-stimulated insulin secretion was completely blocked in adult beta cells, but after reaggregation they partially reestablished the secretory response to glucose. By contrast, neonatal beta cells were poorly responsive to sugar, regardless of whether they were arranged as intact islets or as isolated cells. Interestingly, after 10 days of culturing, neonatal beta cells, known to display increased junctional protein content in vitro, became responsive to glucose and concomitantly dependent on cell–cell contacts. Therefore, our data suggest that the developmental acquisition of an adult-like insulin secretory pattern is paralleled by a dependence on direct cell–cell interactions.
Collapse
Affiliation(s)
- Junia Carolina Santos-Silva
- Department of Histology and Embryology, Institute of Biology, University of Campinas (UNICAMP), Campinas CEP 13083-970, São Paulo, Brazil
| | - Carolina Prado de França Carvalho
- Department of Histology and Embryology, Institute of Biology, University of Campinas (UNICAMP), Campinas CEP 13083-970, São Paulo, Brazil
| | - Ricardo Beltrame de Oliveira
- Department of Histology and Embryology, Institute of Biology, University of Campinas (UNICAMP), Campinas CEP 13083-970, São Paulo, Brazil
| | - Antonio Carlos Boschero
- Department of Anatomy, Cell Biology and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carla Beatriz Collares-Buzato
- Department of Histology and Embryology, Institute of Biology, University of Campinas (UNICAMP), Campinas CEP 13083-970, São Paulo, Brazil
| |
Collapse
|
11
|
Endogenous Rho-kinase signaling maintains synaptic strength by stabilizing the size of the readily releasable pool of synaptic vesicles. J Neurosci 2012; 32:68-84. [PMID: 22219271 DOI: 10.1523/jneurosci.3215-11.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rho-associated kinase (ROCK) regulates neural cell migration, proliferation and survival, dendritic spine morphology, and axon guidance and regeneration. There is, however, little information about whether ROCK modulates the electrical activity and information processing of neuronal circuits. At neonatal stage, ROCKα is expressed in hypoglossal motoneurons (HMNs) and in their afferent inputs, whereas ROCKβ is found in synaptic terminals on HMNs, but not in their somata. Inhibition of endogenous ROCK activity in neonatal rat brainstem slices failed to modulate intrinsic excitability of HMNs, but strongly attenuated the strength of their glutamatergic and GABAergic synaptic inputs. The mechanism acts presynaptically to reduce evoked neurotransmitter release. ROCK inhibition increased myosin light chain (MLC) phosphorylation, which is known to trigger actomyosin contraction, and reduced the number of synaptic vesicles docked to active zones in excitatory boutons. Functional and ultrastructural changes induced by ROCK inhibition were fully prevented/reverted by MLC kinase (MLCK) inhibition. Furthermore, ROCK inhibition drastically reduced the phosphorylated form of p21-associated kinase (PAK), which directly inhibits MLCK. We conclude that endogenous ROCK activity is necessary for the normal performance of motor output commands, because it maintains afferent synaptic strength, by stabilizing the size of the readily releasable pool of synaptic vesicles. The mechanism of action involves a tonic inhibition of MLCK, presumably through PAK phosphorylation. This mechanism might be present in adults since unilateral microinjection of ROCK or MLCK inhibitors into the hypoglossal nucleus reduced or increased, respectively, whole XIIth nerve activity.
Collapse
|
12
|
Boyer JG, Bowerman M, Kothary R. The many faces of SMN: deciphering the function critical to spinal muscular atrophy pathogenesis. FUTURE NEUROLOGY 2010. [DOI: 10.2217/fnl.10.57] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spinal muscular atrophy (SMA) is the leading genetic cause of infant death, affecting 1 in 6000–10,000 live births. SMA is an autosomal recessive disorder characterized by the degeneration of α-motor neurons, and lower limb and proximal muscle weakness and wasting. SMA is the result of the deletion of or mutations in the survival motor neuron (SMN)1 gene. Currently, our understanding of how loss of the widely expressed SMN leads to the selective pathogenesis observed in SMA is limited. Here, we discuss the known nuclear and cytoplasmic functions of the SMN protein and how they relate to the SMA pathology reported in motor neurons, striated muscle and at neuromuscular junctions. While a vast amount of work in various cell and animal models has increased our knowledge of the many functions of the SMN protein, we have yet to come to a full understanding of which role(s) are central to SMA pathogenesis.
Collapse
Affiliation(s)
- Justin G Boyer
- Ottawa Hospital Research Institute, Regenerative Medicine Program, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, ON, Canada
| | - Mélissa Bowerman
- Ottawa Hospital Research Institute, Regenerative Medicine Program, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, ON, Canada
| | - Rashmi Kothary
- Department of Medicine, University of Ottawa, ON, Canada
| |
Collapse
|
13
|
Synchronous and asynchronous transmitter release at nicotinic synapses are differentially regulated by postsynaptic PSD-95 proteins. J Neurosci 2010; 29:15770-9. [PMID: 20016093 DOI: 10.1523/jneurosci.4951-09.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rate and timing of information transfer at neuronal synapses are critical for determining synaptic efficacy and higher network function. Both synchronous and asynchronous neurotransmitter release shape the pattern of synaptic influences on a neuron. The PSD-95 family of postsynaptic scaffolding proteins, in addition to organizing postsynaptic components at glutamate synapses, acts transcellularly to regulate synchronous glutamate release. Here we show that PSD-95 family members at nicotinic synapses on chick ciliary ganglion neurons in culture execute multiple functions to enhance transmission. Together, endogenous PSD-95 and SAP102 in the postsynaptic cell appear to regulate transcellularly the synchronous release of transmitter from presynaptic terminals onto the neuron while stabilizing postsynaptic nicotinic receptor clusters under the release sites. Endogenous SAP97, in contrast, has no effect on receptor clusters but acts transcellularly from the postsynaptic cell through N-cadherin to enhance asynchronous release. These separate and parallel regulatory pathways allow postsynaptic scaffold proteins to dictate the pattern of cholinergic input a neuron receives; they also require balancing of PSD-95 protein levels to avoid disruptive competition that can occur through common binding domains.
Collapse
|
14
|
Bowerman M, Beauvais A, Anderson CL, Kothary R. Rho-kinase inactivation prolongs survival of an intermediate SMA mouse model. Hum Mol Genet 2010; 19:1468-78. [DOI: 10.1093/hmg/ddq021] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
15
|
Leyris JP, Gondeau C, Charnet A, Delattre C, Rousset M, Cens T, Charnet P. RGK GTPase-dependent CaV2.1 Ca2+ channel inhibition is independent of CaVbeta-subunit-induced current potentiation. FASEB J 2009; 23:2627-38. [PMID: 19332647 DOI: 10.1096/fj.08-122135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RGK (Rad-Gem-Rem) GTPases have been described as potent negative regulators of the Ca(2+) influx via high-threshold voltage-activated Ca(2+) channels. Recent work, mostly performed on Ca(V)1.2 Ca(2+) channels, has highlighted the crucial role played by the channel auxiliary Ca(V)beta subunits and identified several GTPase and beta-subunit protein domains involved in this regulation. We now extend these conclusions by producing the first complete characterization of the effects of Gem, Rem, and Rem2 on the neuronal Ca(V)2.1 Ca(2+) channels expressed with Ca(V)beta(1) or Ca(V)beta(2) subunits. Current inhibition is limited to a decrease in amplitude with no modification in the voltage dependence or kinetics of the current. We demonstrate that this inhibition can occur for Ca(V)beta constructs with impaired capacity to induce current potentiation, but that it is lost for Ca(V)beta constructs deleted for their beta-interaction domain. The RGK C-terminal last approximately 80 amino acids are sufficient to allow potent current inhibition and in vivo beta-subunit/Gem interaction. Interestingly, although Gem and Gem carboxy-terminus induce a completely different pattern of beta-subunit cellular localization, they both potently inhibit Ca(V)2.1 channels. These data therefore set the status of neuronal Ca(V)2.1 Ca(2+) channel inhibition by RGK GTPases, emphasizing the role of short amino acid sequences of both proteins in beta-subunit binding and channel inhibition and revealing a new mechanism for channel inhibition.
Collapse
Affiliation(s)
- J-P Leyris
- CRBM, CNRS UMR 5237, Université de Montpellier 1, 34293 Montpellier cedex, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Marrs GS, Theisen CS, Brusés JL. N-cadherin modulates voltage activated calcium influx via RhoA, p120-catenin, and myosin-actin interaction. Mol Cell Neurosci 2009; 40:390-400. [PMID: 19162191 PMCID: PMC2883866 DOI: 10.1016/j.mcn.2008.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/08/2008] [Accepted: 12/11/2008] [Indexed: 01/12/2023] Open
Abstract
N-cadherin is a transmembrane adhesion receptor that contributes to neuronal development and synapse formation through homophilic interactions that provide structural-adhesive support to contacts between cell membranes. In addition, N-cadherin homotypic binding may initiate cell signaling that regulates neuronal physiology. In this study, we investigated signaling capabilities of N-cadherin that control voltage activated calcium influx. Using whole-cell voltage clamp recording of isolated inward calcium currents in freshly isolated chick ciliary ganglion neurons we show that the juxtamembrane region of N-cadherin cytoplasmic domain regulates high-threshold voltage activated calcium currents by interacting with p120-catenin and activating RhoA. This regulatory mechanism requires myosin interaction with actin. Furthermore, N-cadherin homophilic binding enhanced voltage activated calcium current amplitude in dissociated neurons that have already developed mature synaptic contacts in vivo. The increase in calcium current amplitude was not affected by brefeldin A suggesting that the effect is caused via direct channel modulation and not by increasing channel expression. In contrast, homotypic N-cadherin interaction failed to regulate calcium influx in freshly isolated immature neurons. However, RhoA inhibitors enhanced calcium current amplitude in these immature neurons, suggesting that the inhibitory effect of RhoA on calcium entry is regulated during neuronal development and synapse maturation. These results indicate that N-cadherin modulates voltage activated calcium entry by a mechanism that involves RhoA activity and its downstream effects on the cytoskeleton, and suggest that N-cadherin provides support for synaptic maturation and sustained synaptic activity by facilitating voltage activated calcium influx.
Collapse
Affiliation(s)
| | - Christopher S. Theisen
- University of Kansas School of Medicine, Department of Anatomy and Cell Biology, Kansas City, KS 66160
| | - Juan L. Brusés
- University of Kansas School of Medicine, Department of Anatomy and Cell Biology, Kansas City, KS 66160
| |
Collapse
|
17
|
Shin HK, Salomone S, Ayata C. Targeting cerebrovascular Rho-kinase in stroke. Expert Opin Ther Targets 2009; 12:1547-64. [PMID: 19007322 DOI: 10.1517/14728220802539244] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Rho and Rho-associated kinase (ROCK) play pivotal roles in pathogenesis of vascular diseases including stroke. ROCK is expressed in all cell types relevant to stroke, and regulates a range of physiological processes. OBJECTIVE To provide an overview of ROCK as an experimental therapeutic target in cerebral ischemia, and the translational opportunities and obstacles in the prophylaxis and treatment of stroke. METHODS Relevant literature was reviewed. RESULTS ROCK activity is upregulated in chronic vascular risk factors such as diabetes, hyperlipidemia and hypertension, and more acutely by cerebral ischemia. ROCK activation is predicted to increase the risk of cerebral ischemia, and worsen the ischemic tissue outcome and functional recovery. Evidence suggests that ROCK inhibition is protective in models of cerebral ischemia. The benefit is mediated through multiple mechanisms. CONCLUSION ROCK is a promising therapeutic target in all stages of stroke.
Collapse
Affiliation(s)
- Hwa Kyoung Shin
- Pusan National University, Medical Research Center for Ischemic Tissue Regeneration, 10 Ami-dong, 1-Ga, Seo-Gu, Busan 602-739, Korea
| | | | | |
Collapse
|
18
|
Derangeon M, Bourmeyster N, Plaisance I, Pinet-Charvet C, Chen Q, Duthe F, Popoff MR, Sarrouilhe D, Hervé JC. RhoA GTPase and F-actin dynamically regulate the permeability of Cx43-made channels in rat cardiac myocytes. J Biol Chem 2008; 283:30754-65. [PMID: 18667438 DOI: 10.1074/jbc.m801556200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gap junctions are clusters of transmembrane channels allowing a passive diffusion of ions and small molecules between adjacent cells. Connexin43, the main channel-forming protein expressed in ventricular myocytes, can associate with zonula occludens-1, a scaffolding protein linked to the actin cytoskeleton and to signal transduction molecules. The possible influence of Rho GTPases, major regulators of cellular junctions and of the actin cytoskeleton, in the modulation of gap junctional intercellular communication (GJIC) was examined. The activation of RhoA by cytoxic necrotizing factor 1 markedly enhanced GJIC, whereas its specific inhibition by the Clostridium botulinum C3 exoenzyme significantly reduced it. RhoA activity affects GJIC without major cellular redistribution of junctional plaques or changes in the Cx43 phosphorylation pattern. As these GTPases frequently act via the cortical cytoskeleton, the importance of F-actin in the modulation of GJIC was investigated by means of agents interfering with actin polymerization. Cytoskeleton stabilization by phalloidin slowed down the kinetics of channel rundown in the absence of ATP, whereas its disruption by cytochalasin D rapidly and markedly reduced GJIC despite ATP presence. Cytoskeleton stabilization by phalloidin markedly reduced the consequences of RhoA activation or inactivation. This mechanism appears to be the first described capable to both up- or down-regulate GJIC through RhoA activation or, conversely, inhibition. The inhibition of Rho downstream kinase effectors had no effect on GJIC. The present results provide further insight into the gating and regulation of junctional channels and identify a new downstream target for the small G-protein RhoA.
Collapse
Affiliation(s)
- Mickaël Derangeon
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, F-86022 Poitiers, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tippens AL, Pare JF, Langwieser N, Moosmang S, Milner TA, Smith Y, Lee A. Ultrastructural evidence for pre- and postsynaptic localization of Cav1.2 L-type Ca2+ channels in the rat hippocampus. J Comp Neurol 2008; 506:569-83. [PMID: 18067152 DOI: 10.1002/cne.21567] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the hippocampal formation, Ca(v)1.2 (L-type) voltage-gated Ca(2+) channels mediate Ca(2+) signals that can trigger long-term alterations in synaptic efficacy underlying learning and memory. Immunocytochemical studies indicate that Ca(v)1.2 channels are localized mainly in the soma and proximal dendrites of hippocampal pyramidal neurons, but electrophysiological data suggest a broader distribution of these channels. To define the subcellular substrates underlying Ca(v)1.2 Ca(2+) signals, we analyzed the localization of Ca(v)1.2 in the hippocampal formation by using antibodies against the pore-forming alpha(1)-subunit of Ca(v)1.2 (alpha(1)1.2). By light microscopy, alpha(1)1.2-like immunoreactivity (alpha(1)1.2-IR) was detected in pyramidal cell soma and dendritic fields of areas CA1-CA3 and in granule cell soma and fibers in the dentate gyrus. At the electron microscopic level, alpha(1)1.2-IR was localized in dendrites, but also in axons, axon terminals, and glial processes in all hippocampal subfields. Plasmalemmal immunogold particles representing alpha(1)1.2-IR were more significant for small- than large-caliber dendrites and were largely associated with extrasynaptic regions in dendritic spines and axon terminals. These findings provide the first detailed ultrastructural analysis of Ca(v)1.2 localization in the brain and support functionally diverse roles of these channels in the hippocampal formation.
Collapse
Affiliation(s)
- Alyssa L Tippens
- Department of Pharmacology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Rogers GJ, Hodgkin MN, Squires PE. E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet. Cell Physiol Biochem 2007; 20:987-94. [PMID: 17982281 DOI: 10.1159/000110459] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The efficient secretion of insulin from beta-cells requires extensive intra-islet communication. The cell surface adhesion protein epithelial (E)-cadherin (ECAD) establishes and maintains epithelial tissues such as the islets of Langerhans. In this study, the role of ECAD in regulating insulin secretion from pseudoislets was investigated. METHODS The effect of an immuno-neutralising ECAD on gross morphology, cytosolic calcium signalling, direct cell-to-cell communication and insulin secretion was assessed by fura-2 microfluorimetry, Lucifer Yellow dye injection and insulin ELISA in an insulin-secreting model system. RESULTS Antibody blockade of ECAD reduces glucose-evoked changes in [Ca(2+)](i) and insulin secretion. Neutralisation of ECAD causes a breakdown in the glucose-stimulated synchronicity of calcium oscillations between discrete regions within the pseudoislet, and the transfer of dye from an individual cell within a cell cluster is attenuated in the absence of ECAD ligation, demonstrating that gap junction communication is disrupted. The functional consequence of neutralising ECAD is a significant reduction in insulin secretion. CONCLUSION Cell adhesion via ECAD has distinct roles in the regulation of intercellular communication between beta-cells within islets, with potential repercussions for insulin secretion.
Collapse
Affiliation(s)
- Gareth J Rogers
- Molecular Physiology Group, Biomedical Research Institute, Department of Biological Sciences, University of Warwick Coventry, UK
| | | | | |
Collapse
|
21
|
Kiryushko D, Bock E, Berezin V. Pharmacology of cell adhesion molecules of the nervous system. Curr Neuropharmacol 2007; 5:253-67. [PMID: 19305742 PMCID: PMC2644493 DOI: 10.2174/157015907782793658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/27/2007] [Accepted: 07/17/2007] [Indexed: 12/15/2022] Open
Abstract
Cell adhesion molecules (CAMs) play a pivotal role in the development and maintenance of the nervous system under normal conditions. They also are involved in numerous pathological processes such as inflammation, degenerative disorders, and cancer, making them attractive targets for drug development. The majority of CAMs are signal transducing receptors. CAM-induced intracellular signalling is triggered via homophilic (CAM-CAM) and heterophilic (CAM - other counter-receptors) interactions, which both can be targeted pharmacologically. We here describe the progress in the CAM pharmacology focusing on cadherins and CAMs of the immunoglobulin (Ig) superfamily, such as NCAM and L1. Structural basis of CAM-mediated cell adhesion and CAM-induced signalling are outlined. Different pharmacological approaches to study functions of CAMs are presented including the use of specific antibodies, recombinant proteins, and synthetic peptides. We also discuss how unravelling of the 3D structure of CAMs provides novel pharmacological tools for dissection of CAM-induced signalling pathways and offers therapeutic opportunities for a range of neurological disorders.
Collapse
Affiliation(s)
- Darya Kiryushko
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute Bld. 6.2, Blegdamsvej 3C, DK-2200, Copenhagen N, Denmark.
| | | | | |
Collapse
|
22
|
Koutsouki E, Lam RS, Seebohm G, Ureche ON, Ureche L, Baltaev R, Lang F. Modulation of human Kv1.5 channel kinetics by N-cadherin. Biochem Biophys Res Commun 2007; 363:18-23. [PMID: 17868645 DOI: 10.1016/j.bbrc.2007.07.181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 07/27/2007] [Indexed: 11/25/2022]
Abstract
Kv1.5 is expressed in multiple tissues including heart, brain, macrophages, as well as vascular, airway, and intestinal smooth muscle cells. Kv1.5 currents contribute to cardiac repolarization. In cardiac myocytes Kv1.5 colocalizes with N-cadherin. As Kv1.5 expression increases following establishment of cell-cell contacts and N-cadherin influences the activity of other ion channels, we explored whether N-cadherin participates in the regulation of Kv1.5 activity. To this end, we expressed Kv1.5 in Xenopus oocytes with or without additional expression of N-cadherin. Coexpression of N-cadherin was followed by a approximately 2- to 3-fold increase of Kv1.5 induced current. The effect of N-cadherin was not paralleled by significant alterations of Kv1.5 channel abundance within the oocyte cell membrane but resulted primarily from accelerated recovery from inactivation. In conclusion, N-cadherin modifies Kv1.5 channel activity and is thus a novel candidate signaling molecule participating in the regulation of a variety of functions including cardiac action potential and vascular tone.
Collapse
Affiliation(s)
- Evgenia Koutsouki
- Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Brusés JL. N-cadherin signaling in synapse formation and neuronal physiology. Mol Neurobiol 2007; 33:237-52. [PMID: 16954598 DOI: 10.1385/mn:33:3:237] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 11/30/1999] [Accepted: 02/22/2006] [Indexed: 11/11/2022]
Abstract
Neural cadherin (N-cadherin) is an adhesion receptor that is localized in abundance at neuronto- neuron synapses. N-cadherin contains an extracellular domain that binds to other cadherins on juxtaposed cell membranes, a single-pass transmembrane region, and a cytoplasmic tail that interacts with various proteins, including catenins, kinases, phosphatases, and presenilin 1. N-cadherin contributes to the structural and functional organization of the synaptic complex by ensuring the adhesion between synaptic membranes and organizing the underlying actin cytoskeleton. Additionally, recent findings have shown that N-cadherin may participate in synaptic physiology by regulating calcium influx through voltage-activated calcium currents. The diverse activities of N-cadherin stem from its ability to operate as both an adhesion molecule that links cytoskeletons across cell membranes and a ligand-activated homophilic receptor capable of initiating intracellular signaling. An important mechanism of cadherin signaling is the regulation of small Rho guanosine triphosphatase activity that affects cytoskeleton dynamics and calcium influx. Because both the regulation of cadherin adhesive activity and cadherin-mediated signaling are affected by the binding of molecules to the intracellular domain, changes in the composition of the N-cadherin complex are central to the regulation of cadherin-mediated functions. This article focuses on the roles that N-cadherin might play at the level of the synapse through its effect on adhesion and signaling in the proximity of the synaptic junction.
Collapse
Affiliation(s)
- Juan L Brusés
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, USA.
| |
Collapse
|
24
|
Halbleib JM, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 2007; 20:3199-214. [PMID: 17158740 DOI: 10.1101/gad.1486806] [Citation(s) in RCA: 759] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue morphogenesis during development is dependent on activities of the cadherin family of cell-cell adhesion proteins that includes classical cadherins, protocadherins, and atypical cadherins (Fat, Dachsous, and Flamingo). The extracellular domain of cadherins contains characteristic repeats that regulate homophilic and heterophilic interactions during adhesion and cell sorting. Although cadherins may have originated to facilitate mechanical cell-cell adhesion, they have evolved to function in many other aspects of morphogenesis. These additional roles rely on cadherin interactions with a wide range of binding partners that modify their expression and adhesion activity by local regulation of the actin cytoskeleton and diverse signaling pathways. Here we examine how different members of the cadherin family act in different developmental contexts, and discuss the mechanisms involved.
Collapse
Affiliation(s)
- Jennifer M Halbleib
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
25
|
Anastasiadis PZ. p120-ctn: A nexus for contextual signaling via Rho GTPases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:34-46. [PMID: 17028013 DOI: 10.1016/j.bbamcr.2006.08.040] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 08/24/2006] [Accepted: 08/27/2006] [Indexed: 01/11/2023]
Abstract
p120 catenin (p120) is the prototypic member of a subfamily of armadillo repeat domain proteins involved in intercellular adhesion. Recent evidence indicates that p120 associates with classical cadherins and regulates their stability. Ectopic p120 expression results in a variety of morphological effects, and promotes cell migration. There is now strong evidence that p120 acts, at least in part, through regulation of Rho GTPases. The data suggest that p120 may act as a signaling nexus, conveying messages from the cellular micro- and macro-environment to the cell's interior. By regulating Rho GTPases in a context-dependent manner p120 can exert profound effects on cellular responses from synaptic plasticity to vesicle trafficking, as well as regulate the motile vs. sessile, and possibly the proliferative vs. quiescent phenotype of epithelial cells. Here, we review the new evidence on the relationship of p120 to Rho GTPases, and discuss potential roles for the p120-Rho connection in normal and malignant cells.
Collapse
Affiliation(s)
- Panos Z Anastasiadis
- Department Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Rm. 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
26
|
Hodgkin MN, Rogers GJ, Squires PE. Colocalization between beta-catenin and insulin suggests a novel role for the adherens junction in beta-cell function. Pancreas 2007; 34:170-1. [PMID: 17198206 DOI: 10.1097/01.mpa.0000240616.28098.55] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
27
|
Abstract
Ca(2+) signals have profound and varied effects on growth cone motility and guidance. Modulation of Ca(2+) influx and release from stores by guidance cues shapes Ca(2+) signals, which determine the activation of downstream targets. Although the precise molecular mechanisms that underlie distinct Ca(2+)-mediated effects on growth cone behaviours remain unclear, recent studies have identified important players in both the regulation and targets of Ca(2+) signals in growth cones.
Collapse
Affiliation(s)
- Timothy M Gomez
- Department of Anatomy, University of Wisconsin School of Medicine, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
28
|
Rubio ME, Curcio C, Chauvet N, Brusés JL. Assembly of the N-cadherin complex during synapse formation involves uncoupling of p120-catenin and association with presenilin 1. Mol Cell Neurosci 2005; 30:118-30. [PMID: 16046145 DOI: 10.1016/j.mcn.2005.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 05/17/2005] [Accepted: 06/14/2005] [Indexed: 01/04/2023] Open
Abstract
N-cadherin is an adhesion receptor that participates in both interaction between immature pre- and postsynaptic neurons and in the stabilization and function of matured neuron-neuron synapses. To better understand how the N-cadherin complex contributes to synapse formation, we examined its distribution and composition during synapse formation in the chick ciliary neurons. It was found that at early phases of synaptogenesis, N-cadherin is distributed in small clusters on the cell surface and primarily associates with p120-catenin and beta-catenin. In contrast, as synaptic contacts matured, larger N-cadherin clusters were found localized adjacent to the active zone and associated with PS1 and gamma-catenin, while p120- and beta-catenin were dispersed among other cell regions, including axons. As it is known that PS1 binds gamma-catenin and that uncoupled p120-catenin can alter the cytoskeleton via its effect on Rho GTPases, these changes in the molecular composition of the N-cadherin complex (represented by the uncoupling of p120-catenin and association with PS1) may correspond to distinct functional states of the complex involved in synaptic maturation.
Collapse
Affiliation(s)
- Maria E Rubio
- Department of Physiology and Neurobiology, The University of Connecticut, 3107 Horsebarn Hill Road, Storrs, CT 06269, USA
| | | | | | | |
Collapse
|