1
|
Yao C, Xie D, Zhang Y, Shen Y, Sun P, Ma Z, Li J, Tao J, Fang M. Tryptophan metabolism and ischemic stroke: An intricate balance. Neural Regen Res 2026; 21:466-477. [PMID: 40326980 DOI: 10.4103/nrr.nrr-d-24-00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/27/2024] [Indexed: 05/07/2025] Open
Abstract
Ischemic stroke, which is characterized by hypoxia and ischemia, triggers a cascade of injury responses, including neurotoxicity, inflammation, oxidative stress, disruption of the blood-brain barrier, and neuronal death. In this context, tryptophan metabolites and enzymes, which are synthesized through the kynurenine and 5-hydroxytryptamine pathways, play dual roles. The delicate balance between neurotoxic and neuroprotective substances is a crucial factor influencing the progression of ischemic stroke. Neuroprotective metabolites, such as kynurenic acid, exert their effects through various mechanisms, including competitive blockade of N-methyl-D-aspartate receptors, modulation of α7 nicotinic acetylcholine receptors, and scavenging of reactive oxygen species. In contrast, neurotoxic substances such as quinolinic acid can hinder the development of vascular glucose transporter proteins, induce neurotoxicity mediated by reactive oxygen species, and disrupt mitochondrial function. Additionally, the enzymes involved in tryptophan metabolism play major roles in these processes. Indoleamine 2,3-dioxygenase in the kynurenine pathway and tryptophan hydroxylase in the 5-hydroxytryptamine pathway influence neuroinflammation and brain homeostasis. Consequently, the metabolites generated through tryptophan metabolism have substantial effects on the development and progression of ischemic stroke. Stroke treatment aims to restore the balance of various metabolite levels; however, precise regulation of tryptophan metabolism within the central nervous system remains a major challenge for the treatment of ischemic stroke. Therefore, this review aimed to elucidate the complex interactions between tryptophan metabolites and enzymes in ischemic stroke and develop targeted therapies that can restore the delicate balance between neurotoxicity and neuroprotection.
Collapse
Affiliation(s)
- Chongjie Yao
- Rehabilitation Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Xie
- Rehabilitation Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuchen Zhang
- Rehabilitation Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanhao Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pingping Sun
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhao Ma
- Rehabilitation Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin Li
- Rehabilitation Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiming Tao
- Rehabilitation Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Fang
- Rehabilitation Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Ożga K, Stepuch P, Maciejewski R, Sadok I. Promising Gastric Cancer Biomarkers-Focus on Tryptophan Metabolism via the Kynurenine Pathway. Int J Mol Sci 2025; 26:3706. [PMID: 40332338 PMCID: PMC12027761 DOI: 10.3390/ijms26083706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Currently, gastric cancer treatment remains an enormous challenge and requires a multidisciplinary approach. Globally, the incidence and prevalence of gastric cancer vary, with the highest rates found in East Asia, Central Europe, and Eastern Europe. Early diagnosis is critical for successful surgical removal of gastric cancer, but the disease often develops asymptomatically. Therefore, many cases are diagnosed at an advanced stage, resulting in poor survival. Metastatic gastric cancer also has a poor prognosis. Therefore, it is urgent to identify reliable molecular disease markers and develop an effective medical treatment for advanced stages of the disease. This review summarizes potential prognostic or predictive markers of gastric cancer. Furthermore, the role of tryptophan metabolites from the kynurenine pathway as prognostic, predictive, and diagnostic factors of gastric cancer is discussed, as this metabolic pathway is associated with tumor immune resistance.
Collapse
Affiliation(s)
- Kinga Ożga
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, Collegium Medicum, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Paweł Stepuch
- II Department of Oncological Surgery with Subdivision of Minimal Invasive Surgery, Center of Oncology of the Lublin Region St. Jana z Dukli, Jaczewskiego 7, 20-090 Lublin, Poland;
| | - Ryszard Maciejewski
- Faculty of Medicine, Collegium Medicum, The John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland;
| | - Ilona Sadok
- Department of Biomedical and Analytical Chemistry, Institute of Biological Sciences, Faculty of Medicine, Collegium Medicum, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| |
Collapse
|
3
|
Krawczyk A, Sladowska GE, Strzalka-Mrozik B. The Role of the Gut Microbiota in Modulating Signaling Pathways and Oxidative Stress in Glioma Therapies. Cancers (Basel) 2025; 17:719. [PMID: 40075568 PMCID: PMC11899293 DOI: 10.3390/cancers17050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Tumors of the central nervous system (CNS), especially gliomas, pose a significant clinical challenge due to their aggressive nature and limited therapeutic options. Emerging research highlights the critical role of the gut microbiota in regulating CNS health and disease. The composition of the gut microbiota is essential for maintaining CNS homeostasis, as it modulates immune responses, oxidative status, and neuroinflammation. The microbiota-gut-brain axis, a bidirectional communication network, plays a pivotal role in cancer and CNS disease treatment, exerting its influence through neural, endocrine, immunological, and metabolic pathways. Recent studies suggest that the gut microbiota influences the solidification of the tumor microenvironment and that dysbiosis may promote glioma development by modulating systemic inflammation and oxidative stress, which contributes to tumorigenesis and CNS tumor progression. This review interrogates the impact of the gut microbiota on glioma, focusing on critical pathways such as NF-κB, MAPK, PI3K/Akt/mTOR, and Kynurenine/AhR that drive tumor proliferation, immune evasion, and therapy resistance. Furthermore, we explore emerging therapeutic strategies, including probiotics and microbiota-based interventions, which show potential in modulating these pathways and enhancing immunotherapies such as checkpoint inhibitors. By focusing on the multifaceted interactions between the gut microbiota, oxidative stress, and CNS tumors, this review highlights the potential of microbiota-targeted therapies and their manipulation to complement and enhance current treatments.
Collapse
Affiliation(s)
| | | | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (A.K.); (G.E.S.)
| |
Collapse
|
4
|
Frost ED, Shi SX, Byroju VV, Pitton Rissardo J, Donlon J, Vigilante N, Murray BP, Walker IM, McGarry A, Ferraro TN, Hanafy KA, Echeverria V, Mitrev L, Kling MA, Krishnaiah B, Lovejoy DB, Rahman S, Stone TW, Koola MM. Galantamine-Memantine Combination in the Treatment of Parkinson's Disease Dementia. Brain Sci 2024; 14:1163. [PMID: 39766362 PMCID: PMC11674513 DOI: 10.3390/brainsci14121163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects over 1% of population over age 60. It is defined by motor and nonmotor symptoms including a spectrum of cognitive impairments known as Parkinson's disease dementia (PDD). Currently, the only US Food and Drug Administration-approved treatment for PDD is rivastigmine, which inhibits acetylcholinesterase and butyrylcholinesterase increasing the level of acetylcholine in the brain. Due to its limited efficacy and side effect profile, rivastigmine is often not prescribed, leaving patients with no treatment options. PD has several derangements in neurotransmitter pathways (dopaminergic neurons in the nigrostriatal pathway, kynurenine pathway (KP), acetylcholine, α7 nicotinic receptor, and N-methyl-D-aspartate (NMDA) receptors) and rivastigmine is only partially effective as it only targets one pathway. Kynurenic acid (KYNA), a metabolite of tryptophan metabolism, affects the pathophysiology of PDD in multiple ways. Both galantamine (α7 nicotinic receptor) and memantine (antagonist of the NMDA subtype of the glutamate receptor) are KYNA modulators. When used in combination, they target multiple pathways. While randomized controlled trials (RCTs) with each drug alone for PD have failed, the combination of galantamine and memantine has demonstrated a synergistic effect on cognitive enhancement in animal models. It has therapeutic potential that has not been adequately assessed, warranting future randomized controlled trials. In this review, we summarize the KYNA-centric model for PD pathophysiology and discuss how this treatment combination is promising in improving cognitive function in patients with PDD through its action on KYNA.
Collapse
Affiliation(s)
- Emma D. Frost
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
| | - Swanny X. Shi
- Department of Neurology, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Vishnu V. Byroju
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
| | | | - Jack Donlon
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | | | | | - Ian M. Walker
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Andrew McGarry
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Thomas N. Ferraro
- Department of Biomedical Sciences, Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Khalid A. Hanafy
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Valentina Echeverria
- Research and Development Department, Bay Pines VAHCS, Bay Pines, FL 33744, USA
- Medicine Department, Universidad San Sebastián, Concepción 4081339, Bío Bío, Chile
| | - Ludmil Mitrev
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Mitchel A. Kling
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Balaji Krishnaiah
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - David B. Lovejoy
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2113, Australia
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Trevor W. Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX3 7LD, UK
| | - Maju Mathew Koola
- Department of Public Safety and Correctional Services, Baltimore, MD 21215, USA
| |
Collapse
|
5
|
Park KJ, Gao Y. Gut-brain axis and neurodegeneration: mechanisms and therapeutic potentials. Front Neurosci 2024; 18:1481390. [PMID: 39513042 PMCID: PMC11541110 DOI: 10.3389/fnins.2024.1481390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
This paper reviews the effects of gut microbiota in regulating neurodegenerative diseases through controlling gut-brain axis. Specific microbial populations and their metabolites (short-chain fatty acids and tryptophan derivatives) regulate neuroinflammation, neurogenesis and neural barrier integrity. We then discuss ways by which these insights lead to possible interventions - probiotics, prebiotics, dietary modification, and fecal microbiota transplantation (FMT). We also describe what epidemiological and clinical studies have related certain microbiota profiles with the courses of neurodegenerative diseases and how these impact the establishment of microbiome-based diagnostics and individualized treatment options. We aim to guide microbial ecology research on this key link to neurodegenerative disorders and also to highlight collaborative approaches to manage neurological health by targeting microbiome-related factors.
Collapse
Affiliation(s)
| | - Yao Gao
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Dehhaghi M, Heydari M, Panahi HKS, Lewin SR, Heng B, Brew BJ, Guillemin GJ. The roles of the kynurenine pathway in COVID-19 neuropathogenesis. Infection 2024; 52:2043-2059. [PMID: 38802702 PMCID: PMC11499433 DOI: 10.1007/s15010-024-02293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the highly contagious respiratory disease Corona Virus Disease 2019 (COVID-19) that may lead to various neurological and psychological disorders that can be acute, lasting days to weeks or months and possibly longer. The latter is known as long-COVID or more recently post-acute sequelae of COVID (PASC). During acute COVID-19 infection, a strong inflammatory response, known as the cytokine storm, occurs in some patients. The levels of interferon-γ (IFN-γ), interferon-β (IFN-β), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) are particularly increased. These cytokines are known to activate the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), catalysing the first step of tryptophan (Trp) catabolism through the kynurenine pathway (KP) leading to the production of several neurotoxic and immunosuppressive metabolites. There is already data showing elevation in KP metabolites both acutely and in PASC, especially regarding cognitive impairment. Thus, it is likely that KP involvement is significant in SARS-CoV-2 pathogenesis especially neurologically.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mostafa Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Hamed Kazemi Shariat Panahi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Bruce J Brew
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia.
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia.
- Departments of Neurology and Immunology, St. Vincent's Hospital, Sydney, NSW, Australia.
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia.
| | - Gilles J Guillemin
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor University, Bogor, Indonesia
| |
Collapse
|
7
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
8
|
Özkılıç Y, Stein M. Modelling the elusive conformational activation in kynurenine 3-monooxygenase. Org Biomol Chem 2024; 22:6550-6560. [PMID: 39081262 DOI: 10.1039/d4ob00862f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Kynurenine 3-monooxygenase (KMO) regulates the levels of important physiological intermediates in the kynurenine pathway [Guillemin, et al., Journal of Neuroscience, 2007, 27, 12884], which is the major route for L-tryptophan catabolism. Its catalytic activity (hydroxylation) is dependent on the formation of a short-lived intermediate that forms after the reduction of the coenzyme FAD. The reduction takes place fast when the substrate binds to KMO. Crystal structures of the apo form and in complex with an effector inhibitor, which prevents the hydroxylation of the substrate but also stimulates KMO like the substrate, and a competitive inhibitor, which suppresses the substrate hydroxylation, are available for the resting in conformation only. The active out conformational state that enables the reduction of FAD at an exposed location of KMO after its stimulation by an effector, however, was implicated but not resolved experimentally and has remained elusive so far. Molecular dynamics simulations of apo KMO and the inhibitor-KMO complexes are carried out using extensive multi-dimensional umbrella sampling to explore the free-energy surface of the coenzyme FAD's conformational conversion from the in state (buried within the active site) to the out state. This allows a discussion and comparison with the experimental results, which showed a significant increase in the rate of reduction of FAD in the presence of an effector inhibitor and absence of enzymatic function in the presence of a competitive inhibitor [Kim, et al., Cell Chemical Biology, 2018, 25, 426]. The free-energy barriers associated with those conformational changes and structural models for the active out conformation are obtained. The interactions during the conformational changes are determined to identify the influence of the effector.
Collapse
Affiliation(s)
- Yılmaz Özkılıç
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| | - Matthias Stein
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| |
Collapse
|
9
|
Kavyani B, Ahn SB, Missailidis D, Annesley SJ, Fisher PR, Schloeffel R, Guillemin GJ, Lovejoy DB, Heng B. Dysregulation of the Kynurenine Pathway, Cytokine Expression Pattern, and Proteomics Profile Link to Symptomology in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Mol Neurobiol 2024; 61:3771-3787. [PMID: 38015302 DOI: 10.1007/s12035-023-03784-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Dysregulation of the kynurenine pathway (KP) is believed to play a significant role in neurodegenerative and cognitive disorders. While some evidence links the KP to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), further studies are needed to clarify the overall picture of how inflammation-driven KP disturbances may contribute to symptomology in ME/CFS. Here, we report that plasma levels of most bioactive KP metabolites differed significantly between ME/CFS patients and healthy controls in a manner consistent with their known contribution to symptomology in other neurological disorders. Importantly, we found that enhanced production of the first KP metabolite, kynurenine (KYN), correlated with symptom severity, highlighting the relationship between inflammation, KP dysregulation, and ME/CFS symptomology. Other significant changes in the KP included lower levels of the downstream KP metabolites 3-HK, 3-HAA, QUIN, and PIC that could negatively impact cellular energetics. We also rationalized KP dysregulation to changes in the expression of inflammatory cytokines and, for the first time, assessed levels of the iron (Fe)-regulating hormone hepcidin that is also inflammation-responsive. Levels of hepcidin in ME/CFS decreased nearly by half, which might reflect systemic low Fe levels or possibly ongoing hypoxia. We next performed a proteomics screen to survey for other significant differences in protein expression in ME/CFS. Interestingly, out of the seven most significantly modulated proteins in ME/CFS patient plasma, 5 proteins have roles in maintaining gut health, which considering the new appreciation of how gut microbiome and health modulates systemic KP could highlight a new explanation of symptomology in ME/CFS patients and potential new prognostic biomarker/s and/or treatment avenues.
Collapse
Affiliation(s)
- Bahar Kavyani
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Seong Beom Ahn
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Daniel Missailidis
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Sarah J Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Paul R Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | | | - Gilles J Guillemin
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - David B Lovejoy
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Grishanova AY, Perepechaeva ML. Kynurenic Acid/AhR Signaling at the Junction of Inflammation and Cardiovascular Diseases. Int J Mol Sci 2024; 25:6933. [PMID: 39000041 PMCID: PMC11240928 DOI: 10.3390/ijms25136933] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Persistent systemic chronic inflammatory conditions are linked with many pathologies, including cardiovascular diseases (CVDs), a leading cause of death across the globe. Among various risk factors, one of the new possible contributors to CVDs is the metabolism of essential amino acid tryptophan. Proinflammatory signals promote tryptophan metabolism via the kynurenine (KYN) pathway (KP), thereby resulting in the biosynthesis of several immunomodulatory metabolites whose biological effects are associated with the development of symptoms and progression of various inflammatory diseases. Some participants in the KP are agonists of aryl hydrocarbon receptor (AhR), a central player in a signaling pathway that, along with a regulatory influence on the metabolism of environmental xenobiotics, performs a key immunomodulatory function by triggering various cellular mechanisms with the participation of endogenous ligands to alleviate inflammation. An AhR ligand with moderate affinity is the central metabolite of the KP: KYN; one of the subsequent metabolites of KYN-kynurenic acid (KYNA)-is a more potent ligand of AhR. Understanding the role of AhR pathway-related metabolites of the KP that regulate inflammatory factors in cells of the cardiovascular system is interesting and important for achieving effective treatment of CVDs. The purpose of this review was to summarize the results of studies about the participation of the KP metabolite-KYNA-and of the AhR signaling pathway in the regulation of inflammation in pathological conditions of the heart and blood vessels and about the possible interaction of KYNA with AhR signaling in some CVDs.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia;
| |
Collapse
|
11
|
Summers BS, Thomas Broome S, Pang TWR, Mundell HD, Koh Belic N, Tom NC, Ng ML, Yap M, Sen MK, Sedaghat S, Weible MW, Castorina A, Lim CK, Lovelace MD, Brew BJ. A Review of the Evidence for Tryptophan and the Kynurenine Pathway as a Regulator of Stem Cell Niches in Health and Disease. Int J Tryptophan Res 2024; 17:11786469241248287. [PMID: 38757094 PMCID: PMC11097742 DOI: 10.1177/11786469241248287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Stem cells are ubiquitously found in various tissues and organs in the body, and underpin the body's ability to repair itself following injury or disease initiation, though repair can sometimes be compromised. Understanding how stem cells are produced, and functional signaling systems between different niches is critical to understanding the potential use of stem cells in regenerative medicine. In this context, this review considers kynurenine pathway (KP) metabolism in multipotent adult progenitor cells, embryonic, haematopoietic, neural, cancer, cardiac and induced pluripotent stem cells, endothelial progenitor cells, and mesenchymal stromal cells. The KP is the major enzymatic pathway for sequentially catabolising the essential amino acid tryptophan (TRP), resulting in key metabolites including kynurenine, kynurenic acid, and quinolinic acid (QUIN). QUIN metabolism transitions into the adjoining de novo pathway for nicotinamide adenine dinucleotide (NAD) production, a critical cofactor in many fundamental cellular biochemical pathways. How stem cells uptake and utilise TRP varies between different species and stem cell types, because of their expression of transporters and responses to inflammatory cytokines. Several KP metabolites are physiologically active, with either beneficial or detrimental outcomes, and evidence of this is presented relating to several stem cell types, which is important as they may exert a significant impact on surrounding differentiated cells, particularly if they metabolise or secrete metabolites differently. Interferon-gamma (IFN-γ) in mesenchymal stromal cells, for instance, highly upregulates rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO-1), initiating TRP depletion and production of metabolites including kynurenine/kynurenic acid, known agonists of the Aryl hydrocarbon receptor (AhR) transcription factor. AhR transcriptionally regulates an immunosuppressive phenotype, making them attractive for regenerative therapy. We also draw attention to important gaps in knowledge for future studies, which will underpin future application for stem cell-based cellular therapies or optimising drugs which can modulate the KP in innate stem cell populations, for disease treatment.
Collapse
Affiliation(s)
- Benjamin Sebastian Summers
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Sarah Thomas Broome
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | | | - Hamish D Mundell
- Faculty of Medicine and Health, New South Wales Brain Tissue Resource Centre, School of Medical Sciences, Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Naomi Koh Belic
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - Nicole C Tom
- Formerly of the Department of Physiology, University of Sydney, NSW, Australia
| | - Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maylin Yap
- Formerly of the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Monokesh K Sen
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- School of Medicine, Western Sydney University, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sara Sedaghat
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Michael W Weible
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Alessandro Castorina
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Chai K Lim
- Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
- Departments of Neurology and Immunology, St. Vincent’s Hospital, Sydney, NSW, Australia
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia
| |
Collapse
|
12
|
Hazrati E, Eftekhar SP, Mosaed R, Shiralizadeh Dini S, Namazi M. Understanding the kynurenine pathway: A narrative review on its impact across chronic pain conditions. Mol Pain 2024; 20:17448069241275097. [PMID: 39093627 PMCID: PMC11331475 DOI: 10.1177/17448069241275097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Chronic pain is a debilitating symptom with a significant negative impact on the quality of life and socioeconomic status, particularly among adults and the elderly. Major Depressive Disorder (MDD) stands out as one of the most important comorbid disorders accompanying chronic pain. The kynurenine pathway serves as the primary route for tryptophan degradation and holds critical significance in various biological processes, including the regulation of neurotransmitters, immune responses, cancer development, metabolism, and inflammation. This review encompasses key research studies related to the kynurenine pathway in the context of headache, neuropathic pain, gastrointestinal disorders, fibromyalgia, chronic fatigue syndrome, and MDD. Various metabolites produced in the kynurenine pathway, such as kynurenic acid and quinolinic acid, exhibit neuroprotective and neurotoxic effects, respectively. Recent studies have highlighted the significant involvement of kynurenine and its metabolites in the pathophysiology of pain. Moreover, pharmacological interventions targeting the regulation of the kynurenine pathway have shown therapeutic promise in pain management. Understanding the underlying mechanisms of this pathway presents an opportunity for developing personalized, innovative, and non-opioid approaches to pain treatment. Therefore, this narrative review explores the role of the kynurenine pathway in various chronic pain disorders and its association with depression and chronic pain.
Collapse
Affiliation(s)
- Ebrahim Hazrati
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Parsa Eftekhar
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | | | - Mehrshad Namazi
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Bakker L, Ramakers IHGB, J P M Eussen S, Choe K, van den Hove DLA, Kenis G, Rutten BPF, van Oostenbrugge RJ, Staals J, Ulvik A, Ueland PM, Verhey FRJ, Köhler S. The role of the kynurenine pathway in cognitive functioning after stroke: A prospective clinical study. J Neurol Sci 2023; 454:120819. [PMID: 37852105 DOI: 10.1016/j.jns.2023.120819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The kynurenine pathway is the main metabolic pathway of tryptophan degradation and has been associated with stroke and impaired cognitive functioning, but studies on its role in post-stroke cognitive impairment (PSCI) are scarce. We aimed to investigate associations between metabolites of the kynurenine pathway at baseline and post-stroke cognitive functioning over time. METHODS Baseline plasma kynurenines were quantified in 198 stroke patients aged 65.4 ± 10.8 years, 138 (69.7%) men, who were followed up over a period of three years after stroke. Baseline and longitudinal associations of kynurenines with PSCI and cognitive domain scores were investigated using linear mixed models, adjusted for several confounders. RESULTS No evidence of associations between kynurenines and odds of PSCI were found. However, considering individual cognitive domains, higher plasma levels of anthranilic acid (AA) were associated with better episodic memory at baseline (β per SD 0.16 [0.05, 0.28]). Additionally, a linear-quadratic association was found for the kynurenic acid/ quinolinic acid ratio (KA/QA), a neuroprotective index, with episodic memory (Wald χ2 = 8.27, p = .016). Higher levels of KA were associated with better processing speed in women only (pinteraction = .008; β per SD 0.15 [95% CI 0.02, 0.27]). These associations did not change over time. CONCLUSIONS Higher levels of KA, AA and KA/QA were associated with better scores on some cognitive domains at baseline. These associations did not change over time. Given the exploratory nature and heterogeneity of findings, these results should be interpreted with caution, and verified in other prospective studies.
Collapse
Affiliation(s)
- Lieke Bakker
- Alzheimer Center Limburg, Maastricht University, 6229 ET Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, the Netherlands; EURON European Graduate School of Neuroscience, 6229 ER Maastricht, the Netherlands.
| | - Inez H G B Ramakers
- Alzheimer Center Limburg, Maastricht University, 6229 ET Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, the Netherlands; EURON European Graduate School of Neuroscience, 6229 ER Maastricht, the Netherlands.
| | - Simone J P M Eussen
- Department of Epidemiology, Maastricht University, 6229 HA Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), 6229 ER Maastricht, the Netherlands; Care and Public Health Research Institute (CAPHRI), 6229 ER Maastricht, the Netherlands.
| | - Kyonghwan Choe
- Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, the Netherlands; EURON European Graduate School of Neuroscience, 6229 ER Maastricht, the Netherlands.
| | - Daniel L A van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, the Netherlands; EURON European Graduate School of Neuroscience, 6229 ER Maastricht, the Netherlands; Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, the Netherlands; EURON European Graduate School of Neuroscience, 6229 ER Maastricht, the Netherlands.
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, the Netherlands; EURON European Graduate School of Neuroscience, 6229 ER Maastricht, the Netherlands.
| | - Robert J van Oostenbrugge
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), 6229 ER Maastricht, the Netherlands; Department of Neurology, Maastricht University Medical Center (MUMC+), 6229 HX Maastricht, the Netherlands.
| | - Julie Staals
- School for Cardiovascular Diseases (CARIM), 6229 ER Maastricht, the Netherlands; Department of Neurology, Maastricht University Medical Center (MUMC+), 6229 HX Maastricht, the Netherlands.
| | | | | | - Frans R J Verhey
- Alzheimer Center Limburg, Maastricht University, 6229 ET Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, the Netherlands; EURON European Graduate School of Neuroscience, 6229 ER Maastricht, the Netherlands.
| | - Sebastian Köhler
- Alzheimer Center Limburg, Maastricht University, 6229 ET Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, the Netherlands; EURON European Graduate School of Neuroscience, 6229 ER Maastricht, the Netherlands.
| |
Collapse
|
14
|
Korkmaz ŞA, Kızgın S, Oğuz EF, Neşelioğlu S, Erel Ö. Thiol-disulphide homeostasis, ischemia-modified albumin, complete blood count-derived inflammatory markers and C-reactive protein from acute mania to early remission in bipolar disorder. J Affect Disord 2023; 339:426-434. [PMID: 37459969 DOI: 10.1016/j.jad.2023.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
OBJECTIVES There is much recent evidence that inflammation contributes to the pathophysiology of acute mania in bipolar disorder (BD). However, no study was evaluated in which the change in thiol-disulphide homeostasis, ischemia-modified albumin (IMA), complete blood count-derived inflammatory markers (CBC-IMs) and C-reactive protein (CRP) levels in bipolar patients was followed-up from acute mania to early remission. METHODS Seventy-seven bipolar patients in acute mania and ninety-one HC were enrolled. We measured levels of thiol-disulphide parameters, IMA, and CBC-IMs such as neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), red-cell-distribution-width (RDW)-to-platelet ratio (RPR), systemic immune-inflammatory index (SII), and systemic inflammatory response index (SIRI), CRP and platelet-to-albumin ratio (PAR), after adjusting for age, gender, body-mass index (BMI) and smoking status, during acute mania to subsequent early remission. The results were compared with HC. RESULTS The levels or ratios of all thiol-disulphide parameters except for disulphide, IMA and CRP of bipolar patients in both acute mania and early remission were significantly different from HC, after adjusting for confounders. The NLR, SII, CRP and PAR values of bipolar patients were significantly higher in only acute mania compared to HC. Significant changes in thiol-disulphide parameters and IMA levels were not found in early remission after acute mania. LIMITATIONS Short follow-up period and lack of drug-naive patients. CONCLUSIONS Our results suggest that thiol-disulphide parameters, IMA level and SIRI value might be a trait biomarkers of inflammation in BD. In addition, NLR, SII and PAR values and CRP level might be a state biomarker of inflammation in bipolar patients in a manic phase.
Collapse
Affiliation(s)
- Şükrü Alperen Korkmaz
- Çanakkale Onsekiz Mart University, Faculty of Medicine, Department of Psychiatry, Çanakkale, Turkey.
| | - Sadice Kızgın
- Ankara City Hospital, Department of Psychiatry, Ankara, Turkey
| | - Esra Fırat Oğuz
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Department of Biochemistry, Ankara/Turkey
| | - Salim Neşelioğlu
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Department of Biochemistry, Ankara/Turkey
| | - Özcan Erel
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Department of Biochemistry, Ankara/Turkey
| |
Collapse
|
15
|
Shaw C, Hess M, Weimer BC. Microbial-Derived Tryptophan Metabolites and Their Role in Neurological Disease: Anthranilic Acid and Anthranilic Acid Derivatives. Microorganisms 2023; 11:1825. [PMID: 37512997 PMCID: PMC10384668 DOI: 10.3390/microorganisms11071825] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiome provides the host access to otherwise indigestible nutrients, which are often further metabolized by the microbiome into bioactive components. The gut microbiome can also shift the balance of host-produced compounds, which may alter host health. One precursor to bioactive metabolites is the essential aromatic amino acid tryptophan. Tryptophan is mostly shunted into the kynurenine pathway but is also the primary metabolite for serotonin production and the bacterial indole pathway. Balance between tryptophan-derived bioactive metabolites is crucial for neurological homeostasis and metabolic imbalance can trigger or exacerbate neurological diseases. Alzheimer's, depression, and schizophrenia have been linked to diverging levels of tryptophan-derived anthranilic, kynurenic, and quinolinic acid. Anthranilic acid from collective microbiome metabolism plays a complex but important role in systemic host health. Although anthranilic acid and its metabolic products are of great importance for host-microbe interaction in neurological health, literature examining the mechanistic relationships between microbial production, host regulation, and neurological diseases is scarce and at times conflicting. This narrative review provides an overview of the current understanding of anthranilic acid's role in neurological health and disease, with particular focus on the contribution of the gut microbiome, the gut-brain axis, and the involvement of the three major tryptophan pathways.
Collapse
Affiliation(s)
- Claire Shaw
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California Davis, Davis, CA 95616, USA
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616, USA
| | - Matthias Hess
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
16
|
Lu L, Liu W, Li S, Bai M, Zhou Y, Jiang Z, Jia Z, Huang S, Zhang A, Gong W. Flavonoid derivative DMXAA attenuates cisplatin-induced acute kidney injury independent of STING signaling. Clin Sci (Lond) 2023; 137:435-452. [PMID: 36815438 DOI: 10.1042/cs20220728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 11/17/2022]
Abstract
Cisplatin-induced nephrotoxicity is the main adverse effect of cisplatin-based chemotherapy and highly limits its clinical use. DMXAA, a flavonoid derivative, is a promising vascular disrupting agent and known as an agonist of STING. Although cGAS-STING activation has been demonstrated to mediate cisplatin-induced acute kidney injury (AKI), the role of DMXAA in this condition is unclear. Here, we defined an unexpected and critical role of DMXAA in improving renal function, ameliorating renal tubular injury and cell apoptosis, and suppressing inflammation in cisplatin-induced AKI. Moreover, we confirmed that DMXAA combated AKI in a STING-independent manner, as evidenced by its protective effect in STING global knockout mice subjected to cisplatin. Furthermore, we compared the role of DMXAA with another STING agonist SR717 in cisplatin-treated mice and found that DMXAA but not SR717 protected animals against AKI. To better evaluate the role of DMXAA, we performed transcriptome analyses and observed that both inflammatory and metabolic pathways were altered by DMXAA treatment. Due to the established role of metabolic disorders in AKI, which contributes to kidney injury and recovery, we also performed metabolomics using kidney tissues from cisplatin-induced AKI mice with or without DMXAA treatment. Strikingly, our results revealed that DMXAA improved the metabolic disorders in kidneys of AKI mice, especially regulated the tryptophan metabolism. Collectively, therapeutic administration of DMXAA ameliorates cisplatin-induced AKI independent of STING, suggesting a promising potential for preventing nephrotoxicity induced by cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Lingling Lu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weihua Liu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Shumin Li
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mi Bai
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaohui Jiang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gong
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Duan Z, Shi L, He ZNT, Kuang C, Han T, Yang Q. The Protective Effect of IDO1 Inhibition in Aβ-Treated Neurons and APP/PS1 Mice. Am J Alzheimers Dis Other Demen 2023; 38:15333175231214861. [PMID: 37944012 PMCID: PMC10637170 DOI: 10.1177/15333175231214861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Alzheimer's disease (AD) is an inflammatory associated disease, in which dysregulated kynurenine pathway (KP) plays a key role. Through KP, L-tryptophan is catabolized into neurotoxic and neuroprotective metabolites. The overactivation of indolamine 2,3-dioxygenase1 (IDO1), the first rate-limiting enzyme of KP, and the abnormal accumulation of KP metabolites have been noted in AD, and blocking IDO1 has been suggested as a therapeutic strategy. However, the expression patterns of KP enzymes in AD, and whether these enzymes are related to AD pathogenesis, have not been fully studied. Herein, we examined the expression patterns of inflammatory cytokines, neurotrophic factors and KP enzymes, and the activity of IDO1 and IDO1 effector pathway AhR (aryl hydrocarbon receptor) in AD mice. We studied the effects of IDO1 inhibitors on Aβ-related neuroinflammation in rat primary neurons, mouse hippocampal neuronal cells, and APP/PS1 mice. The results further demonstrated the importance of IDO1-catalyzed KP in neuroinflammation in Alzheimer's disease.
Collapse
Affiliation(s)
- Zhenzhen Duan
- School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Lei Shi
- School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Zhen Ning Tony He
- School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Chunxiang Kuang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Tianxiong Han
- Department of Traditional Chinese Medicine, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Qing Yang
- School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Perez-Castro L, Garcia R, Venkateswaran N, Barnes S, Conacci-Sorrell M. Tryptophan and its metabolites in normal physiology and cancer etiology. FEBS J 2023; 290:7-27. [PMID: 34687129 PMCID: PMC9883803 DOI: 10.1111/febs.16245] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
Within the growing field of amino acid metabolism, tryptophan (Trp) catabolism is an area of increasing interest. Trp is essential for protein synthesis, and its metabolism gives rise to biologically active catabolites including serotonin and numerous metabolites in the kynurenine (Kyn) pathway. In normal tissues, the production of Trp metabolites is directly regulated by the tissue-specific expression of Trp-metabolizing enzymes. Alterations of these enzymes in cancers can shift the balance and lead to an increased production of specific byproducts that can function as oncometabolites. For example, increased expression of the enzyme indoleamine 2,3-dioxygenase, which converts Trp into Kyn, leads to an increase in Kyn levels in numerous cancers. Kyn functions as an oncometabolite in cancer cells by promoting the activity of the transcription factor aryl hydrocarbon receptor, which regulates progrowth genes. Moreover, Kyn also inhibits T-cell activity and thus allows cancer cells to evade clearance by the immune system. Therefore, targeting the Kyn pathway has become a therapeutic focus as a novel means to abrogate tumor growth and immune resistance. This review summarizes the biological role and regulation of Trp metabolism and its catabolites with an emphasis on tumor cell growth and immune evasion and outlines areas for future research focus.
Collapse
Affiliation(s)
- Lizbeth Perez-Castro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roy Garcia
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Niranjan Venkateswaran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Spencer Barnes
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
19
|
Pivac N, Vuic B, Sagud M, Nedic Erjavec G, Nikolac Perkovic M, Konjevod M, Tudor L, Svob Strac D, Uzun S, Kozumplik O, Uzun S, Mimica N. PTSD, Immune System, and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:225-262. [PMID: 36949313 DOI: 10.1007/978-981-19-7376-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a severe trauma and stress-related disorder associated with different somatic comorbidities, especially cardiovascular and metabolic disorders, and with chronic low-grade inflammation. Altered balance of the hypothalamic-pituitary-adrenal (HPA) axis, cytokines and chemokines, C-reactive protein, oxidative stress markers, kynurenine pathways, and gut microbiota might be involved in the alterations of certain brain regions regulating fear conditioning and memory processes, that are all altered in PTSD. In addition to the HPA axis, the gut microbiota maintains the balance and interaction of the immune, CNS, and endocrine pathways forming the gut-brain axis. Disbalance in the HPA axis, gut-brain axis, oxidative stress pathways and kynurenine pathways, altered immune signaling and disrupted homeostasis, as well as the association of the PTSD with the inflammation and disrupted cognition support the search for novel strategies for treatment of PTSD. Besides potential anti-inflammatory treatment, dietary interventions or the use of beneficial bacteria, such as probiotics, can potentially improve the composition and the function of the bacterial community in the gut. Therefore, bacterial supplements and controlled dietary changes, with exercise, might have beneficial effects on the psychological and cognitive functions in patients with PTSD. These new treatments should be aimed to attenuate inflammatory processes and consequently to reduce PTSD symptoms but also to improve cognition and reduce cardio-metabolic disorders associated so frequently with PTSD.
Collapse
Affiliation(s)
- Nela Pivac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia.
| | - Barbara Vuic
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Lucija Tudor
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Suzana Uzun
- University of Zagreb School of Medicine, Zagreb, Croatia
- University Psychiatric Hospital Vrapce, Zagreb, Croatia
| | | | - Sandra Uzun
- Department for Anesthesiology, Reanimatology, and Intensive Care, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ninoslav Mimica
- University of Zagreb School of Medicine, Zagreb, Croatia
- University Psychiatric Hospital Vrapce, Zagreb, Croatia
| |
Collapse
|
20
|
Fathi M, Vakili K, Yaghoobpoor S, Tavasol A, Jazi K, Mohamadkhani A, Klegeris A, McElhinney A, Mafi Z, Hajiesmaeili M, Sayehmiri F. Dynamic changes in kynurenine pathway metabolites in multiple sclerosis: A systematic review. Front Immunol 2022; 13:1013784. [PMID: 36426364 PMCID: PMC9680557 DOI: 10.3389/fimmu.2022.1013784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Background Multiple sclerosis (MS) is a debilitating neurodegenerative disorder characterized by axonal damage, demyelination, and perivascular inflammatory lesions in the white matter of the central nervous system (CNS). Kynurenine pathway (KP), which is the major route of tryptophan (TRP) metabolism, generates a variety of neurotoxic as well as neuroprotective compounds, affecting MS pathology and the severity of impairments. Alterations in KP have been described not only in MS, but also in various psychiatric and neurodegenerative diseases. The purpose of this systematic review is to investigate the previously reported dysregulation of KP and differences in its metabolites and enzymes in patients with MS compared to healthy control subjects. Method Electronic databases of PubMed, Scopus, Cochrane Database of Systematic Reviews, and Web of Science were searched to identify studies measuring concentrations of KP metabolites and enzymes in MS patients and control subjects. The following metabolites and enzymes implicated in the KP were investigated: TRP, kynurenine (KYN), kynurenic acid (KYNA), quinolinic acid (QUIN), picolinic acid (PIC), hydroxyindoleacetic acid (HIAA), indoleamine 2,3-dioxygenase (IDO), kynurenine aminotransferase (KAT), and their related ratios. Result Ten studies were included in our systematic review. Our review demonstrates that IDO expression is reduced in the peripheral blood mononuclear cells (PBMCs) of MS patients compared to healthy controls. Also, increased levels of QUIN and QUIN/KYNA in the serum and cerebrospinal fluid (CSF) of MS patients is observed. Differences in levels of other metabolites and enzymes of KP are also reported in some of the reviewed studies, however there are discrepancies among the included reports. Conclusion The results of this investigation suggest a possible connection between alterations in the levels of KP metabolite or enzymes and MS. QUIN levels in CSF were higher in MS patients than in healthy controls, suggesting that QUIN may be involved in the pathogenesis of MS. The data indicate that differences in the serum/blood or CSF levels of certain KP metabolites and enzymes could potentially be used to differentiate between MS patients and control subjects.
Collapse
Affiliation(s)
- Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Tavasol
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Jazi
- Faculty of Medicine, Medical University of Qom, Qom, Iran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Alyssa McElhinney
- Department of Biology, Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Zahedeh Mafi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Pires AS, Gupta S, Barton SA, Vander Wall R, Tan V, Heng B, Phillips JK, Guillemin GJ. Temporal Profile of Kynurenine Pathway Metabolites in a Rodent Model of Autosomal Recessive Polycystic Kidney Disease. Int J Tryptophan Res 2022; 15:11786469221126063. [PMID: 36329761 PMCID: PMC9623391 DOI: 10.1177/11786469221126063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/27/2022] [Indexed: 11/28/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is an early onset genetic disorder characterized by numerous renal cysts resulting in end stage renal disease. Our study aimed to determine if metabolic reprogramming and tryptophan (Trp) metabolism via the kynurenine pathway (KP) is a critical dysregulated pathway in PKD. Using the Lewis polycystic kidney (LPK) rat model of PKD and Lewis controls, we profiled temporal trends for KP metabolites in plasma, urine, and kidney tissues from 6- and 12-week-old mixed sex animals using liquid and gas chromatography, minimum n = 5 per cohort. A greater kynurenine (KYN) concentration was observed in LPK kidney and plasma of 12-week rats compared to age matched Lewis controls (P ⩽ .05). LPK kidneys also showed an age effect (P ⩽ .05) with KYN being greater in 12-week versus 6-week LPK. The metabolites xanthurenic acid (XA), 3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid (3-HAA) were significantly greater in the plasma of 12-week LPK rats compared to age matched Lewis controls (P ⩽ .05). Plasma XA and 3-HK also showed an age effect (P ⩽ .05) being greater in 12-week versus 6-week LPK. We further describe a decrease in Trp levels in LPK plasma and kidney (strain effect P ⩽ .05). There were no differences in KP metabolites in urine between cohorts. Using the ratio of product and substrates in the KP, a significant age-strain effect (P ⩽ .05) was observed in the activity of the KYN/Trp ratio (tryptophan-2,3-dioxygenase [TDO] or indoleamine-2,3-dioxygenase [IDO] activity), kynurenine 3-monooxygenase (KMO), KAT A (kynurenine aminotransferase A), KAT B, total KAT, total KYNU (kynureninase), KYNU A, KYNU B, and total KYNU within LPK kidneys, supporting an activated KP. Confirmation of the activation of these enzymes will require verification through orthogonal techniques. In conclusion, we have demonstrated an up-regulation of the KP in alignment with progression of renal impairment in the LPK rat model, suggesting that KP activation may be a critical contributor to the pathobiology of PKD.
Collapse
Affiliation(s)
- Ananda Staats Pires
- Neuroinflammation Group, Macquarie
Medical School, Centre for Motor Neuron Disease Research, Faculty of Medicine,
Health and Human Sciences, Macquarie University, Sydney, NSW, Australia,Laboratório de Bioenergética e Estresse
Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade
Federal de Santa Catarina, Florianópolis, Brasil
| | - Shabarni Gupta
- Autonomic and Sensory Neuroscience
Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences,
Macquarie University, Sydney, NSW, Australia
| | - Sean A Barton
- Autonomic and Sensory Neuroscience
Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences,
Macquarie University, Sydney, NSW, Australia
| | - Roshana Vander Wall
- Autonomic and Sensory Neuroscience
Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences,
Macquarie University, Sydney, NSW, Australia
| | - Vanessa Tan
- Neuroinflammation Group, Macquarie
Medical School, Centre for Motor Neuron Disease Research, Faculty of Medicine,
Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Macquarie
Medical School, Centre for Motor Neuron Disease Research, Faculty of Medicine,
Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Jacqueline K Phillips
- Autonomic and Sensory Neuroscience
Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences,
Macquarie University, Sydney, NSW, Australia,Jacqueline K Phillips, Autonomic and
Sensory Neuroscience Group, Macquarie Medical School,Department of Biomedical
Science, Faculty of Medicine, Health and Human Sciences, Macquarie University,
Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia.
| | - Gilles J Guillemin
- Neuroinflammation Group, Macquarie
Medical School, Centre for Motor Neuron Disease Research, Faculty of Medicine,
Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
22
|
Fathi M, Vakili K, Yaghoobpoor S, Tavasol A, Jazi K, Hajibeygi R, Shool S, Sodeifian F, Klegeris A, McElhinney A, Tavirani MR, Sayehmiri F. Dynamic changes in metabolites of the kynurenine pathway in Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: A systematic Review and meta-analysis. Front Immunol 2022; 13:997240. [PMID: 36263032 PMCID: PMC9574226 DOI: 10.3389/fimmu.2022.997240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background Tryptophan (TRP) is an essential amino acid that must be provided in the diet. The kynurenine pathway (KP) is the main route of TRP catabolism into nicotinamide adenosine dinucleotide (NAD+), and metabolites of this pathway may have protective or degenerative effects on the nervous system. Thus, the KP may be involved in neurodegenerative diseases. Objectives The purpose of this systematic review and meta-analysis is to assess the changes in KP metabolites such as TRP, kynurenine (KYN), kynurenic acid (KYNA), Anthranilic acid (AA), 3-hydroxykynurenine (3-HK), 5-Hydroxyindoleacetic acid (5-HIAA), and 3-Hydroxyanthranilic acid (3-HANA) in Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD) patients compared to the control group. Methods We conducted a literature search using PubMed/Medline, Scopus, Google Scholar, Web of Science, and EMBASE electronic databases to find articles published up to 2022. Studies measuring TRP, KYN, KYNA, AA, 3-HK, 5-HIAA, 3-HANA in AD, PD, or HD patients and controls were identified. Standardized mean differences (SMDs) were used to determine the differences in the levels of the KP metabolites between the two groups. Results A total of 30 studies compromising 689 patients and 774 controls were included in our meta-analysis. Our results showed that the blood levels of TRP was significantly lower in the AD (SMD=-0.68, 95% CI=-0.97 to -0.40, p=0.000, I2 = 41.8%, k=8, n=382), PD (SMD=-0.77, 95% CI=-1.24 to -0.30, p=0.001, I2 = 74.9%, k=4, n=352), and HD (SMD=-0.90, 95% CI=-1.71 to -0.10, p=0.028, I2 = 91.0%, k=5, n=369) patients compared to the controls. Moreover, the CSF levels of 3-HK in AD patients (p=0.020) and the blood levels of KYN in HD patients (p=0.020) were lower compared with controls. Conclusion Overall, the findings of this meta-analysis support the hypothesis that the alterations in the KP may be involved in the pathogenesis of AD, PD, and HD. However, additional research is needed to show whether other KP metabolites also vary in AD, PD, and HD patients. So, the metabolites of KP can be used for better diagnosing these diseases.
Collapse
Affiliation(s)
- Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Tavasol
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Jazi
- Student Research Committee, Faculty of Medicine, Medical University of Qom, Qom, Iran
| | - Ramtin Hajibeygi
- Department of Neurology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sina Shool
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sodeifian
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| | - Alyssa McElhinney
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mostafa Rezaei Tavirani, ; Fatemeh Sayehmiri,
| | - Fatemeh Sayehmiri
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mostafa Rezaei Tavirani, ; Fatemeh Sayehmiri,
| |
Collapse
|
23
|
Gong X, Chang R, Zou J, Tan S, Huang Z. The role and mechanism of tryptophan - kynurenine metabolic pathway in depression. Rev Neurosci 2022; 34:313-324. [PMID: 36054612 DOI: 10.1515/revneuro-2022-0047] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/13/2022] [Indexed: 12/22/2022]
Abstract
Major depressive disorder (MDD) is a common mental illness characterized by persistent low mood and anhedonia, normally accompanied with cognitive impairment. Due to its rising incidence and high rate of recurrence and disability, MDD poses a substantial threat to patients' physical and mental health, as well as a significant economic cost to society. However, the etiology and pathogenesis of MDD are still unclear. Chronic inflammation may cause indoleamine-2,3-dioxygenase (IDO) to become overactive throughout the body and brain, resulting in excess quinolinic acid (QUIN) and less kynuric acid (KYNA) in the brain. QUIN's neurotoxicity damages glial cells and neurons, accelerates neuronal apoptosis, hinders neuroplasticity, and causes depression due to inflammation. Therefore, abnormal TRP-KYN metabolic pathway and its metabolites have been closely related to MDD, suggesting changes in the TRP-KYN metabolic pathway might contribute to MDD. In addition, targeting TRP-KYN with traditional Chinese medicine showed promising treatment effects for MDD. This review summarizes the recent studies on the TRP-KYN metabolic pathway and its metabolites in depression, which would provide a theoretical basis for exploring the etiology and pathogenesis of depression.
Collapse
Affiliation(s)
- Xiaoli Gong
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Rui Chang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| | - Ju Zou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| | - Sijie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| | - Zeyi Huang
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China.,Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| |
Collapse
|
24
|
Almulla AF, Vasupanrajit A, Tunvirachaisakul C, Al-Hakeim HK, Solmi M, Verkerk R, Maes M. The tryptophan catabolite or kynurenine pathway in schizophrenia: meta-analysis reveals dissociations between central, serum, and plasma compartments. Mol Psychiatry 2022; 27:3679-3691. [PMID: 35422466 DOI: 10.1038/s41380-022-01552-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 02/08/2023]
Abstract
The tryptophan catabolite (TRYCAT) pathway is implicated in the pathophysiology of schizophrenia (SCZ) since the rate-limiting enzyme indoleamine-dioxygenase (IDO) may be induced by inflammatory and oxidative stress mediators. This systematic review searched PubMed, Web of Science, and Google Scholar for papers published from inception until August 2021 and meta-analyzed the association between SCZ and TRYCATs in the central nervous system (CNS) and peripheral blood. We included 61 studies comprising 2813 patients and 2948 healthy controls. In the CNS we found a significant (p < 0.001) increase in the kynurenine/tryptophan (KYN/TRP) (standardized mean difference, SMD = 0.769, 95% confidence interval, CI: 0.456; 1.082) and kynurenic acid (KA)/KYN + TRP (SMD = 0.697, CI: 0.478-0.917) ratios, KA (SMD = 0.646, CI: 0.422; 0.909) and KYN (SMD = 1.238; CI: 0.590; 1.886), while the 3OH-kynurenine (3HK) + KYN-3-monooxygenase (KMO)/KYN ratio was significantly reduced (SMD = -1.089, CI: -1.682; -0.496). There were significant differences between KYN/TRP, (KYN + KA)/TRP, (3HK + KMO)/KYN, KA, and KYN levels among the CNS and peripheral blood, and among serum and plasma KYN. The only useful peripheral marker of CNS TRYCATs findings was the increased KYN/TRP ratio in serum (SMD = 0.211, CI: 0.056; 0.366, p = 0.007), but not in plasma. There was no significant increase in a neurotoxic composite score based on KYN, 3HK, and picolinic, xanthurenic, and quinolinic acid. SCZ is accompanied by increased IDO activity in the CNS and serum, and reduced KMO activity and a shift towards KA production in the CNS. This CNS TRYCATs profile indicates neuroprotective, negative immunoregulatory and anti-inflammatory effects. Peripheral blood levels of TRYCATs are dissociated from CNS findings except for a modest increase in serum IDO activity.
Collapse
Affiliation(s)
- Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Asara Vasupanrajit
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada.,Department of Mental Health, The Ottawa Hospital, Ottawa, ON, Canada.,Ottawa Hospital Research Institute (OHRI), Clinical Epidemiology Program, University of Ottawa, Ottawa, ON, Canada
| | - Robert Verkerk
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria. .,Department of Psychiatry, IMPACT Strategic Research Centre, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
25
|
The Role of Tryptophan Dysmetabolism and Quinolinic Acid in Depressive and Neurodegenerative Diseases. Biomolecules 2022; 12:biom12070998. [PMID: 35883554 PMCID: PMC9313172 DOI: 10.3390/biom12070998] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Emerging evidence suggests that neuroinflammation is involved in both depression and neurodegenerative diseases. The kynurenine pathway, generating metabolites which may play a role in pathogenesis, is one of several competing pathways of tryptophan metabolism. The present article is a narrative review of tryptophan metabolism, neuroinflammation, depression, and neurodegeneration. A disturbed tryptophan metabolism with increased activity of the kynurenine pathway and production of quinolinic acid may result in deficiencies in tryptophan and derived neurotransmitters. Quinolinic acid is an N-methyl-D-aspartate receptor agonist, and raised levels in CSF, together with increased levels of inflammatory cytokines, have been reported in mood disorders. Increased quinolinic acid has also been observed in neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and HIV-related cognitive decline. Oxidative stress in connection with increased indole-dioxygenase (IDO) activity and kynurenine formation may contribute to inflammatory responses and the production of cytokines. Increased formation of quinolinic acid may occur at the expense of kynurenic acid and neuroprotective picolinic acid. While awaiting ongoing research on potential pharmacological interventions on tryptophan metabolism, adequate protein intake with appropriate amounts of tryptophan and antioxidants may offer protection against oxidative stress and provide a balanced set of physiological receptor ligands.
Collapse
|
26
|
Almulla AF, Supasitthumrong T, Tunvirachaisakul C, Algon AAA, Al-Hakeim HK, Maes M. The tryptophan catabolite or kynurenine pathway in COVID-19 and critical COVID-19: a systematic review and meta-analysis. BMC Infect Dis 2022; 22:615. [PMID: 35840908 PMCID: PMC9284970 DOI: 10.1186/s12879-022-07582-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is accompanied by activated immune-inflammatory pathways and oxidative stress, which both induce indoleamine-2,3-dioxygenase (IDO), a key enzyme of the tryptophan (TRP) catabolite (TRYCAT) pathway. The aim of this study was to systematically review and meta-analyze the status of the TRYCAT pathway, including the levels of TRP and kynurenine (KYN) and the activity of IDO, as measured by the ratio of KYN/TRP. METHODS This systematic review searched PubMed, Google Scholar, and Web of Sciences and included 14 articles that compared TRP and tryptophan catabolites (TRYCATs) in COVID-19 patients versus non-COVID-19 controls, as well as severe/critical versus mild/moderate COVID-19. The analysis was done on a total of 1269 people, including 794 COVID-19 patients and 475 controls. RESULTS The results show a significant (p < 0.0001) increase in the KYN/TRP ratio (standardized mean difference, SMD = 1.099, 95% confidence interval, CI: 0.714; 1.484) and KYN (SMD = 1.123, 95% CI: 0.730; 1.516) and significantly lower TRP (SMD = - 1.002, 95%CI: - 1.738; - 0.266) in COVID-19 versus controls. The KYN/TRP ratio (SMD = 0.945, 95%CI: 0.629; 1.262) and KYN (SMD = 0.806, 95%CI: 0.462; 1.149) were also significantly (p < 0.0001) higher and TRP lower (SMD = - 0.909, 95% CI: - 1.569; - 0.249) in severe/critical versus mild/moderate COVID-19. No significant difference was detected in kynurenic acid (KA) and the KA/KYN ratio between COVID-19 patients and controls. CONCLUSIONS Our results indicate increased activity of the IDO enzyme in COVID-19 and severe/critical patients. The TRYCAT pathway is implicated in the pathophysiology and progression of COVID-19 and may signal a worsening outcome of the disease.
Collapse
Affiliation(s)
- Abbas F. Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, 31001 Iraq
| | | | | | | | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Department of Psychiatry, IMPACT Strategic Research Centre, Deakin University, Geelong, VIC Australia
| |
Collapse
|
27
|
Solianik R, Schwieler L, Trepci A, Erhardt S, Brazaitis M. Two-day fasting affects kynurenine pathway with additional modulation of short-term whole-body cooling: a quasi-randomised crossover trial. Br J Nutr 2022; 129:1-8. [PMID: 35791050 DOI: 10.1017/s0007114522002069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Metabolites of the kynurenine (KYN) pathway of tryptophan (TRP) degradation have attracted interest as potential pathophysiological mediators and future diagnostic biomarkers. A greater knowledge of the pathological implications of the metabolites is associated with a need for a better understanding of how the normal behaviour and physiological activities impact their concentrations. This study aimed to investigate whether fasting (FAST) and whole-body cold-water immersion (CWI) affect KYN pathway metabolites. Thirteen young women were randomly assigned to receive the 2-d FAST with two 10-min CWI on separate days (FAST-CWI), 2-d FAST without CWI (FAST-CON), 2-d two CWI on separate days without FAST (CON-CWI) or the 2-d usual diet without CWI (CON-CON) in a randomised crossover fashion. Changes in plasma concentrations of TRP, kynurenic acid (KYNA), 3-hydroxy-kynurenine (3-HK), picolinic acid (PIC), quinolinic acid (QUIN) and nicotinamide (NAA) were determined with ultra-performance liquid chromatography-tandem mass spectrometer. FAST-CWI and FAST-CON lowered TRP concentration (P < 0·05, ηp2 = 0·24), and increased concentrations of KYNA, 3-HK and PIC (P < 0·05, ηp2 = 0·21-0·71) with no additional effects of CWI. The ratio of PIC/QUIN increased after FAST-CWI and FAST-CON trials (P < 0·05) but with a blunted effect in the FAST-CWI trial (P < 0·05) compared with the FAST-CON trials (ηp2 = 0·67). Concentrations of QUIN and NAA were unaltered. This study demonstrated that fasting for 2 d considerably impacts the concentration of several metabolites in the KYN pathway. This should be considered when discussing the potential of KYN pathway metabolites as biomarkers.
Collapse
Affiliation(s)
- Rima Solianik
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ada Trepci
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sophie Erhardt
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
28
|
Almulla AF, Supasitthumrong T, Amrapala A, Tunvirachaisakul C, Jaleel AKKA, Oxenkrug G, Al-Hakeim HK, Maes M. The Tryptophan Catabolite or Kynurenine Pathway in Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2022; 88:1325-1339. [PMID: 35786655 DOI: 10.3233/jad-220295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Alzheimer's disease (AD), which is characterized by progressive brain dysfunction and memory loss, is one of the most significant global health concerns for older adults. Neuroinflammation and increased oxidative stress contribute to the pathophysiology of AD, thereby presumably inducing tryptophan (TRP) degradation through the TRP catabolite (TRYCAT) pathway. OBJECTIVE To delineate the activity of the TRYCAT pathway along with levels of TRP and tryptophan catabolites (TRYCATs) in AD patients. METHODS We used PubMed, Google Scholar, Web of Science, and SciFinder during the month of January 2022 to gather the pertinent publications. We found 19 eligible articles which involved 738 patients and 665 healthy controls. RESULTS Our results revealed a significant difference (p = 0.008) in the kynurenine (KYN)/TRP ratio (standardized mean difference, SMD = 0.216, 95% confidence interval, CI: 0.057; 0.376), and a significant decrease in TRP in AD patients (SMD = -0.520, 95% CI: -0.738; -0.302, p < 0.0001). Moreover, we also found a significant increase in the central nervous system (CNS), brain, and cerebrospinal fluid kynurenic acid (KA)/KYN ratio but not in peripheral blood, as well as a significant decrease in plasma KA and xanthurenic acid in the CNS and blood. CONCLUSION AD is characterized by TRP depletion but not by an overactivity of the TRYCAT pathway. IDO-induced production of neurotoxic TRYCATs is not a key factor in the pathophysiology of AD.
Collapse
Affiliation(s)
- Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Arisara Amrapala
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Al-Karrar Kais Abdul Jaleel
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Gregory Oxenkrug
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.,Department of Psychiatry, IMPACT Strategic Research Centre, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
29
|
Ala M, Eftekhar SP. The Footprint of Kynurenine Pathway in Cardiovascular Diseases. Int J Tryptophan Res 2022; 15:11786469221096643. [PMID: 35784899 PMCID: PMC9248048 DOI: 10.1177/11786469221096643] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/28/2022] [Indexed: 12/30/2022] Open
Abstract
Kynurenine pathway is the main route of tryptophan metabolism and produces several metabolites with various biologic properties. It has been uncovered that several cardiovascular diseases are associated with the overactivation of kynurenine pathway and kynurenine and its metabolites have diagnostic and prognostic value in cardiovascular diseases. Furthermore, it was found that several kynurenine metabolites can differently affect cardiovascular health. For instance, preclinical studies have shown that kynurenine, xanthurenic acid and cis-WOOH decrease blood pressure; kynurenine and 3-hydroxyanthranilic acid prevent atherosclerosis; kynurenic acid supplementation and kynurenine 3-monooxygenase (KMO) inhibition improve the outcome of stroke. Indoleamine 2,3-dioxygenase (IDO) overactivity and increased kynurenine levels improve cardiac and vascular transplantation outcomes, whereas exacerbating the outcome of myocardial ischemia, post-ischemic myocardial remodeling, and abdominal aorta aneurysm. IDO inhibition and KMO inhibition are also protective against viral myocarditis. In addition, dysregulation of kynurenine pathway is observed in several conditions such as senescence, depression, diabetes, chronic kidney disease (CKD), cirrhosis, and cancer closely connected to cardiovascular dysfunction. It is worth defining the exact effect of each metabolite of kynurenine pathway on cardiovascular health. This narrative review is the first review that separately discusses the involvement of kynurenine pathway in different cardiovascular diseases and dissects the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Parsa Eftekhar
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
30
|
Hosseinalizadeh H, Mahmoodpour M, Samadani AA, Roudkenar MH. The immunosuppressive role of indoleamine 2, 3-dioxygenase in glioblastoma: mechanism of action and immunotherapeutic strategies. Med Oncol 2022; 39:130. [PMID: 35716323 PMCID: PMC9206138 DOI: 10.1007/s12032-022-01724-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is a fatal brain tumor in adults with a bleak diagnosis. Expansion of immunosuppressive and malignant CD4 + FoxP3 + GITR + regulatory T cells is one of the hallmarks of GBM. Importantly, most of the patients with GBM expresses the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO). While IDO1 is generally not expressed at appreciable levels in the adult central nervous system, it is rapidly stimulated and highly expressed in response to ongoing immune surveillance in cancer. Increased levels of immune surveillance in cancer are thus related to higher intratumoral IDO expression levels and, as a result, a worse OS in GBM patients. Conversion of the important amino acid tryptophan into downstream catabolite known as kynurenines is the major function of IDO. Decreasing tryptophan and increasing the concentration of immunomodulatory tryptophan metabolites has been shown to induce T-cell apoptosis, increase immunosuppressive programming, and death of tumor antigen-presenting dendritic cells. This observation supported the immunotherapeutic strategy, and the targeted molecular therapy that suppresses IDO1 activity. We review the current understanding of the role of IDO1 in tumor immunological escape in brain tumors, the immunomodulatory effects of its primary catabolites, preclinical research targeting this enzymatic pathway, and various issues that need to be overcome to increase the prospective immunotherapeutic relevance in the treatment of GBM malignancy.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehrdad Mahmoodpour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Parastar St., 41887-94755, Rasht, Iran.
| |
Collapse
|
31
|
Obara-Michlewska M. The tryptophan metabolism, kynurenine pathway and oxidative stress - Implications for glioma pathobiology. Neurochem Int 2022; 158:105363. [PMID: 35667490 DOI: 10.1016/j.neuint.2022.105363] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
The kynurenine pathway receives increasing attention due to its involvement in central nervous system pathologies, i.a. neurodegenerative and psychiatric disorders, but also due to the contribution to the pathomechanism of neoplasms, including brain tumors.The present review focuses on kynurenine pathway activity in gliomas, brain tumors of glial origin. The upregulation of kynurenine pathway enzyme, indoleamine 2,3-dioxygenase (IDO), resulting in a decreased level of tryptophan and augmented kynurenine synthesis (increased (KYN/Trp ratio) are the most recognised hallmark of malignant transformation, characterised with immunomodulatory adaptations, providing an escape from defence mechanisms of the host, growth-beneficial milieu and resistance to some therapeutics. The review addresses, however, the oxidative/nitrosative stress-associated mechanisms of tryptophan catabolism, mainly the kynurenine pathway activity, linking them with glioma pathobiology.
Collapse
Affiliation(s)
- Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
32
|
Cespedes M, Jacobs KR, Maruff P, Rembach A, Fowler CJ, Trounson B, Pertile KK, Rumble RL, Rainey-Smithe SR, Rowe CC, Villemagne VL, Bourgeat P, Lim CK, Chatterjee P, Martins RN, Ittner A, Masters CL, Doecke JD, Guillemin GJ, Lovejoy DB. Systemic perturbations of the kynurenine pathway precede progression to dementia independently of amyloid-β. Neurobiol Dis 2022; 171:105783. [DOI: 10.1016/j.nbd.2022.105783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
|
33
|
Kynurenine pathway and autism spectrum phenotypes: an investigation among adults with autism spectrum disorder and their first-degree relatives. CNS Spectr 2022; 28:374-385. [PMID: 35634735 DOI: 10.1017/s1092852922000840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Increasing literature highlighted alterations of tryptophan (TRP) metabolism and kynurenine (KYN) pathway in children with autism spectrum disorder (ASD). However, no study specifically focused on adult samples. Meanwhile, several authors stressed the relevance of investigating neurobiological correlates of adult forms of ASD and of those subthreshold ASD manifestations frequently found in relatives of ASD probands, known as broad autism phenotype (BAP). This work aimed to evaluate circulating levels of TRP and metabolites of KYN pathway in a sample of ASD adults, their first-degree relatives and controls (CTLs), investigating also the correlations between biochemical variables' levels and ASD symptoms. METHODS A sample of ASD adults, together with a group of first-degree relatives (BAP group) and unrelated CTLs were assessed by means of psychometric scales. Circulating levels of TRP, KYN, quinolinic acid (QA), and kynurenic acid (KYNA) were assessed in all subjects. RESULTS ASD patients reported significantly higher total scores than the other groups on all psychometric scales. BAP subjects scored significantly higher than CTLs. ASD patients reported significantly lower TRP levels than BAP and CTL groups. Moreover, significantly lower levels of KYNA were reported in both ASD and BAP groups than in CTLs. Specific patterns of associations were found between autism symptoms and biochemical variables. CONCLUSIONS Our findings confirm in adult samples the presence of altered TRP metabolism through KYN pathway. The intermediate alterations reported among relatives of ASD patients further stress the presence of a continuum between subthreshold and full-threshold ASD phenotypes also from a biochemical perspective.
Collapse
|
34
|
Moravcová S, Spišská V, Pačesová D, Hrubcová L, Kubištová A, Novotný J, Bendová Z. Circadian control of kynurenine pathway enzymes in the rat pineal gland, liver, and heart and tissue- and enzyme-specific responses to lipopolysaccharide. Arch Biochem Biophys 2022; 722:109213. [DOI: 10.1016/j.abb.2022.109213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
|
35
|
Paul ER, Schwieler L, Erhardt S, Boda S, Trepci A, Kämpe R, Asratian A, Holm L, Yngve A, Dantzer R, Heilig M, Hamilton JP, Samuelsson M. Peripheral and central kynurenine pathway abnormalities in major depression. Brain Behav Immun 2022; 101:136-145. [PMID: 34999196 PMCID: PMC9045681 DOI: 10.1016/j.bbi.2022.01.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Considerable data relate major depressive disorder (MDD) with aberrant immune system functioning. Pro-inflammatory cytokines facilitate metabolism of tryptophan along the kynurenine pathway (KP) putatively resulting in reduced neuroprotective and increased neurotoxic KP metabolites in MDD, in addition to modulating metabolic and immune function. This central nervous system hypothesis has, however, only been tested in the periphery. Here, we measured KP-metabolite levels in both plasma and cerebrospinal fluid (CSF) of depressed patients (n = 63/36 respectively) and healthy controls (n = 48/33). Further, we assessed the relation between KP abnormalities and brain-structure volumes, as well as body mass index (BMI), an index of metabolic disturbance associated with atypical depression. Plasma levels of picolinic acid (PIC), the kynurenic/quinolinic acid ratio (KYNA/QUIN), and PIC/QUIN were lower in MDD, but QUIN levels were increased. In the CSF, we found lower PIC in MDD. Confirming previous work, MDD patients had lower hippocampal, and amygdalar volumes. Hippocampal and amygdalar volumes were correlated positively with plasma KYNA/QUIN ratio in MDD patients. BMI was increased in the MDD group relative to the control group. Moreover, BMI was inversely correlated with plasma and CSF PIC and PIC/QUIN, and positively correlated with plasma QUIN levels in MDD. Our results partially confirm previous peripheral KP findings and extend them to the CSF in MDD. We present the novel finding that abnormalities in KP metabolites are related to metabolic disturbances in depression, but the relation between KP metabolites and depression-associated brain atrophy might not be as direct as previously hypothesized.
Collapse
Affiliation(s)
- Elisabeth R Paul
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Center for Medical Imaging and Visualization, Linköping University, Linköping, Sweden
| | - Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Sandra Boda
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Center for Medical Imaging and Visualization, Linköping University, Linköping, Sweden; Department of Psychiatry, Region Östergötland, Linköping, Sweden
| | - Ada Trepci
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Robin Kämpe
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Center for Medical Imaging and Visualization, Linköping University, Linköping, Sweden
| | - Anna Asratian
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lovisa Holm
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Adam Yngve
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Center for Medical Imaging and Visualization, Linköping University, Linköping, Sweden
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Psychiatry, Region Östergötland, Linköping, Sweden
| | - J Paul Hamilton
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Center for Medical Imaging and Visualization, Linköping University, Linköping, Sweden.
| | - Martin Samuelsson
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Psychiatry, Region Östergötland, Linköping, Sweden
| |
Collapse
|
36
|
Yan J, Han VX, Heng B, Guillemin GJ, Bandodkar S, Dale RC. Development of a translational inflammation panel for the quantification of cerebrospinal fluid Pterin, Tryptophan-Kynurenine and Nitric oxide pathway metabolites. EBioMedicine 2022; 77:103917. [PMID: 35279631 PMCID: PMC8914118 DOI: 10.1016/j.ebiom.2022.103917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/08/2023] Open
Abstract
Background Neuroinflammatory diseases such as encephalitis, meningitis, multiple sclerosis and other neurological diseases with inflammatory components, have demonstrated a need for diagnostic biomarkers to define treatable and reversible neuroinflammation. The development and clinical validation of a targeted translational inflammation panel using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) could provide early diagnosis, rapid treatment and insights into neuroinflammatory mechanisms. Methods An inflammation panel of 13 metabolites (neopterin, tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, xanthurenic acid, anthranilic acid, 3-hydroxyanthranilic acid, quinolinic acid, picolinic acid, arginine, citrulline and methylhistamine) was measured based on a simple precipitation and filtration method using minimal CSF volume. The chromatographic separation was achieved using the Acquity UPLC BEH C18 column in combination with a gradient elution within a 12-min time frame. Acute encephalitis (n=10; myelin oligodendrocyte glycoprotein encephalitis n=3, anti-N-methyl-D-aspartate encephalitis n=2, acute disseminated encephalomyelitis n=2, herpes simplex encephalitis n=1, enteroviral encephalitis n=1) and frequency-matched non-inflammatory neurological disease controls (n=10) were examined. Findings The method exhibited good sensitivity as the limits of quantification ranged between 0.75 and 3.00 ng mL−1, good linearity (r2 > 0.99), acceptable matrix effects (<± 19.4%) and high recoveries (89.8-109.1 %). There were no interferences observed from common endogenous CSF metabolites, no carryover and concordance with well-established clinical methods. The accuracy and precision for all analytes were within tolerances, at <± 15 mean relative error and < 15 % coefficient of variation respectively. All analytes in matrix-matched pooled human CSF calibrators and human CSF extracts were stable for 24 h after extraction and two freeze-thaw cycles. Interpretation The method was successfully applied to a pilot study investigating acute brain inflammation case-control groups. Statistical discrimination between encephalitis (n=10) and control groups (n=10) was achieved using orthogonal partial least squares discriminant analysis and heatmap cluster analysis. Statistical analysis of the measured metabolites identified significant alterations of seven metabolites in the tryptophan-kynurenine pathway (tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, anthranilic acid, 3-hydroxyanthranilic acid, quinolinic acid), arginine and neopterin in presence of acute neuroinflammation. Furthermore, elevated ratios of CSF kynurenine/tryptophan ratio, quinolinic acid/kynurenic acid and anthranilic acid/3-hydroxyanthranilic acid provided strong discriminative power for neuroinflammatory conditions. Studies of large groups of neurological diseases are required to explore the sensitivity and specificity of the inflammation panel. Funding Financial support for the study was granted by Dale NHMRC Investigator grant APP1193648, Petre Foundation, Cerebral Palsy Alliance and Department of Biochemistry at the Children's Hospital at Westmead.
Collapse
Affiliation(s)
- Jingya Yan
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia
| | - Velda X Han
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Benjamin Heng
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Sushil Bandodkar
- Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| |
Collapse
|
37
|
Del'Arco AE, Argolo DS, Guillemin G, Costa MDFD, Costa SL, Pinheiro AM. Neurological Infection, Kynurenine Pathway, and Parasitic Infection by Neospora caninum. Front Immunol 2022; 12:714248. [PMID: 35154065 PMCID: PMC8826404 DOI: 10.3389/fimmu.2021.714248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/31/2021] [Indexed: 11/30/2022] Open
Abstract
Neuroinflammation is one of the most frequently studied topics of neurosciences as it is a common feature in almost all neurological disorders. Although the primary function of neuroinflammation is to protect the nervous system from an insult, the complex and sequential response of activated glial cells can lead to neurological damage. Depending on the type of insults and the time post-insult, the inflammatory response can be neuroprotective, neurotoxic, or, depending on the glial cell types, both. There are multiple pathways activated and many bioactive intermediates are released during neuroinflammation. One of the most common one is the kynurenine pathway, catabolizing tryptophan, which is involved in immune regulation, neuroprotection, and neurotoxicity. Different models have been used to study the kynurenine pathway metabolites to understand their involvements in the development and maintenance of the inflammatory processes triggered by infections. Among them, the parasitic infection Neospora caninum could be used as a relevant model to study the role of the kynurenine pathway in the neuroinflammatory response and the subset of cells involved.
Collapse
Affiliation(s)
- Ana Elisa Del'Arco
- Laboratory of Biochemistry and Veterinary Immunology, Center of Agrarian, Environmental and Biological Sciences, Federal University of Recôncavo of Bahia (UFRB), Cruz das Almas, Brazil
| | - Deivison Silva Argolo
- Laboratory of Neurochemistry and Cellular Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), Bahia, Brazil
| | - Gilles Guillemin
- Neuroinflammation Group, Macquarie Medicine School, Macquarie University, Sydney, NSW, Australia
| | - Maria de Fátima Dias Costa
- Laboratory of Neurochemistry and Cellular Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), Bahia, Brazil
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), Bahia, Brazil
| | - Alexandre Moraes Pinheiro
- Laboratory of Biochemistry and Veterinary Immunology, Center of Agrarian, Environmental and Biological Sciences, Federal University of Recôncavo of Bahia (UFRB), Cruz das Almas, Brazil
| |
Collapse
|
38
|
Sathyasaikumar KV, Pérez de la Cruz V, Pineda B, Vázquez Cervantes GI, Ramírez Ortega D, Donley DW, Severson PL, West BL, Giorgini F, Fox JH, Schwarcz R. Cellular Localization of Kynurenine 3-Monooxygenase in the Brain: Challenging the Dogma. Antioxidants (Basel) 2022; 11:315. [PMID: 35204197 PMCID: PMC8868204 DOI: 10.3390/antiox11020315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
Kynurenine 3-monooxygenase (KMO), a key player in the kynurenine pathway (KP) of tryptophan degradation, regulates the synthesis of the neuroactive metabolites 3-hydroxykynurenine (3-HK) and kynurenic acid (KYNA). KMO activity has been implicated in several major brain diseases including Huntington's disease (HD) and schizophrenia. In the brain, KMO is widely believed to be predominantly localized in microglial cells, but verification in vivo has not been provided so far. Here, we examined KP metabolism in the brain after depleting microglial cells pharmacologically with the colony stimulating factor 1 receptor inhibitor PLX5622. Young adult mice were fed PLX5622 for 21 days and were euthanized either on the next day or after receiving normal chow for an additional 21 days. Expression of microglial marker genes was dramatically reduced on day 22 but had fully recovered by day 43. In both groups, PLX5622 treatment failed to affect Kmo expression, KMO activity or tissue levels of 3-HK and KYNA in the brain. In a parallel experiment, PLX5622 treatment also did not reduce KMO activity, 3-HK and KYNA in the brain of R6/2 mice (a model of HD with activated microglia). Finally, using freshly isolated mouse cells ex vivo, we found KMO only in microglia and neurons but not in astrocytes. Taken together, these data unexpectedly revealed that neurons contain a large proportion of functional KMO in the adult mouse brain under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Korrapati V. Sathyasaikumar
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (V.P.d.l.C.); (G.I.V.C.); (D.R.O.)
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | - Gustavo Ignacio Vázquez Cervantes
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (V.P.d.l.C.); (G.I.V.C.); (D.R.O.)
| | - Daniela Ramírez Ortega
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (V.P.d.l.C.); (G.I.V.C.); (D.R.O.)
| | - David W. Donley
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82071, USA; (D.W.D.); (J.H.F.)
| | - Paul L. Severson
- Plexxikon Inc., South San Francisco, CA 94080, USA; (P.L.S.); (B.L.W.)
| | - Brian L. West
- Plexxikon Inc., South San Francisco, CA 94080, USA; (P.L.S.); (B.L.W.)
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7JA, UK;
| | - Jonathan H. Fox
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82071, USA; (D.W.D.); (J.H.F.)
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA;
| |
Collapse
|
39
|
Fukushima T, Umino M, Sakamoto T, Onozato M. A review of chromatographic methods for bioactive tryptophan metabolites, kynurenine, kynurenic acid, quinolinic acid, and others, in biological fluids. Biomed Chromatogr 2022; 36:e5308. [PMID: 34978092 DOI: 10.1002/bmc.5308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/06/2022]
Abstract
sKynurenine (KYN) is synthesized from an essential amino acid, tryptophan by tryptophan 2,3-dioxygenase or indoleamine 2,3-dioxygenase via N-formyl- KYN in vivo. Subsequently, KYN acts as a precursor of some neuroactive metabolites such as kynurenic acid, quinolinic acid, and an important enzyme co-factor, nicotine adenine dinucleotide. These metabolites of tryptophan are a part of the "kynurenine pathway." In addition, KYN functions as an endogenous ligand for the aryl hydrocarbon receptor, which acts as a transcription factor. The levels of tryptophan metabolites are important for the assessment of the stage of neurological disorders, and hence, have garnered significant interest for clinical diagnosis. In this review, the detection of kynurenine, kynurenic acid, quinolinic acid, and other tryptophan metabolites performed via chromatographic methods such as HPLC using UV absorbance, fluorescence, and chromatographic-mass spectrometric detection is summarized.
Collapse
Affiliation(s)
- Takeshi Fukushima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Maho Umino
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Tatsuya Sakamoto
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Mayu Onozato
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| |
Collapse
|
40
|
Chen K, Palagashvili T, Hsu W, Chen Y, Tabakoff B, Hong F, Shih AT, Shih JC. Brain injury and inflammation genes common to a number of neurological diseases and the genes involved in the genesis of GABAnergic neurons are altered in monoamine oxidase B knockout mice. Brain Res 2022; 1774:147724. [PMID: 34780749 PMCID: PMC8638699 DOI: 10.1016/j.brainres.2021.147724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023]
Abstract
Monoamine oxidase B (MAO B) oxidizes trace amine phenylethylamine (PEA), and neurotransmitters serotonin and dopamine in the brain. We reported previously that PEA levels increased significantly in all brain regions, but serotonin and dopamine levels were unchanged in MAO B knockout (KO) mice. PEA and dopamine are both synthesized from phenylalanine by aromatic L-amino acid decarboxylase in dopaminergic neurons in the striatum. A high concentration of PEA in the striatum may cause dopaminergic neuronal death in the absence of MAO B. We isolated the RNA from brain tissue of MAO B KO mice (2-month old) and age-matched wild type (WT) male mice and analyzed the altered genes by Affymetrix microarray. Differentially expressed genes (DEGs) in MAO B KO compared to WT mice were analyzed by Partek Genomics Suite, followed by Ingenuity Pathway Analysis (IPA) to assess their functional relationships. DEGs in MAO B KO mice are involved in brain inflammation and the genesis of GABAnergic neurons. The significant DEGs include four brain injury or inflammation genes (upregulated: Ido1, TSPO, AVP, Tdo2), five gamma-aminobutyric acid (GABA) receptors (down-regulated: GABRA2, GABRA3, GABRB1, GABRB3, GABRG3), five transcription factors related to adult neurogenesis (upregulated: Wnt7b, Hes5; down-regulated: Pax6, Tcf4, Dtna). Altered brain injury and inflammation genes in MAO B knockout mice are involved in various neurological disorders: attention deficit hyperactive disorder, panic disorder, obsessive compulsive disorder, autism, amyotrophic lateral sclerosis, Parkinson's diseases, Alzheimer's disease, bipolar affective disorder. Many were commonly involved in these disorders, indicating that there are overlapping molecular pathways.
Collapse
Affiliation(s)
- Kevin Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Tamara Palagashvili
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - W Hsu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Yibu Chen
- Norris Medical Library, University of Southern California, Los Angeles, CA, USA
| | - Boris Tabakoff
- University of Colorado Health Science Center, Denver, CO, USA
| | - Frank Hong
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Abigail T Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA; Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC-Taiwan Center for Translational Research, University of Southern California, Los Angeles CA, USA.
| |
Collapse
|
41
|
Huang Y, Zhao M, Chen X, Zhang R, Le A, Hong M, Zhang Y, Jia L, Zang W, Jiang C, Wang J, Fan X, Wang J. Tryptophan Metabolism in Central Nervous System Diseases: Pathophysiology and Potential Therapeutic Strategies. Aging Dis 2022; 14:858-878. [PMID: 37191427 DOI: 10.14336/ad.2022.0916] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
The metabolism of L-tryptophan (TRP) regulates homeostasis, immunity, and neuronal function. Altered TRP metabolism has been implicated in the pathophysiology of various diseases of the central nervous system. TRP is metabolized through two main pathways, the kynurenine pathway and the methoxyindole pathway. First, TRP is metabolized to kynurenine, then kynurenic acid, quinolinic acid, anthranilic acid, 3-hydroxykynurenine, and finally 3-hydroxyanthranilic acid along the kynurenine pathway. Second, TRP is metabolized to serotonin and melatonin along the methoxyindole pathway. In this review, we summarize the biological properties of key metabolites and their pathogenic functions in 12 disorders of the central nervous system: schizophrenia, bipolar disorder, major depressive disorder, spinal cord injury, traumatic brain injury, ischemic stroke, intracerebral hemorrhage, multiple sclerosis, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Furthermore, we summarize preclinical and clinical studies, mainly since 2015, that investigated the metabolic pathway of TRP, focusing on changes in biomarkers of these neurologic disorders, their pathogenic implications, and potential therapeutic strategies targeting this metabolic pathway. This critical, comprehensive, and up-to-date review helps identify promising directions for future preclinical, clinical, and translational research on neuropsychiatric disorders.
Collapse
|
42
|
The effect of 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase gene overexpression in the kynurenine pathway on the expression levels of indoleamine 2,3-dioxygenase 1 and interferon-γ in inflammatory conditions: an in vitro study. Mol Biol Rep 2021; 49:1103-1111. [PMID: 34775574 DOI: 10.1007/s11033-021-06935-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The kynurenine pathway (KP) can be involved in the pathogenesis of neurodegenerative diseases and excessive neurotoxic metabolite production. This study aimed to evaluate the effects of overexpression of murine 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (Acmsd) gene in inflammatory conditions in RAW 264.7 cell line to present more information about the effect of this gene on inflammatory conditions and the KP cycle. METHODS AND RESULTS The coding sequence of the Acmsd gene was cloned into pCMV6-AC-IRES-GFP expression vector with a green fluorescent protein (GFP) marker. To simulate inflammatory conditions, RAW 264.7 macrophage cells were stimulated by Lipopolysaccharide (LPS) 24 h before transfection, and transfected by Polyethyleneimine (PEI) with constructed plasmids expressing the Acmsd gene. The effect of Acmsd gene expression level on murine Interferon-gamma (Ifn-γ) and murine Indoleamine 2,3-dioxygenase 1 (Ido1) gene expression level was investigated by Real-Time PCR. According to the results of this study, good transfection efficiency was observed 72 h after transfection, and Acmsd expression level increased 29-fold (P < 0.001) in transfected LPS-stimulated cells compared to the control group (LPS-stimulated cells that were not transfected). Additionally, increased Acmsd expression level significantly down-regulated Ifn-γ (P < 0.001) and Ido1 (P < 0.01) expression level in transfected LPS-stimulated cells compared to LPS-stimulated cells. CONCLUSIONS Acmsd gene overexpression in inflammatory conditions can reduce the expression levels of the Ido1 gene, and its regulator, Ifn-γ. Consequently, it may be considered as a novel regulatory factor in the KP balance.
Collapse
|
43
|
Mold, Mycotoxins and a Dysregulated Immune System: A Combination of Concern? Int J Mol Sci 2021; 22:ijms222212269. [PMID: 34830149 PMCID: PMC8619365 DOI: 10.3390/ijms222212269] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Fungi represent one of the most diverse and abundant eukaryotes on earth. The interplay between mold exposure and the host immune system is still not fully elucidated. Literature research focusing on up-to-date publications is providing a heterogenous picture of evidence and opinions regarding the role of mold and mycotoxins in the development of immune diseases. While the induction of allergic immune responses by molds is generally acknowledged, other direct health effects like the toxic mold syndrome are controversially discussed. However, recent observations indicate a particular importance of mold/mycotoxin exposure in individuals with pre-existing dysregulation of the immune system, due to exacerbation of underlying pathophysiology including allergic and non-allergic chronic inflammatory diseases, autoimmune disorders, and even human immunodeficiency virus (HIV) disease progression. In this review, we focus on the impact of mycotoxins regarding their impact on disease progression in pre-existing immune dysregulation. This is complemented by experimental in vivo and in vitro findings to present cellular and molecular modes of action. Furthermore, we discuss hypothetical mechanisms of action, where evidence is missing since much remains to be discovered.
Collapse
|
44
|
Büki A, Kekesi G, Horvath G, Vécsei L. A Potential Interface between the Kynurenine Pathway and Autonomic Imbalance in Schizophrenia. Int J Mol Sci 2021; 22:10016. [PMID: 34576179 PMCID: PMC8467675 DOI: 10.3390/ijms221810016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by various symptoms including autonomic imbalance. These disturbances involve almost all autonomic functions and might contribute to poor medication compliance, worsened quality of life and increased mortality. Therefore, it has a great importance to find a potential therapeutic solution to improve the autonomic disturbances. The altered level of kynurenines (e.g., kynurenic acid), as tryptophan metabolites, is almost the most consistently found biochemical abnormality in schizophrenia. Kynurenic acid influences different types of receptors, most of them involved in the pathophysiology of schizophrenia. Only few data suggest that kynurenines might have effects on multiple autonomic functions. Publications so far have discussed the implication of kynurenines and the alteration of the autonomic nervous system in schizophrenia independently from each other. Thus, the coupling between them has not yet been addressed in schizophrenia, although their direct common points, potential interfaces indicate the consideration of their interaction. The present review gathers autonomic disturbances, the impaired kynurenine pathway in schizophrenia, and the effects of kynurenine pathway on autonomic functions. In the last part of the review, the potential interaction between the two systems in schizophrenia, and the possible therapeutic options are discussed.
Collapse
Affiliation(s)
- Alexandra Büki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - Gabriella Kekesi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - Gyongyi Horvath
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Center, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
| |
Collapse
|
45
|
Reiten OK, Wilvang MA, Mitchell SJ, Hu Z, Fang EF. Preclinical and clinical evidence of NAD + precursors in health, disease, and ageing. Mech Ageing Dev 2021; 199:111567. [PMID: 34517020 DOI: 10.1016/j.mad.2021.111567] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023]
Abstract
NAD+ is a fundamental molecule in human life and health as it participates in energy metabolism, cell signalling, mitochondrial homeostasis, and in dictating cell survival or death. Emerging evidence from preclinical and human studies indicates an age-dependent reduction of cellular NAD+, possibly due to reduced synthesis and increased consumption. In preclinical models, NAD+ repletion extends healthspan and / or lifespan and mitigates several conditions, such as premature ageing diseases and neurodegenerative diseases. These findings suggest that NAD+ replenishment through NAD+ precursors has great potential as a therapeutic target for ageing and age-predisposed diseases, such as Alzheimer's disease. Here, we provide an updated review on the biological activity, safety, and possible side effects of NAD+ precursors in preclinical and clinical studies. Major NAD+ precursors focused on by this review are nicotinamide riboside (NR), nicotinamide mononucleotide (NMN), and the new discovered dihydronicotinamide riboside (NRH). In summary, NAD+ precursors have an exciting therapeutic potential for ageing, metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ole Kristian Reiten
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Martin Andreas Wilvang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Sarah J Mitchell
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway.
| |
Collapse
|
46
|
Bai MY, Lovejoy DB, Guillemin GJ, Kozak R, Stone TW, Koola MM. Galantamine-Memantine Combination and Kynurenine Pathway Enzyme Inhibitors in the Treatment of Neuropsychiatric Disorders. Complex Psychiatry 2021; 7:19-33. [PMID: 35141700 PMCID: PMC8443947 DOI: 10.1159/000515066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/04/2021] [Indexed: 12/25/2022] Open
Abstract
The kynurenine pathway (KP) is a major route for L-tryptophan (L-TRP) metabolism, yielding a variety of bioactive compounds including kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and picolinic acid (PIC). These tryptophan catabolites are involved in the pathogenesis of many neuropsychiatric disorders, particularly when the KP becomes dysregulated. Accordingly, the enzymes that regulate the KP such as indoleamine 2,3-dioxygenase (IDO)/tryptophan 2,3-dioxygenase, kynurenine aminotransferases (KATs), and kynurenine 3-monooxygenase (KMO) represent potential drug targets as enzymatic inhibition can favorably rebalance KP metabolite concentrations. In addition, the galantamine-memantine combination, through its modulatory effects at the alpha7 nicotinic acetylcholine receptors and N-methyl-D-aspartate receptors, may counteract the effects of KYNA. The aim of this review is to highlight the effectiveness of IDO-1, KAT II, and KMO inhibitors, as well as the galantamine-memantine combination in the modulation of different KP metabolites. KAT II inhibitors are capable of decreasing the KYNA levels in the rat brain by a maximum of 80%. KMO inhibitors effectively reduce the central nervous system (CNS) levels of 3-HK, while markedly boosting the brain concentration of KYNA. Emerging data suggest that the galantamine-memantine combination also lowers L-TRP, kynurenine, KYNA, and PIC levels in humans. Presently, there are only 2 pathophysiological mechanisms (cholinergic and glutamatergic) that are FDA approved for the treatment of cognitive dysfunction for which purpose the galantamine-memantine combination has been designed for clinical use against Alzheimer's disease. The alpha7 nicotinic-NMDA hypothesis targeted by the galantamine-memantine combination has been implicated in the pathophysiology of various CNS diseases. Similarly, KYNA is well capable of modulating the neuropathophysiology of these disorders. This is known as the KYNA-centric hypothesis, which may be implicated in the management of certain neuropsychiatric conditions. In line with this hypothesis, KYNA may be considered as the "conductor of the orchestra" for the major pathophysiological mechanisms underlying CNS disorders. Therefore, there is great opportunity to further explore and compare the biological effects of these therapeutic modalities in animal models with a special focus on their effects on KP metabolites in the CNS and with the ultimate goal of progressing to clinical trials for many neuropsychiatric diseases.
Collapse
Affiliation(s)
- Michael Y. Bai
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - David B. Lovejoy
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gilles J. Guillemin
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rouba Kozak
- Neuroscience Drug Discovery Unit, Takeda Pharmaceuticals International Co, Cambridge, Massachusetts, USA
| | - Trevor W. Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
47
|
Marim FM, Teixeira DC, Queiroz-Junior CM, Valiate BVS, Alves-Filho JC, Cunha TM, Dantzer R, Teixeira MM, Teixeira AL, Costa VV. Inhibition of Tryptophan Catabolism Is Associated With Neuroprotection During Zika Virus Infection. Front Immunol 2021; 12:702048. [PMID: 34335614 PMCID: PMC8320694 DOI: 10.3389/fimmu.2021.702048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/30/2021] [Indexed: 01/19/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus belonging to Flaviviridae family that emerged as a global health threat due to its association with microcephaly and other severe neurological complications, including Guillain-Barré Syndrome (GBS) and Congenital Zika Syndrome (CZS). ZIKV disease has been linked to neuroinflammation and neuronal cell death. Neurodegenerative processes may be exacerbated by metabolites produced by the kynurenine pathway, an important pathway for the degradation of tryptophan, which induces neuronal dysfunction due to enhanced excitotoxicity. Here, we exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking a target enzyme of the kynurenine pathway, the Indoleamine 2,3-dioxygenase (IDO-1). RT-PCR analysis showed increased levels of IDO-1 RNA expression in undifferentiated primary neurons isolated from wild type (WT) mice infected by ZIKV ex vivo, as well as in the brain of ZIKV-infected A129 mice. Pharmacological inhibition of IDO-1 enzyme with 1-methyl-D-tryptophan (1-MT), in both in vitro and in vivo systems, led to significant reduction of ZIKV-induced neuronal death without interfering with the ability of ZIKV to replicate in those cells. Furthermore, in vivo analyses using both genetically modified mice (IDO-/- mice) and A129 mice treated with 1-MT resulted in reduced microgliosis, astrogliosis and Caspase-3 positive cells in the brain of ZIKV-infected A129 mice. Interestingly, increased levels of CCL5 and CXCL-1 chemokines were found in the brain of 1-MT treated-mice. Together, our data indicate that IDO-1 blockade provides a neuroprotective effect against ZIKV-induced neurodegeneration, and this is amenable to inhibition by pharmacological treatment.
Collapse
Affiliation(s)
- Fernanda Martins Marim
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Research Group in Arboviral Diseases, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Center for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Danielle Cunha Teixeira
- Research Group in Arboviral Diseases, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Center for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso Martins Queiroz-Junior
- Research Group in Arboviral Diseases, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Center for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departament of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Vinicius Santos Valiate
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Center for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jose Carlos Alves-Filho
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Research Group in Arboviral Diseases, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Center for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antonio Lucio Teixeira
- Department of Psychiatry and Behavioral Sciences, McGovern Medical Houston, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Vivian Vasconcelos Costa
- Research Group in Arboviral Diseases, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Center for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departament of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
48
|
The kynurenine pathway in bipolar disorder: a meta-analysis on the peripheral blood levels of tryptophan and related metabolites. Mol Psychiatry 2021; 26:3419-3429. [PMID: 33077852 DOI: 10.1038/s41380-020-00913-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/14/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022]
Abstract
Growing evidence suggests that a dysregulation of the kynurenine pathway (KP) occurs in bipolar disorder (BD). This systematic review and meta-analysis aimed at assessing the possible differences in peripheral blood levels of KP metabolites between individuals with BD and healthy controls. We searched Medline, Embase, and PsycInfo electronic databases for articles indexed up to February 2020. We included any observational study comparing the peripheral blood levels of at least one KP metabolite between adults with BD and healthy controls. Random-effects meta-analyses were carried out generating pooled standardized mean differences (SMDs). Heterogeneity between studies was estimated using the I2 index. Meta-regression and sensitivity analyses were conducted. Sixteen studies met inclusion criteria and were included in our study. Meta-analyses showed that individuals with BD have lower peripheral blood levels of tryptophan (SMD = -0.29), kynurenine (SMD = -0.28), kynurenic acid (SMD = -0.30), and xanthurenic acid (SMD = -0.55), along with lower kynurenic acid to kynurenine (SMD = -0.60) and kynurenic acid to quinolinic acid (SMD = -0.37) ratios, than healthy controls. Individuals with a manic episode showed the greatest reductions in tryptophan levels (SMD = -0.51), whereas kynurenic acid levels were more reduced among subjects in a depressive phase (SMD = -0.70). Meta-regression and sensitivity analyses confirmed our results. The findings of the present meta-analysis support the hypothesis of an abnormality of the KP in BD. Considering the partial inconsistency of the findings and the small-to-medium magnitude of the estimated effect sizes, additional research assessing possible mediators or confounders is needed.
Collapse
|
49
|
Sadok I, Tyszczuk-Rotko K, Mroczka R, Kozak J, Staniszewska M. Improved Voltammetric Determination of Kynurenine at the Nafion Covered Glassy Carbon Electrode - Application in Samples Delivered from Human Cancer Cells. Int J Tryptophan Res 2021; 14:11786469211023468. [PMID: 34276216 PMCID: PMC8256253 DOI: 10.1177/11786469211023468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Nowadays, development of analytical methods responding to a need for rapid and
accurate determination of human metabolites is highly desirable. Herein, an
electrochemical method employing a Nafion-coated glassy carbon electrode
(Nafion/GCE) has been developed for reliable determination of kynurenine (a key
tryptophan metabolite) using a differential pulse adsorptive stripping
voltammetry. To our knowledge, this is the first analytical method to allow for
kynurenine determination at the Nafion-coated electrode. The methodology
involves kynurenine pre-concentration in 0.1 M H2SO4 in
the Nafion film at the potential of +0.5 V and subsequent stripping from the
electrode by differential pulse voltammetry. Under optimal conditions, the
sensor can detect 5 nM kynurenine (for the accumulation time of 60 seconds), but
the limit of detection can be easily lowered to 0.6 nM by prolonging the
accumulation time to 600 seconds. The sensor shows sensitivity of
36.25 μAμM−1cm−2 and
185.50 μAμM−1cm−2 for the accumulation time of 60 and
600 seconds, respectively. The great advantage of the proposed method is easy
sensor preparation, employing drop coating method, high sensitivity, short total
analysis time, and no need for sample preparation. The method was validated for
linearity, precision, accuracy (using a high-performance liquid chromatography),
selectivity (towards tryptophan metabolites and different amino acids), and
recovery. The comprehensive microscopic and electrochemical characterization of
the Nafion/GCE was also conducted with different methods including atomic force
microscopy (AFM), optical profilometry, time-of-flight secondary ion mass
spectrometry (TOF-SIMS), electrochemical impedance spectroscopy (EIS), and
cyclic voltammetry (CV). The method has been applied with satisfactory results
for determination of kynurenine concentration in a culture medium collected from
the human ovarian carcinoma cells SK-OV-3 and to measure IDO enzyme activity in
the cancer cell extracts.
Collapse
Affiliation(s)
- Ilona Sadok
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Katarzyna Tyszczuk-Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Lublin, Poland
| | - Robert Mroczka
- Laboratory of X-ray Optics, Centre for Interdisciplinary Research, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Jędrzej Kozak
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Lublin, Poland
| | - Magdalena Staniszewska
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
50
|
Tuka B, Nyári A, Cseh EK, Körtési T, Veréb D, Tömösi F, Kecskeméti G, Janáky T, Tajti J, Vécsei L. Clinical relevance of depressed kynurenine pathway in episodic migraine patients: potential prognostic markers in the peripheral plasma during the interictal period. J Headache Pain 2021; 22:60. [PMID: 34171996 PMCID: PMC8229298 DOI: 10.1186/s10194-021-01239-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background Altered glutamatergic neurotransmission and neuropeptide levels play a central role in migraine pathomechanism. Previously, we confirmed that kynurenic acid, an endogenous glutamatergic antagonist, was able to decrease the expression of pituitary adenylate cyclase-activating polypeptide 1–38, a neuropeptide with known migraine-inducing properties. Hence, our aim was to reveal the role of the peripheral kynurenine pathway (KP) in episodic migraineurs. We focused on the complete tryptophan (Trp) catabolism, which comprises the serotonin and melatonin routes in addition to kynurenine metabolites. We investigated the relationship between metabolic alterations and clinical characteristics of migraine patients. Methods Female migraine patients aged between 25 and 50 years (n = 50) and healthy control subjects (n = 34) participated in this study. Blood samples were collected from the cubital veins of subjects (during both the interictal/ictal periods in migraineurs, n = 47/12, respectively). 12 metabolites of Trp pathway were determined by neurochemical measurements (UHPLC-MS/MS). Results Plasma concentrations of the most Trp metabolites were remarkably decreased in the interictal period of migraineurs compared to healthy control subjects, especially in the migraine without aura (MWoA) subgroup: Trp (p < 0.025), L-kynurenine (p < 0.001), kynurenic acid (p < 0.016), anthranilic acid (p < 0.007), picolinic acid (p < 0.03), 5-hydroxy-indoleaceticacid (p < 0.025) and melatonin (p < 0.023). Several metabolites showed a tendency to elevate during the ictal phase, but this was significant only in the cases of anthranilic acid, 5-hydroxy-indoleaceticacid and melatonin in MWoA patients. In the same subgroup, higher interictal kynurenic acid levels were identified in patients whose headache was severe and not related to their menstruation cycle. Negative linear correlation was detected between the interictal levels of xanthurenic acid/melatonin and attack frequency. Positive associations were found between the ictal 3-hydroxykynurenine levels and the beginning of attacks, just as between ictal picolinic acid levels and last attack before ictal sampling. Conclusions Our results suggest that there is a widespread metabolic imbalance in migraineurs, which manifests in a completely depressed peripheral Trp catabolism during the interictal period. It might act as trigger for the migraine attack, contributing to glutamate excess induced neurotoxicity and generalised hyperexcitability. This data can draw attention to the clinical relevance of KP in migraine. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-021-01239-1.
Collapse
Affiliation(s)
- Bernadett Tuka
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u 6, Szeged, H6725, Hungary.,MTA-SZTE Neuroscience Research Group, Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Aliz Nyári
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u 6, Szeged, H6725, Hungary
| | - Edina Katalin Cseh
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u 6, Szeged, H6725, Hungary
| | - Tamás Körtési
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u 6, Szeged, H6725, Hungary.,MTA-SZTE Neuroscience Research Group, Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Dániel Veréb
- Department of Radiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ferenc Tömösi
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Gábor Kecskeméti
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Tamás Janáky
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - János Tajti
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u 6, Szeged, H6725, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u 6, Szeged, H6725, Hungary. .,MTA-SZTE Neuroscience Research Group, Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary. .,Department of Neurology, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary.
| |
Collapse
|