1
|
Bhatia A, Thakur S, Kohal R, Brar S, Gupta GD, Verma SK. A comprehensive update on phytochemistry and medicinal developments of apocynin. Fitoterapia 2025; 183:106558. [PMID: 40280248 DOI: 10.1016/j.fitote.2025.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/11/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
The natural phenolic compound apocynin, referred to as acetovanillone, generated significant attention due to its diverse pharmacological properties, especially as an NADPH oxidase inhibitor, and it was applicable orally and effectively even at small doses. During chronic inflammation, various pro-inflammatory-related factors such as nuclear factor kappa β (NF-kβ), nitrotyrosine, poly adenosine diphosphate ribose polymerase (PARP), inducible nitric oxide synthase (iNOS), cluster of differentiation 31 (CD31), intercellular adhesion molecule-1 (ICAM-1), glycoproteins granule membrane protein 140 (GMP140), tumor necrosis factor-alpha (TNFα), p38 mitogen-activated protein kinases (p38 MAPK), membrane cofactor protein (MCP), interleukin-6 (IL-6), all of which could be targeted by apocynin. Research suggests that apocynin significantly benefits conditions like diabetes, cardiovascular diseases, and neurological disorders due to its ability to mitigate inflammation and enhance endothelial function. Further investigations are essential to examine apocynin and its derivatives, mainly its long-term potency. Future research must focus on clinical trials to evaluate its safety, effectiveness, and optimal dosing in various applications. This review provides a recent update on apocynin, covering aspects such as its extraction and isolation, chemical framework, biosynthesis, synthetic derivatives, pharmacological activities, patent landscape, stability and specifications.
Collapse
Affiliation(s)
- Anchal Bhatia
- Department of Pharmacognosy, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Shimple Thakur
- Department of Pharmacognosy, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Rupali Kohal
- Department of Pharmacognosy, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Seema Brar
- Department of Pharmacognosy, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, Punjab, India.
| |
Collapse
|
2
|
Bulgart HR, Lopez Perez MA, Weisleder N. Enhancing Membrane Repair Using Recombinant MG53/TRIM72 (rhMG53) Reduces Neurotoxicity in Alzheimer's Disease Models. Biomolecules 2025; 15:418. [PMID: 40149954 PMCID: PMC11940288 DOI: 10.3390/biom15030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Alzheimer's Disease (AD) is the most common neurodegenerative disease that involves neuronal cell death initiated by the breakdown of the plasma membrane. Amyloid beta (Aβ), a hallmark protein that contributes to AD pathogenesis, is known to interact directly with the plasma membrane and induce increased intracellular calcium levels, reactive oxygen species (ROS), and cell death. Our recent studies revealed that elevated levels of Aβ42 induce a plasma membrane repair defect in neurons that compromises this conserved cellular response that would normally repair the disruption. Here, we tested if recombinant MG53/TRIM72 protein (rhMG53), a therapeutic protein known to increase plasma membrane repair capacity, could enhance membrane repair in AD neurons. rhMG53 increased plasma membrane repair in ex vivo and in vitro tissue treated with Aβ42 or cerebrospinal fluid from AD patients, normalizing intracellular calcium levels, ROS, and cell death in treated cells. This study demonstrates that increasing plasma membrane repair can rescue neural cells from the neurotoxic effects of Aβ, indicating that elevating plasma membrane repair could be a viable therapeutic approach to reduce neuronal death in AD.
Collapse
Affiliation(s)
- Hannah R. Bulgart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA;
| | - Miguel A. Lopez Perez
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA;
| | - Noah Weisleder
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA;
| |
Collapse
|
3
|
Schiano ME, Billi C, Grillo G, Tkachuk O, De Caro C, Russo E, Comella F, Meli R, Frecentese F, Santagada V, Cinque P, Albrizio S, Persico M, Sodano F, Fattorusso C, Rimoli MG. Eco-friendly Synthesis and Molecular Modelling of 2-Phenylimidazo[1,2-b]pyridazine Derivatives: In Vitro and In Vivo Studies for Lead Optimization. ChemMedChem 2025; 20:e202400721. [PMID: 39561040 DOI: 10.1002/cmdc.202400721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
7-methyl-2-phenylimidazo[1,2-b]pyridazin-3-carboxylic acid (DM1) and 6-methoxy-2-phenylimidazo[1,2-b]pyridazin-3-carboxylic acid (DM2) have been shown to act as human (h) Cav3.1 voltage-gated calcium channel blockers with promising in vivo anti-absence activity, positioning them as potential antiepileptic drugs. The primary aim of this work was to develop cost-effective and environmentally friendly synthetic procedures for preparing 2-phenylimidazo[1,2-b]pyridazine derivatives. After optimizing the synthesis of this compound class using efficient and green techniques such as microwaves and ultrasound irradiation, we further evaluated the antiepileptic effects of DM1 and DM2 in two animal models: CD-1 ICR mice after pentylenetetrazol administration and DBA/2 mice with seizures induced by audiogenic stimuli. Their neuroprotective effect against oxidative stress were assessed using C6 rat brain glioma cells. DM1 and DM2 exhibited potent anti-seizure effects in both animal models and demonstrated significant in vitro neuroprotective activity by reducing reactive oxygen species release. To lay the groundwork for the future rational optimization of this promising class of compounds, the molecular bases of DM1 and DM2 activity were investigated by modelling their interaction with hCav3.1 channels. The calculated binding modes of DM1 and DM2 to hCav3.1 channels partially mirrored that of the selective Cav3.1 blocker Z944, paving the way for future lead optimization.
Collapse
Affiliation(s)
- Marica Erminia Schiano
- Department of Pharmacy, "Federico II" University of Napoli, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Chiara Billi
- Department of Pharmacy, "Federico II" University of Napoli, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Giorgio Grillo
- Department of Drug Science and Technology, University of Torino, 10125, Torino, Italy
| | - Oleh Tkachuk
- Department of Pharmacy, "Federico II" University of Napoli, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Carmen De Caro
- Department of Pharmacy, "Federico II" University of Napoli, Via Domenico Montesano 49, 80131, Napoli, Italy
- Department of Science of Health, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Emilio Russo
- Department of Science of Health, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Federica Comella
- Department of Pharmacy, "Federico II" University of Napoli, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Rosaria Meli
- Department of Pharmacy, "Federico II" University of Napoli, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Francesco Frecentese
- Department of Pharmacy, "Federico II" University of Napoli, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Vincenzo Santagada
- Department of Pharmacy, "Federico II" University of Napoli, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Pierfrancesco Cinque
- Department of Pharmacy, "Federico II" University of Napoli, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Stefania Albrizio
- Department of Pharmacy, "Federico II" University of Napoli, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Marco Persico
- Department of Pharmacy, "Federico II" University of Napoli, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Federica Sodano
- Department of Pharmacy, "Federico II" University of Napoli, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Caterina Fattorusso
- Department of Pharmacy, "Federico II" University of Napoli, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Maria Grazia Rimoli
- Department of Pharmacy, "Federico II" University of Napoli, Via Domenico Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
4
|
Silva ÁJC, de Lavor MSL. Nitroxidative Stress, Cell-Signaling Pathways, and Manganese Porphyrins: Therapeutic Potential in Neuropathic Pain. Int J Mol Sci 2025; 26:2050. [PMID: 40076672 PMCID: PMC11900433 DOI: 10.3390/ijms26052050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Neuropathic pain, a debilitating condition arising from somatosensory system damage, significantly impacts quality of life, leading to anxiety, self-mutilation, and depression. Oxidative and nitrosative stress, an imbalance between reactive oxygen and nitrogen species (ROS/RNS) and antioxidant defenses, plays a crucial role in its pathophysiology. While reactive species are essential for physiological functions, excessive levels can cause cellular component damage, leading to neuronal dysfunction and pain. This review highlights the complex interactions between reactive species, antioxidant systems, cell signaling, and neuropathic pain. We discuss the physiological roles of ROS/RNS and the detrimental effects of oxidative and nitrosative stress. Furthermore, we explore the potential of manganese porphyrins, compounds with antioxidant properties, as promising therapeutic agents to mitigate oxidative stress and alleviate neuropathic pain by targeting key cellular pathways involved in pain. Further research is needed to fully understand their therapeutic potential in managing neuropathic pain in human and non-human animals.
Collapse
Affiliation(s)
| | - Mário Sérgio Lima de Lavor
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil;
| |
Collapse
|
5
|
Yip JMX, Chiang GSH, Lee ICJ, Lehming-Teo R, Dai K, Dongol L, Wang LYT, Teo D, Seah GT, Lehming N. Mitochondria and the Repurposing of Diabetes Drugs for Off-Label Health Benefits. Int J Mol Sci 2025; 26:364. [PMID: 39796218 PMCID: PMC11719901 DOI: 10.3390/ijms26010364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
This review describes our current understanding of the role of the mitochondria in the repurposing of the anti-diabetes drugs metformin, gliclazide, GLP-1 receptor agonists, and SGLT2 inhibitors for additional clinical benefits regarding unhealthy aging, long COVID, mental neurogenerative disorders, and obesity. Metformin, the most prominent of these diabetes drugs, has been called the "Drug of Miracles and Wonders," as clinical trials have found it to be beneficial for human patients suffering from these maladies. To promote viral replication in all infected human cells, SARS-CoV-2 stimulates the infected liver cells to produce glucose and to export it into the blood stream, which can cause diabetes in long COVID patients, and metformin, which reduces the levels of glucose in the blood, was shown to cut the incidence rate of long COVID in half for all patients recovering from SARS-CoV-2. Metformin leads to the phosphorylation of the AMP-activated protein kinase AMPK, which accelerates the import of glucose into cells via the glucose transporter GLUT4 and switches the cells to the starvation mode, counteracting the virus. Diabetes drugs also stimulate the unfolded protein response and thus mitophagy, which is beneficial for healthy aging and mental health. Diabetes drugs were also found to mimic exercise and help to reduce body weight.
Collapse
Affiliation(s)
- Joyce Mei Xin Yip
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Grace Shu Hui Chiang
- Well Programme, Alexandra Hospital, National University Health System, Singapore 159964, Singapore; (G.S.H.C.)
| | - Ian Chong Jin Lee
- NUS High School of Mathematics and Science, Singapore 129957, Singapore
| | - Rachel Lehming-Teo
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Kexin Dai
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Lokeysh Dongol
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Laureen Yi-Ting Wang
- Well Programme, Alexandra Hospital, National University Health System, Singapore 159964, Singapore; (G.S.H.C.)
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore 119074, Singapore
- Division of Cardiology, Department of Medicine, Alexandra Hospital, National University Health System, Singapore 159964, Singapore
| | - Denise Teo
- Chi Longevity, Camden Medical Centre #10-04, 1 Orchard Blvd, Singapore 248649, Singapore
| | - Geok Teng Seah
- Clifford Dispensary, 77 Robinson Rd #06-02, Singapore 068896, Singapore
| | - Norbert Lehming
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| |
Collapse
|
6
|
Yang L, Zhao W, Kan Y, Ren C, Ji X. From Mechanisms to Medicine: Neurovascular Coupling in the Diagnosis and Treatment of Cerebrovascular Disorders: A Narrative Review. Cells 2024; 14:16. [PMID: 39791717 PMCID: PMC11719775 DOI: 10.3390/cells14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Neurovascular coupling (NVC) refers to the process of local changes in cerebral blood flow (CBF) after neuronal activity, which ensures the timely and adequate supply of oxygen, glucose, and substrates to the active regions of the brain. Recent clinical imaging and experimental technology advancements have deepened our understanding of the cellular mechanisms underlying NVC. Pathological conditions such as stroke, subarachnoid hemorrhage, cerebral small vascular disease, and vascular cognitive impairment can disrupt NVC even before clinical symptoms appear. However, the complexity of the underlying mechanism remains unclear. This review discusses basic and clinical experimental evidence on how neural activity sensitively communicates with the vasculature to cause spatial changes in blood flow in cerebrovascular diseases. A deeper understanding of how neurovascular unit-related cells participate in NVC regulation is necessary to better understand blood flow and nerve activity recovery in cerebrovascular diseases.
Collapse
Affiliation(s)
- Lu Yang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (L.Y.); (W.Z.); (Y.K.)
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (L.Y.); (W.Z.); (Y.K.)
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100054, China
| | - Yuan Kan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (L.Y.); (W.Z.); (Y.K.)
| | - Changhong Ren
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100054, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100054, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
7
|
Haessler A, Gier S, Jung N, Windbergs M. The Aβ 42:Aβ 40 ratio modulates aggregation in beta-amyloid oligomers and drives metabolic changes and cellular dysfunction. Front Cell Neurosci 2024; 18:1516093. [PMID: 39717390 PMCID: PMC11664223 DOI: 10.3389/fncel.2024.1516093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
The pathophysiological role of Aβ42 oligomers in the onset of Alzheimer's disease (AD) is heavily disputed, pivoting research toward investigating mixed oligomers composed of Aβ42 and Aβ40, which is more abundant but less aggregation-prone. This study investigates Aβ42:Aβ40 oligomers in different ratios, examining their adverse effects on endothelial cells, neurons, astroglia, and microglia, as well as in a human blood-brain barrier (BBB) model. Combining label-free Raman microscopy with complementary imaging techniques and biochemical assays, we show the prominent impact of Aβ40 on Aβ42 fibrillation, suggesting an inhibitory effect on aggregation. Mixed oligomers, especially with low proportions of Aβ42, were equally detrimental as pure Aβ42 oligomers regarding cell viability, functionality, and metabolism. They also differentially affected lipid droplet metabolism in BBB-associated microglia, indicating distinct pathophysiological responses. Our findings demonstrate the overarching significance of the Aβ42:Aβ40 ratio in Aβ oligomers, challenging the traditional focus on Aβ42 in AD research.
Collapse
Affiliation(s)
| | | | | | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Feng L, Li B, Yong SS, Wen X, Tian Z. The emerging role of exercise in Alzheimer's disease: Focus on mitochondrial function. Ageing Res Rev 2024; 101:102486. [PMID: 39243893 DOI: 10.1016/j.arr.2024.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by memory impairment and cognitive dysfunction, which eventually leads to the disability and mortality of older adults. Although the precise mechanisms by which age promotes the development of AD remains poorly understood, mitochondrial dysfunction plays a central role in the development of AD. Currently, there is no effective treatment for this debilitating disease. It is well accepted that exercise exerts neuroprotective effects by ameliorating mitochondrial dysfunction in the neurons of AD, which involves multiple mechanisms, including mitochondrial dynamics, biogenesis, mitophagy, transport, and signal transduction. In addition, exercise promotes mitochondria communication with other organelles in AD neurons, which should receive more attentions in the future.
Collapse
Affiliation(s)
- Lili Feng
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China.
| | - Bowen Li
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China
| | - Su Sean Yong
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China
| | - Xu Wen
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China.
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
9
|
Bulgart HR, Lopez Perez MA, Tucker A, Giarrano GN, Banford K, Miller O, Bonser SWG, Wold LE, Scharre D, Weisleder N. Plasma membrane repair defect in Alzheimer's disease neurons is driven by the reduced dysferlin expression. FASEB J 2024; 38:e70099. [PMID: 39400395 PMCID: PMC11486262 DOI: 10.1096/fj.202401731rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, and a defect in neuronal plasma membrane repair could exacerbate neurotoxicity, neuronal death, and disease progression. In this study, application of AD patient cerebrospinal fluid (CSF) and recombinant human Aβ to otherwise healthy neurons induces defective neuronal plasma membrane repair in vitro and ex vivo. We identified Aβ as the biochemical component in patient CSF leading to compromised repair capacity and depleting Aβ rescued repair capacity. These elevated Aβ levels reduced expression of dysferlin, a protein that facilitates membrane repair, by altering autophagy and reducing dysferlin trafficking to sites of membrane injury. Overexpression of dysferlin and autophagy inhibition rescued membrane repair. Overall, these findings indicate an AD pathogenic mechanism where Aβ impairs neuronal membrane repair capacity and increases susceptibility to cell death. This suggests that membrane repair could be therapeutically targeted in AD to restore membrane integrity and reduce neurotoxicity and neuronal death.
Collapse
Affiliation(s)
- Hannah R. Bulgart
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Miguel A. Lopez Perez
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Alexis Tucker
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Gianni N. Giarrano
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Kassidy Banford
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Olivia Miller
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Sidney W. G. Bonser
- Department of Applied Statistics and Research MethodsUniversity of Northern ColoradoGreeleyColoradoUSA
| | - Loren E. Wold
- Division of Cardiac Surgery, Department of Surgery, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Douglas Scharre
- Department of NeurologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Noah Weisleder
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Department of Molecular and Cellular BiochemistryUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| |
Collapse
|
10
|
Liu JY, Yin X, Dong YT. Exploration of the shared gene signatures and molecular mechanisms between Alzheimer's disease and intracranial aneurysm. Sci Rep 2024; 14:24628. [PMID: 39427050 PMCID: PMC11490550 DOI: 10.1038/s41598-024-75694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Although Alzheimer's disease (AD) and intracranial aneurysm (IA) were two different types of diseases that occurred in the brain, ruptured IA (RIA) survivors may experience varying degrees of cognitive dysfunction. Neither AD nor IA is easily recognizable by an early onset so that the incidence of adverse clinical outcomes would be on the rise. Therefore, we focused on the exploration of the shared genes and molecular mechanisms between AD and IA, which would be significant for the efficiency of co-screening and co-diagnosis. Two GEO datasets were selected for the weighted gene co-expression network analysis (WGCNA) and differentially expressed gene screening, obtaining 78 overlapped genes. Next, 9 hub genes were identified by the protein-protein interaction network, including PIK3CA, GAB1, IGF1R, PLCB1, PGR, PDGFRB, PLCE1, FGFR3, and SYNJ1. The interactions among the hub genes, miRNA, and TFs were also explored. Meanwhile, we performed GO and KEGG pathway enrichment analyses for the results of WGCNA and hub genes, which showed that the Ras signaling and Rap1 signaling were the main shared pathogenesis. In conclusion, the present bioinformatics analysis revealed that AD and IA had the shared genes and molecular mechanisms, and these outcomes were associated with inflammation and calcium homeostasis, which could provide research clues for further studies.
Collapse
Affiliation(s)
- Ji-Yun Liu
- Department of Clinical Laboratory, Guiyang Second People's Hospital, Guiyang, People's Republic of China
| | - Xuan Yin
- Department of Women Healthcare, Guiyang Maternal and Child Health Hospital, Guiyang, People's Republic of China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, No. 9, Beijing Road, Guiyang, 550004, People's Republic of China.
| |
Collapse
|
11
|
Fanlo-Ucar H, Picón-Pagès P, Herrera-Fernández V, ILL-Raga G, Muñoz FJ. The Dual Role of Amyloid Beta-Peptide in Oxidative Stress and Inflammation: Unveiling Their Connections in Alzheimer's Disease Etiopathology. Antioxidants (Basel) 2024; 13:1208. [PMID: 39456461 PMCID: PMC11505517 DOI: 10.3390/antiox13101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, and it is currently the seventh leading cause of death worldwide. It is characterized by the extracellular aggregation of the amyloid β-peptide (Aβ) into oligomers and fibrils that cause synaptotoxicity and neuronal death. Aβ exhibits a dual role in promoting oxidative stress and inflammation. This review aims to unravel the intricate connection between these processes and their contribution to AD progression. The review delves into oxidative stress in AD, focusing on the involvement of metals, mitochondrial dysfunction, and biomolecule oxidation. The distinct yet overlapping concept of nitro-oxidative stress is also discussed, detailing the roles of nitric oxide, mitochondrial perturbations, and their cumulative impact on Aβ production and neurotoxicity. Inflammation is examined through astroglia and microglia function, elucidating their response to Aβ and their contribution to oxidative stress within the AD brain. The blood-brain barrier and oligodendrocytes are also considered in the context of AD pathophysiology. We also review current diagnostic methodologies and emerging therapeutic strategies aimed at mitigating oxidative stress and inflammation, thereby offering potential treatments for halting or slowing AD progression. This comprehensive synthesis underscores the pivotal role of Aβ in bridging oxidative stress and inflammation, advancing our understanding of AD and informing future research and treatment paradigms.
Collapse
Affiliation(s)
- Hugo Fanlo-Ucar
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Pol Picón-Pagès
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
- Laboratory of Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08028 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Gerard ILL-Raga
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Francisco J. Muñoz
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| |
Collapse
|
12
|
Huang HM, Chang YC, Lee JJ, Huang YS, Wu KLH. ω-3 PUFAs Ameliorated the Maternal High-Fructose Diet-Induced Early-Onset Retinopathy in Offspring via Inhibiting NLRP3-Associated Neuroinflammation. Mol Nutr Food Res 2024; 68:e2400135. [PMID: 39318064 DOI: 10.1002/mnfr.202400135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/28/2024] [Indexed: 09/26/2024]
Abstract
SCOPE Maternal high fructose diet (HFD) during pregnancy and lactation can initiate retinal dysfunction. However, the underlying mechanism remains largely unknown. METHODS AND RESULTS By using the rodent model of maternal HFD in this study, the results from electroretinography (ERG) indicate that b-wave amplitude, an index of inner retinal function, is significantly reduced as early as 3 months old and the deteriorated effect can be detected at 15 months old. Further, the protein expressions of CD11b (a marker of active microglia), p40phox subunit of NADPH oxidase, GFAP (a marker of active astrocytes), and NLPR3 examined by western blot and immunofluorescence are significantly increased in the retina of the male HFD offspring at 3 months old. Treatment with omega-3 polyunsaturated fatty acids (ω-3 PUFAs) for 2 weeks (from 2.5 to 3 months old) effectively reverses the aforementioned changes. CONCLUSION Together, these results indicate that the early onset and extensive retinal dysfunction may be a result of glial activation which is induced by maternal HFD to initiate an inflammatory microenvironment leading to a long-term progression of retinopathy. Short-term administration of ω-3 PUFA at a young age may be a feasible strategy to intervene in the maternal HFD-programmed retinal impairment in male offspring.
Collapse
Affiliation(s)
- Hsiu-Mei Huang
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, 83301, Taiwan
| | - Ying-Chao Chang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, 83301, Taiwan
| | - Jong-Jer Lee
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, 83301, Taiwan
| | - Yao-Sheng Huang
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, 83301, Taiwan
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Republic of China
- Department of Senior Citizen Services, National Tainan Institute of Nursing, Tainan, 700, Republic of China
| |
Collapse
|
13
|
Fiadeiro MB, Diogo JC, Silva AA, Kim YS, Cristóvão AC. NADPH Oxidases in Neurodegenerative Disorders: Mechanisms and Therapeutic Opportunities. Antioxid Redox Signal 2024; 41:522-541. [PMID: 38760935 DOI: 10.1089/ars.2023.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Significance: The nicotinamide adenine dinucleotide phosphate oxidase (NOX) enzyme family, located in the central nervous system, is recognized as a source of reactive oxygen species (ROS) in the brain. Despite its importance in cellular processes, excessive ROS generation leads to cell death and is involved in the pathogenesis of neurodegenerative disorders. Recent advances: NOX enzymes contribute to the development of neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and stroke, highlighting their potential as targets for future therapeutic development. This review will discuss NOX's contribution and therapeutic targeting potential in neurodegenerative diseases, focusing on PD, AD, ALS, and stroke. Critical issues: Homeostatic and physiological levels of ROS are crucial for regulating several processes, such as development, memory, neuronal signaling, and vascular homeostasis. However, NOX-mediated excessive ROS generation is deeply involved in the damage of DNA, proteins, and lipids, leading to cell death in the pathogenesis of a wide range of diseases, namely neurodegenerative diseases. Future directions: It is essential to understand the role of NOX homologs in neurodegenerative disorders and the pathological mechanisms undergoing neurodegeneration mediated by increased levels of ROS. This further knowledge will allow the development of new specific NOX inhibitors and their application for neurodegenerative disease therapeutics. Antioxid. Redox Signal. 41, 522-541.
Collapse
Affiliation(s)
- Mariana B Fiadeiro
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| | - João C Diogo
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| | - Ana A Silva
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| | - Yoon-Seong Kim
- RWJMS Institute for Neurological Therapeutics, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Ana C Cristóvão
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
14
|
Angelova PR, Abramov AY. Interplay of mitochondrial calcium signalling and reactive oxygen species production in the brain. Biochem Soc Trans 2024; 52:1939-1946. [PMID: 39171662 PMCID: PMC11668289 DOI: 10.1042/bst20240261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Intracellular communication and regulation in brain cells is controlled by the ubiquitous Ca2+ and by redox signalling. Both of these independent signalling systems regulate most of the processes in cells including the cell surviving mechanism or cell death. In physiology Ca2+ can regulate and trigger reactive oxygen species (ROS) production by various enzymes and in mitochondria but ROS could also transmit redox signal to calcium levels via modification of calcium channels or phospholipase activity. Changes in calcium or redox signalling could lead to severe pathology resulting in excitotoxicity or oxidative stress. Interaction of the calcium and ROS is essential to trigger opening of mitochondrial permeability transition pore - the initial step of apoptosis, Ca2+ and ROS-induced oxidative stress involved in necrosis and ferroptosis. Here we review the role of redox signalling and Ca2+ in cytosol and mitochondria in the physiology of brain cells - neurons and astrocytes and how this integration can lead to pathology, including ischaemia injury and neurodegeneration.
Collapse
Affiliation(s)
- Plamena R. Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, U.K
| | - Andrey Y. Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, U.K
| |
Collapse
|
15
|
Reda SM, Setti SE, Berthiaume AA, Wu W, Taylor RW, Johnston JL, Stein LR, Moebius HJ, Church KJ. Fosgonimeton attenuates amyloid-beta toxicity in preclinical models of Alzheimer's disease. Neurotherapeutics 2024; 21:e00350. [PMID: 38599894 PMCID: PMC11067346 DOI: 10.1016/j.neurot.2024.e00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/12/2024] Open
Abstract
Positive modulation of hepatocyte growth factor (HGF) signaling may represent a promising therapeutic strategy for Alzheimer's disease (AD) based on its multimodal neurotrophic, neuroprotective, and anti-inflammatory effects addressing the complex pathophysiology of neurodegeneration. Fosgonimeton is a small-molecule positive modulator of the HGF system that has demonstrated neurotrophic and pro-cognitive effects in preclinical models of dementia. Herein, we evaluate the neuroprotective potential of fosgonimeton, or its active metabolite, fosgo-AM, in amyloid-beta (Aβ)-driven preclinical models of AD, providing mechanistic insight into its mode of action. In primary rat cortical neurons challenged with Aβ (Aβ1-42), fosgo-AM treatment significantly improved neuronal survival, protected neurite networks, and reduced tau hyperphosphorylation. Interrogation of intracellular events indicated that cortical neurons treated with fosgo-AM exhibited a significant decrease in mitochondrial oxidative stress and cytochrome c release. Following Aβ injury, fosgo-AM significantly enhanced activation of pro-survival effectors ERK and AKT, and reduced activity of GSK3β, one of the main kinases involved in tau hyperphosphorylation. Fosgo-AM also mitigated Aβ-induced deficits in Unc-like kinase 1 (ULK1) and Beclin-1, suggesting a potential effect on autophagy. Treatment with fosgo-AM protected cortical neurons from glutamate excitotoxicity, and such effects were abolished in the presence of an AKT or MEK/ERK inhibitor. In vivo, fosgonimeton administration led to functional improvement in an intracerebroventricular Aβ25-35 rat model of AD, as it significantly rescued cognitive function in the passive avoidance test. Together, our data demonstrate the ability of fosgonimeton to counteract mechanisms of Aβ-induced toxicity. Fosgonimeton is currently in clinical trials for mild-to-moderate AD (NCT04488419; NCT04886063).
Collapse
Affiliation(s)
- Sherif M Reda
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Sharay E Setti
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | | | - Wei Wu
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Robert W Taylor
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Jewel L Johnston
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Liana R Stein
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Hans J Moebius
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Kevin J Church
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA.
| |
Collapse
|
16
|
Shir D, Graff-Radford J, Fought AJ, Lesnick TG, Przybelski SA, Vassilaki M, Lowe VJ, Knopman DS, Machulda MM, Petersen RC, Jack CR, Mielke MM, Vemuri P. Complex relationships of socioeconomic status with vascular and Alzheimer's pathways on cognition. Neuroimage Clin 2024; 43:103634. [PMID: 38909419 PMCID: PMC11253683 DOI: 10.1016/j.nicl.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION AD and CVD, which frequently co-occur, are leading causes of age-related cognitive decline. We assessed how demographic factors, socioeconomic status (SES) as indicated by education and occupation, vascular risk factors, and a range of biomarkers associated with both CVD (including white matter hyperintensities [WMH], diffusion MRI abnormalities, infarctions, and microbleeds) and AD (comprising amyloid-PET and tau-PET) collectively influence cognitive function. METHODS In this cross-sectional population study, structural equation models were utilized to understand these associations in 449 participants (mean age (SD) = 74.5 (8.4) years; 56% male; 7.5% cognitively impaired). RESULTS (1) Higher SES had a protective effect on cognition with mediation through the vascular pathway. (2) The effect of amyloid directly on cognition and through tau was 11-fold larger than the indirect effect of amyloid on cognition through WMH. (3) There is a significant effect of vascular risk on tau deposition. DISCUSSION The utilized biomarkers captured the impact of CVD and AD on cognition. The overall effect of vascular risk and SES on these biomarkers are complex and need further investigation.
Collapse
Affiliation(s)
- Dror Shir
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Angela J Fought
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy G Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Maria Vassilaki
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, 55905 USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Michelle M Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | | |
Collapse
|
17
|
Vinokurov AY, Pogonyalova MY, Andreeva L, Abramov AY, Angelova PR. Energy substrate supplementation increases ATP levels and is protective to PD neurons. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100187. [PMID: 38841052 PMCID: PMC11150967 DOI: 10.1016/j.crphar.2024.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Alteration of mitochondrial metabolism by various mutations or toxins leads to various neurological conditions. Age-related changes in energy metabolism could also play the role of a trigger for neurodegenerative disorders. Nonetheless, it is not clear if restoration of ATP production or supplementation of brain cells with substrates for energy production could be neuroprotective. Using primary neurons and astrocytes, and neurons with familial forms of neurodegenerative disorders we studied whether various substrates of energy metabolism could improve mitochondrial metabolism and stimulate ATP production, and whether increased ATP levels could protect cells against glutamate excitotoxicity and neurodegeneration. We found that supplementation of neurons with several substrates, or combination thereof, for the TCA cycle and cellular respiration, and oxidative phosphorylation resulted in an increase in mitochondrial NADH level and in mitochondrial membrane potential and led to an increased level of ATP in neurons and astrocytes. Subsequently, these cells were protected against energy deprivation during ischemia or glutamate excitotoxicity. Provision of substrates for energy metabolism to cells with familial forms of Parkinson's disease also prevented triggering of cell death. Thus, restoration of energy metabolism and increase of ATP production can play neuroprotective role in neurodegeneration. A combination of a succinate salt of choline and nicotinamide provided the best results.
Collapse
Affiliation(s)
- Andrey Y. Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | | | | | - Andrey Y. Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| | - Plamena R. Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| |
Collapse
|
18
|
Seryogina ES, Kamynina AV, Koroev DO, Volpina OM, Vinokurov AY, Abramov AY. RAGE induces physiological activation of NADPH oxidase in neurons and astrocytes and neuroprotection. FEBS J 2024; 291:1944-1957. [PMID: 38335056 DOI: 10.1111/febs.17086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The transmembrane receptor for advanced glycation end products (RAGE) is a signaling receptor for many damage- and pathogen-associated molecules. Activation of RAGE is associated with inflammation and an increase in reactive oxygen species (ROS) production. Although several sources of ROS have been previously suggested, how RAGE induces ROS production is still unclear, considering the multiple targets of pathogen-associated molecules. Here, using acute brain slices and primary co-culture of cortical neurons and astrocytes, we investigated the effects of a range of synthetic peptides corresponding to the fragments of the RAGE V-domain on redox signaling. We found that the synthetic fragment (60-76) of the RAGE V-domain induces activation of ROS production in astrocytes and neurons from the primary co-culture and acute brain slices. This effect occurred through activation of RAGE and could be blocked by a RAGE inhibitor. Activation of RAGE by the synthetic fragment stimulates ROS production in NADPH oxidase (NOX). This RAGE-induced NOX activation produced only minor decreases in glutathione levels and increased the rate of lipid peroxidation, although it also reduced basal and β-amyloid induced cell death in neurons and astrocytes. Thus, specific activation of RAGE induces redox signaling through NOX, which can be a part of a cell protective mechanism.
Collapse
Affiliation(s)
| | - Anna V Kamynina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry O Koroev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Olga M Volpina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Andrey Y Abramov
- Orel State University, Russia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
19
|
Syvänen V, Koistinaho J, Lehtonen Š. Identification of the abnormalities in astrocytic functions as potential drug targets for neurodegenerative disease. Expert Opin Drug Discov 2024; 19:603-616. [PMID: 38409817 DOI: 10.1080/17460441.2024.2322988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Historically, astrocytes were seen primarily as a supportive cell population within the brain; with neurodegenerative disease research focusing exclusively on malfunctioning neurons. However, astrocytes perform numerous tasks that are essential for maintenance of the central nervous system`s complex processes. Disruption of these functions can have negative consequences; hence, it is unsurprising to observe a growing amount of evidence for the essential role of astrocytes in the development and progression of neurodegenerative diseases. Targeting astrocytic functions may serve as a potential disease-modifying drug therapy in the future. AREAS COVERED The present review emphasizes the key astrocytic functions associated with neurodegenerative diseases and explores the possibility of pharmaceutical interventions to modify these processes. In addition, the authors provide an overview of current advancement in this field by including studies of possible drug candidates. EXPERT OPINION Glial research has experienced a significant renaissance in the last quarter-century. Understanding how disease pathologies modify or are caused by astrocyte functions is crucial when developing treatments for brain diseases. Future research will focus on building advanced models that can more precisely correlate to the state in the human brain, with the goal of routinely testing therapies in these models.
Collapse
Affiliation(s)
- Valtteri Syvänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- Neuroscience Center, Helsinki Institute of Life Science, and Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Šárka Lehtonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Baev AY, Vinokurov AY, Potapova EV, Dunaev AV, Angelova PR, Abramov AY. Mitochondrial Permeability Transition, Cell Death and Neurodegeneration. Cells 2024; 13:648. [PMID: 38607087 PMCID: PMC11011324 DOI: 10.3390/cells13070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024] Open
Abstract
Neurodegenerative diseases are chronic conditions occurring when neurons die in specific brain regions that lead to loss of movement or cognitive functions. Despite the progress in understanding the mechanisms of this pathology, currently no cure exists to treat these types of diseases: for some of them the only help is alleviating the associated symptoms. Mitochondrial dysfunction has been shown to be involved in the pathogenesis of most the neurodegenerative disorders. The fast and transient permeability of mitochondria (the mitochondrial permeability transition, mPT) has been shown to be an initial step in the mechanism of apoptotic and necrotic cell death, which acts as a regulator of tissue regeneration for postmitotic neurons as it leads to the irreparable loss of cells and cell function. In this study, we review the role of the mitochondrial permeability transition in neuronal death in major neurodegenerative diseases, covering the inductors of mPTP opening in neurons, including the major ones-free radicals and calcium-and we discuss perspectives and difficulties in the development of a neuroprotective strategy based on the inhibition of mPTP in neurodegenerative disorders.
Collapse
Affiliation(s)
- Artyom Y. Baev
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent 100174, Uzbekistan;
- Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Andrey Y. Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Elena V. Potapova
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Andrey V. Dunaev
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Plamena R. Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK;
| | - Andrey Y. Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK;
| |
Collapse
|
21
|
Bartman S, Coppotelli G, Ross JM. Mitochondrial Dysfunction: A Key Player in Brain Aging and Diseases. Curr Issues Mol Biol 2024; 46:1987-2026. [PMID: 38534746 DOI: 10.3390/cimb46030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria are thought to have become incorporated within the eukaryotic cell approximately 2 billion years ago and play a role in a variety of cellular processes, such as energy production, calcium buffering and homeostasis, steroid synthesis, cell growth, and apoptosis, as well as inflammation and ROS production. Considering that mitochondria are involved in a multitude of cellular processes, mitochondrial dysfunction has been shown to play a role within several age-related diseases, including cancers, diabetes (type 2), and neurodegenerative diseases, although the underlying mechanisms are not entirely understood. The significant increase in lifespan and increased incidence of age-related diseases over recent decades has confirmed the necessity to understand the mechanisms by which mitochondrial dysfunction impacts the process of aging and age-related diseases. In this review, we will offer a brief overview of mitochondria, along with structure and function of this important organelle. We will then discuss the cause and consequence of mitochondrial dysfunction in the aging process, with a particular focus on its role in inflammation, cognitive decline, and neurodegenerative diseases, such as Huntington's disease, Parkinson's disease, and Alzheimer's disease. We will offer insight into therapies and interventions currently used to preserve or restore mitochondrial functioning during aging and neurodegeneration.
Collapse
Affiliation(s)
- Sydney Bartman
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Giuseppe Coppotelli
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jaime M Ross
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
22
|
Liu X, Guan Z, Liang S, Feng S, Zhou Y. Associations of cataract, cataract surgery with dementia risk: A systematic review and meta-analysis of 448,140 participants. Eur J Clin Invest 2024; 54:e14113. [PMID: 37874275 DOI: 10.1111/eci.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Cataract is the leading cause of blindness around the world. Previous investigations have assessed the relationship between cataract, cataract surgery and dementia risk, but their results remain controversial. Herein, we conducted a meta-analysis to evaluate the associations between cataract, cataract surgery and the risk of dementia. METHODS We systemically screened the literature from three electronic databases PubMed, EMBASE and CENTRAL until April 2023. The data were collected by two independent researchers. The hazard ratios (HRs) or odds ratios (ORs) from eligible studies with 95% confidence intervals (CIs) were adjusted into the risk ratios (RRs), which were pooled using the random-effects model. RESULTS A total of nine studies with 448,140 participants reported the associations between cataract or cataract surgery and the risk of dementia were included in this meta-analysis. The outcomes of our pooled analysis indicated that cataract was associated with an increased risk of all-cause dementia (RR = 1.24, 95% CI, 1.14-1.35, p < .00001), Alzheimer's disease (RR = 1.22, 95% CI, 1.10-1.35, p = .0002) and vascular dementia (RR = 1.29, 95% CI, 1.01-1.66, p = .04). Cataract surgery is associated with a reduction of the dementia risk (RR = 0.74, 95% CI, 0.67-0.81, p < .00001). CONCLUSIONS Current evidence from the existing studies supports that cataract is associated with an increased risk of dementia, and cataract surgery may be instrumental in reducing the risk of dementia in patients with cataract.
Collapse
Affiliation(s)
- Xin Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zeyu Guan
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Shucheng Liang
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Shenghui Feng
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yue Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
23
|
Wang L, Sang B, Zheng Z. The risk of dementia or cognitive impairment in patients with cataracts: a systematic review and meta-analysis. Aging Ment Health 2024; 28:11-22. [PMID: 37416949 DOI: 10.1080/13607863.2023.2226616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/04/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVES The aim of this study was to investigate whether cataract disease is associated with the risk of developing dementia or cognitive impairment. METHODS A systematic search of the literature in PubMed, the Extracts Database (Embase), the Cochrane Library and the Web of Science databases was performed from the inception data of each database until 1 September 2022. Sensitivity analyses were performed to assess the robustness and reliability of the overall findings. All extracted data were statistically analyzed using Stata software v.16.0. Publication bias was assessed using funnel plots and the Egger test. RESULTS There were 11 publications included in this study, which consisted of 489,211participants, spanning 10 countries from 2012 to 2022. Aggregation suggested that cataracts were associated with cognitive impairment (odds ratio [OR] = 1.32; 95% CI: 1.21-1.43; I 2 = 45.4.%; p = 0.000). The presence of cataracts is significantly associated with an increased risk of developing all-cause dementia (relative risk [RR] = 1.17; 95% CI: 1.08-1.26; I2 = 0.0%; p = 0.000). In subgroup analyses, having cataracts may increase the risk of Alzheimer's disease (hazard ratio [HR] = 1.28; 95% CI: 1.13-1.45; I2 = 0.0%; p = 0.000) and vascular dementia (HR = 1.35; 95% CI = 1.06-1.73; I2 = 0.0%, p = 0.015). The data from the Egger's test showed no significant evidence of publication bias. CONCLUSIONS Cataracts are associated with the risk of cognitive impairment and dementia, including Alzheimer's disease, and vascular dementia.
Collapse
Affiliation(s)
- Luping Wang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Bowen Sang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Zuyan Zheng
- Department of Acupuncture, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
24
|
Bolshakov AP, Gerasimov K, Dobryakova YV. Alzheimer's Disease: An Attempt of Total Recall. J Alzheimers Dis 2024; 101:1043-1061. [PMID: 39269841 DOI: 10.3233/jad-240620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
This review is an attempt to compile existing hypotheses on the mechanisms underlying the initiation and progression of Alzheimer's disease (AD), starting from sensory impairments observed in AD and concluding with molecular events that are typically associated with the disease. These events include spreading of amyloid plaques and tangles of hyperphosphorylated tau and formation of Hirano and Biondi bodies as well as the development of oxidative stress. We have detailed the degenerative changes that occur in several neuronal populations, including the cholinergic neurons in the nucleus basalis of Meynert, the histaminergic neurons in the tuberomammillary nucleus, the serotonergic neurons in the raphe nuclei, and the noradrenergic neurons in the locus coeruleus. Furthermore, we discuss the potential role of iron accumulation in the brains of subjects with AD in the disease progression which served as a basis for the idea that iron chelation in the brain may mitigate oxidative stress and decelerate disease development. We also draw attention to possible role of sympathetic system and, more specifically, noradrenergic neurons of the superior cervical ganglion in triggering of the disease. We also explore the alternative possibility of compensatory protective changes that may occur in these neurons to support cholinergic function in the forebrain of subjects with AD.
Collapse
Affiliation(s)
- Alexey P Bolshakov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Gerasimov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
- Russian National Research Medical University, Moscow, Russia
| | - Yulia V Dobryakova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Muñoz-Castro C, Serrano-Pozo A. Astrocyte-Neuron Interactions in Alzheimer's Disease. ADVANCES IN NEUROBIOLOGY 2024; 39:345-382. [PMID: 39190082 DOI: 10.1007/978-3-031-64839-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Besides its two defining misfolded proteinopathies-Aβ plaques and tau neurofibrillary tangles-Alzheimer's disease (AD) is an exemplar of a neurodegenerative disease with prominent reactive astrogliosis, defined as the set of morphological, molecular, and functional changes that astrocytes suffer as the result of a toxic exposure. Reactive astrocytes can be observed in the vicinity of plaques and tangles, and the relationship between astrocytes and these AD neuropathological lesions is bidirectional so that each AD neuropathological hallmark causes specific changes in astrocytes, and astrocytes modulate the severity of each neuropathological feature in a specific manner. Here, we will review both how astrocytes change as a result of their chronic exposure to AD neuropathology and how those astrocytic changes impact each AD neuropathological feature. We will emphasize the repercussions that AD-associated reactive astrogliosis has for the astrocyte-neuron interaction and highlight areas of uncertainty and priorities for future research.
Collapse
Affiliation(s)
- Clara Muñoz-Castro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, Seville, Spain
| | - Alberto Serrano-Pozo
- Massachusetts General Hospital Neurology Department, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Eisenbaum M, Pearson A, Ortiz C, Mullan M, Crawford F, Ojo J, Bachmeier C. ApoE4 expression disrupts tau uptake, trafficking, and clearance in astrocytes. Glia 2024; 72:184-205. [PMID: 37668005 DOI: 10.1002/glia.24469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
Tauopathies are a collection of neurodegenerative diseases characterized by the accumulation of pathogenic aggregates of the microtubule-associated protein tau. Despite the prevalence and diversity of tau astrogliopathy in tauopathies, the interactions between astrocytes and tau in the brain, and the influence of neurodegenerative genetic risk factors like the apolipoprotein E4 (apoE4) isoform, are largely unknown. Here, we leveraged primary and immortalized astrocytes expressing humanized apoE isoforms to characterize the mechanisms by which astrocytes interact with and eliminate extracellular tau, and the influence of apoE genotype on these processes. Our work indicates that astrocytes rapidly internalize, process, and release tau via an exosomal secretory mechanism under physiological conditions. However, we found that apoE4 disrupted these processes in comparison to apoE3, resulting in an astrocytic phenotype prone to intracellular tau accumulation. Furthermore, exposure to repetitive mild traumatic brain injuries exacerbated the apoE4-induced impairments in tau processing and elimination by astrocytes in apoE4 targeted-replacement mice. The diminished ability of apoE4 astrocytes to eliminate extracellular tau can lead to an accumulation of pathogenic tau, which induces mitochondrial dysfunction, as demonstrated by our studies. In total, our findings suggest that the apoE4 isoform lowers the threshold of astrocytic resilience to pathogenic tau, rendering them susceptible to bioenergetic deficits in the early stages of neurodegenerative diseases such as traumatic brain injury, potentially contributing to neurological decline.
Collapse
Affiliation(s)
| | | | | | | | - Fiona Crawford
- The Roskamp Institute, Sarasota, Florida, USA
- James A. Haley Veterans' Hospital, Tampa, Florida, USA
| | - Joseph Ojo
- The Roskamp Institute, Sarasota, Florida, USA
| | - Corbin Bachmeier
- The Roskamp Institute, Sarasota, Florida, USA
- Bay Pines VA Healthcare System, Bay Pines, Florida, USA
| |
Collapse
|
27
|
Rodríguez JJ, Gardenal E, Zallo F, Arrue A, Cabot J, Busquets X. Astrocyte S100β expression and selective differentiation to GFAP and GS in the entorhinal cortex during ageing in the 3xTg-Alzheimer's disease mouse model. Acta Histochem 2024; 126:152131. [PMID: 38159478 DOI: 10.1016/j.acthis.2023.152131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The study of astrocytes and its role in the development and evolution of neurodegenerative diseases, including Alzheimer's disease (AD) is essential to fully understand their aetiology. The aim if this study is to deepen into the concept of the heterogeneity of astrocyte subpopulations in the EC and in particular the identification of differentially functioning astrocyte subpopulations that respond differently to AD progression. S100β protein belongs to group of small calcium regulators of cell membrane channels and pumps that are expressed by astrocytes and is hypothesised to play and have a relevant role in AD development. We analysed the selective differentiation of S100β-positive astrocytes into Glutamine synthetase (GS) and Glial fibrillary acidic protein (GFAP)-positive sub-groups in the entorhinal cortex (EC) of AD triple transgenic animal model (3xTg-AD). EC is the brain region earliest affected in humans AD but also in this closest animal model regarding their pathology and time course. We observed no changes in the number of S100β-positive astrocytes between 1 and 18 months of age in the EC of 3xTg-AD mice. However, we identified relevant morphological changes in S100β/GFAP positive astrocytes showing a significant reduction in their surface and volume whilst an increase in number and percentage. Furthermore, the percentage of S100β/GS positive astrocyte population was also increased in 18 months old 3xTg-AD mice compared to the non-Tg mice. Our findings reveal the presence of differentially controlled astrocyte populations that respond differently to AD progression in the EC of 3xTg-AD mice. These results highpoints the major astrocytic role together with its early and marked affection in AD and arguing in favour of its importance in neurogenerative diseases and potential target for new therapeutic approaches.
Collapse
Affiliation(s)
- J J Rodríguez
- Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009 Bilbao, 48940 Leioa, Bizkaia, Spain
| | - E Gardenal
- Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009 Bilbao, 48940 Leioa, Bizkaia, Spain
| | - F Zallo
- Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009 Bilbao, 48940 Leioa, Bizkaia, Spain
| | - A Arrue
- Neurochemical Research Unit, Bizkaia Mental Health Network, Osakidetza-Basque Health Service, Barakaldo 48903, Spain
| | - Joan Cabot
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain
| | - X Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain.
| |
Collapse
|
28
|
Litwiniuk A, Juszczak GR, Stankiewicz AM, Urbańska K. The role of glial autophagy in Alzheimer's disease. Mol Psychiatry 2023; 28:4528-4539. [PMID: 37679471 DOI: 10.1038/s41380-023-02242-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Although Alzheimer's disease is the most pervasive neurodegenerative disorder, the mechanism underlying its development is still not precisely understood. Available data indicate that pathophysiology of this disease may involve impaired autophagy in glial cells. The dysfunction is manifested as reduced ability of astrocytes and microglia to clear abnormal protein aggregates. Consequently, excessive accumulation of amyloid beta plaques and neurofibrillary tangles activates microglia and astrocytes leading to decreased number of mature myelinated oligodendrocytes and death of neurons. These pathologic effects of autophagy dysfunction can be rescued by pharmacological activation of autophagy. Therefore, a deeper understanding of the molecular mechanisms involved in autophagy dysfunction in glial cells in Alzheimer's disease may lead to the development of new therapeutic strategies. However, such strategies need to take into consideration differences in regulation of autophagy in different types of neuroglia.
Collapse
Affiliation(s)
- Anna Litwiniuk
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Warsaw, Mazovia, Poland
| | - Grzegorz Roman Juszczak
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Mazovia, Poland
| | - Adrian Mateusz Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Mazovia, Poland.
| | - Kaja Urbańska
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Mazovia, Poland.
| |
Collapse
|
29
|
Stanca S, Rossetti M, Bongioanni P. Astrocytes as Neuroimmunocytes in Alzheimer's Disease: A Biochemical Tool in the Neuron-Glia Crosstalk along the Pathogenetic Pathways. Int J Mol Sci 2023; 24:13880. [PMID: 37762184 PMCID: PMC10531177 DOI: 10.3390/ijms241813880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
This work aimed at assessing Alzheimer's disease (AD) pathogenesis through the investigation of the astrocytic role to transduce the load of amyloid-beta (Aβ) into neuronal death. The backbone of this review is focused on the deepening of the molecular pathways eliciting the activation of astrocytes crucial phenomena in the understanding of AD as an autoimmune pathology. The complex relations among astrocytes, Aβ and tau, together with the role played by the tripartite synapsis are discussed. A review of studies published from 1979 to 2023 on Scopus, PubMed and Google Scholar databases was conducted. The selected papers focused not only on the morphological and metabolic characteristics of astrocytes, but also on the latest notions about their multifunctional involvement in AD pathogenesis. Astrocytes participate in crucial pathways, including pruning and sprouting, by which the AD neurodegeneration evolves from an aggregopathy to neuroinflammation, loss of synapses and neuronal death. A1 astrocytes stimulate the production of pro-inflammatory molecules which have been correlated with the progression of AD cognitive impairment. Further research is needed to "hold back" the A1 polarization and, thus, to slow the worsening of the disease. AD clinical expression is the result of dysfunctional neuronal interactions, but this is only the end of a process involving a plurality of protagonists. One of these is the astrocyte, whose importance this work intends to put under the spotlight in the AD scenario, reflecting the multifaceted nature of this disease in the functional versatility of this glial population.
Collapse
Affiliation(s)
- Stefano Stanca
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Martina Rossetti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Paolo Bongioanni
- NeuroCare Onlus, 56100 Pisa, Italy
- Medical Specialties Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| |
Collapse
|
30
|
Zhang YM, Qi YB, Gao YN, Chen WG, Zhou T, Zang Y, Li J. Astrocyte metabolism and signaling pathways in the CNS. Front Neurosci 2023; 17:1217451. [PMID: 37732313 PMCID: PMC10507181 DOI: 10.3389/fnins.2023.1217451] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Astrocytes comprise half of the cells in the central nervous system and play a critical role in maintaining metabolic homeostasis. Metabolic dysfunction in astrocytes has been indicated as the primary cause of neurological diseases, such as depression, Alzheimer's disease, and epilepsy. Although the metabolic functionalities of astrocytes are well known, their relationship to neurological disorders is poorly understood. The ways in which astrocytes regulate the metabolism of glucose, amino acids, and lipids have all been implicated in neurological diseases. Metabolism in astrocytes has also exhibited a significant influence on neuron functionality and the brain's neuro-network. In this review, we focused on metabolic processes present in astrocytes, most notably the glucose metabolic pathway, the fatty acid metabolic pathway, and the amino-acid metabolic pathway. For glucose metabolism, we focused on the glycolysis pathway, pentose-phosphate pathway, and oxidative phosphorylation pathway. In fatty acid metabolism, we followed fatty acid oxidation, ketone body metabolism, and sphingolipid metabolism. For amino acid metabolism, we summarized neurotransmitter metabolism and the serine and kynurenine metabolic pathways. This review will provide an overview of functional changes in astrocyte metabolism and provide an overall perspective of current treatment and therapy for neurological disorders.
Collapse
Affiliation(s)
- Yong-mei Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying-bei Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya-nan Gao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wen-gang Chen
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ting Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
31
|
Coluccino G, Muraca VP, Corazza A, Lippe G. Cyclophilin D in Mitochondrial Dysfunction: A Key Player in Neurodegeneration? Biomolecules 2023; 13:1265. [PMID: 37627330 PMCID: PMC10452829 DOI: 10.3390/biom13081265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in numerous complex diseases. Understanding the molecular mechanisms by which the "powerhouse of the cell" turns into the "factory of death" is an exciting yet challenging task that can unveil new therapeutic targets. The mitochondrial matrix protein CyPD is a peptidylprolyl cis-trans isomerase involved in the regulation of the permeability transition pore (mPTP). The mPTP is a multi-conductance channel in the inner mitochondrial membrane whose dysregulated opening can ultimately lead to cell death and whose involvement in pathology has been extensively documented over the past few decades. Moreover, several mPTP-independent CyPD interactions have been identified, indicating that CyPD could be involved in the fine regulation of several biochemical pathways. To further enrich the picture, CyPD undergoes several post-translational modifications that regulate both its activity and interaction with its clients. Here, we will dissect what is currently known about CyPD and critically review the most recent literature about its involvement in neurodegenerative disorders, focusing on Alzheimer's Disease and Parkinson's Disease, supporting the notion that CyPD could serve as a promising therapeutic target for the treatment of such conditions. Notably, significant efforts have been made to develop CyPD-specific inhibitors, which hold promise for the treatment of such complex disorders.
Collapse
Affiliation(s)
- Gabriele Coluccino
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (V.P.M.); (A.C.)
| | | | | | - Giovanna Lippe
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (V.P.M.); (A.C.)
| |
Collapse
|
32
|
Alkandari AF, Madhyastha S, Rao MS. N-Acetylcysteine Amide against Aβ-Induced Alzheimer's-like Pathology in Rats. Int J Mol Sci 2023; 24:12733. [PMID: 37628913 PMCID: PMC10454451 DOI: 10.3390/ijms241612733] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative stress with a depletion of glutathione is a key factor in the initiation and progression of Alzheimer's disease (AD). N-Acetylcysteine (NAC), a glutathione precursor, provides neuroprotective effects in AD animal models. Its amide form, N-Acetylcysteine amide (NACA), has an extended bioavailability compared to NAC. This study evaluates the neuroprotective effects of NACA against Aβ1-42 peptide-induced AD-like pathology in rats. Male Wistar rats (2.5 months old) were divided into five groups: Normal Control (NC), Sham (SH), Aβ, Aβ + NACA and NACA + Aβ + NACA (n = 8 in all groups). AD-like pathology was induced by the intracerebroventricular infusion of Aβ1-42 peptide into the lateral ventricle. NACA (75 mg/kg) was administered either as a restorative (i.e., injection of NACA for 7 consecutive days after inducing AD-like pathology (Aβ + N group)), or as prophylactic (for 7 days before and 7 days after inducing the pathology (N + Aβ + N group)). Learning and memory, neurogenesis, expression of AD pathology markers, antioxidant parameters, neuroprotection, astrogliosis and microgliosis were studied in the hippocampus and the prefrontal cortex. All data were analyzed with a one-way ANOVA test followed by Bonferroni's multiple comparison test. NACA treatment reversed the cognitive deficits and reduced oxidative stress in the hippocampus and prefrontal cortex. Western blot analysis for Tau, Synaptophysin and Aβ, as well as a histopathological evaluation through immunostaining for neurogenesis, the expression of neurofibrillary tangles, β-amyloid peptide, synaptophysin, neuronal morphology and gliosis, showed a neuroprotective effect of NACA. In conclusion, this study demonstrates the neuroprotective effects of NACA against β-amyloid induced AD-like pathology.
Collapse
Affiliation(s)
| | - Sampath Madhyastha
- Department of Anatomy, College of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (A.F.A.); (M.S.R.)
| | | |
Collapse
|
33
|
Thammasart S, Namchaiw P, Pasuwat K, Tonsomboon K, Khantachawana A. Attenuation Aβ1-42-induced neurotoxicity in neuronal cell by 660nm and 810nm LED light irradiation. PLoS One 2023; 18:e0283976. [PMID: 37478089 PMCID: PMC10361470 DOI: 10.1371/journal.pone.0283976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/21/2023] [Indexed: 07/23/2023] Open
Abstract
Oligomeric amyloid-β 1-42 (Aβ1-42) has a close correlation with neurodegenerative disorder especially Alzheimer's disease (AD). It induces oxidative stress and mitochondrial damage in neurons. Therefore, it is used to generate AD-like in vitro model for studying neurotoxicity and neuroprotection against amyloid-β. A low-level light therapy (LLLT) is a non-invasive method that has been used to treat several neurodegenerative disorders. In this study, the red wavelength (660nm) and near infrared wavelength (810nm) at energy densities of 1, 3, and 5 J/cm2 were used to modulate biochemical processes in the neural cells. The exposure of Aβ1-42 resulted in cell death, increased intracellular reactive oxygen species (ROS), and retracted neurite outgrowth. We showed that both of LLLT wavelengths could protect neurons form Aβ1-42-induced neurotoxicity in a biphasic manner. The treatment of LLLT at 3 J/cm2 potentially alleviated cell death and recovered neurite outgrowth. In addition, the treatment of LLLT following Aβ1-42 exposure could attenuate the intracellular ROS generation and Ca2+ influx. Interestingly, both wavelengths could induce minimal level of ROS generation. However, they did not affect cell viability. In addition, LLLT also stimulated Ca2+ influx, but not altered mitochondrial membrane potential. This finding indicated LLLT may protect neurons through the stimulation of secondary signaling messengers such as ROS and Ca2+. The increase of these secondary messengers was in a functional level and did not harmful to the cells. These results suggested the use of LLLT as a tool to modulate the neuronal toxicity following Aβ1-42 accumulation in AD's brain.
Collapse
Affiliation(s)
- Siriluk Thammasart
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
| | - Poommaree Namchaiw
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
| | - Kwanchanok Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
| | - Khaow Tonsomboon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Anak Khantachawana
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
- Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
| |
Collapse
|
34
|
Matafora V, Gorb A, Yang F, Noble W, Bachi A, Perez‐Nievas BG, Jimenez‐Sanchez M. Proteomics of the astrocyte secretome reveals changes in their response to soluble oligomeric Aβ. J Neurochem 2023; 166:346-366. [PMID: 37303123 PMCID: PMC10952722 DOI: 10.1111/jnc.15875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Astrocytes associate with amyloid plaques in Alzheimer's disease (AD). Astrocytes react to changes in the brain environment, including increasing concentrations of amyloid-β (Aβ). However, the precise response of astrocytes to soluble small Aβ oligomers at concentrations similar to those present in the human brain has not been addressed. In this study, we exposed astrocytes to media from neurons that express the human amyloid precursor protein (APP) transgene with the double Swedish mutation (APPSwe), and which contains APP-derived fragments, including soluble human Aβ oligomers. We then used proteomics to investigate changes in the astrocyte secretome. Our data show dysregulated secretion of astrocytic proteins involved in the extracellular matrix and cytoskeletal organization and increase secretion of proteins involved in oxidative stress responses and those with chaperone activity. Several of these proteins have been identified in previous transcriptomic and proteomic studies using brain tissue from human AD and cerebrospinal fluid (CSF). Our work highlights the relevance of studying astrocyte secretion to understand the brain response to AD pathology and the potential use of these proteins as biomarkers for the disease.
Collapse
Affiliation(s)
| | - Alena Gorb
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Fangjia Yang
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Wendy Noble
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Angela Bachi
- IFOM ETS‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Beatriz Gomez Perez‐Nievas
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Maria Jimenez‐Sanchez
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| |
Collapse
|
35
|
Bulgart HR, Goncalves I, Weisleder N. Leveraging Plasma Membrane Repair Therapeutics for Treating Neurodegenerative Diseases. Cells 2023; 12:1660. [PMID: 37371130 DOI: 10.3390/cells12121660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Plasma membrane repair is an essential cellular mechanism that reseals membrane disruptions after a variety of insults, and compromised repair capacity can contribute to the progression of many diseases. Neurodegenerative diseases are marked by membrane damage from many sources, reduced membrane integrity, elevated intracellular calcium concentrations, enhanced reactive oxygen species production, mitochondrial dysfunction, and widespread neuronal death. While the toxic intracellular effects of these changes in cellular physiology have been defined, the specific mechanism of neuronal death in certain neurodegenerative diseases remains unclear. An abundance of recent evidence indicates that neuronal membrane damage and pore formation in the membrane are key contributors to neurodegenerative disease pathogenesis. In this review, we have outlined evidence supporting the hypothesis that membrane damage is a contributor to neurodegenerative diseases and that therapeutically enhancing membrane repair can potentially combat neuronal death.
Collapse
Affiliation(s)
- Hannah R Bulgart
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Isabella Goncalves
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Noah Weisleder
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
36
|
Fontana IC, Kumar A, Nordberg A. The role of astrocytic α7 nicotinic acetylcholine receptors in Alzheimer disease. Nat Rev Neurol 2023; 19:278-288. [PMID: 36977843 DOI: 10.1038/s41582-023-00792-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/30/2023]
Abstract
The ongoing search for therapeutic interventions in Alzheimer disease (AD) has highlighted the complexity of this condition and the need for additional biomarkers, beyond amyloid-β (Aβ) and tau, to improve clinical assessment. Astrocytes are brain cells that control metabolic and redox homeostasis, among other functions, and are emerging as an important focus of AD research owing to their swift response to brain pathology in the initial stages of the disease. Reactive astrogliosis - the morphological, molecular and functional transformation of astrocytes during disease - has been implicated in AD progression, and the definition of new astrocytic biomarkers could help to deepen our understanding of reactive astrogliosis along the AD continuum. As we highlight in this Review, one promising biomarker candidate is the astrocytic α7 nicotinic acetylcholine receptor (α7nAChR), upregulation of which correlates with Aβ pathology in the brain of individuals with AD. We revisit the past two decades of research into astrocytic α7nAChRs to shed light on their roles in the context of AD pathology and biomarkers. We discuss the involvement of astrocytic α7nAChRs in the instigation and potentiation of early Aβ pathology and explore their potential as a target for future reactive astrocyte-based therapeutics and imaging biomarkers in AD.
Collapse
Affiliation(s)
- Igor C Fontana
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
37
|
Nesterowicz M, Lauko KK, Żendzian-Piotrowska M, Ładny JR, Zalewska A, Maciejczyk M. Agomelatine's antiglycoxidative action- In vitro and in silico research and systematic literature review. Front Psychiatry 2023; 14:1164459. [PMID: 37181902 PMCID: PMC10166843 DOI: 10.3389/fpsyt.2023.1164459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/24/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Agomelatine is an atypical antidepressant drug enhancing norepinephrine and dopamine liberation; nevertheless, additional mechanisms are considered for the drug's pharmacological action. Since protein glycoxidation plays a crucial role in depression pathogenesis, agomelatine's impact on carbonyl/oxidative stress was the research purpose. Methods Reactive oxygen species scavenging (hydroxyl radical, hydrogen peroxide, and nitrogen oxide) and antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl radical and ferrous ion chelating assays) of agomelatine were marked. Agomelatine's antiglycoxidation properties were assayed in sugars (glucose, fructose, and galactose) and aldehydes- (glyoxal and methylglyoxal) glycated bovine serum albumin (BSA). Aminoguanidine and α-lipoic acid were used as standard glycation/oxidation inhibitors. Results Agomelatine did not show meaningful scavenging/antioxidant capacity vs. standards. Sugars/aldehydes increased glycation (↑kynurenine, ↑N-formylkynurenine, ↑dityrosine, ↑advanced glycation end products, and ↑β-amyloid) and oxidation (↑protein carbonyls and ↑advanced oxidation protein products) parameters in addition to BSA. Standards restored BSA baselines of glycation and oxidation markers, unlike agomelatine which sometimes even intensifies glycation above BSA + glycators levels. Molecular docking analysis of agomelatine in BSA demonstrated its very weak binding affinity. Discussion Agomelatine's very low affinity to the BSA could proclaim non-specific bonding and simplify attachment of glycation factors. Thereby, the drug may stimulate brain adaptation to carbonyl/oxidative stress as the systematic review indicates. Moreover, the drug's active metabolites could exert an antiglycoxidative effect.
Collapse
Affiliation(s)
- Miłosz Nesterowicz
- Students' Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Białystok, Poland
| | - Kamil Klaudiusz Lauko
- Students' Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Białystok, Poland
| | | | - Jerzy Robert Ładny
- 1st Department of General Surgery and Endocrinology, Medical University of Bialystok, Białystok, Poland
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, Białystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
38
|
Boonpraman N, Yoon S, Kim CY, Moon JS, Yi SS. NOX4 as a critical effector mediating neuroinflammatory cytokines, myeloperoxidase and osteopontin, specifically in astrocytes in the hippocampus in Parkinson's disease. Redox Biol 2023; 62:102698. [PMID: 37058998 PMCID: PMC10123376 DOI: 10.1016/j.redox.2023.102698] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/16/2023] Open
Abstract
Oxidative stress and mitochondrial dysfunction have been believed to play an important role in the pathogenesis of aging and neurodegenerative diseases, including Parkinson's disease (PD). The excess of reactive oxygen species (ROS) increases with age and causes a redox imbalance, which contributes to the neurotoxicity of PD. Accumulating evidence suggests that NADPH oxidase (NOX)-derived ROS, especially NOX4, belong to the NOX family and is one of the major isoforms expressed in the central nervous system (CNS), associated with the progression of PD. We have previously shown that NOX4 activation regulates ferroptosis via astrocytic mitochondrial dysfunction. We have previously shown that activation of NOX4 regulates ferroptosis through mitochondrial dysfunction in astrocytes. However, it remains unclear why an increase in NOX4 in neurodegenerative diseases leads to astrocyte cell death by certain mediators. Therefore, this study was designed to evaluate how NOX4 in the hippocampus is involved in PD by comparing an MPTP-induced PD mouse model compared to human PD patients. We could detect that the hippocampus was dominantly associated with elevated levels of NOX4 and α-synuclein during PD and the neuroinflammatory cytokines, myeloperoxidase (MPO) and osteopontin (OPN), were upregulated particularly in astrocytes. Intriguingly, NOX4 suggested a direct intercorrelation with MPO and OPN in the hippocampus. Upregulation of MPO and OPN induces mitochondrial dysfunction by suppressing five protein complexes in the mitochondrial electron transport system (ETC) and increases the level of 4-HNE leading to ferroptosis in human astrocytes. Overall, our findings indicate that the elevation of NOX4 cooperated with the MPO and OPN inflammatory cytokines through mitochondrial aberration in hippocampal astrocytes during PD.
Collapse
Affiliation(s)
- Napissara Boonpraman
- Bk21 Four Program, Department of Medical Sciences, Soonchunhyang University, Asan, 31538, South Korea
| | - Sunmi Yoon
- Bk21 Four Program, Department of Medical Sciences, Soonchunhyang University, Asan, 31538, South Korea
| | - Chae Young Kim
- Bk21 Four Program, Department of Medical Sciences, Soonchunhyang University, Asan, 31538, South Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang, Cheonan, 31151, Republic of Korea
| | - Sun Shin Yi
- Bk21 Four Program, Department of Medical Sciences, Soonchunhyang University, Asan, 31538, South Korea; Department of Biomedical Laboratory Science, Soonchunhyang University, Asan, 31538, Republic of Korea.
| |
Collapse
|
39
|
Xue S, Shen T, Li M, Leng B, Yao R, Gao Y, Sun H, Li Z, Zhang J. Neuronal glutamate transporters are associated with cognitive impairment in obstructive sleep apnea patients without dementia. Neurosci Lett 2023; 802:137168. [PMID: 36894020 DOI: 10.1016/j.neulet.2023.137168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/30/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023]
Abstract
Increasing evidence supports a link between obstructive sleep apnea (OSA) and cognition, and the mechanism is complex and still not well understood. We analyzed the relationship between the glutamate transporters and cognitive impairment in OSA. For this study 317 subjects without dementia, including 64 healthy controls (HCs), 140 OSA patients with mild cognitive impairment (MCI) and 113 OSA patients without cognitive impairment were assessed. All participants who completed polysomnography, cognition and white matter hyperintensity (WMH) volume were used. Plasma neuron-derived exosomes (NDEs) excitatory amino acid transporter 2 (EAAT2) and vesicular glutamate transporter 1 (VGLUT1) proteins were measured by ELISA kits. After 1 year of continuous positive airway pressure (CPAP) treatment, we analyzed plasma NDEs EAAT2 level and cognition changes. Plasma NDEs EAAT2 level was significantly higher in OSA patients than in HCs. Higher plasma NDEs EAAT2 level were significantly associated with cognitive impairment than normal cognition in OSA patients. Plasma NDEs EAAT2 level was inversely associated with the total Montreal Cognitive Assessment (MoCA) scores, visuo-executive function, naming, attention, language, abstraction, delayed recall and orientation. One year after CPAP treatment, plasma NDEs EAAT2 level (P = 0.019) was significantly lower, while MoCA scores (P = 0.013) were significantly increased compared with baseline. Upregulation of neuronal glutamate transporters at baseline may reflect a self-compensatory mechanism to prevent further neuronal damage, while plasma NDEs EAAT2 level was decreased after one year of CPAP therapy, which may be due to the loss of astrocytes and neurons.
Collapse
Affiliation(s)
- Song Xue
- Weifang Medical University, Weifang, Shandong, China; Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Tengqun Shen
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Mengfan Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Bing Leng
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Ran Yao
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Yanling Gao
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Hairong Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Zhenguang Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China.
| |
Collapse
|
40
|
Rosenberg N, Reva M, Binda F, Restivo L, Depierre P, Puyal J, Briquet M, Bernardinelli Y, Rocher AB, Markram H, Chatton JY. Overexpression of UCP4 in astrocytic mitochondria prevents multilevel dysfunctions in a mouse model of Alzheimer's disease. Glia 2023; 71:957-973. [PMID: 36537556 DOI: 10.1002/glia.24317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 02/16/2023]
Abstract
Alzheimer's disease (AD) is becoming increasingly prevalent worldwide. It represents one of the greatest medical challenges as no pharmacologic treatments are available to prevent disease progression. Astrocytes play crucial functions within neuronal circuits by providing metabolic and functional support, regulating interstitial solute composition, and modulating synaptic transmission. In addition to these physiological functions, growing evidence points to an essential role of astrocytes in neurodegenerative diseases like AD. Early-stage AD is associated with hypometabolism and oxidative stress. Contrary to neurons that are vulnerable to oxidative stress, astrocytes are particularly resistant to mitochondrial dysfunction and are therefore more resilient cells. In our study, we leveraged astrocytic mitochondrial uncoupling and examined neuronal function in the 3xTg AD mouse model. We overexpressed the mitochondrial uncoupling protein 4 (UCP4), which has been shown to improve neuronal survival in vitro. We found that this treatment efficiently prevented alterations of hippocampal metabolite levels observed in AD mice, along with hippocampal atrophy and reduction of basal dendrite arborization of subicular neurons. This approach also averted aberrant neuronal excitability observed in AD subicular neurons and preserved episodic-like memory in AD mice assessed in a spatial recognition task. These findings show that targeting astrocytes and their mitochondria is an effective strategy to prevent the decline of neurons facing AD-related stress at the early stages of the disease.
Collapse
Affiliation(s)
- Nadia Rosenberg
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Maria Reva
- Blue Brain Project (BBP), École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Francesca Binda
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Leonardo Restivo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Pauline Depierre
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Marc Briquet
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | - Anne-Bérengère Rocher
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Henry Markram
- Blue Brain Project (BBP), École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Jean-Yves Chatton
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Cellular Imaging Facility, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
41
|
Banarase TA, Sammeta SS, Wankhede NL, Mangrulkar SV, Rahangdale SR, Aglawe MM, Taksande BG, Upaganlawar AB, Umekar MJ, Kale MB. Mitophagy regulation in aging and neurodegenerative disease. Biophys Rev 2023; 15:239-255. [PMID: 37124925 PMCID: PMC10133433 DOI: 10.1007/s12551-023-01057-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are the primary cellular energy generators, supplying the majority of adenosine triphosphate through oxidative phosphorylation, which is necessary for neuron function and survival. Mitophagy is the metabolic process of eliminating dysfunctional or redundant mitochondria. It is a type of autophagy and it is crucial for maintaining mitochondrial and neuronal health. Impaired mitophagy leads to an accumulation of damaged mitochondria and proteins leading to the dysregulation of mitochondrial quality control processes. Recent research shows the vital role of mitophagy in neurons and the pathogenesis of major neurodegenerative diseases. Mitophagy also plays a major role in the process of aging. This review describes the alterations that are being caused in the mitophagy process at the molecular level in aging and in neurodegenerative diseases, particularly Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis, also looks at how mitophagy can be exploited as a therapeutic target for these diseases.
Collapse
Affiliation(s)
- Trupti A. Banarase
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Shivkumar S. Sammeta
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Nitu L. Wankhede
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Shubhada V. Mangrulkar
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Sandip R. Rahangdale
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Manish M. Aglawe
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Brijesh G. Taksande
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Aman B. Upaganlawar
- SNJB’s Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra India 423101
| | - Milind J. Umekar
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Mayur B. Kale
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| |
Collapse
|
42
|
Krewenka C, Rizzi S, Nguyen CH, Delijewski M, Gille L, Staniek K, Duvigneau JC, Radad K, Müllebner A, Kranner B, Moldzio R. Radical Scavenging Is Not Involved in Thymoquinone-Induced Cell Protection in Neural Oxidative Stress Models. Antioxidants (Basel) 2023; 12:antiox12040858. [PMID: 37107234 PMCID: PMC10135386 DOI: 10.3390/antiox12040858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Thymoquinone (TQ), an active compound from Nigella sativa seeds, is often described as a pharmacologically relevant compound with antioxidative properties, while the synthesis of TQ in the plant via oxidations makes it inapplicable for scavenging radicals. Therefore, the present study was designed to reassess the radical scavenging properties of TQ and explore a potential mode of action. The effects of TQ were studied in models with mitochondrial impairment and oxidative stress induced by rotenone in N18TG2 neuroblastoma cells and rotenone/MPP+ in primary mesencephalic cells. Tyrosine hydroxylase staining revealed that TQ significantly protected dopaminergic neurons and preserved their morphology under oxidative stress conditions. Quantification of the formation of superoxide radicals via electron paramagnetic resonance showed an initial increase in the level of superoxide radicals in the cell by TQ. Measurements in both cell culture systems revealed that the mitochondrial membrane potential was tendentially lowered, while ATP production was mostly unaffected. Additionally, the total ROS levels were unaltered. In mesencephalic cell culture under oxidative stress conditions, caspase-3 activity was decreased when TQ was administered. On the contrary, TQ itself tremendously increased the caspase-3 activity in the neuroblastoma cell line. Evaluation of the glutathione level revealed an increased level of total glutathione in both cell culture systems. Therefore, the enhanced resistance against oxidative stress in primary cell culture might be a consequence of a lowered caspase-3 activity combined with an increased pool of reduced glutathione. The described anti-cancer ability of TQ might be a result of the pro-apoptotic condition in neuroblastoma cells. Our study provides evidence that TQ has no direct scavenging effect on superoxide radicals.
Collapse
Affiliation(s)
- Christopher Krewenka
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sandra Rizzi
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | | | - Marcin Delijewski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Lars Gille
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Katrin Staniek
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Johanna Catharina Duvigneau
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Khaled Radad
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Andrea Müllebner
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Barbara Kranner
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Rudolf Moldzio
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
43
|
Astrocyte strategies in the energy-efficient brain. Essays Biochem 2023; 67:3-16. [PMID: 36350053 DOI: 10.1042/ebc20220077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
Astrocytes generate ATP through glycolysis and mitochondrion respiration, using glucose, lactate, fatty acids, amino acids, and ketone bodies as metabolic fuels. Astrocytic mitochondria also participate in neuronal redox homeostasis and neurotransmitter recycling. In this essay, we aim to integrate the multifaceted evidence about astrocyte bioenergetics at the cellular and systems levels, with a focus on mitochondrial oxidation. At the cellular level, the use of fatty acid β-oxidation and the existence of molecular switches for the selection of metabolic mode and fuels are examined. At the systems level, we discuss energy audits of astrocytes and how astrocytic Ca2+ signaling might contribute to the higher performance and lower energy consumption of the brain as compared to engineered circuits. We finish by examining the neural-circuit dysregulation and behavior impairment associated with alterations of astrocytic mitochondria. We conclude that astrocytes may contribute to brain energy efficiency by coupling energy, redox, and computational homeostasis in neural circuits.
Collapse
|
44
|
Raoufi S, Salavati Z, Komaki A, Shahidi S, Zarei M. Royal jelly improves learning and memory deficits in an amyloid β-induced model of Alzheimer's disease in male rats: Involvement of oxidative stress. Metab Brain Dis 2023; 38:1239-1248. [PMID: 36809522 DOI: 10.1007/s11011-023-01168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/13/2023] [Indexed: 02/23/2023]
Abstract
Alzheimer's disease (AD) as the commonest type of dementia is associated with the cognitive function failure. Oxidative stress performs an essential role in the progression of AD. Royal jelly (RJ) is a natural product of bees with antioxidant and anti-inflammatory properties. The present research aimed to investigate the possible protective effect of RJ on learning and memory in a rat model of Aβ-induced AD. Forty male adult Wistar rats were equally distributed into five groups: control, sham-operated, Aβ (receiving intracerebroventricular (ICV) injection of amyloid beta (Aβ1-40)), Aβ + RJ 50 mg/kg, and Aβ + RJ 100 mg/kg. RJ was administered daily post-surgery by oral gavage for four weeks. Behavioral learning and memory were examined using the novel object recognition (NOR) and passive avoidance learning (PAL) tests. Also, oxidative stress markers, such as malondialdehyde (MDA), total oxidant status (TOS) and total antioxidant capacity (TAC), were assessed in the hippocampus. Aβ reduced step-through latency (STLr) and increased time spent in the dark compartment (TDC) in the PAL task and also decreased discrimination index in the NOR test. Administration of RJ ameliorated the Aβ-related memory impairment in both NOR and PAL tasks. Aβ decreased TAC and increased MDA and TOS levels in the hippocampus, whereas RJ administration reversed these Aβ-induced alterations. Our results indicated that RJ has the potential to ameliorate learning and memory impairment in the Aβ model of AD via attenuating oxidative stress.
Collapse
Affiliation(s)
- Safoura Raoufi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Salavati
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
45
|
Using Optogenetics to Model Cellular Effects of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054300. [PMID: 36901729 PMCID: PMC10001751 DOI: 10.3390/ijms24054300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Across the world a dementia case is diagnosed every three seconds. Alzheimer's disease (AD) causes 50-60% of these cases. The most prominent theory for AD correlates the deposition of amyloid beta (Aβ) with the onset of dementia. Whether Aβ is causative remains unclear due to findings such as the recently approved drug Aducanumab showing effective clearance of Aβ, but not improving cognition. New approaches for understanding Aβ function, are therefore necessary. Here we discuss the application of optogenetic techniques to gain insight into AD. Optogenetics, or genetically encoded, light-dependent on/off switches, provides precise spatiotemporal control to regulate cellular dynamics. This precise control over protein expression and oligomerization or aggregation could provide a better understanding of the etiology of AD.
Collapse
|
46
|
Tchekalarova J, Tzoneva R. Oxidative Stress and Aging as Risk Factors for Alzheimer's Disease and Parkinson's Disease: The Role of the Antioxidant Melatonin. Int J Mol Sci 2023; 24:3022. [PMID: 36769340 PMCID: PMC9917989 DOI: 10.3390/ijms24033022] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Aging and neurodegenerative diseases share common hallmarks, including mitochondrial dysfunction and protein aggregation. Moreover, one of the major issues of the demographic crisis today is related to the progressive rise in costs for care and maintenance of the standard living condition of aged patients with neurodegenerative diseases. There is a divergence in the etiology of neurodegenerative diseases. Still, a disturbed endogenous pro-oxidants/antioxidants balance is considered the crucial detrimental factor that makes the brain vulnerable to aging and progressive neurodegeneration. The present review focuses on the complex relationships between oxidative stress, autophagy, and the two of the most frequent neurodegenerative diseases associated with aging, Alzheimer's disease (AD) and Parkinson's disease (PD). Most of the available data support the hypothesis that a disturbed antioxidant defense system is a prerequisite for developing pathogenesis and clinical symptoms of ADs and PD. Furthermore, the release of the endogenous hormone melatonin from the pineal gland progressively diminishes with aging, and people's susceptibility to these diseases increases with age. Elucidation of the underlying mechanisms involved in deleterious conditions predisposing to neurodegeneration in aging, including the diminished role of melatonin, is important for elaborating precise treatment strategies for the pathogenesis of AD and PD.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 23, 1113 Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 21, 1113 Sofia, Bulgaria
| |
Collapse
|
47
|
Huntingtin and Other Neurodegeneration-Associated Proteins in the Development of Intracellular Pathologies: Potential Target Search for Therapeutic Intervention. Int J Mol Sci 2022; 23:ijms232415533. [PMID: 36555175 PMCID: PMC9779313 DOI: 10.3390/ijms232415533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are currently incurable. Numerous experimental data accumulated over the past fifty years have brought us closer to understanding the molecular and cell mechanisms responsible for their development. However, these data are not enough for a complete understanding of the genesis of these diseases, nor to suggest treatment methods. It turns out that many cellular pathologies developing during neurodegeneration coincide from disease to disease. These observations give hope to finding a common intracellular target(s) and to offering a universal method of treatment. In this review, we attempt to analyze data on similar cellular disorders among neurodegenerative diseases in general, and polyglutamine neurodegenerative diseases in particular, focusing on the interaction of various proteins involved in the development of neurodegenerative diseases with various cellular organelles. The main purposes of this review are: (1) to outline the spectrum of common intracellular pathologies and to answer the question of whether it is possible to find potential universal target(s) for therapeutic intervention; (2) to identify specific intracellular pathologies and to speculate about a possible general approach for their treatment.
Collapse
|
48
|
Evans AK, Defensor E, Shamloo M. Selective Vulnerability of the Locus Coeruleus Noradrenergic System and its Role in Modulation of Neuroinflammation, Cognition, and Neurodegeneration. Front Pharmacol 2022; 13:1030609. [PMID: 36532725 PMCID: PMC9748190 DOI: 10.3389/fphar.2022.1030609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/14/2022] [Indexed: 05/13/2024] Open
Abstract
Locus coeruleus (LC) noradrenergic (NE) neurons supply the main adrenergic input to the forebrain. NE is a dual modulator of cognition and neuroinflammation. NE neurons of the LC are particularly vulnerable to degeneration both with normal aging and in neurodegenerative disorders. Consequences of this vulnerability can be observed in both cognitive impairment and dysregulation of neuroinflammation. LC NE neurons are pacemaker neurons that are active during waking and arousal and are responsive to stressors in the environment. Chronic overactivation is thought to be a major contributor to the vulnerability of these neurons. Here we review what is known about the mechanisms underlying this neuronal vulnerability and combinations of environmental and genetic factors that contribute to confer risk to these important brainstem neuromodulatory and immunomodulatory neurons. Finally, we discuss proposed and potential interventions that may reduce the overall risk for LC NE neuronal degeneration.
Collapse
Affiliation(s)
- Andrew K. Evans
- School of Medicine, Stanford University, Stanford, CA, United States
| | | | - Mehrdad Shamloo
- School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
49
|
Singh PK, Saadi A, Sheeni Y, Shekh-Ahmad T. Specific inhibition of NADPH oxidase 2 modifies chronic epilepsy. Redox Biol 2022; 58:102549. [PMID: 36459714 PMCID: PMC9712695 DOI: 10.1016/j.redox.2022.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Recent work by us and others has implicated NADPH oxidase (NOX) enzymes as main producers of reactive oxygen species (ROS) following a brain insult such as status epilepticus, contributing to neuronal damage and development of epilepsy. Although several NOX isoforms have been examined in the context of epilepsy, most attention has focused on NOX2. In this present study, we demonstrate the effect of gp91ds-tat, a specific competitive inhibitor of NOX2, in in vitro epileptiform activity model as well as in temporal lobe epilepsy (TLE) model in rats. We showed that in in vitro seizure model, gp91ds-tat modulated Ca2+ oscillation, prevented epileptiform activity-induced ROS generation, mitochondrial depolarization, and neuronal death. Administration of gp91ds-tat 1 h after kainic acid-induced status epilepticus significantly decreased the expression of NOX2, as well as the overall NOX activity in the cortex and the hippocampus. Finally, we showed that upon continuous intracerebroventricular administration to epileptic rats, gp91ds-tat significantly reduced the seizure frequency and the total number of seizures post-treatment compared to the scrambled peptide-treated animals. The results of the study suggest that NOX2 may have an important effect on modulation of epileptiform activity and has a critical role in mediating seizure-induced NOX activation, ROS generation and oxidative stress in the brain, and thus significantly contributes to development of epilepsy following a brain insult.
Collapse
Affiliation(s)
| | | | | | - Tawfeeq Shekh-Ahmad
- Corresponding author. The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
50
|
Slota JA, Sajesh BV, Frost KF, Medina SJ, Booth SA. Dysregulation of neuroprotective astrocytes, a spectrum of microglial activation states, and altered hippocampal neurogenesis are revealed by single-cell RNA sequencing in prion disease. Acta Neuropathol Commun 2022; 10:161. [PMID: 36352465 PMCID: PMC9647949 DOI: 10.1186/s40478-022-01450-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/24/2022] [Indexed: 11/10/2022] Open
Abstract
Prion diseases are neurodegenerative disorders with long asymptomatic incubation periods, followed by a rapid progression of cognitive and functional decline culminating in death. The complexity of intercellular interactions in the brain is challenging to unravel and the basis of disease pathobiology remains poorly understood. In this study, we employed single cell RNA sequencing (scRNAseq) to produce an atlas of 147,536 single cell transcriptomes from cortex and hippocampus of mice infected with prions and showing clinical signs. We identified transcriptionally distinct populations and sub-populations of all the major brain cell-types. Disease-related transcription was highly specific to not only overarching cell-types, but also to sub-populations of glia and neurons. Most striking was an apparent decrease in relative frequency of astrocytes expressing genes that are required for brain homeostasis such as lipid synthesis, glutamate clearance, synaptic modulation and regulation of blood flow. Additionally, we described a spectrum of microglial activation states that suggest delineation of phagocytic and neuroinflammatory functions in different cell subsets. Differential responses of immature and mature neuron populations were also observed, alongside abnormal hippocampal neurogenesis. Our scRNAseq library provides a new layer of knowledge on single cell gene expression in prion disease, and is a basis for a more detailed understanding of cellular interplay that leads to neurodegeneration.
Collapse
|