1
|
Santos-Silva T, dos Santos Fabris D, de Oliveira CL, Guimarães FS, Gomes FV. Prefrontal and Hippocampal Parvalbumin Interneurons in Animal Models for Schizophrenia: A Systematic Review and Meta-analysis. Schizophr Bull 2024; 50:210-223. [PMID: 37584417 PMCID: PMC10754178 DOI: 10.1093/schbul/sbad123] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
BACKGROUND Consistent with postmortem findings in patients, most animal models for schizophrenia (SCZ) present abnormal levels of parvalbumin (PV), a marker of fast-spiking GABAergic interneurons, in the prefrontal cortex (PFC) and hippocampus (HIP). However, there are discrepancies in the literature. PV reductions lead to a functional loss of PV interneurons, which is proposed to underly SCZ symptoms. Given its complex etiology, different categories of animal models have been developed to study SCZ, which may distinctly impact PV levels in rodent brain areas. STUDY DESIGN We performed a quantitative meta-analysis on PV-positive cell number/density and expression levels in the PFC and HIP of animal models for SCZ based on pharmacological, neurodevelopmental, and genetic manipulations. RESULTS Our results confirmed that PV levels are significantly reduced in the PFC and HIP regardless of the animal model. By categorizing into subgroups, we found that all pharmacological models based on NMDA receptor antagonism decreased PV-positive cell number/density or PV expression levels in both brain areas examined. In neurodevelopmental models, abnormal PV levels were confirmed in both brain areas in maternal immune activation models and HIP of the methylazoxymethanol acetate model. In genetic models, negative effects were found in neuregulin 1 and ERBB4 mutant mice in both brain regions and the PFC of dysbindin mutant mice. Regarding sex differences, male rodents exhibited PV reductions in both brain regions only in pharmacological models, while few studies have been conducted in females. CONCLUSION Overall, our findings support deficits in prefrontal and hippocampal PV interneurons in animal models for SCZ.
Collapse
Affiliation(s)
- Thamyris Santos-Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Débora dos Santos Fabris
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cilene Lino de Oliveira
- Department of Physiological Sciences, Center of Biological Sciences, University of Santa Catarina, Florianópolis,Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
2
|
Powell SB, Swerdlow NR. The Relevance of Animal Models of Social Isolation and Social Motivation for Understanding Schizophrenia: Review and Future Directions. Schizophr Bull 2023; 49:1112-1126. [PMID: 37527471 PMCID: PMC10483472 DOI: 10.1093/schbul/sbad098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
BACKGROUND AND HYPOTHESES Social dysfunction in schizophrenia includes symptoms of withdrawal and deficits in social skills, social cognition, and social motivation. Based on the course of illness, with social withdrawal occurring prior to psychosis onset, it is likely that the severity of social withdrawal/isolation contributes to schizophrenia neuropathology. STUDY DESIGN We review the current literature on social isolation in rodent models and provide a conceptual framework for its relationship to social withdrawal and neural circuit dysfunction in schizophrenia. We next review preclinical tasks of social behavior used in schizophrenia-relevant models and discuss strengths and limitations of existing approaches. Lastly, we consider new effort-based tasks of social motivation and their potential for translational studies in schizophrenia. STUDY RESULTS Social isolation rearing in rats produces profound differences in behavior, pharmacologic sensitivity, and neurochemistry compared to socially reared rats. Rodent models relevant to schizophrenia exhibit deficits in social behavior as measured by social interaction and social preference tests. Newer tasks of effort-based social motivation are being developed in rodents to better model social motivation deficits in neuropsychiatric disorders. CONCLUSIONS While experimenter-imposed social isolation provides a viable experimental model for understanding some biological mechanisms linking social dysfunction to clinical and neural pathology in schizophrenia, it bypasses critical antecedents to social isolation in schizophrenia, notably deficits in social reward and social motivation. Recent efforts at modeling social motivation using effort-based tasks in rodents have the potential to quantify these antecedents, identify models (eg, developmental, genetic) that produce deficits, and advance pharmacological treatments for social motivation.
Collapse
Affiliation(s)
- Susan B Powell
- Research Service, VA San Diego Healthcare System, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs VISN22 Mental Illness Research, Education and Clinical Center, La Jolla, CA, USA
| | - Neal R Swerdlow
- Research Service, VA San Diego Healthcare System, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs VISN22 Mental Illness Research, Education and Clinical Center, La Jolla, CA, USA
| |
Collapse
|
3
|
Bijlsma A, Vanderschuren LJMJ, Wierenga CJ. Social play behavior shapes the development of prefrontal inhibition in a region-specific manner. Cereb Cortex 2023:bhad212. [PMID: 37317037 PMCID: PMC10393492 DOI: 10.1093/cercor/bhad212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/16/2023] Open
Abstract
Experience-dependent organization of neuronal connectivity is critical for brain development. We recently demonstrated the importance of social play behavior for the developmental fine-tuning of inhibitory synapses in the medial prefrontal cortex in rats. When these effects of play experience occur and if this happens uniformly throughout the prefrontal cortex is currently unclear. Here we report important temporal and regional heterogeneity in the impact of social play on the development of excitatory and inhibitory neurotransmission in the medial prefrontal cortex and the orbitofrontal cortex. We recorded in layer 5 pyramidal neurons from juvenile (postnatal day (P)21), adolescent (P42), and adult (P85) rats after social play deprivation (between P21 and P42). The development of these prefrontal cortex subregions followed different trajectories. On P21, inhibitory and excitatory synaptic input was higher in the orbitofrontal cortex than in the medial prefrontal cortex. Social play deprivation did not affect excitatory currents, but reduced inhibitory transmission in both medial prefrontal cortex and orbitofrontal cortex. Intriguingly, the reduction occurred in the medial prefrontal cortex during social play deprivation, whereas the reduction in the orbitofrontal cortex only became manifested after social play deprivation. These data reveal a complex interaction between social play experience and the specific developmental trajectories of prefrontal subregions.
Collapse
Affiliation(s)
- Ate Bijlsma
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Louk J M J Vanderschuren
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Corette J Wierenga
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Nath M, Bhardwaj SK, Srivastava LK, Wong TP. Altered excitatory and decreased inhibitory transmission in the prefrontal cortex of male mice with early developmental disruption to the ventral hippocampus. Cereb Cortex 2023; 33:865-880. [PMID: 35297476 PMCID: PMC9890473 DOI: 10.1093/cercor/bhac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ventral hippocampal (vHPC)-prefrontal cortical (PFC) pathway dysfunction is a core neuroimaging feature of schizophrenia. However, mechanisms underlying impaired connectivity within this pathway remain poorly understood. The vHPC has direct projections to the PFC that help shape its maturation. Here, we wanted to investigate the effects of early developmental vHPC perturbations on long-term functional PFC organization. Using whole-cell recordings to assess PFC cellular activity in transgenic male mouse lines, we show early developmental disconnection of vHPC inputs, by excitotoxic lesion or cell-specific ablations, impairs pyramidal cell firing output and produces a persistent increase in excitatory and decrease in inhibitory synaptic inputs onto pyramidal cells. We show this effect is specific to excitatory vHPC projection cell ablation. We further identify PV-interneurons as a source of deficit in inhibitory transmission. We find PV-interneurons are reduced in density, show a reduced ability to sustain high-frequency firing, and show deficits in excitatory inputs that emerge over time. We additionally show differences in vulnerabilities to early developmental vHPC disconnection, wherein PFC PV-interneurons but not pyramidal cells show deficits in NMDA receptor-mediated current. Our results highlight mechanisms by which the PFC adapts to early developmental vHPC perturbations, providing insights into schizophrenia circuit pathology.
Collapse
Affiliation(s)
- Moushumi Nath
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada.,Basic Neuroscience Division, Douglas Hospital Research Centre, Montreal, QC H4H 1R3, Canada
| | - Sanjeev K Bhardwaj
- Basic Neuroscience Division, Douglas Hospital Research Centre, Montreal, QC H4H 1R3, Canada
| | - Lalit K Srivastava
- Basic Neuroscience Division, Douglas Hospital Research Centre, Montreal, QC H4H 1R3, Canada.,Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Tak Pan Wong
- Basic Neuroscience Division, Douglas Hospital Research Centre, Montreal, QC H4H 1R3, Canada.,Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
5
|
Tendilla-Beltrán H, Sanchez-Islas NDC, Marina-Ramos M, Leza JC, Flores G. The prefrontal cortex as a target for atypical antipsychotics in schizophrenia, lessons of neurodevelopmental animal models. Prog Neurobiol 2020; 199:101967. [PMID: 33271238 DOI: 10.1016/j.pneurobio.2020.101967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
Prefrontal cortex (PFC) inflammatory imbalance, oxidative/nitrosative stress (O/NS) and impaired neuroplasticity in schizophrenia are thought to have neurodevelopmental origins. Animal models are not only useful to test this hypothesis, they are also effective to establish a relationship among brain disturbances and behavior with the atypical antipsychotics (AAPs) effects. Here we review data of PFC post-mortem and in vivo neuroimaging, human induced pluripotent stem cells (hiPSC), and peripheral blood studies of inflammatory, O/NS, and neuroplasticity alterations in the disease as well as about their modulation by AAPs. Moreover, we reviewed the PFC alterations and the AAP mechanisms beyond their canonical antipsychotic action in four neurodevelopmental animal models relevant to the study of schizophrenia with a distinct approach in the generation of schizophrenia-like phenotypes, but all converge in O/NS and altered neuroplasticity in the PFC. These animal models not only reinforce the neurodevelopmental risk factor model of schizophrenia but also arouse some novel potential therapeutic targets for the disease including the reestablishment of the antioxidant response by the perineuronal nets (PNNs) and the nuclear factor erythroid 2-related factor (Nrf2) pathway, as well as the dendritic spine dynamics in the PFC pyramidal cells.
Collapse
Affiliation(s)
- Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico; Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, Mexico
| | | | - Mauricio Marina-Ramos
- Departamento de Ciencias de la Salud, Universidad Popular Autónoma del Estado de Puebla, Puebla, Mexico
| | - Juan C Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto Universitario de Investigación en Neuroquímica (IUIN), UCM. Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital, 12 de Octubre (Imas12), Madrid, Spain
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
6
|
Loureiro CM, Fachim HA, Corsi-Zuelli F, Shuhama R, Joca S, Menezes PR, Dalton CF, Del-Ben CM, Louzada-Junior P, Reynolds GP. Epigenetic-mediated N-methyl-D-aspartate receptor changes in the brain of isolated reared rats. Epigenomics 2020; 12:1983-1997. [PMID: 33242253 DOI: 10.2217/epi-2020-0151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: We investigated: Grin1, Grin2a, Grin2b DNA methylation; NR1 and NR2 mRNA/protein in the prefrontal cortex (PFC); and hippocampus of male Wistar rats exposed to isolation rearing. Materials & methods: Animals were kept isolated or grouped (n = 10/group) from weaning for 10 weeks. Tissues were dissected for RNA/DNA extraction and N-methyl-D-aspartate receptor subunits were analyzed using quantitative reverse transcription (RT)-PCR, ELISA and pyrosequencing. Results: Isolated-reared animals had: decreased mRNA in PFC for all markers, increased NR1 protein in hippocampus and hypermethylation of Grin1 in PFC and Grin2b in hippocampus, compared with grouped rats. Associations between mRNA/protein and DNA methylation were found for both brain areas. Conclusion: This study indicates that epigenetic DNA methylation may underlie N-methyl-D-aspartate receptor mRNA/protein expression alterations caused by isolation rearing.
Collapse
Affiliation(s)
- Camila Marcelino Loureiro
- Department of Internal Medicine, Division of Clinical Immunology. Ribeirão Preto Medical School, University of São Paulo, Brazil.,Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Helene Aparecida Fachim
- Department of Endocrinology & Metabolism, Salford Royal Foundation Trust, Salford, UK.,Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Fabiana Corsi-Zuelli
- Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Rosana Shuhama
- Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Sâmia Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Denmark
| | - Paulo Rossi Menezes
- Department of Preventive Medicine, Faculty of Medicine, University of São Paulo, Brazil
| | - Caroline F Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Cristina Marta Del-Ben
- Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Paulo Louzada-Junior
- Department of Internal Medicine, Division of Clinical Immunology. Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
7
|
Kelly MP, Heckman PRA, Havekes R. Genetic manipulation of cyclic nucleotide signaling during hippocampal neuroplasticity and memory formation. Prog Neurobiol 2020; 190:101799. [PMID: 32360536 DOI: 10.1016/j.pneurobio.2020.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Decades of research have underscored the importance of cyclic nucleotide signaling in memory formation and synaptic plasticity. In recent years, several new genetic techniques have expanded the neuroscience toolbox, allowing researchers to measure and modulate cyclic nucleotide gradients with high spatiotemporal resolution. Here, we will provide an overview of studies using genetic approaches to interrogate the role cyclic nucleotide signaling plays in hippocampus-dependent memory processes and synaptic plasticity. Particular attention is given to genetic techniques that measure real-time changes in cyclic nucleotide levels as well as newly-developed genetic strategies to transiently manipulate cyclic nucleotide signaling in a subcellular compartment-specific manner with high temporal resolution.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, VA Bldg1, 3(rd) Fl, D-12, Columbia, 29209, SC, USA.
| | - Pim R A Heckman
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
8
|
Sentir AM, Bell RL, Engleman EA, Chambers RA. Polysubstance addiction vulnerability in mental illness: Concurrent alcohol and nicotine self-administration in the neurodevelopmental hippocampal lesion rat model of schizophrenia. Addict Biol 2020; 25:e12704. [PMID: 30592364 DOI: 10.1111/adb.12704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/25/2018] [Accepted: 11/10/2018] [Indexed: 01/19/2023]
Abstract
Multiple addictions frequently occur in patients with mental illness. However, basic research on the brain-based linkages between these comorbidities is extremely limited. Toward characterizing the first animal modeling of polysubstance use and addiction vulnerability in schizophrenia, adolescent rats with neonatal ventral hippocampal lesions (NVHLs) and controls had 19 weekdays of 1 hour/day free access to alcohol/sucrose solutions (fading from 10% sucrose to 10% alcohol/2% sucrose on day 10) during postnatal days (PD 35-60). Starting in adulthood (PD 63), rats acquired lever pressing for concurrent oral alcohol (10% with 2% sucrose) and iv nicotine (0.015 mg/kg/injection) across 15 sessions. Subsequently, 10 operant extinction sessions and 3 reinstatement sessions examined drug seeking upon withholding of nicotine, then both nicotine and alcohol, then reintroduction. Adolescent alcohol consumption did not differ between NVHLs and controls. However, in adulthood, NVHLs showed increased lever pressing at alcohol and nicotine levers that progressed more strongly at the nicotine lever, even as most pressing by both groups was at the alcohol lever. In extinction, both groups showed expected declines in effort as drugs were withheld, but NVHLs persisted with greater pressing at both alcohol and nicotine levers. In reinstatement, alcohol reaccess increased pressing, with NVHLs showing greater nicotine lever activity overall. Developmental temporal-limbic abnormalities that produce mental illness can thus generate adult polydrug addiction vulnerability as a mechanism independent from putative cross-sensitization effects between addictive drugs. Further preclinical modeling of third-order (and higher) addiction-mental illness comorbidities may advance our understanding and treatment of these complex, yet common brain illnesses.
Collapse
Affiliation(s)
- Alena M. Sentir
- Department of PsychiatryIndiana University School of Medicine Indianapolis IN
- Laboratory for Translational Neuroscience of Dual Diagnosis & DevelopmentIU Neuroscience Research Center Indianapolis IN
| | - Richard L. Bell
- Department of PsychiatryIndiana University School of Medicine Indianapolis IN
| | - Eric A. Engleman
- Department of PsychiatryIndiana University School of Medicine Indianapolis IN
| | - R. Andrew Chambers
- Department of PsychiatryIndiana University School of Medicine Indianapolis IN
- Laboratory for Translational Neuroscience of Dual Diagnosis & DevelopmentIU Neuroscience Research Center Indianapolis IN
| |
Collapse
|
9
|
Ren M, Hu Z, Chen Q, Jaffe A, Li Y, Sadashivaiah V, Zhu S, Rajpurohit N, Heon Shin J, Xia W, Jia Y, Wu J, Lang Qin S, Li X, Zhu J, Tian Q, Paredes D, Zhang F, Wang KH, Mattay VS, Callicott JH, Berman KF, Weinberger DR, Yang F. KCNH2-3.1 mediates aberrant complement activation and impaired hippocampal-medial prefrontal circuitry associated with working memory deficits. Mol Psychiatry 2020; 25:206-229. [PMID: 31570775 DOI: 10.1038/s41380-019-0530-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 09/03/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022]
Abstract
Increased expression of the 3.1 isoform of the KCNH2 potassium channel has been associated with cognitive dysfunction and with schizophrenia, yet little is known about the underlying pathophysiological mechanisms. Here, by using in vivo wireless local field potential recordings during working memory processing, in vitro brain slice whole-cell patching recordings and in vivo stereotaxic hippocampal injection of AAV-encoded expression, we identified specific and delayed disruption of hippocampal-mPFC synaptic transmission and functional connectivity associated with reductions of SERPING1, CFH, and CD74 in the KCNH2-3.1 overexpression transgenic mice. The differentially expressed genes in mice are enriched in neurons and microglia, and reduced expression of these genes dysregulates the complement cascade, which has been previously linked to synaptic plasticity. We find that knockdown of these genes in primary neuronal-microglial cocultures from KCNH2-3.1 mice impairs synapse formation, and replenishing reduced CFH gene expression rescues KCNH2-3.1-induced impaired synaptogenesis. Translating to humans, we find analogous dysfunctional interactions between hippocampus and prefrontal cortex in coupling of the fMRI blood oxygen level-dependent (BOLD) signal during working memory in healthy subjects carrying alleles associated with increased KCNH2-3.1 expression in brain. Our data uncover a previously unrecognized role of the truncated KCNH2-3.1 potassium channel in mediating complement activation, which may explain its association with altered hippocampal-prefrontal connectivity and synaptic function. These results provide a potential molecular link between increased KCNH2-3.1 expression, synapse alterations, and hippocampal-prefrontal circuit abnormalities implicated in schizophrenia.
Collapse
Affiliation(s)
- Ming Ren
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Zhonghua Hu
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Andrew Jaffe
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yingbo Li
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Vijay Sadashivaiah
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Shujuan Zhu
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Nina Rajpurohit
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Wei Xia
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Yankai Jia
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Jingxian Wu
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Sunny Lang Qin
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Xinjian Li
- Unit on Neural Circuits and Adaptive Behaviours, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jian Zhu
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Qingjun Tian
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Daniel Paredes
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Fengyu Zhang
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Kuan Hong Wang
- Unit on Neural Circuits and Adaptive Behaviours, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Venkata S Mattay
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joseph H Callicott
- Section on Integrative Neuroimaging and the Clinical Brain Disorders Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Karen F Berman
- Section on Integrative Neuroimaging and the Clinical Brain Disorders Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA.
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Feng Yang
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, USA.
- Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Tsugawa S, Noda Y, Tarumi R, Mimura Y, Yoshida K, Iwata Y, Elsalhy M, Kuromiya M, Kurose S, Masuda F, Morita S, Ogyu K, Plitman E, Wada M, Miyazaki T, Graff-Guerrero A, Mimura M, Nakajima S. Glutathione levels and activities of glutathione metabolism enzymes in patients with schizophrenia: A systematic review and meta-analysis. J Psychopharmacol 2019; 33:1199-1214. [PMID: 31039654 DOI: 10.1177/0269881119845820] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Glutathione is among the important antioxidants to prevent oxidative stress. However, the relationships between abnormality in the glutathione system and pathophysiology of schizophrenia remain uncertain due to inconsistent findings on glutathione levels and/or glutathione-related enzyme activities in patients with schizophrenia. METHODS A systematic literature search was conducted using Embase, Medline, PsycINFO, and PubMed. Original studies, in which three metabolite levels (glutathione, glutathione disulfide, and total glutathione (glutathione+glutathione disulfide)) and five enzyme activities (glutathione peroxidase, glutathione reductase, glutamate-cysteine ligase, glutathione synthetase, and glutathione S-transferase) were measured with any techniques in both patients with schizophrenia and healthy controls, were included. Standardized mean differences were calculated to determine the group differences in the glutathione levels with a random-effects model. RESULTS We identified 41, 9, 15, 38, and seven studies which examined glutathione, glutathione disulfide, total glutathione, glutathione peroxidase, and glutathione reductase, respectively. Patients with schizophrenia had lower levels of both glutathione and total glutathione and decreased activity of glutathione peroxidase compared to controls. Glutathione levels were lower in unmedicated patients with schizophrenia than those in controls while glutathione levels did not differ between patients with first-episode psychosis and controls. CONCLUSIONS Our findings suggested that there may be glutathione deficits and abnormalities in the glutathione redox cycle in patients with schizophrenia. However, given the small number of studies examined the entire glutathione system, further studies are needed to elucidate a better understanding of disrupted glutathione function in schizophrenia, which may pave the way for the development of novel therapeutic strategies in this disorder.
Collapse
Affiliation(s)
- Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryosuke Tarumi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kazunari Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Pharmacogenetic Research Clinic, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yusuke Iwata
- Multimodal Imaging Group, University of Toronto, Toronto, ON, Canada
| | - Muhammad Elsalhy
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Minori Kuromiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shin Kurose
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Fumi Masuda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinji Morita
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kamiyu Ogyu
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Eric Plitman
- Multimodal Imaging Group, University of Toronto, Toronto, ON, Canada
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Miyazaki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | | | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Multimodal Imaging Group, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Long-Lasting Rescue of Network and Cognitive Dysfunction in a Genetic Schizophrenia Model. Cell 2019; 178:1387-1402.e14. [DOI: 10.1016/j.cell.2019.07.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/01/2019] [Accepted: 07/11/2019] [Indexed: 01/03/2023]
|
12
|
Esquivel-Rendón E, Vargas-Mireles J, Cuevas-Olguín R, Miranda-Morales M, Acosta-Mares P, García-Oscos F, Pineda JC, Salgado H, Rose-John S, Atzori M. Interleukin 6 Dependent Synaptic Plasticity in a Social Defeat-Susceptible Prefrontal Cortex Circuit. Neuroscience 2019; 414:280-296. [DOI: 10.1016/j.neuroscience.2019.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/08/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
|
13
|
Hao K, Su X, Luo B, Cai Y, Chen T, Yang Y, Shao M, Song M, Zhang L, Zhong Z, Li W, Lv L. Prenatal immune activation induces age-related alterations in rat offspring: Effects upon NMDA receptors and behaviors. Behav Brain Res 2019; 370:111946. [PMID: 31112730 DOI: 10.1016/j.bbr.2019.111946] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/28/2019] [Accepted: 05/14/2019] [Indexed: 02/05/2023]
Abstract
Prenatal exposure to polyriboinosinic-polyribocytidylic acid (poly I:C) results in psychotic-like behavior in mature rat offspring as well as enduring modifications of glutamatergic excitatory synaptic transmission. However, little is known about the dynamic behavioral and glutamate N-methyl-D-aspartate (NMDA) receptor changes in rat offspring following poly I:C treatment of pregnant dams. In this study, poly I:C was administered to rats intravenously at a dose of 10 mg/kg on gestational day 9 in order to assess changes in behavior and NMDA receptors in offspring over time. Results demonstrate progressive worsening behaviors in adolescents and adults that manifest as increased anxiety, cognitive impairment, and pre-pulse inhibition deficits. Age-related alteration of NMDA receptors in the prefrontal cortex and hippocampus, either total number or distribution, were observed from weaning to adulthood. These results suggest that abnormalities of NMDA receptors occur prior to obvious schizophrenia-like behavioral manifestations. Hence, NMDA receptors may be potential therapeutic targets to prevent disease development during asymptomatic periods of schizophrenia, and may serve as targets for preventive and/or therapeutic strategies for schizophrenia. Further, PSD95, a scaffolding protein that is a component of the NMDA receptor signaling complex, is increased in the hippocampus of adult offspring, when serious behavioral abnormalities emerge. This result suggests that PSD95 may be involved in behavioral abnormalities of schizophrenia.
Collapse
Affiliation(s)
- Keke Hao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University.
| | - Xi Su
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| | - Binbin Luo
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| | - Yaqi Cai
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| | - Tengfei Chen
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| | - Minglong Shao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| | - Meng Song
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| | - Luwen Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| | - Zhaoxi Zhong
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China.
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| |
Collapse
|
14
|
Weiss AR, White J, Richardson R, Bachevalier J. Impaired Cognitive Flexibility After Neonatal Perirhinal Lesions in Rhesus Macaques. Front Syst Neurosci 2019; 13:6. [PMID: 30760985 PMCID: PMC6363703 DOI: 10.3389/fnsys.2019.00006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/14/2019] [Indexed: 11/13/2022] Open
Abstract
Previous research indicated that monkeys with neonatal perirhinal lesions (Neo-PRh) were impaired on working memory (WM) tasks that generated proactive interference, but performed normally on WM tasks devoid of interference (Weiss et al., 2016). This finding suggested that the early lesions disrupted cognitive processes important for resolving proactive interference, such as behavioral inhibition and cognitive flexibility. To distinguish between these possibilities, the same Neo-PRh monkeys and their controls were tested using the Intradimensional/Extradimensional attentional set-shifting task (Roberts et al., 1988; Dias et al., 1997). Neo-PRh monkeys completed the Simple and Compound Discrimination stages, the Intradimensional Shift stage, and all Reversal stages comparably to controls, but made significantly more errors on the Extradimensional Shift stage of the task. These data indicate that impaired cognitive flexibility was the likely source of increased perseverative errors made by Neo-PRh monkeys when performing WM tasks, rather than impaired behavioral inhibition, and imply that the perirhinal cortex and its interactions with the PFC may play a unique and critical role in the development of attentional set shifting abilities.
Collapse
Affiliation(s)
- Alison R Weiss
- Department of Psychology, Emory University, Atlanta, GA, United States.,Oregon National Primate Research Center, Beaverton, OR, United States
| | - Jessica White
- Department of Psychology, Emory University, Atlanta, GA, United States
| | | | - Jocelyne Bachevalier
- Department of Psychology, Emory University, Atlanta, GA, United States.,Yerkes National Primate Research Center, Atlanta, GA, United States
| |
Collapse
|
15
|
Disinhibition of the prefrontal cortex leads to brain-wide increases in neuronal activation that are modified by spatial learning. Brain Struct Funct 2018; 224:171-190. [DOI: 10.1007/s00429-018-1769-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022]
|
16
|
Choi SJ, Mukai J, Kvajo M, Xu B, Diamantopoulou A, Pitychoutis PM, Gou B, Gogos JA, Zhang H. A Schizophrenia-Related Deletion Leads to KCNQ2-Dependent Abnormal Dopaminergic Modulation of Prefrontal Cortical Interneuron Activity. Cereb Cortex 2018; 28:2175-2191. [PMID: 28525574 PMCID: PMC6018968 DOI: 10.1093/cercor/bhx123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 03/25/2017] [Indexed: 02/06/2023] Open
Abstract
Altered prefrontal cortex function is implicated in schizophrenia (SCZ) pathophysiology and could arise from imbalance between excitation and inhibition (E/I) in local circuits. It remains unclear whether and how such imbalances relate to genetic etiologies. We used a mouse model of the SCZ-predisposing 22q11.2 deletion (Df(16)A+/- mice) to evaluate how this genetic lesion affects the excitability of layer V prefrontal pyramidal neurons and its modulation by dopamine (DA). Df(16)A+/- mice have normal balance between E/I at baseline but are unable to maintain it upon dopaminergic challenge. Specifically, in wild-type mice, D1 receptor (D1R) activation enhances excitability of layer V prefrontal pyramidal neurons and D2 receptor (D2R) activation reduces it. Whereas the excitatory effect upon D1R activation is enhanced in Df(16)A+/- mice, the inhibitory effect upon D2R activation is reduced. The latter is partly due to the inability of mutant mice to activate GABAergic parvalbumin (PV)+ interneurons through D2Rs. We further demonstrate that reduced KCNQ2 channel function in PV+ interneurons in Df(16)A+/- mice renders them less capable of inhibiting pyramidal neurons upon D2 modulation. Thus, DA modulation of PV+ interneurons and control of E/I are altered in Df(16)A+/- mice with a higher excitation and lower inhibition during dopaminergic modulation.
Collapse
Affiliation(s)
- Se Joon Choi
- Department of Neurology, Columbia University, New York, NY10032, USA
| | - Jun Mukai
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mirna Kvajo
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Bin Xu
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anastasia Diamantopoulou
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Pothitos M Pitychoutis
- Department of Biology, Center for Tissue Regeneration and Engineering (TREND), University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Bin Gou
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joseph A Gogos
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Hui Zhang
- Department of Neurology, Columbia University, New York, NY10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
17
|
Cardarelli RA, Martin R, Jaaro-Peled H, Sawa A, Powell EM, O'Donnell P. Dominant-Negative DISC1 Alters the Dopaminergic Modulation of Inhibitory Interneurons in the Mouse Prefrontal Cortex. MOLECULAR NEUROPSYCHIATRY 2018; 4:20-29. [PMID: 29998115 DOI: 10.1159/000488030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/26/2018] [Indexed: 11/19/2022]
Abstract
A truncated disrupted in schizophrenia 1 (Disc1) gene increases the risk of psychiatric disorders, probably affecting cortical interneurons. Here, we sought to determine whether this cell population is affected in mice carrying a truncated (Disc1) allele (DN-DISC1). We utilized whole cell recordings to assess electrophysiological properties and modulation by dopamine (DA) in two classes of interneurons: fast-spiking (FS) and low threshold-spiking (LTS) interneurons in wild-type and DN-DISC1 mice. In DN-DISC1 mice, FS interneurons, but not LTS interneurons, exhibited altered action potentials. Further, the perineuronal nets that surround FS interneurons exhibited abnormal morphology in DN-DISC1 mice, and the DA modulation of this cell type was altered in DN-DISC1 mice. We conclude that early-life manipulation of a gene associated with risk of psychiatric disease can result in dysfunction, but not loss, of specific GABAergic interneurons. The resulting alteration of excitatory-inhibitory balance is a critical element in DISC1 pathophysiology.
Collapse
Affiliation(s)
- Ross A Cardarelli
- Program in Neuroscience, University of Maryland Medical School, Baltimore, Maryland, USA
| | - Rolicia Martin
- Department of Anatomy and Neurobiology, University of Maryland Medical School, Baltimore, Maryland, USA
| | - Hanna Jaaro-Peled
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Akira Sawa
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth M Powell
- Department of Anatomy and Neurobiology, University of Maryland Medical School, Baltimore, Maryland, USA.,Department of Psychiatry, University of Maryland Medical School, Baltimore, Maryland, USA
| | - Patricio O'Donnell
- Program in Neuroscience, University of Maryland Medical School, Baltimore, Maryland, USA.,Department of Anatomy and Neurobiology, University of Maryland Medical School, Baltimore, Maryland, USA.,Department of Psychiatry, University of Maryland Medical School, Baltimore, Maryland, USA
| |
Collapse
|
18
|
A Role for Phosphodiesterase 11A (PDE11A) in the Formation of Social Memories and the Stabilization of Mood. ADVANCES IN NEUROBIOLOGY 2018; 17:201-230. [PMID: 28956334 DOI: 10.1007/978-3-319-58811-7_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The most recently discovered 3',5'-cyclic nucleotide phosphodiesterase family is the Phosphodiesterase 11 (PDE11) family, which is encoded by a single gene PDE11A. PDE11A is a dual-specific PDE, breaking down both cAMP and cGMP. There are four PDE11A splice variants (PDE11A1-4) with distinct tissue expression profiles and unique N-terminal regulatory regions, suggesting that each isoform could be individually targeted with a small molecule or biologic. PDE11A4 is the PDE11A isoform expressed in brain and is found in the hippocampal formation of humans and rodents. Studies in rodents show that PDE11A4 mRNA expression in brain is, in fact, restricted to the hippocampal formation (CA1, possibly CA2, subiculum, and the adjacently connected amygdalohippocampal area). Within the hippocampal formation of rodents, PDE11A4 protein is expressed in neurons but not astrocytes, with a distribution across nuclear, cytoplasmic, and membrane compartments. This subcellular localization of PDE11A4 is altered in response to social experience in mouse, and in vitro studies show the compartmentalization of PDE11A4 is controlled, at least in part, by homodimerization and N-terminal phosphorylation. PDE11A4 expression dramatically increases in the hippocampus with age in the rodent hippocampus, from early postnatal life to late aging, suggesting PDE11A4 function may evolve across the lifespan. Interestingly, PDE11A4 protein shows a three to tenfold enrichment in the rodent ventral hippocampal formation (VHIPP; a.k.a. anterior in primates) versus dorsal hippocampal formation (DHIPP). Consistent with this enrichment in VHIPP, studies in knockout mice show that PDE11A regulates the formation of social memories and the stabilization of mood and is a critical mechanism by which social experience feeds back to modify the brain and subsequent social behaviors. PDE11A4 likely controls behavior by regulating hippocampal glutamatergic, oxytocin, and cytokine signaling, as well as protein translation. Given its unique tissue distribution and relatively selective effects on behavior, PDE11A may represent a novel therapeutic target for neuropsychiatric, neurodevelopmental, or age-related disorders. Therapeutically targeting PDE11A4 may be a way to selectively restore aberrant cyclic nucleotide signaling in the hippocampal formation while leaving the rest of the brain and periphery untouched, thus, relieving deficits while avoiding unwanted side effects.
Collapse
|
19
|
Froudist-Walsh S, Bloomfield MA, Veronese M, Kroll J, Karolis VR, Jauhar S, Bonoldi I, McGuire PK, Kapur S, Murray RM, Nosarti C, Howes O. The effect of perinatal brain injury on dopaminergic function and hippocampal volume in adult life. eLife 2017; 6. [PMID: 29179814 PMCID: PMC5705207 DOI: 10.7554/elife.29088] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/02/2017] [Indexed: 11/21/2022] Open
Abstract
Perinatal brain injuries, including hippocampal lesions, cause lasting changes in dopamine function in rodents, but it is not known if this occurs in humans. We compared adults who were born very preterm with perinatal brain injury to those born very preterm without perinatal brain injury, and age-matched controls born at full term using [18F]-DOPA PET and structural MRI. Dopamine synthesis capacity was reduced in the perinatal brain injury group relative to those without brain injury (Cohen’s d = 1.36, p=0.02) and the control group (Cohen’s d = 1.07, p=0.01). Hippocampal volume was reduced in the perinatal brain injury group relative to controls (Cohen’s d = 1.17, p=0.01) and was positively correlated with striatal dopamine synthesis capacity (r = 0.344, p=0.03). This is the first evidence in humans linking neonatal hippocampal injury to adult dopamine dysfunction, and provides a potential mechanism linking early life risk factors to adult mental illness. Thirteen million infants are born too early every year. Improved care allows many to survive, but these “preterm infants” still face an increased risk of death and many other complications. Infants born very early, before 32 weeks, are at risk of brain injury because the brain is normally still developing in the later stages of pregnancy. They also have an increased risk of developing mental health problems later in life. Early-life brain injuries in rats cause changes in the production of a chemical called dopamine. Dopamine is a chemical messenger in the brain that reinforces rewarding behaviour. People with schizophrenia and attention deficit hyperactivity disorder (ADHD) have abnormal levels of dopamine. Changes in brain dopamine levels may explain why early-life brain injury is linked to later mental illness. But first scientists must study whether similar changes occur in humans with an early-life brain injury. Now, Froudist-Walsh et al. use brain imaging to show that people born very early who suffered a brain injury have lower dopamine levels than other adults. Imaging techniques were used to scan the brains of 13 adults who were born before 32 weeks and who had a brain injury around birth, 13 adults born before 32 weeks without a brain injury, and 13 adults born at “full term” (around 39 to 40 weeks). Individuals with low dopamine levels reported difficulty concentrating and a lack of motivation and enjoyment in their lives. Both can be warning signs of mental health problems. People born prematurely without a brain injury had normal dopamine levels and did not report such symptoms. More studies may help scientists understand how early brain injuries may cause brain chemical differences later in life, and how these brain changes affect individual’s mental health. They may also help scientists develop treatments to prevent or treat mental illness in people who experienced a brain injury after a very early birth.
Collapse
Affiliation(s)
- Sean Froudist-Walsh
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Friedman Brain Institute, Fishberg Department of Neuroscience, Icahn School of Medicine, New York, United States
| | - Michael Ap Bloomfield
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Division of Psychiatry, University College London, London, United Kingdom.,Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Jasmin Kroll
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Vyacheslav R Karolis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Philip K McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Shitij Kapur
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
20
|
Tatti R, Haley MS, Swanson O, Tselha T, Maffei A. Neurophysiology and Regulation of the Balance Between Excitation and Inhibition in Neocortical Circuits. Biol Psychiatry 2017; 81:821-831. [PMID: 27865453 PMCID: PMC5374043 DOI: 10.1016/j.biopsych.2016.09.017] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 08/25/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022]
Abstract
Brain function relies on the ability of neural networks to maintain stable levels of activity, while experiences sculpt them. In the neocortex, the balance between activity and stability relies on the coregulation of excitatory and inhibitory inputs onto principal neurons. Shifts of excitation or inhibition result in altered excitability impaired processing of incoming information. In many neurodevelopmental and neuropsychiatric disorders, the excitability of local circuits is altered, suggesting that their pathophysiology may involve shifts in synaptic excitation, inhibition, or both. Most studies focused on identifying the cellular and molecular mechanisms controlling network excitability to assess whether they may be altered in animal models of disease. The impact of changes in excitation/inhibition balance on local circuit and network computations is not clear. Here we report findings on the integration of excitatory and inhibitory inputs in healthy cortical circuits and discuss how shifts in excitation/inhibition balance may relate to pathological phenotypes.
Collapse
Affiliation(s)
- Roberta Tatti
- Dept. of Neurobiology and Behavior, SUNY-Stony Brook, Stony Brook, NY 11794
| | - Melissa S. Haley
- Dept. of Neurobiology and Behavior, SUNY-Stony Brook, Stony Brook, NY 11794
| | - Olivia Swanson
- Dept. of Neurobiology and Behavior, SUNY-Stony Brook, Stony Brook, NY 11794
| | - Tenzin Tselha
- Dept. of Neurobiology and Behavior, SUNY-Stony Brook, Stony Brook, NY 11794
| | - Arianna Maffei
- Department of Neurobiology and Behavior, Stony Brook University, The State University of New York, Stony Brook, New York.
| |
Collapse
|
21
|
|
22
|
Brady LJ, Bartley AF, Li Q, McMeekin LJ, Hablitz JJ, Cowell RM, Dobrunz LE. Transcriptional dysregulation causes altered modulation of inhibition by haloperidol. Neuropharmacology 2016; 111:304-313. [PMID: 27480797 PMCID: PMC5207497 DOI: 10.1016/j.neuropharm.2016.07.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 07/14/2016] [Accepted: 07/26/2016] [Indexed: 11/30/2022]
Abstract
Many neuropsychiatric and neurodevelopmental disorders such as schizophrenia and autism involve interneuron transcriptional dysregulation. The transcriptional coactivator PGC-1α regulates gene expression in GABAergic interneurons, which are important for regulating hippocampal network activity. Genetic deletion of PGC-1α causes a decrease in parvalbumin expression, similar to what is observed in schizophrenia postmortem tissue. Our lab has previously shown that PGC-1α-/- mice have enhanced GABAergic inhibition onto CA1 pyramidal cells, which increases the inhibition/excitation (I/E) ratio, alters hippocampal circuit function, and impairs hippocampal dependent behavior. The typical antipsychotic haloperidol, a dopamine receptor antagonist with selectivity for D2-like receptors, has previously been shown to increase excitation in the CA1 region of hippocampus. We therefore tested whether haloperidol could normalize the I/E balance in CA1 of PGC-1α-/- mice, potentially improving circuit function and behavior. Surprisingly, we discovered instead that interneuron transcriptional dysregulation caused by loss of PGC-1α alters the effects of haloperidol on hippocampal synaptic transmission and circuit function. Acute administration of haloperidol causes disinhibition in CA1 and decreases the I/E ratio onto CA1 pyramidal cells in slices from PGC-1α+/+ mice, but not PGC-1α-/- mice. The spread of activity in CA1, assessed by voltage sensitive dye imaging, is increased by haloperidol in slices from PGC-1α+/+ mice; however haloperidol decreases the spread of activity in slices from PGC-1α-/- mice. Haloperidol increased the power of hippocampal gamma oscillation in slices from PGC-1α+/+ mice but reduced the power of gamma oscillations in slices from PGC-1α-/- mice. Nest construction, an innate hippocampal-dependent behavior, is inhibited by haloperidol in PGC-1α+/+ mice, but not in PGC-1α-/- mice, which already have impaired nest building. The effects of haloperidol are mimicked and occluded by a D2 receptor antagonist in slices from PGC-1α+/+ mice, and the effects of blocking D2 receptors are lost in slices from PGC-1α-/- mice, although there is no change in D2 receptor transcript levels. Together, our results show that hippocampal inhibitory synaptic transmission, CA1 circuit function, and hippocampal dependent behavior are modulated by the antipsychotic haloperidol, and that these effects of haloperidol are lost in PGC-1α-/- mice. These results have implications for the treatment of individuals with conditions involving PGC-1α deficiency.
Collapse
Affiliation(s)
- Lillian J Brady
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Aundrea F Bartley
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Qin Li
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Laura J McMeekin
- Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1720 7th Ave. S., Birmingham, AL, USA.
| | - John J Hablitz
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Rita M Cowell
- Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1720 7th Ave. S., Birmingham, AL, USA.
| | - Lynn E Dobrunz
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| |
Collapse
|
23
|
Distinct cortical and striatal actions of a β-arrestin-biased dopamine D2 receptor ligand reveal unique antipsychotic-like properties. Proc Natl Acad Sci U S A 2016; 113:E8178-E8186. [PMID: 27911814 DOI: 10.1073/pnas.1614347113] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The current dopamine (DA) hypothesis of schizophrenia postulates striatal hyperdopaminergia and cortical hypodopaminergia. Although partial agonists at DA D2 receptors (D2Rs), like aripiprazole, were developed to simultaneously target both phenomena, they do not effectively improve cortical dysfunction. In this study, we investigate the potential for newly developed β-arrestin2 (βarr2)-biased D2R partial agonists to simultaneously target hyper- and hypodopaminergia. Using neuron-specific βarr2-KO mice, we show that the antipsychotic-like effects of a βarr2-biased D2R ligand are driven through both striatal antagonism and cortical agonism of D2R-βarr2 signaling. Furthermore, βarr2-biased D2R agonism enhances firing of cortical fast-spiking interneurons. This enhanced cortical agonism of the biased ligand can be attributed to a lack of G-protein signaling and elevated expression of βarr2 and G protein-coupled receptor (GPCR) kinase 2 in the cortex versus the striatum. Therefore, we propose that βarr2-biased D2R ligands that exert region-selective actions could provide a path to develop more effective antipsychotic therapies.
Collapse
|
24
|
Kato R, Yamanaka M, Yokota E, Koshikawa N, Kobayashi M. Spike Timing Rigidity Is Maintained in Bursting Neurons under Pentobarbital-Induced Anesthetic Conditions. Front Neural Circuits 2016; 10:86. [PMID: 27895555 PMCID: PMC5107820 DOI: 10.3389/fncir.2016.00086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/11/2016] [Indexed: 11/26/2022] Open
Abstract
Pentobarbital potentiates γ-aminobutyric acid (GABA)-mediated inhibitory synaptic transmission by prolonging the open time of GABAA receptors. However, it is unknown how pentobarbital regulates cortical neuronal activities via local circuits in vivo. To examine this question, we performed extracellular unit recording in rat insular cortex under awake and anesthetic conditions. Not a few studies apply time-rescaling theorem to detect the features of repetitive spike firing. Similar to these methods, we define an average spike interval locally in time using random matrix theory (RMT), which enables us to compare different activity states on a universal scale. Neurons with high spontaneous firing frequency (>5 Hz) and bursting were classified as HFB neurons (n = 10), and those with low spontaneous firing frequency (<10 Hz) and without bursting were classified as non-HFB neurons (n = 48). Pentobarbital injection (30 mg/kg) reduced firing frequency in all HFB neurons and in 78% of non-HFB neurons. RMT analysis demonstrated that pentobarbital increased in the number of neurons with repulsion in both HFB and non-HFB neurons, suggesting that there is a correlation between spikes within a short interspike interval (ISI). Under awake conditions, in 50% of HFB and 40% of non-HFB neurons, the decay phase of normalized histograms of spontaneous firing were fitted to an exponential function, which indicated that the first spike had no correlation with subsequent spikes. In contrast, under pentobarbital-induced anesthesia conditions, the number of non-HFB neurons that were fitted to an exponential function increased to 80%, but almost no change in HFB neurons was observed. These results suggest that under both awake and pentobarbital-induced anesthetized conditions, spike firing in HFB neurons is more robustly regulated by preceding spikes than by non-HFB neurons, which may reflect the GABAA receptor-mediated regulation of cortical activities. Whole-cell patch-clamp recording in the IC slice preparation was performed to compare the regularity of spike timing between pyramidal and fast-spiking (FS) neurons, which presumably correspond to non-HFB and HFB neurons, respectively. Repetitive spike firing of FS neurons exhibited a lower variance of ISI than pyramidal neurons both in control and under application of pentobarbital, supporting the above hypothesis.
Collapse
Affiliation(s)
- Risako Kato
- Department of Pharmacology, School of Dentistry, Nihon UniversityChiyoda, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, School of Dentistry, Nihon UniversityChiyoda, Japan
| | - Masanori Yamanaka
- Department of Physics, College of Science and Technology, Nihon University Chiyoda, Japan
| | - Eiko Yokota
- Department of Pharmacology, School of Dentistry, Nihon UniversityChiyoda, Japan; Department of Anesthesiology, School of Dentistry, Nihon UniversityChiyoda, Japan
| | - Noriaki Koshikawa
- Department of Pharmacology, School of Dentistry, Nihon UniversityChiyoda, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, School of Dentistry, Nihon UniversityChiyoda, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, School of Dentistry, Nihon UniversityChiyoda, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, School of Dentistry, Nihon UniversityChiyoda, Japan; Molecular Dynamics Imaging Unit, RIKEN Center for Life Science TechnologiesKobe, Japan
| |
Collapse
|
25
|
Research Domain Criteria versus DSM V: How does this debate affect attempts to model corticostriatal dysfunction in animals? Neurosci Biobehav Rev 2016; 76:301-316. [PMID: 27826070 DOI: 10.1016/j.neubiorev.2016.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/03/2016] [Accepted: 10/31/2016] [Indexed: 01/29/2023]
Abstract
For decades, the nosology of mental illness has been based largely upon the descriptions in the Diagnostic and Statistical Manual of the American Psychiatric Association (DSM). A recent challenge to the DSM approach to psychiatric nosology from the National Institute on Mental Health (USA) defines Research Domain Criteria (RDoC) as an alternative. For RDoC, psychiatric illnesses are not defined as discrete categories, but instead as specific behavioral dysfunctions irrespective of DSM diagnostic categories. This approach was driven by two primary weaknesses noted in the DSM: (1) the same symptoms occur in very different disease states; and (2) DSM criteria lack grounding in the underlying biological causes of mental illness. RDoC intends to ground psychiatric nosology in those underlying mechanisms. This review addresses the suitability of RDoC vs. DSM from the view of modeling mental illness in animals. A consideration of all types of psychiatric dysfunction is beyond the scope of this review, which will focus on models of conditions associated with frontostriatal dysfunction.
Collapse
|
26
|
Parent AS, Pinson A, Woods N, Chatzi C, Vaaga CE, Bensen A, Gérard A, Thome JP, Bourguignon JP, Westbrook GL. Early exposure to Aroclor 1254 in vivo disrupts the functional synaptic development of newborn hippocampal granule cells. Eur J Neurosci 2016; 44:3001-3010. [PMID: 27740705 DOI: 10.1111/ejn.13437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 02/05/2023]
Abstract
Neurogenesis in the dentate gyrus is sensitive to endogenous and exogenous factors that influence hippocampal function. Ongoing neurogenesis and the integration of these new neurons throughout life thus may provide a sensitive indicator of environmental stress. We examined the effects of Aroclor 1254 (A1254), a mixture of polychlorinated biphenyls (PCBs), on the development and function of newly generated dentate granule cells. Early exposure to A1254 has been associated with learning impairment in children, suggesting potential impact on the development of hippocampus and/or cortical circuits. Oral A1254 (from the 6th day of gestation to postnatal day 21) produced the expected increase in PCB levels in brain at postnatal day 21, which persisted at lower levels into adulthood. A1254 did not affect the proliferation or survival of newborn neurons in immature animals nor did it cause overt changes in neuronal morphology. However, A1254 occluded the normal developmental increase in sEPSC frequency in the third post-mitotic week without altering the average sEPSC amplitude. Our results suggest that early exposure to PCBs can disrupt excitatory synaptic function during a period of active synaptogenesis, and thus could contribute to the cognitive effects noted in children exposed to PCBs.
Collapse
Affiliation(s)
- A S Parent
- Neuroendocrinology Unit, GIGA-N, University of Liège, CHU Sart Tilman, 4000, Liège, Belgium
| | - A Pinson
- Neuroendocrinology Unit, GIGA-N, University of Liège, CHU Sart Tilman, 4000, Liège, Belgium
| | - N Woods
- Vollum Institute, Portland, OR, USA
| | - C Chatzi
- Vollum Institute, Portland, OR, USA
| | | | - A Bensen
- Vollum Institute, Portland, OR, USA
| | - A Gérard
- Neuroendocrinology Unit, GIGA-N, University of Liège, CHU Sart Tilman, 4000, Liège, Belgium
| | - J P Thome
- Laboratory of Animal Ecology and Ecotoxicology, University of Liège, Liège, Belgium
| | - J P Bourguignon
- Neuroendocrinology Unit, GIGA-N, University of Liège, CHU Sart Tilman, 4000, Liège, Belgium
| | | |
Collapse
|
27
|
Steullet P, Cabungcal JH, Monin A, Dwir D, O'Donnell P, Cuenod M, Do KQ. Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A "central hub" in schizophrenia pathophysiology? Schizophr Res 2016; 176:41-51. [PMID: 25000913 PMCID: PMC4282982 DOI: 10.1016/j.schres.2014.06.021] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 12/18/2022]
Abstract
Accumulating evidence points to altered GABAergic parvalbumin-expressing interneurons and impaired myelin/axonal integrity in schizophrenia. Both findings could be due to abnormal neurodevelopmental trajectories, affecting local neuronal networks and long-range synchrony and leading to cognitive deficits. In this review, we present data from animal models demonstrating that redox dysregulation, neuroinflammation and/or NMDAR hypofunction (as observed in patients) impairs the normal development of both parvalbumin interneurons and oligodendrocytes. These observations suggest that a dysregulation of the redox, neuroimmune, and glutamatergic systems due to genetic and early-life environmental risk factors could contribute to the anomalies of parvalbumin interneurons and white matter in schizophrenia, ultimately impacting cognition, social competence, and affective behavior via abnormal function of micro- and macrocircuits. Moreover, we propose that the redox, neuroimmune, and glutamatergic systems form a "central hub" where an imbalance within any of these "hub" systems leads to similar anomalies of parvalbumin interneurons and oligodendrocytes due to the tight and reciprocal interactions that exist among these systems. A combination of vulnerabilities for a dysregulation within more than one of these systems may be particularly deleterious. For these reasons, molecules, such as N-acetylcysteine, that possess antioxidant and anti-inflammatory properties and can also regulate glutamatergic transmission are promising tools for prevention in ultra-high risk patients or for early intervention therapy during the first stages of the disease.
Collapse
Affiliation(s)
- P Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - J H Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - A Monin
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - D Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - P O'Donnell
- Neuroscience Research Unit, Pfizer, Inc., 700 Main Street, Cambridge, MA 02139, USA
| | - M Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - K Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland.
| |
Collapse
|
28
|
GABAergic Function as a Limiting Factor for Prefrontal Maturation during Adolescence. Trends Neurosci 2016; 39:441-448. [PMID: 27233681 DOI: 10.1016/j.tins.2016.04.010] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 11/24/2022]
Abstract
Adolescence is a vulnerable period for the onset of mental illnesses including schizophrenia and affective disorders, yet the neurodevelopmental processes underlying this vulnerability remain poorly understood. The prefrontal cortex (PFC) and its local GABAergic system are thought to contribute to the core of cognitive deficits associated with such disorders. However, clinical and preclinical end-point analyses performed in adults are likely to give limited insight into the cellular mechanisms that are altered during adolescence but are only manifested in adulthood. This perspective summarizes work regarding the developmental trajectories of the GABAergic system in the PFC during adolescence to provide an insight into the increased susceptibility to psychiatric disorders during this critical developmental period.
Collapse
|
29
|
Sigurdsson T. Neural circuit dysfunction in schizophrenia: Insights from animal models. Neuroscience 2016; 321:42-65. [DOI: 10.1016/j.neuroscience.2015.06.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/15/2015] [Accepted: 06/26/2015] [Indexed: 12/17/2022]
|
30
|
Nilsson SRO, Celada P, Fejgin K, Thelin J, Nielsen J, Santana N, Heath CJ, Larsen PH, Nielsen V, Kent BA, Saksida LM, Stensbøl TB, Robbins TW, Bastlund JF, Bussey TJ, Artigas F, Didriksen M. A mouse model of the 15q13.3 microdeletion syndrome shows prefrontal neurophysiological dysfunctions and attentional impairment. Psychopharmacology (Berl) 2016; 233:2151-2163. [PMID: 26983414 PMCID: PMC4869740 DOI: 10.1007/s00213-016-4265-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/25/2016] [Indexed: 12/28/2022]
Abstract
RATIONALE A microdeletion at locus 15q13.3 is associated with high incidence rates of psychopathology, including schizophrenia. A mouse model of the 15q13.3 microdeletion syndrome has been generated (Df[h15q13]/+) with translational utility for modelling schizophrenia-like pathology. Among other deficits, schizophrenia is characterised by dysfunctions in prefrontal cortical (PFC) inhibitory circuitry and attention. OBJECTIVES The objective of this study is to assess PFC-dependent functioning in the Df(h15q13)/+ mouse using electrophysiological, pharmacological, and behavioural assays. METHOD Experiments 1-2 investigated baseline firing and auditory-evoked responses of PFC interneurons and pyramidal neurons. Experiment 3 measured pyramidal firing in response to intra-PFC GABAA receptor antagonism. Experiments 4-6 assessed PFC-dependent attentional functioning through the touchscreen 5-choice serial reaction time task (5-CSRTT). Experiments 7-12 assessed reversal learning, paired-associate learning, extinction learning, progressive ratio, trial-unique non-match to sample, and object recognition. RESULTS In experiments 1-3, the Df(h15q13)/+ mouse showed reduced baseline firing rate of fast-spiking interneurons and in the ability of the GABAA receptor antagonist gabazine to increase the firing rate of pyramidal neurons. In assays of auditory-evoked responses, PFC interneurons in the Df(h15q13)/+ mouse had reduced detection amplitudes and increased detection latencies, while pyramidal neurons showed increased detection latencies. In experiments 4-6, the Df(h15q13)/+ mouse showed a stimulus duration-dependent decrease in percent accuracy in the 5-CSRTT. The impairment was insensitive to treatment with the partial α7nAChR agonist EVP-6124. The Df(h15q13)/+ mouse showed no cognitive impairments in experiments 7-12. CONCLUSION The Df(h15q13)/+ mouse has multiple dysfunctions converging on disrupted PFC processing as measured by several independent assays of inhibitory transmission and attentional function.
Collapse
Affiliation(s)
- Simon R O Nilsson
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
- Department of Psychology, State University of New York at Binghamton, Binghamton, NY, 13902-6000, USA.
| | - Pau Celada
- Institut d'Investigacions Biomèdiques de Barcelona, CSIC-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Kim Fejgin
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Ottiliavej 9, Valby, 2500, Denmark
| | - Jonas Thelin
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Ottiliavej 9, Valby, 2500, Denmark
- Neuronano Research Center, Lund University, 223 81, Lund, Sweden
| | - Jacob Nielsen
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Ottiliavej 9, Valby, 2500, Denmark
| | - Noemí Santana
- Institut d'Investigacions Biomèdiques de Barcelona, CSIC-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Christopher J Heath
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Peter H Larsen
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Ottiliavej 9, Valby, 2500, Denmark
| | - Vibeke Nielsen
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Ottiliavej 9, Valby, 2500, Denmark
| | - Brianne A Kent
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Lisa M Saksida
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Tine B Stensbøl
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Ottiliavej 9, Valby, 2500, Denmark
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Jesper F Bastlund
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Ottiliavej 9, Valby, 2500, Denmark
| | - Timothy J Bussey
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques de Barcelona, CSIC-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Michael Didriksen
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Ottiliavej 9, Valby, 2500, Denmark
| |
Collapse
|
31
|
Toward early estimation and treatment of addiction vulnerability: radial arm maze and N-acetyl cysteine before cocaine sensitization or nicotine self-administration in neonatal ventral hippocampal lesion rats. Psychopharmacology (Berl) 2016; 233:3933-3945. [PMID: 27640177 PMCID: PMC5102951 DOI: 10.1007/s00213-016-4421-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 08/27/2016] [Indexed: 12/11/2022]
Abstract
RATIONAL Prefrontal cortical (PFC)-hippocampal-striatal circuits, interconnected via glutamatergic signaling, are dysfunctional in mental illnesses that involve addiction vulnerability. OBJECTIVES In healthy and neurodevelopmentally altered rats, we examined how Radial Arm Maze (RAM) performance estimates addiction vulnerability, and how starting a glutamatergic modulating agent, N-acetyl cysteine (NAC) in adolescence alters adult mental illness and/or addiction phenotypes. METHODS Rats with neonatal ventral hippocampal lesions (NVHL) vs. SHAM-operated controls were randomized to NAC vs. saline in adolescence followed by cognitive testing (RAM) in early adulthood and then cocaine behavioral sensitization (experiment 1; n = 80) or nicotine self-administration (experiment 2; n = 12). RESULTS In experiment 1, NVHL rats showed over-consumption of food (Froot-Loops (FL)) baiting the RAM with poor working memory (low-arm entries to repeat (ETR)), producing an elevated FL to ETR ratio ("FLETR"; p < 0.001). FLETR was the best linear estimator (compared to FL or ETR) of magnitude of long-term cocaine sensitization (R 2 = 0.14, p < 0.001). NAC treatment did not alter FL, ETR, FLETR, or cocaine sensitization. In experiment 2, FLETR also significantly and uniquely correlated with subsequent drug seeking during nicotine-induced reinstatement after extinction of nicotine self-administration (R 2 = 0.47, p < 0.01). NAC did not alter RAM performance, but significantly reversed NVHL-induced increases in nicotine seeking during extinction and reinstatement. CONCLUSIONS These findings demonstrate the utility of animal models of mental illness with addiction vulnerability for developing novel diagnostic measures of PFC-hippocampal-striatal circuit dysfunction that may reflect addiction risk. Such tests may direct pharmacological treatments prior to adulthood and addictive drug exposure, to prevent or treat adult addictions.
Collapse
|
32
|
Behavioral effects of phencyclidine on nicotine self-administration and reinstatement in the presence or absence of a visual stimulus in rats. Psychopharmacology (Berl) 2015; 232:2877-87. [PMID: 25845436 PMCID: PMC4515150 DOI: 10.1007/s00213-015-3923-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 03/18/2015] [Indexed: 02/02/2023]
Abstract
RATIONALE Tobacco use is a serious health problem in the USA, and this problem is potentiated in patients with schizophrenia. The reward system is implicated in schizophrenia and may contribute to the high comorbidity between nicotine use and schizophrenia, but very little research has been done on the topic. The reward-enhancement effect of nicotine has been shown to be important in nicotine use, but there have been no studies on this effect in animal models of schizophrenia. OBJECTIVES This study was designed to determine the effects of phencyclidine, used to model negative symptoms of schizophrenia, on self-administration of nicotine with or without a co-occurring sensory reinforcer [i.e., visual stimulus (VS)] in rats. METHODS Phencyclidine (2.0 mg/kg) was administered before each of seven nicotine self-administration sessions (0.01 mg/kg/inf) after which rats (n = 8-9 per group) were given 7 days of extinction without phencyclidine pretreatment. Reinstatement using phencyclidine (2.0 mg/kg), nicotine (0.2 mg/kg), and yohimbine (1.25 mg/kg, a pharmacological stressor) was tested after extinction to determine if previous exposure to phencyclidine would alter reinstatement of active lever pressing. RESULTS Phencyclidine initially decreased nicotine self-administration but only in the groups with a concurrent VS. This decrease in self-administration dissipated after 5 days. During reinstatement, rats that had previously received phencyclidine during self-administration with a VS were more sensitive to stress-induced reinstatement than any other group. CONCLUSIONS These results show a transitory effect of phencyclidine on nicotine self-administration. Phencyclidine may induce a potential sensitivity to pharmacological stressors contributing to reinstatement of nicotine.
Collapse
|
33
|
Dopamine D2 Modulation of Sign and Goal Tracking in Rats. Neuropsychopharmacology 2015; 40:2096-102. [PMID: 25759299 PMCID: PMC4613614 DOI: 10.1038/npp.2015.68] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 12/13/2022]
Abstract
In Pavlovian conditioning, sign- and goal-tracking behaviors represent different approaches towards the conditioned stimulus. These behavioral patterns have been associated with predictive or incentive properties of the conditioned stimulus, with a crucial involvement of the mesolimbic dopamine system. As it is possible that sign tracking behavior is more sensitive to dopamine modulation, we evaluated the dopamine-dependence of sign- and goal-tracking behavior. We assessed responses to both a D2 agonist and an antagonist, and tested performance in a behavioral paradigm known to activate dopamine projections and in an animal model that affects mesolimbic and mesocortical function. Sign trackers displayed a greater sensitivity to a D2 agonist and smaller prepulse inhibition of the acoustic startle response than goal trackers, suggesting a reduced inhibitory ability. In addition, a neonatal ventral hippocampal lesion resulted in the loss of incentive salience of cues in sign trackers. Overall, these data indicate that sign-tracking behavior is more heavily controlled by dopamine than goal tracking.
Collapse
|
34
|
Abstract
It has been proposed that schizophrenia results, in part, from the inappropriate or spurious attribution of salience to cues in the environment. We have recently reported neural correlates of salience in the basolateral amygdala (ABL) of rats during learning in an odor-guided discrimination task. Here we tested whether this dopamine-dependent salience signal is altered in rats with neonatal ventral hippocampal lesions (NVHLs), a rodent model of schizophrenia. We found that ABL signals related to violations in reward prediction were only mildly affected by NVHL; however, neurons in rats with NVHLs showed significantly stronger selectivity during odor sampling, particularly for the more salient large-reward cue. The elevated cue-evoked activity in NVHL rats was correlated with heightened orienting behavior and also with changes in firing to the shifts in reward, suggesting that it reflected abnormal signaling of the large reward-predicting cue's salience. These results are broadly consistent with the proposal that schizophrenics suffer from enhanced signaling of salience.
Collapse
|
35
|
Do KQ, Cuenod M, Hensch TK. Targeting Oxidative Stress and Aberrant Critical Period Plasticity in the Developmental Trajectory to Schizophrenia. Schizophr Bull 2015; 41:835-46. [PMID: 26032508 PMCID: PMC4466197 DOI: 10.1093/schbul/sbv065] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder reflecting a convergence of genetic risk and early life stress. The slow progression to first psychotic episode represents both a window of vulnerability as well as opportunity for therapeutic intervention. Here, we consider recent neurobiological insight into the cellular and molecular components of developmental critical periods and their vulnerability to redox dysregulation. In particular, the consistent loss of parvalbumin-positive interneuron (PVI) function and their surrounding perineuronal nets (PNNs) as well as myelination in patient brains is consistent with a delayed or extended period of circuit instability. This linkage to critical period triggers (PVI) and brakes (PNN, myelin) implicates mistimed trajectories of brain development in mental illness. Strategically introduced antioxidant treatment or later reinforcement of molecular brakes may then offer a novel prophylactic psychiatry.
Collapse
Affiliation(s)
- Kim Q. Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Takao K. Hensch
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, Cambridge, MA,*To whom correspondence should be addressed; Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, US; tel: +1-617-384-5882; fax: +1-617-495-4038; e-mail:
| |
Collapse
|
36
|
Rosen AM, Spellman T, Gordon JA. Electrophysiological endophenotypes in rodent models of schizophrenia and psychosis. Biol Psychiatry 2015; 77:1041-9. [PMID: 25910423 PMCID: PMC4444383 DOI: 10.1016/j.biopsych.2015.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/03/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Schizophrenia is caused by a diverse array of risk factors and results in a similarly diverse set of symptoms. Electrophysiological endophenotypes lie between risks and symptoms and have the potential to link the two. Electrophysiological studies in rodent models, described here, demonstrate that widely differing risk factors result in a similar set of core electrophysiological endophenotypes, suggesting the possibility of a shared neurobiological substrate.
Collapse
Affiliation(s)
- Andrew M. Rosen
- Department of Psychiatry, College of Physicians and Surgeons Columbia University New York, NY 10032
| | - Timothy Spellman
- Department of Physiology, College of Physicians and Surgeons Columbia University New York, NY 10032
| | - Joshua A. Gordon
- Department of Psychiatry, College of Physicians and Surgeons Columbia University New York, NY 10032,Division of Integrative Neuroscience New York State Psychiatric Institute New York NY 10032,Correspondence to: Joshua A. Gordon 1051 Riverside Drive Unit 87 Kolb Annex Room 140 New York, NY 10032 Ph. 646 774-7116 Fax. 646 774-7101
| |
Collapse
|
37
|
Temporal dynamics of L5 dendrites in medial prefrontal cortex regulate integration versus coincidence detection of afferent inputs. J Neurosci 2015; 35:4501-14. [PMID: 25788669 DOI: 10.1523/jneurosci.4673-14.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Distinct brain regions are highly interconnected via long-range projections. How this inter-regional communication occurs depends not only upon which subsets of postsynaptic neurons receive input, but also, and equally importantly, upon what cellular subcompartments the projections target. Neocortical pyramidal neurons receive input onto their apical dendrites. However, physiological characterization of these inputs thus far has been exclusively somatocentric, leaving how the dendrites respond to spatial and temporal patterns of input unexplored. Here we used a combination of optogenetics with multisite electrode recordings to simultaneously measure dendritic and somatic responses to afferent fiber activation in two different populations of layer 5 (L5) pyramidal neurons in the rat medial prefrontal cortex (mPFC). We found that commissural inputs evoked monosynaptic responses in both intratelencephalic (IT) and pyramidal tract (PT) dendrites, whereas monosynaptic hippocampal input primarily targeted IT, but not PT, dendrites. To understand the role of dendritic integration in the processing of long-range inputs, we used dynamic clamp to simulate synaptic currents in the dendrites. IT dendrites functioned as temporal integrators that were particularly responsive to dendritic inputs within the gamma frequency range (40-140 Hz). In contrast, PT dendrites acted as coincidence detectors by responding to spatially distributed signals within a narrow time window. Thus, the PFC extracts information from different brain regions through the combination of selective dendritic targeting and the distinct dendritic physiological properties of L5 pyramidal dendrites.
Collapse
|
38
|
Berg SA, Sentir AM, Bell RL, Engleman EA, Chambers RA. Nicotine effects in adolescence and adulthood on cognition and α₄β₂-nicotinic receptors in the neonatal ventral hippocampal lesion rat model of schizophrenia. Psychopharmacology (Berl) 2015; 232:1681-92. [PMID: 25388292 PMCID: PMC4412763 DOI: 10.1007/s00213-014-3800-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/31/2014] [Indexed: 11/26/2022]
Abstract
RATIONAL Nicotine use in schizophrenia has traditionally been explained as "self-medication" of cognitive and/or nicotinic acetylcholinergic receptor (nAChR) abnormalities. OBJECTIVES We test this hypothesis in a neurodevelopmental rat model of schizophrenia that shows increased addiction behaviors including enhanced nicotine reinforcement and drug-seeking. METHODS Nicotine transdermal patch (5 mg/kg/day vs. placebo × 10 days in adolescence or adulthood) effects on subsequent radial-arm maze learning (15 sessions) and frontal-cortical-striatal nAChR densities (α4β2; [3H]-epibatidine binding) were examined in neonatal ventral hippocampal lesion (NVHL) and SHAM-operated rats. RESULTS NVHL cognitive deficits were not differentially affected by nicotine history compared to SHAMs. Nicotine history produced minimal cognitive effects while increasing food-reward consumption on the maze, compounding with NVHL-induced overconsumption. Acute nicotine (0.5 mg/kg) delivered before the final maze sessions produced modest improvements in maze performance in rats with nicotine patch histories only, but not differentially so in NVHLs. Consistent with in vivo neuroimaging of β2 nAChR binding in schizophrenia smokers vs. non-smokers and healthy controls, adult NVHLs showed 12% reductions in nAChR binding in MPFC (p < 0.05) but not ventral striatum (<5% changes, p > .40), whereas nicotine history elevated nAChRs across both regions (>30%, p < 0.001) without interacting with NVHLs. Adolescent vs. adult nicotine exposure did not alter nAChRs differentially. CONCLUSIONS Although replicating nicotine-induced upregulation of nAChRs in human smokers and demonstrating NVHL validity in terms of schizophrenia-associated nAChR density patterns, these findings do not support hypotheses explaining increased nicotine use in schizophrenia as reflecting illness-specific effects of nicotine to therapeutically alter cognition or nAChR densities.
Collapse
Affiliation(s)
- Sarah A Berg
- Laboratory for Translational Neuroscience of Dual Diagnosis & Development, Suite 314D, 320 West 16th Street, Indianapolis, IN, 46202, USA,
| | | | | | | | | |
Collapse
|
39
|
Vagal nerve stimulation blocks interleukin 6-dependent synaptic hyperexcitability induced by lipopolysaccharide-induced acute stress in the rodent prefrontal cortex. Brain Behav Immun 2015; 43:149-58. [PMID: 25128387 PMCID: PMC4727901 DOI: 10.1016/j.bbi.2014.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 01/24/2023] Open
Abstract
The ratio between synaptic inhibition and excitation (sI/E) is a critical factor in the pathophysiology of neuropsychiatric disease. We recently described a stress-induced interleukin-6 dependent mechanism leading to a decrease in sI/E in the rodent temporal cortex. The aim of the present study was to determine whether a similar mechanism takes place in the prefrontal cortex, and to elaborate strategies to prevent or attenuate it. We used aseptic inflammation (single acute injections of lipopolysaccharide, LPS, 10mg/kg) as stress model, and patch-clamp recording on a prefrontal cortical slice preparation from wild-type rat and mice, as well as from transgenic mice in which the inhibitor of IL-6 trans-signaling sgp130Fc was produced in a brain-specific fashion (sgp130Fc mice). The anti-inflammatory reflex was activated either by vagal nerve stimulation or peripheral administration of the nicotinic α7 receptor agonist PHA543613. We found that the IL-6-dependent reduction in prefrontal cortex synaptic inhibition was blocked in sgp130Fc mice, or - in wild-type animals - upon application sgp130Fc. Similar results were obtained by activating the "anti-inflammatory reflex" - a neural circuit regulating peripheral immune response - by stimulation of the vagal nerve or through peripheral administration of the α7 nicotinic receptor agonist PHA543613. Our results indicate that the prefrontal cortex is an important potential target of IL-6 mediated trans-signaling, and suggest a potential new avenue in the treatment of a large class of hyperexcitable neuropsychiatric conditions, including epilepsy, schizophrenic psychoses, anxiety disorders, autism spectrum disorders, and depression.
Collapse
|
40
|
Mattei D, Schweibold R, Wolf SA. Brain in flames - animal models of psychosis: utility and limitations. Neuropsychiatr Dis Treat 2015; 11:1313-29. [PMID: 26064050 PMCID: PMC4455860 DOI: 10.2147/ndt.s65564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The neurodevelopmental hypothesis of schizophrenia posits that schizophrenia is a psychopathological condition resulting from aberrations in neurodevelopmental processes caused by a combination of environmental and genetic factors which proceed long before the onset of clinical symptoms. Many studies discuss an immunological component in the onset and progression of schizophrenia. We here review studies utilizing animal models of schizophrenia with manipulations of genetic, pharmacologic, and immunological origin. We focus on the immunological component to bridge the studies in terms of evaluation and treatment options of negative, positive, and cognitive symptoms. Throughout the review we link certain aspects of each model to the situation in human schizophrenic patients. In conclusion we suggest a combination of existing models to better represent the human situation. Moreover, we emphasize that animal models represent defined single or multiple symptoms or hallmarks of a given disease.
Collapse
Affiliation(s)
- Daniele Mattei
- Department of Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Regina Schweibold
- Department of Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany ; Department of Neurosurgery, Helios Clinics, Berlin, Germany
| | - Susanne A Wolf
- Department of Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
41
|
Impaired adrenergic-mediated plasticity of prefrontal cortical glutamate synapses in rats with developmental disruption of the ventral hippocampus. Neuropsychopharmacology 2014; 39:2963-73. [PMID: 24917197 PMCID: PMC4229566 DOI: 10.1038/npp.2014.142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 01/21/2023]
Abstract
Neonatal ventral hippocampus (nVH) lesion in rats is a useful model to study developmental origins of adult cognitive deficits and certain features of schizophrenia. nVH lesion-induced reorganization of excitatory and inhibitory neurotransmissions within prefrontal cortical (PFC) circuits is widely believed to be responsible for many of the behavioral abnormalities in these animals. Here we provide evidence that development of an aberrant medial PFC (mPFC) α-1 adrenergic receptor (α-1AR) function following neonatal lesion markedly affects glutamatergic synaptic plasticity within PFC microcircuits and contributes to PFC-related behavior abnormalities. Using whole-cell patch-clamp recording, we report that norepinephrine-induced α-1AR-dependent long-term depression (LTD) in a subset of cortico-cortical glutamatergic inputs is strikingly diminished in mPFC slices from nVH-lesioned rats. The LTD impairment occurs in conjunction with completely blunted α-1AR signaling through extracellular signal-regulated kinase 1/2. These α-1AR abnormalities have functional significance in a mPFC-related function, that is, extinction of conditioned fear memory. Post-pubertal animals with nVH lesion show significant resistance to extinction of fear by repeated presentations of the conditioned tone stimulus. mPFC infusion of an α-1AR antagonist (benoxathian) or LTD blocking peptide (Tat-GluR23Y) impaired fear extinction in sham controls, but had no significant effect in the lesioned animals. The data suggest that impaired α-1 adrenergic regulation of cortical glutamatergic synaptic plasticity may be an important mechanism in cognitive dysfunctions reported in neurodevelopmental psychiatric disorders.
Collapse
|
42
|
Lew SE, Tseng KY. Dopamine modulation of GABAergic function enables network stability and input selectivity for sustaining working memory in a computational model of the prefrontal cortex. Neuropsychopharmacology 2014; 39:3067-76. [PMID: 24975022 PMCID: PMC4229578 DOI: 10.1038/npp.2014.160] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 06/03/2014] [Accepted: 06/26/2014] [Indexed: 11/09/2022]
Abstract
Dopamine modulation of GABAergic transmission in the prefrontal cortex (PFC) is thought to be critical for sustaining cognitive processes such as working memory and decision-making. Here, we developed a neurocomputational model of the PFC that includes physiological features of the facilitatory action of dopamine on fast-spiking interneurons to assess how a GABAergic dysregulation impacts on the prefrontal network stability and working memory. We found that a particular non-linear relationship between dopamine transmission and GABA function is required to enable input selectivity in the PFC for the formation and retention of working memory. Either degradation of the dopamine signal or the GABAergic function is sufficient to elicit hyperexcitability in pyramidal neurons and working memory impairments. The simulations also revealed an inverted U-shape relationship between working memory and dopamine, a function that is maintained even at high levels of GABA degradation. In fact, the working memory deficits resulting from reduced GABAergic transmission can be rescued by increasing dopamine tone and vice versa. We also examined the role of this dopamine-GABA interaction for the termination of working memory and found that the extent of GABAergic excitation needed to reset the PFC network begins to occur when the activity of fast-spiking interneurons surpasses 40 Hz. Together, these results indicate that the capability of the PFC to sustain working memory and network stability depends on a robust interplay of compensatory mechanisms between dopamine tone and the activity of local GABAergic interneurons.
Collapse
Affiliation(s)
- Sergio E Lew
- Instituto de Ingeniería Biomédica, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Kuei Y Tseng
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
43
|
Romero-Pimentel AL, Vázquez-Roque RA, Camacho-Abrego I, Hoffman KL, Linares P, Flores G, Manjarrez E. Histological correlates of N40 auditory evoked potentials in adult rats after neonatal ventral hippocampal lesion: animal model of schizophrenia. Schizophr Res 2014; 159:450-7. [PMID: 25261883 DOI: 10.1016/j.schres.2014.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/28/2014] [Accepted: 09/04/2014] [Indexed: 11/26/2022]
Abstract
The neonatal ventral hippocampal lesion (NVHL) is an established neurodevelopmental rat model of schizophrenia. Rats with NVHL exhibit several behavioral, molecular and physiological abnormalities that are similar to those found in schizophrenics. Schizophrenia is a severe psychiatric illness characterized by profound disturbances of mental functions including neurophysiological deficits in brain information processing. These deficits can be assessed by auditory evoked potentials (AEPs), where schizophrenics exhibit abnormalities in amplitude, duration and latency of such AEPs. The aim of the present study was to compare the density of cells in the temporal cerebral cortex and the N40-AEP of adult NVHL rats versus adult sham rats. We found that rats with NVHL exhibit significant lower amplitude of the N40-AEP and a significant lower number of cells in bilateral regions of the temporal cerebral cortex compared to sham rats. Because the AEP recordings were obtained from anesthetized rats, we suggest that NVHL leads to inappropriate innervation in thalamic-cortical pathways in the adult rat, leading to altered function of cortical networks involved in processing of primary auditory information.
Collapse
Affiliation(s)
- A L Romero-Pimentel
- Centro de Investigación en Reproducción Animal (CIRA), Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, CP 90070, México; Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, Col. San Manuel, Puebla, Puebla, CP 72570, México
| | - R A Vázquez-Roque
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, Col. San Manuel, Puebla, Puebla, CP 72570, México
| | - I Camacho-Abrego
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, Col. San Manuel, Puebla, Puebla, CP 72570, México
| | - K L Hoffman
- Centro de Investigación en Reproducción Animal (CIRA), Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, CP 90070, México
| | - P Linares
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, Col. San Manuel, Puebla, Puebla, CP 72570, México
| | - G Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, Col. San Manuel, Puebla, Puebla, CP 72570, México.
| | - E Manjarrez
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, Col. San Manuel, Puebla, Puebla, CP 72570, México.
| |
Collapse
|
44
|
Truong DT, Che A, Rendall AR, Szalkowski CE, LoTurco JJ, Galaburda AM, Holly Fitch R. Mutation of Dcdc2 in mice leads to impairments in auditory processing and memory ability. GENES BRAIN AND BEHAVIOR 2014; 13:802-11. [PMID: 25130614 DOI: 10.1111/gbb.12170] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 07/14/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Abstract
Dyslexia is a complex neurodevelopmental disorder characterized by impaired reading ability despite normal intellect, and is associated with specific difficulties in phonological and rapid auditory processing (RAP), visual attention and working memory. Genetic variants in Doublecortin domain-containing protein 2 (DCDC2) have been associated with dyslexia, impairments in phonological processing and in short-term/working memory. The purpose of this study was to determine whether sensory and behavioral impairments can result directly from mutation of the Dcdc2 gene in mice. Several behavioral tasks, including a modified pre-pulse inhibition paradigm (to examine auditory processing), a 4/8 radial arm maze (to assess/dissociate working vs. reference memory) and rotarod (to examine sensorimotor ability and motor learning), were used to assess the effects of Dcdc2 mutation. Behavioral results revealed deficits in RAP, working memory and reference memory in Dcdc2(del2/del2) mice when compared with matched wild types. Current findings parallel clinical research linking genetic variants of DCDC2 with specific impairments of phonological processing and memory ability.
Collapse
Affiliation(s)
- D T Truong
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, Storrs, CT
| | | | | | | | | | | | | |
Collapse
|
45
|
Cabungcal JH, Counotte DS, Lewis E, Tejeda HA, Piantadosi P, Pollock C, Calhoon GG, Sullivan E, Presgraves E, Kil J, Hong LE, Cuenod M, Do KQ, O'Donnell P. Juvenile antioxidant treatment prevents adult deficits in a developmental model of schizophrenia. Neuron 2014; 83:1073-1084. [PMID: 25132466 DOI: 10.1016/j.neuron.2014.07.028] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
Abnormal development can lead to deficits in adult brain function, a trajectory likely underlying adolescent-onset psychiatric conditions such as schizophrenia. Developmental manipulations yielding adult deficits in rodents provide an opportunity to explore mechanisms involved in a delayed emergence of anomalies driven by developmental alterations. Here we assessed whether oxidative stress during presymptomatic stages causes adult anomalies in rats with a neonatal ventral hippocampal lesion, a developmental rodent model useful for schizophrenia research. Juvenile and adolescent treatment with the antioxidant N-acetyl cysteine prevented the reduction of prefrontal parvalbumin interneuron activity observed in this model, as well as electrophysiological and behavioral deficits relevant to schizophrenia. Adolescent treatment with the glutathione peroxidase mimic ebselen also reversed behavioral deficits in this animal model. These findings suggest that presymptomatic oxidative stress yields abnormal adult brain function in a developmentally compromised brain, and highlight redox modulation as a potential target for early intervention.
Collapse
Affiliation(s)
- Jan Harry Cabungcal
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Danielle S Counotte
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eastman Lewis
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hugo A Tejeda
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick Piantadosi
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cameron Pollock
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gwendolyn G Calhoon
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elyse Sullivan
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Echo Presgraves
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan Kil
- Sound Pharmaceuticals, Inc, Research and Development, Seattle, WA, USA
| | - L Elliot Hong
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Maryland Psychiatric Research Center, Baltimore, MD, USA
| | - Michel Cuenod
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Kim Q Do
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Patricio O'Donnell
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Transient inactivation of the ventral hippocampus in neonatal rats impairs the mesolimbic regulation of prefrontal glutamate release in adulthood. Neuropharmacology 2014; 84:19-30. [PMID: 24747179 DOI: 10.1016/j.neuropharm.2014.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/24/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022]
Abstract
Cognitive deficits in schizophrenia (SZ) reflect maturational disruptions within a neural system that includes the ventral hippocampus (VH), nucleus accumbens (NAc), basal forebrain, and prefrontal cortex (PFC). A better understanding of these changes may reveal drug targets for more efficacious cognition enhancers. We have utilized an animal model in which the above distributed system is altered, during a sensitive period of development, by transiently inactivating the VH and its efferent projections. We determined the ability of NAc shell activation to evoke prefrontal glutamate release in adult male Wistar rats that had received saline (Sal) or tetrodotoxin (TTX) as neonates (PD7) or as adolescents (PD32). The nucleus accumbens shell (NAcSh) was activated by NMDA infusions (0.05-0.30 μg/0.5 μL). Basal and evoked glutamate levels were measured amperometrically using a glutamate-sensitive microelectrode. There were no differences in basal glutamate levels among the groups tested (overall 1.41 ± 0.26 uM). However, the dose-related stimulation of prefrontal glutamate levels seen in control rats treated with saline on PD7 (4.31 ± 0.22 μM after 0.15 μg) was markedly attenuated in rats treated with TTX on PD7 (0.45 ± 0.12 μM after 0.15 μg). This effect was age-dependent as infusions of TTX on PD32 did not alter the NMDA-induced increases in glutamate release (4.10 ± 0.37 μM after 0.15 μg). Collectively, these findings reveal that transient inactivation of VH transmission, during a sensitive period of development, leads to a functional mesolimbic-cortical disconnection that produces neurochemical and ultimately cognitive impairments resembling those seen in SZ.
Collapse
|
47
|
Richetto J, Calabrese F, Riva MA, Meyer U. Prenatal immune activation induces maturation-dependent alterations in the prefrontal GABAergic transcriptome. Schizophr Bull 2014; 40:351-61. [PMID: 23328159 PMCID: PMC3932076 DOI: 10.1093/schbul/sbs195] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuronal dysfunctions in the cortical GABAergic system have been widely documented in neuropsychiatric disorders with prenatal infectious etiologies, including schizophrenia. At least some of these abnormalities may stem from transcriptional impairments in the GABAergic transcriptome. However, the extent to which prenatal exposure to immune challenge can induce long-term alterations in GABAergic gene transcription remains largely elusive. Here, we use an established mouse model of prenatal immune activation induced by maternal gestational administration of the viral mimetic poly(I:C) (= polyriboinosinic-polyribocytidilic acid) to demonstrate that prenatal immune activation causes maturation-dependent alterations in prefrontal GABAergic gene expression. The spectrum of abnormalities included altered mRNA expression levels of enzymes regulating γ-aminobutyric acid (GABA) biosynthesis (glutamic acid decarboxylase 65-kDa [GAD65] and GAD67), vesicular GABA transporter (VGAT), alpha-subunits of the GABA(A) receptor (α2, α3, α4, and α5), and the chloride transporters sodium-potassium-chloride cotransporter 1 and potassium-chloride cotransporter 2. Additional western blot analyses confirmed the deficits in prefrontal GAD65/GAD67 and VGAT expression at the protein level. Intriguingly, the prefrontal GABAergic transcriptome was found to be more strongly affected in adult compared with peripubertal offspring born to immune-challenged mothers, and these age-dependent changes in GABAergic gene expression were paralleled by an adult onset of working memory deficiency. Collectively, our data emphasize a critical impact of prenatal immune-related insults on long-term GABAergic changes relevant to neuropsychiatric disorders with prenatal infectious etiologies, especially for those with delayed onset in early adulthood.
Collapse
Affiliation(s)
- Juliet Richetto
- *To whom correspondence should be addressed; tel: +41 44 655 7403, fax: +41 44 655 7203, e-mail:
| | - Francesca Calabrese
- Center of Neuropharmacology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marco A. Riva
- Center of Neuropharmacology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy;,Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy;,These authors contributed equally to the present study
| | - Urs Meyer
- Physiology and Behavior Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland,These authors contributed equally to the present study.,*To whom correspondence should be addressed; tel: +41 44 655 7403, fax: +41 44 655 7203, e-mail:
| |
Collapse
|
48
|
Flores G, Atzori M. The Potential of Cerebrolysin in the Treatment of Schizophrenia. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/pp.2014.57079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Imanishi S, Okura M, Zaha H, Yamamoto T, Akanuma H, Nagano R, Shiraishi H, Fujimaki H, Sone H. Prenatal exposure to permethrin influences vascular development of fetal brain and adult behavior in mice offspring. ENVIRONMENTAL TOXICOLOGY 2013; 28:617-629. [PMID: 24150868 DOI: 10.1002/tox.20758] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/17/2011] [Accepted: 06/25/2011] [Indexed: 06/02/2023]
Abstract
Pyrethroids are one of the most widely used classes of insecticides and show neurotoxic effects that induce oxidative stress in the neonatal rat brain. However, little is still known about effects of prenatal exposure to permethrin on vascular development in fetal brain, central nervous system development, and adult offspring behaviors. In this study, the effects of prenatal exposure to permethrin on the development of cerebral arteries in fetal brains, neurotransmitter in neonatal brains, and locomotor activities in offspring mice were investigated. Permethrin (0, 2, 10, 50, and 75 mg/kg) was orally administered to pregnant females once on gestation day 10.5. The brains of permethrin-treated fetuses showed altered vascular formation involving shortened lengths of vessels, an increased number of small branches, and, in some cases, insufficient fusion of the anterior communicating arteries in the area of circle of Willis. The prenatal exposure to permethrin altered neocortical and hippocampus thickness in the mid brain and significantly increased norepinephrine and dopamine levels at postnatal day 7 mice. For spontaneous behavior, the standing ability test using a viewing jar and open-field tests showed significant decrease of the standing ability and locomotor activity in male mice at 8 or 12 weeks of age, respectively. The results suggest that prenatal exposure to permethrin may affect insufficient development of the brain through alterations of vascular development.
Collapse
Affiliation(s)
- Satoshi Imanishi
- Health Risk Research Section, Center for Environmental Risk Research, National Institute for Environmental Studies 16-2, Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Impairments in set-shifting but not reversal learning in the neonatal ventral hippocampal lesion model of schizophrenia: Further evidence for medial prefrontal deficits. Behav Brain Res 2013; 256:405-13. [DOI: 10.1016/j.bbr.2013.08.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 01/16/2023]
|