1
|
Konecny L, Quadir R, Ninan A, Rodríguez-Contreras A. Neurovascular responses to neuronal activity during sensory development. Front Cell Neurosci 2022; 16:1025429. [DOI: 10.3389/fncel.2022.1025429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the development of intercellular communication in sensory regions is relevant to elucidate mechanisms of physiological and pathological responses to oxygen shortage in the newborn brain. Decades of studies in laboratory rodents show that neuronal activity impacts sensory maturation during two periods of postnatal development distinguished by the maturation of accessory structures at the sensory periphery. During the first of these developmental periods, angiogenesis is modulated by neuronal activity, and physiological levels of neuronal activity cause local tissue hypoxic events. This correlation suggests that neuronal activity is upstream of the production of angiogenic factors, a process that is mediated by intermittent hypoxia caused by neuronal oxygen consumption. In this perspective article we address three theoretical implications based on this hypothesis: first, that spontaneous activity of sensory neurons has properties that favor the generation of intermittent tissue hypoxia in neonate rodents; second, that intermittent hypoxia promotes the expression of hypoxia inducible transcription factors (HIFs) in sensory neurons and astrocytes; and third, that activity-dependent production of angiogenic factors is involved in pathological oxygen contexts.
Collapse
|
2
|
Chang D, Brown Q, Tsui G, He Y, Liu J, Shi L, Rodríguez-Contreras A. Distinct Cellular Profiles of Hif1a and Vegf mRNA Localization in Microglia, Astrocytes and Neurons during a Period of Vascular Maturation in the Auditory Brainstem of Neonate Rats. Brain Sci 2021; 11:brainsci11070944. [PMID: 34356178 PMCID: PMC8304335 DOI: 10.3390/brainsci11070944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 01/09/2023] Open
Abstract
Defining the relationship between vascular development and the expression of hypoxia-inducible factors (Hifs) and vascular endothelial growth factor (Vegf) in the auditory brainstem is important to understand how tissue hypoxia caused by oxygen shortage contributes to sensory deficits in neonates. In this study, we used histology, molecular labeling, confocal microscopy and 3D image processing methods to test the hypothesis that significant maturation of the vascular bed in the medial nucleus of the trapezoid body (MNTB) occurs during the postnatal period that precedes hearing onset. Isolectin-B4 histochemistry experiments suggested that the MNTB vasculature becomes more elaborate between P5 and P10. When combined with a cell proliferation marker and immunohistochemistry, we found that vascular growth coincides with a switch in the localization of proliferating cells to perivascular locations, and an increase in the density of microglia within the MNTB. Furthermore, microglia were identified as perivascular cells with proliferative activity during the period of vascular maturation. Lastly, combined in situ hybridization and immunohistochemistry experiments showed distinct profiles of Hif1a and Vegf mRNA localization in microglia, astrocytes and MNTB principal neurons. These results suggest that different cells of the neuro-glio-vascular unit are likely targets of hypoxic insult in the auditory brainstem of neonate rats.
Collapse
Affiliation(s)
- Daphne Chang
- Center for Discovery and Innovation, Department of Biology, Institute for Ultrafast Spectroscopy and Lasers, City University of New York, City College, New York, NY 10031, USA; (D.C.); (Q.B.); (G.T.)
| | - Quetanya Brown
- Center for Discovery and Innovation, Department of Biology, Institute for Ultrafast Spectroscopy and Lasers, City University of New York, City College, New York, NY 10031, USA; (D.C.); (Q.B.); (G.T.)
| | - Grace Tsui
- Center for Discovery and Innovation, Department of Biology, Institute for Ultrafast Spectroscopy and Lasers, City University of New York, City College, New York, NY 10031, USA; (D.C.); (Q.B.); (G.T.)
| | - Ye He
- Neuroscience Initiative, Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY 10031, USA; (Y.H.); (J.L.)
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY 10031, USA; (Y.H.); (J.L.)
| | - Lingyan Shi
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Correspondence: (L.S.); (A.R.-C.)
| | - Adrián Rodríguez-Contreras
- Center for Discovery and Innovation, Department of Biology, Institute for Ultrafast Spectroscopy and Lasers, City University of New York, City College, New York, NY 10031, USA; (D.C.); (Q.B.); (G.T.)
- Correspondence: (L.S.); (A.R.-C.)
| |
Collapse
|
3
|
Bryant JP, Chandrashekhar V, Cappadona AJ, Lookian PP, Chandrashekhar V, Donahue DR, Munasinghe JB, Kim HJ, Vortmeyer AO, Heiss JD, Zhuang Z, Rosenblum JS. Multimodal Atlas of the Murine Inner Ear: From Embryo to Adult. Front Neurol 2021; 12:699674. [PMID: 34335453 PMCID: PMC8319626 DOI: 10.3389/fneur.2021.699674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/22/2021] [Indexed: 12/02/2022] Open
Abstract
The inner ear is a complex organ housed within the petrous bone of the skull. Its intimate relationship with the brain enables the transmission of auditory and vestibular signals via cranial nerves. Development of this structure from neural crest begins in utero and continues into early adulthood. However, the anatomy of the murine inner ear has only been well-characterized from early embryogenesis to post-natal day 6. Inner ear and skull base development continue into the post-natal period in mice and early adulthood in humans. Traditional methods used to evaluate the inner ear in animal models, such as histologic sectioning or paint-fill and corrosion, cannot visualize this complex anatomy in situ. Further, as the petrous bone ossifies in the postnatal period, these traditional techniques become increasingly difficult. Advances in modern imaging, including high resolution Micro-CT and MRI, now allow for 3D visualization of the in situ anatomy of organs such as the inner ear. Here, we present a longitudinal atlas of the murine inner ear using high resolution ex vivo Micro-CT and MRI.
Collapse
Affiliation(s)
- Jean-Paul Bryant
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Vikram Chandrashekhar
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.,Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States
| | - Anthony J Cappadona
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Pashayar P Lookian
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.,Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Danielle R Donahue
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Jeeva B Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - H Jeffrey Kim
- Department of Otolaryngology, Georgetown University School of Medicine, Washington, DC, United States.,Office of Clinical Director, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, United States
| | - Alexander O Vortmeyer
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - John D Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jared S Rosenblum
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.,Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Qiu J, Singh P, Pan G, de Paolis A, Champagne FA, Liu J, Cardoso L, Rodríguez-Contreras A. Defining the relationship between maternal care behavior and sensory development in Wistar rats: Auditory periphery development, eye opening and brain gene expression. PLoS One 2020; 15:e0237933. [PMID: 32822407 PMCID: PMC7442246 DOI: 10.1371/journal.pone.0237933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Defining the relationship between maternal care, sensory development and brain gene expression in neonates is important to understand the impact of environmental challenges during sensitive periods in early life. In this study, we used a selection approach to test the hypothesis that variation in maternal licking and grooming (LG) during the first week of life influences sensory development in Wistar rat pups. We tracked the onset of the auditory brainstem response (ABR), the timing of eye opening (EO), middle ear development with micro-CT X-ray tomography, and used qRT-PCR to monitor changes in gene expression of the hypoxia-sensitive pathway and neurotrophin signaling in pups reared by low-LG or high-LG dams. The results show the first evidence that the transcription of genes involved in the hypoxia-sensitive pathway and neurotrophin signaling is regulated during separate sensitive periods that occur before and after hearing onset, respectively. Although the timing of ABR onset, EO, and the relative mRNA levels of genes involved in the hypoxia-sensitive pathway did not differ between pups from different LG groups, we found statistically significant increases in the relative mRNA levels of four genes involved in neurotrophin signaling in auditory brain regions from pups of different LG backgrounds. These results suggest that sensitivity to hypoxic challenge might be widespread in the auditory system of neonate rats before hearing onset, and that maternal LG may affect the transcription of genes involved in experience-dependent neuroplasticity.
Collapse
Affiliation(s)
- Jingyun Qiu
- Department of Biology and Center for Discovery and Innovation, City College, City University of New York, New York, New York, United States of America
| | - Preethi Singh
- Department of Biology and Center for Discovery and Innovation, City College, City University of New York, New York, New York, United States of America
| | - Geng Pan
- Department of Biology and Center for Discovery and Innovation, City College, City University of New York, New York, New York, United States of America
| | - Annalisa de Paolis
- Department of Biomedical Engineering, City College, City University of New York, New York, New York, United States of America
| | - Frances A. Champagne
- Department of Psychology, University of Texas at Austin, Austin, Texas, United States of America
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center at the Graduate Center, City University of New York, New York, New York, United States of America
| | - Luis Cardoso
- Department of Biomedical Engineering, City College, City University of New York, New York, New York, United States of America
| | - Adrián Rodríguez-Contreras
- Department of Biology and Center for Discovery and Innovation, City College, City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Opendak M, Theisen E, Blomkvist A, Hollis K, Lind T, Sarro E, Lundström JN, Tottenham N, Dozier M, Wilson DA, Sullivan RM. Adverse caregiving in infancy blunts neural processing of the mother. Nat Commun 2020; 11:1119. [PMID: 32111822 PMCID: PMC7048726 DOI: 10.1038/s41467-020-14801-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
The roots of psychopathology frequently take shape during infancy in the context of parent-infant interactions and adversity. Yet, neurobiological mechanisms linking these processes during infancy remain elusive. Here, using responses to attachment figures among infants who experienced adversity as a benchmark, we assessed rat pup cortical local field potentials (LFPs) and behaviors exposed to adversity in response to maternal rough and nurturing handling by examining its impact on pup separation-reunion with the mother. We show that during adversity, pup cortical LFP dynamic range decreased during nurturing maternal behaviors, but was minimally impacted by rough handling. During reunion, adversity-experiencing pups showed aberrant interactions with mother and blunted cortical LFP. Blocking pup stress hormone during either adversity or reunion restored typical behavior, LFP power, and cross-frequency coupling. This translational approach suggests adversity-rearing produces a stress-induced aberrant neurobehavioral processing of the mother, which can be used as an early biomarker of later-life pathology.
Collapse
Affiliation(s)
- Maya Opendak
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, 10016, USA. .,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.
| | - Emma Theisen
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Anna Blomkvist
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, 10016, USA.,Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Kaitlin Hollis
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, 10016, USA
| | - Teresa Lind
- Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA.,Department of Psychiatry, UCSD, San Diego, CA, USA.,Child and Adolescent Services Research Center (CASRC), San Diego, CA, USA
| | - Emma Sarro
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, 10016, USA.,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.,Dominican College, Orangeburg, NY, 10962, USA
| | - Johan N Lundström
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Nim Tottenham
- Department of Psychology, Columbia University, New York, NY, USA
| | - Mary Dozier
- Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Donald A Wilson
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, 10016, USA.,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.,Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Regina M Sullivan
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, 10016, USA. .,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA. .,Center for Neural Science, New York University, New York, NY, 10003, USA.
| |
Collapse
|
6
|
Targeted sensory enrichment interventions protect against behavioral and neuroendocrine consequences of early life stress. Psychoneuroendocrinology 2018; 98:74-85. [PMID: 30121011 DOI: 10.1016/j.psyneuen.2018.07.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/20/2018] [Accepted: 07/29/2018] [Indexed: 12/16/2022]
Abstract
Both basic and clinical research support the use of tactile stimulation to rescue several neurobiobehavioral consequences that follow early life stress. Here, using a translational rodent model of the neonatal intensive care unit (NICU), we tested the individual prophylactic potential of a variety of sensory interventions including tactile (brushing pups with a paint brush to mimic maternal licking), auditory (a simulated lactating rat dam heart beat), and olfactory (a series of aroma therapy scents) stimulation. The NICU model was developed to mimic not only the reduced parental contact that sick infants receive (by isolating rat pups from their litters), but also the nosocomial infections and medical manipulations associated with this experience (by utilizing a dual lipopolysaccharide injection schedule). Each of the neurobiobehavioral consequences observed were dissociable between isolation and inflammation, or required a combined presentation ('two hits') of the neonatal stressors. Sprague-Dawley rats exposed to these early life stressors presented with sex-specific disruptions in both separation-induced ultrasonic vocalization (USV) distress calls (males & females) and juvenile social play USVs (males only). All three sensory enhancement interventions were associated with the rescue of potentiated distress calls while olfactory stimulation was protective of social vocalizations. Female rats exposed to early life stress experienced precocious puberty and shifts in the hypothalamic GnRh axis; sensory enrichment counter-acted the advanced pubertal onset. Animals that underwent the NICU protocol also displayed maturational acceleration in terms of the loss of the rooting reflex in addition to hyperalgesia, a reduced preference for a novel conspecific, blunted basal plasma corticosterone and reduced hippocampal glucocorticoid receptor expression. These alterations closely simulated the clinical effects of early life adversity in terms of disruptions in the hypothalamic pituitary "stress" axis, social communication and engagement, tactile system processing, and accelerated maturation. Moreover, sensory enrichment attenuated many of these behavioral and neurophysiological alterations, and even slowed maturation. Overall, this supports the translatability of our novel rodent model and its potential utility in understanding how brain maturation and quality of early life experiences may interact to shape the integrity of stress and sensory system development. Future work must determine the appropriate modalities and parameters (e.g. patterning, timing) for effective sensory enrichment interventions.
Collapse
|
7
|
Shi L, Sordillo LA, Rodríguez-Contreras A, Alfano R. Transmission in near-infrared optical windows for deep brain imaging. JOURNAL OF BIOPHOTONICS 2016; 9:38-43. [PMID: 26556561 PMCID: PMC4827444 DOI: 10.1002/jbio.201500192] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/14/2015] [Accepted: 10/21/2015] [Indexed: 05/02/2023]
Abstract
Near-infrared (NIR) radiation has been employed using one- and two-photon excitation of fluorescence imaging at wavelengths 650-950 nm (optical window I) for deep brain imaging; however, longer wavelengths in NIR have been overlooked due to a lack of suitable NIR-low band gap semiconductor imaging detectors and/or femtosecond laser sources. This research introduces three new optical windows in NIR and demonstrates their potential for deep brain tissue imaging. The transmittances are measured in rat brain tissue in the second (II, 1,100-1,350 nm), third (III, 1,600-1,870 nm), and fourth (IV, centered at 2,200 nm) NIR optical tissue windows. The relationship between transmission and tissue thickness is measured and compared with the theory. Due to a reduction in scattering and minimal absorption, window III is shown to be the best for deep brain imaging, and windows II and IV show similar but better potential for deep imaging than window I.
Collapse
Affiliation(s)
- Lingyan Shi
- Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, the City College of the City University of New York, 160 Convent Avenue, New York, NY 10031, USA.
- Department of Biology, the City College of the City University of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - Laura A Sordillo
- Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, the City College of the City University of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Adrián Rodríguez-Contreras
- Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, the City College of the City University of New York, 160 Convent Avenue, New York, NY 10031, USA
- Department of Biology, the City College of the City University of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Robert Alfano
- Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, the City College of the City University of New York, 160 Convent Avenue, New York, NY 10031, USA
| |
Collapse
|
8
|
Kazdoba TM, Leach PT, Yang M, Silverman JL, Solomon M, Crawley JN. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics. Curr Top Behav Neurosci 2016; 28:1-52. [PMID: 27305922 PMCID: PMC5116923 DOI: 10.1007/7854_2015_5003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal models provide preclinical tools to investigate the causal role of genetic mutations and environmental factors in the etiology of autism spectrum disorder (ASD). Knockout and humanized knock-in mice, and more recently knockout rats, have been generated for many of the de novo single gene mutations and copy number variants (CNVs) detected in ASD and comorbid neurodevelopmental disorders. Mouse models incorporating genetic and environmental manipulations have been employed for preclinical testing of hypothesis-driven pharmacological targets, to begin to develop treatments for the diagnostic and associated symptoms of autism. In this review, we summarize rodent behavioral assays relevant to the core features of autism, preclinical and clinical evaluations of pharmacological interventions, and strategies to improve the translational value of rodent models of autism.
Collapse
Affiliation(s)
- Tatiana M Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Prescott T Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Mu Yang
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Jill L Silverman
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Marjorie Solomon
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA.
| |
Collapse
|
9
|
Shi L, Shumyatsky P, Rodríguez-Contreras A, Alfano R. Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:15014. [PMID: 26818714 PMCID: PMC4728211 DOI: 10.1117/1.jbo.21.1.015014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 01/04/2016] [Indexed: 05/20/2023]
Abstract
The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer’s disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional–vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.
Collapse
Affiliation(s)
- Lingyan Shi
- The City College of New York, Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, 160 Convent Avenue, New York, New York 10031, United States
- The City College of New York, Department of Biology, 160 Convent Avenue, New York, New York 10031, United States
- Address all correspondence to: Lingyan Shi, E-mail:
| | - Pavel Shumyatsky
- The City College of New York, Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, 160 Convent Avenue, New York, New York 10031, United States
| | - Adrián Rodríguez-Contreras
- The City College of New York, Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, 160 Convent Avenue, New York, New York 10031, United States
- The City College of New York, Department of Biology, 160 Convent Avenue, New York, New York 10031, United States
| | - Robert Alfano
- The City College of New York, Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, 160 Convent Avenue, New York, New York 10031, United States
| |
Collapse
|
10
|
Hackett TA, Clause AR, Takahata T, Hackett NJ, Polley DB. Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing. Brain Struct Funct 2015; 221:2619-73. [PMID: 26159773 DOI: 10.1007/s00429-015-1062-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/07/2015] [Indexed: 02/04/2023]
Abstract
Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11-P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1 (+) and VGluT2 (+) transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT (+) transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, perisomatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to-and to some extent may enable-the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA.
| | - Amanda R Clause
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Toru Takahata
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA
| | | | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|