1
|
Gallego-Molina NJ, Ortiz A, Martínez-Murcia FJ, Woo WL. Multimodal Integration of EEG and Near-Infrared Spectroscopy for Robust Cross-Frequency Coupling Estimation. Int J Neural Syst 2025; 35:2550028. [PMID: 40260632 DOI: 10.1142/s0129065725500285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Neuroimaging techniques have had a major impact on medical science, allowing advances in the research of many neurological diseases and improving their diagnosis. In this context, multimodal neuroimaging approaches, based on the neurovascular coupling phenomenon, exploit their individual strengths to provide complementary information on the neural activity of the brain cortex. This work proposes a novel method for combining electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) to explore the functional activity of the brain processes related to low-level language processing of skilled and dyslexic seven-year-old readers. We have transformed EEG signals into image sequences considering the interaction between different frequency bands by means of cross-frequency coupling (CFC), and applied an activation mask sequence obtained from the local functional brain activity inferred from simultaneously recorded fNIRS signals. Thus, the resulting image sequences preserve spatial and temporal information of the communication and interaction between different neural processes and provide discriminative information that allows differentiation between controls and dyslexic subjects with an AUC of 77.1%. Finally, explainability is improved by introducing an easily comprehensible representation of the SHAP values obtained for the classification method in the brainSHAP maps.
Collapse
Affiliation(s)
- Nicolás J Gallego-Molina
- Department of Communications Engineering, Escuela Técnica Superior Ingeniería de Telecomunicación, University of Malaga Campus de Teatinos s/n, Málaga 29071, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), Granada, Spain
| | - Andrés Ortiz
- Department of Communications Engineering, Escuela Técnica Superior Ingeniería de Telecomunicación, University of Malaga Campus de Teatinos s/n, Málaga 29071, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), Granada, Spain
| | - Francisco J Martínez-Murcia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), Granada, Spain
- Department of Signal Theory, Networking and Communications, University of Granada, Granada 18010, Spain
- Research Institute in Information and Communications Technology (CITIC-UGR), Granada, Spain
| | - Wai Lok Woo
- Department of Computer and Information Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| |
Collapse
|
2
|
Duquette-Laplante F, Belleau-Matte A, Jemel B, Jutras B, Koravand A. The impact of noise on auditory processing in children and adults: A time-frequency analysis perspective. Brain Res 2025; 1856:149589. [PMID: 40120707 DOI: 10.1016/j.brainres.2025.149589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/17/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
OBJECTIVE The current study investigated the impact of listening conditions on cortical oscillatory activities in adults and children. EXPERIMENTAL PROCEDURE Fifteen adults and 15 children participated in this study. Electrophysiological measures were recorded with 64 electrodes. Stimulation was presented binaurally with parameters modulation: stimuli, listening conditions, noise and SNR. Intertrial phase clustering (ITPC) and power values were computed using spatially filtered data and complex Morlet wavelets. Data were statistically analyzed with mixed factorial ANOVAs. RESULTS In quiet, children exhibited stronger theta-alpha (ta-) ITPC than adults, especially for verbal stimuli, in bilateral temporal regions, while adults showed no regional differences. Beta-gamma (bg-) ITPC responses revealed that tonal stimuli only elicited stronger right temporal responses in children. Theta-alpha power was greater for tonal stimuli in children, while adults showed stronger right temporal responses. In noise, ta-ITPC reductions were more pronounced in children, especially in babble noise. In white noise, unlike babble noise, there was a systematic reduction of the ta-ITPC values as a function of the SNR level. The bg-ITPC responses were also weaker at lower than higher SNRs. Ta-Power was lower for tonal than verbal stimuli at the right electrode, with greater reductions in babble than in white noise. Bg-Power differences were observed only at the central electrode, where adults showed smaller reductions than children. DISCUSSION Results indicated that phase and power measures are sensitive to parameter modulation and could be used to understand auditory processing in noise, as they revealed increased susceptibility to noise in children compared to adults.
Collapse
Affiliation(s)
- Fauve Duquette-Laplante
- Audiology and Speech Pathology Program, School of Rehabilitation Sciences, University of Ottawa, Health Sciences Building (FHS), 200 Lees Avenue, Room 261, Ottawa, Ontario K1N 6N5, Canada; School of Speech-Language Pathology and Audiology, Université de Montréal, c.p. 6128, succ. Centre-ville, Montréal H3C 3J7, Canada; Azrieli Research Center, CHU Sainte-Justine, 3175, Côte Sainte-Catherine, Montréal, Québec H3T 1C5, Canada.
| | - Aurélie Belleau-Matte
- School of Speech-Language Pathology and Audiology, Université de Montréal, c.p. 6128, succ. Centre-ville, Montréal H3C 3J7, Canada; Azrieli Research Center, CHU Sainte-Justine, 3175, Côte Sainte-Catherine, Montréal, Québec H3T 1C5, Canada
| | - Boutheina Jemel
- School of Speech-Language Pathology and Audiology, Université de Montréal, c.p. 6128, succ. Centre-ville, Montréal H3C 3J7, Canada; Research Laboratory in Neurosciences and Cognitive Electrophysiology, Research Center CIUSS-NIM, Hôpital Rivière des Prairies, 7070 Boul. Perras, Montréal, Québec H1E 1A4, Canada
| | - Benoît Jutras
- School of Speech-Language Pathology and Audiology, Université de Montréal, c.p. 6128, succ. Centre-ville, Montréal H3C 3J7, Canada; Azrieli Research Center, CHU Sainte-Justine, 3175, Côte Sainte-Catherine, Montréal, Québec H3T 1C5, Canada
| | - Amineh Koravand
- Audiology and Speech Pathology Program, School of Rehabilitation Sciences, University of Ottawa, Health Sciences Building (FHS), 200 Lees Avenue, Room 261, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
3
|
Zarei AA, Frederiksen CR, Jensen MB, Oliveira AS. The electrocortical activity of elite Rubik's cube athletes while solving the cube. Exp Brain Res 2025; 243:155. [PMID: 40418363 DOI: 10.1007/s00221-025-07104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 05/06/2025] [Indexed: 05/27/2025]
Abstract
Solving the Rubik's Cube (RC) swiftly demands intricate cognitive abilities to generate strategic and precise movements, and the electrocortical demands in high-level RC athletes have not been explored. Therefore, we aimed at examining the electrocortical activity associated with planning and executing the RC, alongside tasks assessing planning, fine motor skills, spatial working memory, and visuospatial ability. Thirteen experienced male speed-cubers underwent EEG recordings while performing RC-related tasks (planning and execution), Tower of London (TOL), Judgment of Line Angle and Position-15 (JLAP), Memory Match (MEM), and Fine Motor Skills (FMS). Our results demonstrated that speed-cubers presented similar EEG power spectrum when planning and executing the RC across all frequency bands (p > 0.05). Pearson's correlation demonstrated that Delta-band EEG power spectrum in the occipital lobe exhibited a significant association with RC execution (r = 0.71, p = 0.009), underscoring the importance of visuomotor integration. Similarly, JLAP performance correlated significantly with frontal (r=-0.65, p = 0.022) and occipital EEG power spectrum (r=-0.57, p = 0.048) at the Delta-band, emphasizing the role of visuospatial abilities. Moreover, TOL performance correlated significantly with temporal EEG power spectrum at the Delta- (r=-0.64, p = 0.025) and Theta-band (r = 0.67, p = 0.011), highlighting the role of planning abilities while solving the RC. In conclusion, this study sheds light on the complex neural mechanisms underlying speed-cubing, revealing intricate neural signatures across multiple brain regions associated with RC-related tasks and isolated cognitive activities. Understanding these neurocognitive underpinnings could pave the way for enhanced training protocols in tasks demanding high-level cognitive and motor skills.
Collapse
Affiliation(s)
- Ali Asghar Zarei
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | | | - Anderson Souza Oliveira
- Department of Material and Production, Aalborg University, Fibigerstraede 16, building 4, Aalborg Øst, DK-9220, Denmark.
| |
Collapse
|
4
|
Volkmann P, Geiger AEI, Hühne-Landgraf A, Miljanovic N, Bly J, Engl T, Potschka H, Rossner MJ, Landgraf D. Integrity of the circadian clock determines regularity of high-frequency and diurnal LFP rhythms within and between brain areas. Mol Psychiatry 2025; 30:1859-1875. [PMID: 39472662 PMCID: PMC12015176 DOI: 10.1038/s41380-024-02795-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 04/24/2025]
Abstract
Circadian clocks control most physiological processes of many species. We specifically wanted to investigate the influence of environmental and endogenous rhythms and their interplay on electrophysiological dynamics of neuronal populations. Therefore, we measured local field potential (LFP) time series in wild-type and Cryptochrome 1 and 2 deficient (Cry1/2-/-) mice in the suprachiasmatic nucleus and the nucleus accumbens under regular light conditions and constant darkness. Using refined descriptive and statistical analyses, we systematically profiled LFP time series activity. We show that both environmental and endogenous rhythms strongly influence the rhythmicity of LFP signals and their frequency components, but also shape neuronal patterns on much smaller time scales, as neuronal activity in Cry1/2-/- mice is significantly less regular but at each time more synchronous within and between brain areas than in wild-type mice. These results show that functional circadian rhythms are integral for both circadian and non-circadian coordination of neuronal ensemble dynamics.
Collapse
Affiliation(s)
- Paul Volkmann
- Circadian Biology Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, 80336, Munich, Germany.
- Molecular Neurobiology Group, Department of Psychiatry and Psychotherapy, LMU University Hospital, 80336, Munich, Germany.
- Centre for Neural Circuits and Behaviour, University of Oxford, OX1 3SR, Oxford, UK.
| | - Annika E I Geiger
- Circadian Biology Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, 80336, Munich, Germany
| | - Anisja Hühne-Landgraf
- Circadian Biology Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, 80336, Munich, Germany
| | - Nina Miljanovic
- Institute of Pharmacology, Toxicology, and Pharmacy, LMU, 80539, Munich, Germany
| | - Jessica Bly
- Molecular Neurobiology Group, Department of Psychiatry and Psychotherapy, LMU University Hospital, 80336, Munich, Germany
| | - Tobias Engl
- Circadian Biology Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, 80336, Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, LMU, 80539, Munich, Germany
| | - Moritz J Rossner
- Molecular Neurobiology Group, Department of Psychiatry and Psychotherapy, LMU University Hospital, 80336, Munich, Germany
- Systasy Bioscience GmbH, 81669, Munich, Germany
| | - Dominic Landgraf
- Circadian Biology Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, 80336, Munich, Germany
| |
Collapse
|
5
|
Cainelli E, Stramucci G, Bisiacchi P. A light in the darkness: Early phases of development and the emergence of cognition. Dev Cogn Neurosci 2025; 72:101527. [PMID: 39933251 PMCID: PMC11869870 DOI: 10.1016/j.dcn.2025.101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 01/18/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
During the prenatal period, the major brain development milestones are posed and calibrated through different mechanisms, among which endogenous activity, that prepares the "system" to face the external environment. However, the specific nature of the human nervous system, intended for brain plasticity that is varied by brain area and prolonged over time, requires much time for environmental experiences to shape the cerebral circuitries. Therefore, the neonate completely depends on the caregiver, and during the first months of postnatal life, it exhibits a transitory and limited repertoire of behaviors and skills that favors the mother in her new role. This transitory condition will gradually give way to more mature competencies, the milestones of which are posed within 2 years of age. This review takes a new perspective on early development and attempts to trace the remarkable changes from in-utero period to the second year of postnatal life, posing a bridge between the neurobiological substrate and behavioral development. We based our work on the "normal" development, pointing out the risks inherent in any development process.
Collapse
Affiliation(s)
- Elisa Cainelli
- Department of General Psychology, University of Padova, Padova 35131, Italy.
| | - Giulia Stramucci
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy; School of Advanced Studies, Center of Neuroscience, University of Camerino, Camerino, MC, Italy; Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, Camerino, MC, Italy.
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padova, Padova 35131, Italy; Padova Neuroscience Center, PNC, Padova 35131, Italy.
| |
Collapse
|
6
|
Grabot L, Merholz G, Winawer J, Heeger DJ, Dugué L. Traveling waves in the human visual cortex: An MEG-EEG model-based approach. PLoS Comput Biol 2025; 21:e1013007. [PMID: 40245091 PMCID: PMC12037073 DOI: 10.1371/journal.pcbi.1013007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 04/28/2025] [Accepted: 03/27/2025] [Indexed: 04/19/2025] Open
Abstract
Brain oscillations might be traveling waves propagating in cortex. Studying their propagation within single cortical areas has mostly been restricted to invasive measurements. Their investigation in healthy humans, however, requires non-invasive recordings, such as MEG or EEG. Identifying traveling waves with these techniques is challenging because source summation, volume conduction, and low signal-to-noise ratios make it difficult to localize cortical activity from sensor responses. The difficulty is compounded by the lack of a known ground truth in traveling wave experiments. Rather than source-localizing cortical responses from sensor activity, we developed a two-part model-based neuroimaging approach: (1) The putative neural sources of a propagating oscillation were modeled within primary visual cortex (V1) via retinotopic mapping from functional MRI recordings (encoding model); and (2) the modeled sources were projected onto MEG and EEG sensors to predict the resulting signal using a biophysical head model. We tested our model by comparing its predictions against the MEG-EEG signal obtained when participants viewed visual stimuli designed to elicit either fovea-to-periphery or periphery-to-fovea traveling waves or standing waves in V1, in which ground truth cortical waves could be reasonably assumed. Correlations on within-sensor phase and amplitude relations between predicted and measured data revealed good model performance. Crucially, the model predicted sensor data more accurately when the input to the model was a traveling wave going in the stimulus direction compared to when the input was a standing wave, or a traveling wave in a different direction. Furthermore, model accuracy peaked at the spatial and temporal frequency parameters of the visual stimulation. Together, our model successfully recovers traveling wave properties in cortex when they are induced by traveling waves in stimuli. This provides a sound basis for using MEG-EEG to study endogenous traveling waves in cortex and test hypotheses related with their role in cognition.
Collapse
Affiliation(s)
- Laetitia Grabot
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
- Laboratoire des Systèmes Perceptifs, Département d’études Cognitives, École normale supérieure, PSL University, CNRS, Paris, France
| | - Garance Merholz
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, New York, United States of America
- Center for Neural Science, New York University, New York, New York, United States of America
| | - David J. Heeger
- Department of Psychology, New York University, New York, New York, United States of America
- Center for Neural Science, New York University, New York, New York, United States of America
| | - Laura Dugué
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
7
|
Suzuki S, Grabowecky M, Menceloglu M. Characteristics of spontaneous anterior-posterior oscillation-frequency convergences in the alpha band. eNeuro 2025; 12:ENEURO.0033-24.2025. [PMID: 40068877 PMCID: PMC11949649 DOI: 10.1523/eneuro.0033-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/17/2025] [Accepted: 02/19/2025] [Indexed: 03/30/2025] Open
Abstract
Anterior-posterior interactions in the alpha band (8-12 Hz) have been implicated in a variety of functions including perception, attention, and working memory. The underlying neural communication can be flexibly controlled by adjusting phase relations when activities across anterior-posterior regions oscillate at a matched frequency. We thus investigated how alpha oscillation frequencies spontaneously converged along anterior-posterior regions by tracking oscillatory EEG activity while participants rested. As more anterior-posterior regions (scalp sites) frequency-converged, the probability of additional regions joining the frequency convergence increased, and so did oscillatory synchronization at participating regions (measured as oscillatory power), suggesting that anterior-posterior frequency convergences are driven by inter-regional entrainment. Notably, frequency convergences were accompanied by two types of approximately linear phase gradients, one progressively phase-lagged in the anterior direction-the posterior-to-anterior (P-A) gradient-and the other progressively phase-lagged in the posterior direction-the anterior-to-posterior (A-P) gradient. These gradients implied traveling waves propagating in the feedforward and feedback directions, respectively. Interestingly, while in natural viewing frequency convergences were accompanied by both gradient types (occurring at different frequencies) regardless of anterior-posterior routes, when the eyes were closed, the P-A and A-P gradients spatially segregated, channeling feedforward flows of information primarily through the midline and feedback flows primarily through each hemisphere. Future research may investigate how eye closure organizes information flows in this way and how it influences hierarchical information processing. Future research may also investigate the functional roles of frequency-convergence contingent traveling waves in contrast to those generated by other mechanisms.Significance Statement Anterior-posterior interactions in the alpha band (8-12 Hz) have been implicated in a variety of functions including perception, attention, and working memory. While alpha frequencies differ across anterior-posterior regions, they also dynamically converge while people rest. Our EEG study investigated the mechanisms and functions of spontaneous alpha-frequency convergences. Our results suggest that anterior-posterior frequency convergences are driven by inter-regional entrainment. Notably, frequency convergences were accompanied by approximately linear posterior-to-anterior and anterior-to-posterior phase gradients, likely facilitating feedforward and feedback information flows via travelling waves. Interestingly, closing eyes spatially organized these information flows, channeling feedforward flows through the midline and feedback flows through each hemisphere. Future research may investigate the behavioral significance of these frequency-convergence contingent flows of information.
Collapse
Affiliation(s)
- Satoru Suzuki
- Department of Psychology and Interdepartmental Neuroscience, Northwestern University, Evanston, Illinois 60208
| | - Marcia Grabowecky
- Department of Psychology and Interdepartmental Neuroscience, Northwestern University, Evanston, Illinois 60208
| | - Melisa Menceloglu
- Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
8
|
Wriessnegger SC, Leitner M, Kostoglou K. The brain under pressure: Exploring neurophysiological responses to cognitive stress. Brain Cogn 2024; 182:106239. [PMID: 39556965 DOI: 10.1016/j.bandc.2024.106239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Stress is an increasingly dominating part of our daily lives and higher performance requirements at work or to ourselves influence the physiological reaction of our body. Elevated stress levels can be reliably identified through electroencephalogram (EEG) and heart rate (HR) measurements. In this study, we examined how an arithmetic stress-inducing task impacted EEG and HR, establishing meaningful correlations between behavioral data and physiological recordings. Thirty-one healthy participants (15 females, 16 males, aged 20 to 37) willingly participated. Under time pressure, participants completed arithmetic calculations and filled out stress questionnaires before and after the task. Linear mixed effects (LME) allowed us to generate topographical association maps showing significant relations between EEG features (delta, theta, alpha, beta, and gamma power) and factors such as task difficulty, error rate, response time, stress scores, and HR. With task difficulty, we observed left centroparietal and parieto-occipital theta power decreases, and alpha power increases. Furthermore, frontal alpha, delta and theta activity increased with error rate and relative response time, while parieto-temporo-occipital alpha power decreased. Practice effects on EEG power included increases in temporal, parietal, and parieto-occipital theta and alpha activity. HR was positively associated with frontal delta, theta and alpha power whereas frontal gamma power decreases. Significant alpha laterality scores were observed for all factors except task difficulty and relative response time, showing overall increases in left parietal regions. Significant frontal alpha asymmetries emerged with increases in error rate, sex, run number, and HR and occipital alpha asymmetries were also found with run number and HR. Additionally we explored practice effects and noted sex-related differences in EEG features, HR, and questionnaire scores. Overall, our study enhances the understanding of EEG/ECG-based mental stress detection, crucial for early interventions, personalized treatment and objective stress assessment towards the development of a neuroadaptive system.
Collapse
Affiliation(s)
- S C Wriessnegger
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - M Leitner
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - K Kostoglou
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| |
Collapse
|
9
|
Gallego-Molina NJ, Ortiz A, Arco JE, Martinez-Murcia FJ, Woo WL. Unraveling Brain Synchronisation Dynamics by Explainable Neural Networks using EEG Signals: Application to Dyslexia Diagnosis. Interdiscip Sci 2024; 16:1005-1018. [PMID: 38954232 PMCID: PMC11512920 DOI: 10.1007/s12539-024-00634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 07/04/2024]
Abstract
The electrical activity of the neural processes involved in cognitive functions is captured in EEG signals, allowing the exploration of the integration and coordination of neuronal oscillations across multiple spatiotemporal scales. We have proposed a novel approach that combines the transformation of EEG signal into image sequences, considering cross-frequency phase synchronisation (CFS) dynamics involved in low-level auditory processing, with the development of a two-stage deep learning model for the detection of developmental dyslexia (DD). This deep learning model exploits spatial and temporal information preserved in the image sequences to find discriminative patterns of phase synchronisation over time achieving a balanced accuracy of up to 83%. This result supports the existence of differential brain synchronisation dynamics between typical and dyslexic seven-year-old readers. Furthermore, we have obtained interpretable representations using a novel feature mask to link the most relevant regions during classification with the cognitive processes attributed to normal reading and those corresponding to compensatory mechanisms found in dyslexia.
Collapse
Affiliation(s)
- Nicolás J Gallego-Molina
- Communications Engineering Department, University of Málaga, 29004, Málaga, Spain.
- Andalusian Research Institute in Data, Science and Computational Intelligence, 18010, Granada, Spain.
| | - Andrés Ortiz
- Communications Engineering Department, University of Málaga, 29004, Málaga, Spain
- Andalusian Research Institute in Data, Science and Computational Intelligence, 18010, Granada, Spain
| | - Juan E Arco
- Communications Engineering Department, University of Málaga, 29004, Málaga, Spain
- Department of Signal Theory, Networking and Communications, University of Granada, 18010, Granada, Spain
- Andalusian Research Institute in Data, Science and Computational Intelligence, 18010, Granada, Spain
| | - Francisco J Martinez-Murcia
- Department of Signal Theory, Networking and Communications, University of Granada, 18010, Granada, Spain
- Andalusian Research Institute in Data, Science and Computational Intelligence, 18010, Granada, Spain
- Research Centre for Information and Communication Technologies (CITIC-UGR), University of Granada, 18010, Granada, Spain
| | - Wai Lok Woo
- Department of Computer and Information Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| |
Collapse
|
10
|
Cainelli E, Vedovelli L, Bisiacchi P. The mother-child interface: A neurobiological metamorphosis. Neuroscience 2024; 561:92-106. [PMID: 39427701 DOI: 10.1016/j.neuroscience.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
From the start of pregnancy, mother and child induce reciprocal neurobiological changes in the brain that will prove critical for neurodevelopment and survival of both. Molecular communication between mother and fetus is constantly active and persists even after the fetus starts to synthesize its hormones in late gestation. Intriguingly, some mother and fetus exchange cells remain in the other's brain and body with long-lasting effects and memories that do not follow the laws of classical genetics but involve complex epigenetic mechanisms. After childbirth, mother and child go through a transitional phase, a sort of limbo in which both will have a peculiar functioning profile, which is adaptive for contingencies but also renders them vulnerable. The interplay between these two "limbo" states allows for an easier transition to the subsequent phases of development. In this review, we will trace mother's and child's path from pregnancy to the months following birth and, in particular, unravel i) the key features of pregnancy and brain development and the reciprocal influences; ii) how a transitory pattern of functioning characterize mother and child, moving them toward more flexible and evolved forms; and iii) how mother and fetus act during childbirth to promote neuroprotection, pain reduction, and neurophysiological changes. Therefore, this review covers a wide range of topics, integrating neuroanatomical, neurological, biochemical, neurophysiological, and psychological studies in a meaningful way, trying to integrate them in a holistic view of the mother-child interface that is usually neglected.
Collapse
Affiliation(s)
- Elisa Cainelli
- Department of General Psychology, University of Padova, 35131 Padova, Italy.
| | - Luca Vedovelli
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular and Public Health Sciences, University of Padova, 35131 Padova, Italy.
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padova, 35131 Padova, Italy; Padova Neuroscience Center, PNC, 35131 Padova, Italy.
| |
Collapse
|
11
|
Wang X, Wang Q, Wang X, Zhao H, Zhao C, Jiao Y, Shi H, Chen C, Chen H, Wang P, Song T. Early intervention using long-term rhythmic pulsed magnetic stimulation alleviates cognitive decline in a 5xFAD mouse model of Alzheimer's disease. Exp Neurol 2024; 383:115002. [PMID: 39419435 DOI: 10.1016/j.expneurol.2024.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent form of dementia, but no effective therapeutic strategy is available to date. Rhythmic magnetic stimulation is an attractive means of neuron modulation that could be beneficial for restoring learning and memory abilities. OBJECTIVE To assess the effect of a compound pulsed rhythmic magnetic field (cPMF) on cognition during AD progression and to explore the appropriate cPMF intervention period. METHODS Female 5xFAD mice aged 10 weeks and 18 weeks were exposed to cPMF with a carrier frequency of 40 Hz, repeated at 5 Hz for 1 h/d for 8 consecutive weeks. The Morris water maze (MWM) test was used for cognitive behavioral assessment. Furthermore, changes in molecular pathology within the brain were detected using immunofluorescence staining and real-time PCR. RESULTS 10-week-old AD mice treated with cPMF explored the target quadrant more frequently than sham-exposed AD mice in MWM test, exhibiting improved learning and memory abilities. Additionally, cPMF exposure alleviated Aβ plaque deposition and astrogliosis in the AD brain. Moreover, neurotrophic factor fibroblast growth factor 1 (FGF1) in the AD brain was upregulated by cPMF treatment. However, in 18-week-old AD mice treated with cPMF, cognitive performance and Fgf1 gene expression were not significantly improved, although Aβ plaque deposition and astrogliosis were alleviated. CONCLUSION Early intervention via long-term rhythmic cPMF stimulation may alleviate the histopathological features and enhance neuroprotective gene Fgf1 expression, thereby improving the cognitive performance of 5xFAD mice, which should provide promising insight for the clinical treatment of patients with AD.
Collapse
Affiliation(s)
- Xue Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qingmeng Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuting Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyu Zhao
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuncheng Zhao
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yangkun Jiao
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hongkai Shi
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Changyou Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Haitao Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Pingping Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tao Song
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Dolhopiatenko H, Segovia-Martinez M, Nogueira W. The temporal mismatch across listening sides affects cortical auditory evoked responses in normal hearing listeners and cochlear implant users with contralateral acoustic hearing. Hear Res 2024; 451:109088. [PMID: 39032483 DOI: 10.1016/j.heares.2024.109088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/10/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Combining a cochlear implant with contralateral acoustic hearing typically enhances speech understanding, although this improvement varies among CI users and can lead to an interference effect. This variability may be associated with the effectiveness of the integration between electric and acoustic stimulation, which might be affected by the temporal mismatch between the two listening sides. Finding methods to compensate for the temporal mismatch might contribute to the optimal adjustment of bimodal devices and to improve hearing in CI users with contralateral acoustic hearing. The current study investigates cortical auditory evoked potentials (CAEPs) in normal hearing listeners (NH) and CI users with contralateral acoustic hearing. In NH, the amplitude of the N1 peak and the maximum phase locking value (PLV) were analyzed under monaural, binaural, and binaural temporally mismatched conditions. In CI users, CAEPs were measured when listening with CI only (CIS_only), acoustically only (AS_only) and with both sides together (CIS+AS). When listening with CIS+AS, various interaural delays were introduced between the electric and acoustic stimuli. In NH listeners, interaural temporal mismatch resulted in decreased N1 amplitude and PLV. Moreover, PLV is suggested as a more sensitive measure to investigate the integration of information between the two listening sides. CI users showed varied N1 latencies between the AS_only and CIS_only listening conditions, with increased N1 amplitude when the temporal mismatch was compensated. A tendency towards increased PLV was also observed, however, to a lesser extent than in NH listeners, suggesting a limited integration between electric and acoustic stimulation. This work highlights the potential of CAEPs measurement to investigate cortical processing of the information between two listening sides in NH and bimodal CI users.
Collapse
Affiliation(s)
- Hanna Dolhopiatenko
- Medical University Hannover, Cluster of Excellence 'Hearing4all', Hannover, Germany
| | | | - Waldo Nogueira
- Medical University Hannover, Cluster of Excellence 'Hearing4all', Hannover, Germany.
| |
Collapse
|
13
|
Ng T, Noh E, Spencer RMC. Does slow oscillation-spindle coupling contribute to sleep-dependent memory consolidation? A Bayesian meta-analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610060. [PMID: 39257832 PMCID: PMC11383665 DOI: 10.1101/2024.08.28.610060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The active system consolidation theory suggests that information transfer between the hippocampus and cortex during sleep underlies memory consolidation. Neural oscillations during sleep, including the temporal coupling between slow oscillations (SO) and sleep spindles (SP), may play a mechanistic role in memory consolidation. However, differences in analytical approaches and the presence of physiological and behavioral moderators have led to inconsistent conclusions. This meta-analysis, comprising 23 studies and 297 effect sizes, focused on four standard phase-amplitude coupling measures including coupling phase, strength, percentage, and SP amplitude, and their relationship with memory retention. We developed a standardized approach to incorporate non-normal circular-linear correlations. We found strong evidence supporting that precise and strong SO-fast SP coupling in the frontal lobe predicts memory consolidation. The strength of this association is mediated by memory type, aging, and dynamic spatio-temporal features, including SP frequency and cortical topography. In conclusion, SO-SP coupling should be considered as a general physiological mechanism for memory consolidation.
Collapse
Affiliation(s)
- Thea Ng
- Neuroscience & Behavior Program, Mount Holyoke College
- Department of Mathematics & Statistics, Mount Holyoke College
| | - Eunsol Noh
- Neuroscience & Behavior Program, University of Massachusetts, Amherst
| | - Rebecca M. C. Spencer
- Neuroscience & Behavior Program, University of Massachusetts, Amherst
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst
- Institute of Applied Life Sciences, University of Massachusetts, Amherst
| |
Collapse
|
14
|
Han Y, Du L, Huang Q, Cui D, Li Y. Enhancing specialization of attention-related EEG power and phase synchronism brain patterns by meditation. Cereb Cortex 2024; 34:bhae288. [PMID: 39024158 DOI: 10.1093/cercor/bhae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Meditation, mental training that aims to improve one's ability to regulate their cognition, has been widely applied in clinical medicine. However, the mechanism by which meditation affects brain activity is still unclear. To explore this question, electroencephalogram data were recorded in 20 long-term meditators and 20 nonmeditators during 2 high-level cognitive tasks (meditation and mental calculation) and a relaxed resting state (control). Then, the power spectral density and phase synchronization of the electroencephalogram were extracted and compared between these 2 groups. In addition, machine learning was used to discriminate the states within each group. We found that the meditation group showed significantly higher classification accuracy and calculation efficiency than the control group. Then, during the calculation task, both the power and global phase synchronism of the gamma response decreased in meditators compared to their relaxation state; yet, no such change was observed in the control group. A potential explanation for our observations is that meditation improved the flexibility of the brain through neural plastic mechanism. In conclusion, we provided robust evidence that long-term meditation experience could produce detectable neurophysiological changes in brain activity, which possibly enhance the functional segregation and/or specialization in the brain.
Collapse
Affiliation(s)
- Yupeng Han
- School of Automation Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
- Research Center for Brain-Computer Interfaces, Pazhou Laboratory, Qiaotou Street 248, Guangzhou 510665, China
| | - Lizhao Du
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Huashan Road 1954, Shanghai, 200030, China
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Humin Road 3210, Shanghai 201108, China
- Shanghai Key Laboratory of Psychotic Disorders, Humin Road 3210, Shanghai 201108, China
| | - Qiyun Huang
- Research Center for Brain-Computer Interfaces, Pazhou Laboratory, Qiaotou Street 248, Guangzhou 510665, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Humin Road 3210, Shanghai 201108, China
- Shanghai Key Laboratory of Psychotic Disorders, Humin Road 3210, Shanghai 201108, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Huanshan Road 1954, Shanghai 200030, China
| | - Yuanqing Li
- School of Automation Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
- Research Center for Brain-Computer Interfaces, Pazhou Laboratory, Qiaotou Street 248, Guangzhou 510665, China
| |
Collapse
|
15
|
Yrjölä P, Vanhatalo S, Tokariev A. Neuronal Coupling Modes Show Differential Development in the Early Cortical Activity Networks of Human Newborns. J Neurosci 2024; 44:e1012232024. [PMID: 38769006 PMCID: PMC11211727 DOI: 10.1523/jneurosci.1012-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
The third trimester is a critical period for the development of functional networks that support the lifelong neurocognitive performance, yet the emergence of neuronal coupling in these networks is poorly understood. Here, we used longitudinal high-density electroencephalographic recordings from preterm infants during the period from 33 to 45 weeks of conceptional age (CA) to characterize early spatiotemporal patterns in the development of local cortical function and the intrinsic coupling modes [ICMs; phase-phase (PPCs), amplitude-amplitude (AACs), and phase-amplitude correlations (PACs)]. Absolute local power showed a robust increase with CA across the full frequency spectrum, while local PACs showed sleep state-specific, biphasic development that peaked a few weeks before normal birth. AACs and distant PACs decreased globally at nearly all frequencies. In contrast, the PPCs showed frequency- and region-selective development, with an increase of coupling strength with CA between frontal, central, and occipital regions at low-delta and alpha frequencies together with a wider-spread decrease at other frequencies. Our findings together present the spectrally and spatially differential development of the distinct ICMs during the neonatal period and provide their developmental templates for future basic and clinical research.
Collapse
Affiliation(s)
- Pauliina Yrjölä
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Diagnostic Center, Helsinki University Hospital, Helsinki 00290, Finland
- Department of Physiology, University of Helsinki, Helsinki 00014, Finland
| | - Sampsa Vanhatalo
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Diagnostic Center, Helsinki University Hospital, Helsinki 00290, Finland
- Department of Physiology, University of Helsinki, Helsinki 00014, Finland
| | - Anton Tokariev
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Diagnostic Center, Helsinki University Hospital, Helsinki 00290, Finland
- Department of Physiology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
16
|
Harlow TJ, Marquez SM, Bressler S, Read HL. Individualized Closed-Loop Acoustic Stimulation Suggests an Alpha Phase Dependence of Sound Evoked and Induced Brain Activity Measured with EEG Recordings. eNeuro 2024; 11:ENEURO.0511-23.2024. [PMID: 38834300 PMCID: PMC11181104 DOI: 10.1523/eneuro.0511-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
Following repetitive visual stimulation, post hoc phase analysis finds that visually evoked response magnitudes vary with the cortical alpha oscillation phase that temporally coincides with sensory stimulus. This approach has not successfully revealed an alpha phase dependence for auditory evoked or induced responses. Here, we test the feasibility of tracking alpha with scalp electroencephalogram (EEG) recordings and play sounds phase-locked to individualized alpha phases in real-time using a novel end-point corrected Hilbert transform (ecHT) algorithm implemented on a research device. Based on prior work, we hypothesize that sound-evoked and induced responses vary with the alpha phase at sound onset and the alpha phase that coincides with the early sound-evoked response potential (ERP) measured with EEG. Thus, we use each subject's individualized alpha frequency (IAF) and individual auditory ERP latency to define target trough and peak alpha phases that allow an early component of the auditory ERP to align to the estimated poststimulus peak and trough phases, respectively. With this closed-loop and individualized approach, we find opposing alpha phase-dependent effects on the auditory ERP and alpha oscillations that follow stimulus onset. Trough and peak phase-locked sounds result in distinct evoked and induced post-stimulus alpha level and frequency modulations. Though additional studies are needed to localize the sources underlying these phase-dependent effects, these results suggest a general principle for alpha phase-dependence of sensory processing that includes the auditory system. Moreover, this study demonstrates the feasibility of using individualized neurophysiological indices to deliver automated, closed-loop, phase-locked auditory stimulation.
Collapse
Affiliation(s)
- Tylor J Harlow
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut 06269
- Brain-Computer Interface Core, University of Connecticut, Storrs, Connecticut 06269
- Institute of Brain and Cognitive Science (IBACS), University of Connecticut, Storrs, Connecticut 06269
| | - Samantha M Marquez
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut 06269
| | - Scott Bressler
- Elemind Technologies, Inc., Cambridge, Massachusetts 02139
| | - Heather L Read
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut 06269
- Brain-Computer Interface Core, University of Connecticut, Storrs, Connecticut 06269
- Institute of Brain and Cognitive Science (IBACS), University of Connecticut, Storrs, Connecticut 06269
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
17
|
Buch VP, Brandon C, Ramayya AG, Lucas TH, Richardson AG. Dichotomous frequency-dependent phase synchrony in the sensorimotor network characterizes simplistic movement. Sci Rep 2024; 14:11933. [PMID: 38789576 PMCID: PMC11126677 DOI: 10.1038/s41598-024-62848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/22/2024] [Indexed: 05/26/2024] Open
Abstract
It is hypothesized that disparate brain regions interact via synchronous activity to control behavior. The nature of these interconnected ensembles remains an area of active investigation, and particularly the role of high frequency synchronous activity in simplistic behavior is not well known. Using intracranial electroencephalography, we explored the spectral dynamics and network connectivity of sensorimotor cortical activity during a simple motor task in seven epilepsy patients. Confirming prior work, we see a "spectral tilt" (increased high-frequency (HF, 70-100 Hz) and decreased low-frequency (LF, 3-33 Hz) broadband oscillatory activity) in motor regions during movement compared to rest, as well as an increase in LF synchrony between these regions using time-resolved phase-locking. We then explored this phenomenon in high frequency and found a robust but opposite effect, where time-resolved HF broadband phase-locking significantly decreased during movement. This "connectivity tilt" (increased LF synchrony and decreased HF synchrony) displayed a graded anatomical dependency, with the most robust pattern occurring in primary sensorimotor cortical interactions and less robust pattern occurring in associative cortical interactions. Connectivity in theta (3-7 Hz) and high beta (23-27 Hz) range had the most prominent low frequency contribution during movement, with theta synchrony building gradually while high beta having the most prominent effect immediately following the cue. There was a relatively sharp, opposite transition point in both the spectral and connectivity tilt at approximately 35 Hz. These findings support the hypothesis that task-relevant high-frequency spectral activity is stochastic and that the decrease in high-frequency synchrony may facilitate enhanced low frequency phase coupling and interregional communication. Thus, the "connectivity tilt" may characterize behaviorally meaningful cortical interactions.
Collapse
Affiliation(s)
- Vivek P Buch
- Department of Neurosurgery, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA.
| | - Cameron Brandon
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ashwin G Ramayya
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Timothy H Lucas
- Departments of Neurosurgery and Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Andrew G Richardson
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
Dmitrieva E, Malkov A. Optogenetic stimulation of medial septal glutamatergic neurons modulates theta-gamma coupling in the hippocampus. Neurobiol Learn Mem 2024; 211:107929. [PMID: 38685526 DOI: 10.1016/j.nlm.2024.107929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Hippocampal cross-frequency theta-gamma coupling (TGC) is a basic mechanism for information processing, retrieval, and consolidation of long-term and working memory. While the role of entorhinal afferents in the modulation of hippocampal TGC is widely accepted, the influence of other main input to the hippocampus, from the medial septal area (MSA, the pacemaker of the hippocampal theta rhythm) is poorly understood. Optogenetics allows us to explore how different neuronal populations of septohippocampal circuits control neuronal oscillations in vivo. Rhythmic activation of septal glutamatergic neurons has been shown to drive hippocampal theta oscillations, but the role of these neuronal populations in information processing during theta activation has remained unclear. Here we investigated the influence of phasic activation of MSA glutamatergic neurons expressing channelrhodopsin II on theta-gamma coupling in the hippocampus. During the experiment, local field potentials of MSA and hippocampus of freely behaving mice were modulated by 470 nm light flashes with theta frequency (2-10) Hz. It was shown that both the power and the strength of modulation of gamma rhythm nested on hippocampal theta waves depend on the frequency of stimulation. The modulation of the amplitude of slow gamma rhythm (30-50 Hz) prevailed over modulation of fast gamma (55-100 Hz) during flash trains and the observed effects were specific for theta stimulation of MSA. We discuss the possibility that phasic depolarization of septal glutamatergic neurons controls theta-gamma coupling in the hippocampus and plays a role in memory retrieval and consolidation.
Collapse
Affiliation(s)
- Elena Dmitrieva
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Pushchino, Russia
| | - Anton Malkov
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Pushchino, Russia.
| |
Collapse
|
19
|
Ma YY, Gao Y, Wu HQ, Liang XY, Li Y, Lu H, Liu CZ, Ning XL. OPM-MEG Measuring Phase Synchronization on Source Time Series: Application in Rhythmic Median Nerve Stimulation. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1426-1434. [PMID: 38530717 DOI: 10.1109/tnsre.2024.3381173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The magnetoencephalogram (MEG) based on array optically pumped magnetometers (OPMs) has the potential of replacing conventional cryogenic superconducting quantum interference device. Phase synchronization is a common method for measuring brain oscillations and functional connectivity. Verifying the feasibility and fidelity of OPM-MEG in measuring phase synchronization will help its widespread application in the study of aforementioned neural mechanisms. The analysis method on source-level time series can weaken the influence of instantaneous field spread effect. In this paper, the OPM-MEG was used for measuring the evoked responses of 20Hz rhythmic and arrhythmic median nerve stimulation, and the inter-trial phase synchronization (ITPS) and inter-reginal phase synchronization (IRPS) of primary somatosensory cortex (SI) and secondary somatosensory cortex (SII) were analysed. The results find that under rhythmic condition, the evoked responses of SI and SII show continuous oscillations and the effect of resetting phase. The values of ITPS and IRPS significantly increase at the stimulation frequency of 20Hz and its harmonic of 40Hz, whereas the arrhythmic stimulation does not exhibit this phenomenon. Moreover, in the initial stage of stimulation, the ITPS and IRPS values are significantly higher at Mu rhythm in the rhythmic condition compared to arrhythmic. In conclusion, the results demonstrate the ability of OPM-MEG in measuring phase pattern and functional connectivity on source-level, and may also prove beneficial for the study on the mechanism of rhythmic stimulation therapy for rehabilitation.
Collapse
|
20
|
Kim K, Nokia MS, Palva S. Distinct Hippocampal Oscillation Dynamics in Trace Eyeblink Conditioning Task for Retrieval and Consolidation of Associations. eNeuro 2024; 11:ENEURO.0030-23.2024. [PMID: 38627063 PMCID: PMC11046259 DOI: 10.1523/eneuro.0030-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Trace eyeblink conditioning (TEBC) has been widely used to study associative learning in both animals and humans. In this paradigm, conditioned responses (CRs) to conditioned stimuli (CS) serve as a measure for retrieving learned associations between the CS and the unconditioned stimuli (US) within a trial. Memory consolidation, that is, learning over time, can be quantified as an increase in the proportion of CRs across training sessions. However, how hippocampal oscillations differentiate between successful memory retrieval within a session and consolidation across TEBC training sessions remains unknown. To address this question, we recorded local field potentials (LFPs) from the rat dorsal hippocampus during TEBC and investigated hippocampal oscillation dynamics associated with these two functions. We show that transient broadband responses to the CS were correlated with memory consolidation, as indexed by an increase in CRs across TEBC sessions. In contrast, induced alpha (8-10 Hz) and beta (16-20 Hz) band responses were correlated with the successful retrieval of the CS-US association within a session, as indexed by the difference in trials with and without CR.
Collapse
Affiliation(s)
- Kayeon Kim
- Neuroscience Center, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki FI-00014, Finland
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Miriam S Nokia
- Department of Psychology, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Satu Palva
- Neuroscience Center, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki FI-00014, Finland
- Centre for Cognitive Neuroscience, School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QQ, Scotland
- Division of psychology, VISE, Faculty of Education and Psychology, University of Oulu, Oulu, Ostrobothnia FI-90014, Finland
| |
Collapse
|
21
|
Morrone JM, Pedlar CR. EEG-based neurophysiological indices for expert psychomotor performance - a review. Brain Cogn 2024; 175:106132. [PMID: 38219415 DOI: 10.1016/j.bandc.2024.106132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/19/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
A primary objective of current human neuropsychological performance research is to define the physiological correlates of adaptive knowledge utilization, in order to support the enhanced execution of both simple and complex tasks. Within the present article, electroencephalography-based neurophysiological indices characterizing expert psychomotor performance, will be explored. As a means of characterizing fundamental processes underlying efficient psychometric performance, the neural efficiency model will be evaluated in terms of alpha-wave-based selective cortical processes. Cognitive and motor domains will initially be explored independently, which will act to encapsulate the task-related neuronal adaptive requirements for enhanced psychomotor performance associating with the neural efficiency model. Moderating variables impacting the practical application of such neuropsychological model, will also be investigated. As a result, the aim of this review is to provide insight into detectable task-related modulation involved in developed neurocognitive strategies which support heightened psychomotor performance, for the implementation within practical settings requiring a high degree of expert performance (such as sports or military operational settings).
Collapse
Affiliation(s)
- Jazmin M Morrone
- Faculty of Sport, Allied Health, and Performance Science, St Mary's University, Twickenham, London, UK.
| | - Charles R Pedlar
- Faculty of Sport, Allied Health, and Performance Science, St Mary's University, Twickenham, London, UK; Institute of Sport, Exercise and Health, Division of Surgery and Interventional Science, University College London, UK
| |
Collapse
|
22
|
Menceloglu M, Grabowecky M, Suzuki S. A phase-shifting anterior-posterior network organizes global phase relations. PLoS One 2024; 19:e0296827. [PMID: 38346024 PMCID: PMC10861041 DOI: 10.1371/journal.pone.0296827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 12/19/2023] [Indexed: 02/15/2024] Open
Abstract
Prior research has identified a variety of task-dependent networks that form through inter-regional phase-locking of oscillatory activity that are neural correlates of specific behaviors. Despite ample knowledge of task-specific functional networks, general rules governing global phase relations have not been investigated. To discover such general rules, we focused on phase modularity, measured as the degree to which global phase relations in EEG comprised distinct synchronized clusters interacting with one another at large phase lags. Synchronized clusters were detected with a standard community-detection algorithm, and the degree of phase modularity was quantified by the index q. Notably, we found that the mechanism controlling phase modularity is remarkably simple. A network comprising anterior-posterior long-distance connectivity coherently shifted phase relations from low-angles (|Δθ| < π/4) in low-modularity states (bottom 5% in q) to high-angles (|Δθ| > 3π/4) in high-modularity states (top 5% in q), accounting for fluctuations in phase modularity. This anterior-posterior network may play a fundamental functional role as (1) it controls phase modularity across a broad range of frequencies (3-50 Hz examined) in different behavioral conditions (resting with the eyes closed or watching a silent nature video) and (2) neural interactions (measured as power correlations) in beta-to-gamma bands were consistently elevated in high-modularity states. These results may motivate future investigations into the functional roles of phase modularity as well as the anterior-posterior network that controls it.
Collapse
Affiliation(s)
- Melisa Menceloglu
- Department of Psychology, Northwestern University, Evanston, Illinois, United States of America
| | - Marcia Grabowecky
- Department of Psychology, Northwestern University, Evanston, Illinois, United States of America
- Interdepartmental Neuroscience, Northwestern University, Evanston, Illinois, United States of America
| | - Satoru Suzuki
- Department of Psychology, Northwestern University, Evanston, Illinois, United States of America
- Interdepartmental Neuroscience, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
23
|
Heldmann M, Rohde LS, Münte TF, Ye Z. Cross-frequency and inter-regional phase synchronization in explicit transitive inference. Cereb Cortex 2024; 34:bhad494. [PMID: 38112627 DOI: 10.1093/cercor/bhad494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Explicit logical reasoning, like transitive inference, is a hallmark of human intelligence. This study investigated cortical oscillations and their interactions in transitive inference with EEG. Participants viewed premises describing abstract relations among items. They accurately recalled the relationship between old pairs of items, effectively inferred the relationship between new pairs of items, and discriminated between true and false relationships for new pairs. First, theta (4-7 Hz) and alpha oscillations (8-15 Hz) had distinct functional roles. Frontal theta oscillations distinguished between new and old pairs, reflecting the inference of new information. Parietal alpha oscillations changed with serial position and symbolic distance of the pairs, representing the underlying relational structure. Frontal alpha oscillations distinguished between true and false pairs, linking the new information with the underlying relational structure. Second, theta and alpha oscillations interacted through cross-frequency and inter-regional phase synchronization. Frontal theta-alpha 1:2 phase locking appeared to coordinate spectrally diverse neural activity, enhanced for new versus old pairs and true versus false pairs. Alpha-band frontal-parietal phase coherence appeared to coordinate anatomically distributed neural activity, enhanced for new versus old pairs and false versus true pairs. It suggests that cross-frequency and inter-regional phase synchronization among theta and alpha oscillations supports human transitive inference.
Collapse
Affiliation(s)
- Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck 23538, Germany
- Center for Brain, Behavior & Metabolism, University of Lübeck, Lübeck 23538, Germany
| | | | - Thomas F Münte
- Center for Brain, Behavior & Metabolism, University of Lübeck, Lübeck 23538, Germany
| | - Zheng Ye
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
24
|
Kujala J, Mäkelä S, Ojala P, Hyönä J, Salmelin R. Beta- and gamma-band cortico-cortical interactions support naturalistic reading of continuous text. Eur J Neurosci 2024; 59:238-251. [PMID: 38062542 DOI: 10.1111/ejn.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 01/23/2024]
Abstract
Large-scale integration of information across cortical structures, building on neural connectivity, has been proposed to be a key element in supporting human cognitive processing. In electrophysiological neuroimaging studies of reading, quantification of neural interactions has been limited to the level of isolated words or sentences due to artefacts induced by eye movements. Here, we combined magnetoencephalography recording with advanced artefact rejection tools to investigate both cortico-cortical coherence and directed neural interactions during naturalistic reading of full-page texts. Our results show that reading versus visual scanning of text was associated with wide-spread increases of cortico-cortical coherence in the beta and gamma bands. We further show that the reading task was linked to increased directed neural interactions compared to the scanning task across a sparse set of connections within a wide range of frequencies. Together, the results demonstrate that neural connectivity flexibly builds on different frequency bands to support continuous natural reading.
Collapse
Affiliation(s)
- Jan Kujala
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Sasu Mäkelä
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Pauliina Ojala
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- Aalto NeuroImaging, Aalto University, Espoo, Finland
| | - Jukka Hyönä
- Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- Aalto NeuroImaging, Aalto University, Espoo, Finland
| |
Collapse
|
25
|
Zuo Y, Wang Z. Neural Oscillations and Multisensory Processing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1437:121-137. [PMID: 38270857 DOI: 10.1007/978-981-99-7611-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Neural oscillations play a role in sensory processing by coordinating synchronized neuronal activity. Synchronization of gamma oscillations is engaged in local computation of feedforward signals and synchronization of alpha-beta oscillations is engaged in feedback processing over long-range areas. These spatially and spectrally segregated bi-directional signals may be integrated by a mechanism of cross-frequency coupling. Synchronization of neural oscillations has also been proposed as a mechanism for information integration across multiple sensory modalities. A transient stimulus or rhythmic stimulus from one modality may lead to phase alignment of ongoing neural oscillations in multiple sensory cortices, through a mechanism of cross-modal phase reset or cross-modal neural entrainment. Synchronized activities in multiple sensory cortices are more likely to boost stronger activities in downstream areas. Compared to synchronized oscillations, asynchronized oscillations may impede signal processing, and may contribute to sensory selection by setting the oscillations in the target-related cortex and the oscillations in the distractor-related cortex to opposite phases.
Collapse
Affiliation(s)
- Yanfang Zuo
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zuoren Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Löffler BS, Stecher HI, Meiser A, Fudickar S, Hein A, Herrmann CS. Attempting to counteract vigilance decrement in older adults with brain stimulation. FRONTIERS IN NEUROERGONOMICS 2023; 4:1201702. [PMID: 38234473 PMCID: PMC10790873 DOI: 10.3389/fnrgo.2023.1201702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024]
Abstract
Introduction Against the background of demographic change and the need for enhancement techniques for an aging society, we set out to repeat a study that utilized 40-Hz transcranial alternating current stimulation (tACS) to counteract the slowdown of reaction times in a vigilance experiment but with participants aged 65 years and older. On an oscillatory level, vigilance decrement is linked to rising occipital alpha power, which has been shown to be downregulated using gamma-tACS. Method We applied tACS on the visual cortex and compared reaction times, error rates, and alpha power of a group stimulated with 40 Hz to a sham and a 5-Hz-stimulated control group. All groups executed two 30-min-long blocks of a visual task and were stimulated according to group in the second block. We hypothesized that the expected increase in reaction times and alpha power would be reduced in the 40-Hz group compared to the control groups in the second block (INTERVENTION). Results Statistical analysis with linear mixed models showed that reaction times increased significantly over time in the first block (BASELINE) with approximately 3 ms/min for the SHAM and 2 ms/min for the 5-Hz and 40-Hz groups, with no difference between the groups. The increase was less pronounced in the INTERVENTION block (1 ms/min for SHAM and 5-Hz groups, 3 ms/min for the 40-Hz group). Differences among groups in the INTERVENTION block were not significant if the 5-Hz or the 40-Hz group was used as the base group for the linear mixed model. Statistical analysis with a generalized linear mixed model showed that alpha power was significantly higher after the experiment (1.37 μV2) compared to before (1 μV2). No influence of stimulation (40 Hz, 5 Hz, or sham) could be detected. Discussion Although the literature has shown that tACS offers potential for older adults, our results indicate that findings from general studies cannot simply be transferred to an old-aged group. We suggest adjusting stimulation parameters to the neurophysiological features expected in this group. Next to heterogeneity and cognitive fitness, the influence of motivation and medication should be considered.
Collapse
Affiliation(s)
- Birte S. Löffler
- Assistance Systems and Medical Device Technology, Department of Health Services Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Heiko I. Stecher
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4all”, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Arnd Meiser
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4all”, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Sebastian Fudickar
- Assistance Systems and Medical Device Technology, Department of Health Services Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Andreas Hein
- Assistance Systems and Medical Device Technology, Department of Health Services Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4all”, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
27
|
Colomer C, Dhamala M, Ganesh G, Lagarde J. Granger Geweke Causality reveals information exchange during physical interaction is modulated by task difficulty. Hum Mov Sci 2023; 92:103139. [PMID: 37703590 DOI: 10.1016/j.humov.2023.103139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
The haptic sense is an important mode of communication during physical interactions, and it is known to enable humans to estimate key features of their partner's behavior. It is proposed that such estimations are based upon the exchange of information mediated by the interaction forces, resulting in role distribution and coordination between partners. In the present study, we examined whether the information exchange is functionally modified to adapt to the task, or whether it is a fixed process, leaving the adaptation to individual's behaviors. We analyzed the forces during an empirical dyadic interaction task using Granger-Geweke causality analysis, which allowed us to quantify the causal influence of each individual's forces on their partner's. The dynamics of relative phase were also examined. We observed an increase of inter-partner influence with an increase in the spatial accuracy required by the task, demonstrating an adaptation of information flow to the task. This increase of exchange with the spatial accuracy constraint was accompanied by an increase of errors and of the variability of the relative phase between forces. The influence was dominated by participants in a specific role, showing a clear role division as well as task division between the dyad partners. Moreover, the influence occurred in the [2.15-7] Hz frequency band, demonstrating its importance as a frequency band of interest during cooperation involving haptic interaction. Several interpretations are introduced, ranging from sub-division of motion control to phase-amplitude coupling.
Collapse
Affiliation(s)
- Clémentine Colomer
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, 700 Av. du Pic Saint-Loup, 34090 Montpellier, France.
| | - Mukesh Dhamala
- Department of Physics and Astronomy, Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA.
| | - Gowrishankar Ganesh
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), Univ. Montpellier, CNRS, 161 Rue Ada, 34095 Montpellier, France.
| | - Julien Lagarde
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, 700 Av. du Pic Saint-Loup, 34090 Montpellier, France.
| |
Collapse
|
28
|
Väyrynen T, Helakari H, Korhonen V, Tuunanen J, Huotari N, Piispala J, Kallio M, Raitamaa L, Kananen J, Järvelä M, Matias Palva J, Kiviniemi V. Infra-slow fluctuations in cortical potentials and respiration drive fast cortical EEG rhythms in sleeping and waking states. Clin Neurophysiol 2023; 156:207-219. [PMID: 37972532 DOI: 10.1016/j.clinph.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/09/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE Infra-slow fluctuations (ISF, 0.008-0.1 Hz) characterize hemodynamic and electric potential signals of human brain. ISFs correlate with the amplitude dynamics of fast (>1 Hz) neuronal oscillations, and may arise from permeability fluctuations of the blood-brain barrier (BBB). It is unclear if physiological rhythms like respiration drive or track fast cortical oscillations, and the role of sleep in this coupling is unknown. METHODS We used high-density full-band electroencephalography (EEG) in healthy human volunteers (N = 21) to measure concurrently the ISFs, respiratory pulsations, and fast neuronal oscillations during periods of wakefulness and sleep, and to assess the strength and direction of their phase-amplitude coupling. RESULTS The phases of ISFs and respiration were both coupled with the amplitude of fast neuronal oscillations, with stronger ISF coupling being evident during sleep. Phases of ISF and respiration drove the amplitude dynamics of fast oscillations in sleeping and waking states, with different contributions. CONCLUSIONS ISFs in slow cortical potentials and respiration together significantly determine the dynamics of fast cortical oscillations. SIGNIFICANCE We propose that these slow physiological phases play a significant role in coordinating cortical excitability, which is a fundamental aspect of brain function.
Collapse
Affiliation(s)
- Tommi Väyrynen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland; MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland.
| | - Heta Helakari
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland; MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland
| | - Vesa Korhonen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland; MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland
| | - Johanna Tuunanen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland; MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland
| | - Niko Huotari
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland; MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland
| | - Johanna Piispala
- MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland; Clinical Neurophysiology, Oulu University Hospital, Oulu 90220, Finland
| | - Mika Kallio
- MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland; Clinical Neurophysiology, Oulu University Hospital, Oulu 90220, Finland
| | - Lauri Raitamaa
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland; MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland
| | - Janne Kananen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland; MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland; Clinical Neurophysiology, Oulu University Hospital, Oulu 90220, Finland
| | - Matti Järvelä
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland; MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland
| | - J Matias Palva
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Finland; Centre for Cognitive Neuroimaging, University of Glasgow, United Kingdom
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland; MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland; Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90220, Finland
| |
Collapse
|
29
|
Meyer-Ortmanns H. Heteroclinic networks for brain dynamics. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1276401. [PMID: 38020242 PMCID: PMC10663269 DOI: 10.3389/fnetp.2023.1276401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Heteroclinic networks are a mathematical concept in dynamic systems theory that is suited to describe metastable states and switching events in brain dynamics. The framework is sensitive to external input and, at the same time, reproducible and robust against perturbations. Solutions of the corresponding differential equations are spatiotemporal patterns that are supposed to encode information both in space and time coordinates. We focus on the concept of winnerless competition as realized in generalized Lotka-Volterra equations and report on results for binding and chunking dynamics, synchronization on spatial grids, and entrainment to heteroclinic motion. We summarize proposals of how to design heteroclinic networks as desired in view of reproducing experimental observations from neuronal networks and discuss the subtle role of noise. The review is on a phenomenological level with possible applications to brain dynamics, while we refer to the literature for a rigorous mathematical treatment. We conclude with promising perspectives for future research.
Collapse
Affiliation(s)
- Hildegard Meyer-Ortmanns
- School of Science, Constructor University, Bremen, Germany
- Complexity Science Hub Vienna, Vienna, Austria
| |
Collapse
|
30
|
李 昕, 王 凯, 景 军, 尹 立, 张 莹, 谢 平. [A study on the application of cross-frequency coupling characteristics of neural oscillation in the diagnosis of mild cognitive impairment]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:843-851. [PMID: 37879912 PMCID: PMC10600429 DOI: 10.7507/1001-5515.202210020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 08/14/2023] [Indexed: 10/27/2023]
Abstract
In order to fully explore the neural oscillatory coupling characteristics of patients with mild cognitive impairment (MCI), this paper analyzed and compared the strength of the coupling characteristics for 28 MCI patients and 21 normal subjects under six different-frequency combinations. The results showed that the difference in the global phase synchronization index of cross-frequency coupling under δ-θ rhythm combination was statistically significant in the MCI group compared with the normal control group ( P = 0.025, d = 0.398). To further validate this coupling feature, this paper proposed an optimized convolutional neural network model that incorporated a time-frequency data enhancement module and batch normalization layers to prevent overfitting while enhancing the robustness of the model. Based on this optimized model, with the phase locking value matrix of δ-θ rhythm combination as the single input feature, the diagnostic accuracy of MCI patients was (95.49 ± 4.15)%, sensitivity and specificity were (93.71 ± 7.21)% and (97.50 ± 5.34)%, respectively. The results showed that the characteristics of the phase locking value matrix under the combination of δ-θ rhythms can adequately reflect the cognitive status of MCI patients, which is helpful to assist the diagnosis of MCI.
Collapse
Affiliation(s)
- 昕 李
- 燕山大学 电气工程学院(河北秦皇岛 066004)School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
- 河北省测试计量技术及仪器重点实验室(河北秦皇岛 066004)Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao, Hebei 066004, P. R. China
| | - 凯 王
- 燕山大学 电气工程学院(河北秦皇岛 066004)School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
- 河北省测试计量技术及仪器重点实验室(河北秦皇岛 066004)Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao, Hebei 066004, P. R. China
| | - 军 景
- 燕山大学 电气工程学院(河北秦皇岛 066004)School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
- 河北省测试计量技术及仪器重点实验室(河北秦皇岛 066004)Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao, Hebei 066004, P. R. China
| | - 立勇 尹
- 燕山大学 电气工程学院(河北秦皇岛 066004)School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
| | - 莹 张
- 燕山大学 电气工程学院(河北秦皇岛 066004)School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
| | - 平 谢
- 燕山大学 电气工程学院(河北秦皇岛 066004)School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
- 河北省测试计量技术及仪器重点实验室(河北秦皇岛 066004)Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao, Hebei 066004, P. R. China
- 秦皇岛市第一医院(河北秦皇岛 066004)The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066004, P. R. China
| |
Collapse
|
31
|
Lukarski D, Petkoski S, Ji P, Stankovski T. Delta-alpha cross-frequency coupling for different brain regions. CHAOS (WOODBURY, N.Y.) 2023; 33:103126. [PMID: 37844293 DOI: 10.1063/5.0157979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Neural interactions occur on different levels and scales. It is of particular importance to understand how they are distributed among different neuroanatomical and physiological relevant brain regions. We investigated neural cross-frequency couplings between different brain regions according to the Desikan-Killiany brain parcellation. The adaptive dynamic Bayesian inference method was applied to EEG measurements of healthy resting subjects in order to reconstruct the coupling functions. It was found that even after averaging over all subjects, the mean coupling function showed a characteristic waveform, confirming the direct influence of the delta-phase on the alpha-phase dynamics in certain brain regions and that the shape of the coupling function changes for different regions. While the averaged coupling function within a region was of similar form, the region-averaged coupling function was averaged out, which implies that there is a common dependence within separate regions across the subjects. It was also found that for certain regions the influence of delta on alpha oscillations is more pronounced and that oscillations that influence other are more evenly distributed across brain regions than the influenced oscillations. When presenting the information on brain lobes, it was shown that the influence of delta emanating from the brain as a whole is greatest on the alpha oscillations of the cingulate frontal lobe, and at the same time the influence of delta from the cingulate parietal brain lobe is greatest on the alpha oscillations of the whole brain.
Collapse
Affiliation(s)
- Dushko Lukarski
- Faculty of Medicine, Ss. Cyril and Methodius University, 1000 Skopje, Macedonia
- University Clinic for Radiotherapy and Oncology, 1000 Skopje, Macedonia
| | - Spase Petkoski
- Aix Marseille Univ, INSERM, Inst Neurosci Syst (INS), 13005 Marseille, France
| | - Peng Ji
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 200433 Shanghai, China
| | - Tomislav Stankovski
- Faculty of Medicine, Ss. Cyril and Methodius University, 1000 Skopje, Macedonia
- Department of Physics, Lancaster University, LA1 4YB Lancaster, United Kingdom
| |
Collapse
|
32
|
Symeonidou ER, Ferris DP. Visual Occlusions Result in Phase Synchrony Within Multiple Brain Regions Involved in Sensory Processing and Balance Control. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3772-3780. [PMID: 37725737 PMCID: PMC10616968 DOI: 10.1109/tnsre.2023.3317055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
There is a need to develop appropriate balance training interventions to minimize the risk of falls. Recently, we found that intermittent visual occlusions can substantially improve the effectiveness and retention of balance beam walking practice (Symeonidou & Ferris, 2022). We sought to determine how the intermittent visual occlusions affect electrocortical activity during beam walking. We hypothesized that areas involved in sensorimotor processing and balance control would demonstrate spectral power changes and inter-trial coherence modulations after loss and restoration of vision. Ten healthy young adults practiced walking on a treadmill-mounted balance beam while wearing high-density EEG and experiencing reoccurring visual occlusions. Results revealed spectral power fluctuations and inter-trial coherence changes in the visual, occipital, temporal, and sensorimotor cortex as well as the posterior parietal cortex and the anterior cingulate. We observed a prolonged alpha increase in the occipital, temporal, sensorimotor, and posterior parietal cortex after the occlusion onset. In contrast, the anterior cingulate showed a strong alpha and theta increase after the occlusion offset. We observed transient phase synchrony in the alpha, theta, and beta bands within the sensory, posterior parietal, and anterior cingulate cortices immediately after occlusion onset and offset. Intermittent visual occlusions induced electrocortical spectral power and inter-trial coherence changes in a wide range of frequencies within cortical areas relevant for multisensory integration and processing as well as balance control. Our training intervention could be implemented in senior and rehabilitation centers, improving the quality of life of elderly and neurologically impaired individuals.
Collapse
|
33
|
Kawai Y. Cross-frequency coupling between slow harmonics via the real brainstem oscillators: An in vivo animal study. PLoS One 2023; 18:e0289657. [PMID: 37549170 PMCID: PMC10406189 DOI: 10.1371/journal.pone.0289657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023] Open
Abstract
Brain waves of discrete rhythms (gamma to delta frequency ranges) are ubiquitously recorded and interpreted with respect to probable corresponding specific functions. The most challenging idea of interpreting varied frequencies of brain waves has been postulated as a communication mechanism in which different neuronal assemblies use specific ranges of frequencies cooperatively. One promising candidate is cross-frequency coupling (CFC), in which some neuronal assemblies efficiently utilize the fastest gamma range brain waves as an information carrier (phase-amplitude CFC); however, phase-phase CFC via the slowest delta and theta waves has rarely been described to date. Moreover, CFC has rarely been reported in the animal brainstem including humans, which most likely utilizes the slowest waves (delta and theta ranges). Harmonic waves are characterized by the presence of a fundamental frequency with several overtones, multiples of the fundamental frequency. Rat brainstem waves seemed to consist of slow harmonics with different frequencies that could cooperatively produce a phase-phase CFC. Harmonic rhythms of different frequency ranges can cross-couple with each other to sustain robust and resilient consonance via real oscillators, notwithstanding any perturbations.
Collapse
Affiliation(s)
- Yoshinori Kawai
- Adati Institute for Brain Study (AIBS), Kawaguchi, Saitama, Japan
| |
Collapse
|
34
|
Gauthier-Umaña C, Valderrama M, Múnera A, Nava-Mesa MO. BOARD-FTD-PACC: a graphical user interface for the synaptic and cross-frequency analysis derived from neural signals. Brain Inform 2023; 10:12. [PMID: 37155028 PMCID: PMC10167074 DOI: 10.1186/s40708-023-00191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/01/2023] [Indexed: 05/10/2023] Open
Abstract
In order to understand the link between brain functional states and behavioral/cognitive processes, the information carried in neural oscillations can be retrieved using different analytic techniques. Processing these different bio-signals is a complex, time-consuming, and often non-automatized process that requires customization, due to the type of signal acquired, acquisition method implemented, and the objectives of each individual research group. To this end, a new graphical user interface (GUI), named BOARD-FTD-PACC, was developed and designed to facilitate the visualization, quantification, and analysis of neurophysiological recordings. BOARD-FTD-PACC provides different and customizable tools that facilitate the task of analyzing post-synaptic activity and complex neural oscillatory data, mainly cross-frequency analysis. It is a flexible and user-friendly software that can be used by a wide range of users to extract valuable information from neurophysiological signals such as phase-amplitude coupling and relative power spectral density, among others. BOARD-FTD-PACC allows researchers to select, in the same open-source GUI, different approaches and techniques that will help promote a better understanding of synaptic and oscillatory activity in specific brain structures with or without stimulation.
Collapse
Affiliation(s)
- Cécile Gauthier-Umaña
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
- Department of Systems Engineering, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Mario Valderrama
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Alejandro Múnera
- Behavioral Neurophysiology Laboratory, Physiological Sciences Department, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Mauricio O Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
35
|
Williams N, Wang S, Arnulfo G, Nobili L, Palva S, Palva J. Modules in connectomes of phase-synchronization comprise anatomically contiguous, functionally related regions. Neuroimage 2023; 272:120036. [PMID: 36966852 DOI: 10.1016/j.neuroimage.2023.120036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Modules in brain functional connectomes are essential to balancing segregation and integration of neuronal activity. Connectomes are the complete set of pairwise connections between brain regions. Non-invasive Electroencephalography (EEG) and Magnetoencephalography (MEG) have been used to identify modules in connectomes of phase-synchronization. However, their resolution is suboptimal because of spurious phase-synchronization due to EEG volume conduction or MEG field spread. Here, we used invasive, intracerebral recordings from stereo-electroencephalography (SEEG, N = 67), to identify modules in connectomes of phase-synchronization. To generate SEEG-based group-level connectomes affected only minimally by volume conduction, we used submillimeter accurate localization of SEEG contacts and referenced electrode contacts in cortical gray matter to their closest contacts in white matter. Combining community detection methods with consensus clustering, we found that the connectomes of phase-synchronization were characterized by distinct and stable modules at multiple spatial scales, across frequencies from 3 to 320 Hz. These modules were highly similar within canonical frequency bands. Unlike the distributed brain systems identified with functional Magnetic Resonance Imaging (fMRI), modules up to the high-gamma frequency band comprised only anatomically contiguous regions. Notably, the identified modules comprised cortical regions involved in shared repertoires of sensorimotor and cognitive functions including memory, language and attention. These results suggest that the identified modules represent functionally specialised brain systems, which only partially overlap with the brain systems reported with fMRI. Hence, these modules might regulate the balance between functional segregation and functional integration through phase-synchronization.
Collapse
|
36
|
Alterations in EEG functional connectivity in individuals with depression: A systematic review. J Affect Disord 2023; 328:287-302. [PMID: 36801418 DOI: 10.1016/j.jad.2023.01.126] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 02/19/2023]
Abstract
The brain works as an organised, network-like structure of functionally interconnected regions. Disruptions to interconnectivity in certain networks have been linked to symptoms of depression and impairments in cognition. Electroencephalography (EEG) is a low-burden tool by which differences in functional connectivity (FC) can be assessed. This systematic review aims to provide a synthesis of evidence relating to EEG FC in depression. A comprehensive electronic literature search for terms relating to depression, EEG, and FC was conducted on studies published before the end of November 2021, according to PRISMA guidelines. Studies comparing EEG measures of FC of individuals with depression to that of healthy control groups were included. Data was extracted by two independent reviewers, and the quality of EEG FC methods was assessed. Fifty-two studies assessing EEG FC in depression were identified: 36 assessed resting-state FC, and 16 assessed task-related or other (i.e., sleep) FC. Somewhat consistent findings in resting-state studies suggest for no differences between depression and control groups in EEG FC in the delta and gamma frequencies. However, while most resting-state studies noted a difference in alpha, theta, and beta, no clear conclusions could be drawn about the direction of the difference, due to considerable inconsistencies between study design and methodology. This was also true for task-related and other EEG FC. More robust research is needed to understand the true differences in EEG FC in depression. Given that the FC between brain regions drives behaviour, cognition, and emotion, characterising how FC differs in depression is essential for understanding the aetiology of depression.
Collapse
|
37
|
Kumar N, Jaiswal A, Roy D, Banerjee A. Effective networks mediate right hemispheric dominance of human 40 Hz auditory steady-state response. Neuropsychologia 2023; 184:108559. [PMID: 37040848 DOI: 10.1016/j.neuropsychologia.2023.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023]
Abstract
Auditory steady-state responses (ASSR) are induced from the brainstem to the neocortex when humans hear periodic amplitude-modulated tonal signals. ASSRs have been argued to be a key marker of auditory temporal processing and pathological reorganization of ASSR - a biomarker of neurodegenerative disorders. However, most of the earlier studies reporting the neural basis of ASSRs were focused on looking at individual brain regions. Here, we seek to characterize the large-scale directed information flow among cortical sources of ASSR entrained by 40 Hz external signals. Entrained brain rhythms with power peaking at 40 Hz were generated using both monaural and binaural tonal stimulation. First, we confirm the presence of ASSRs and their well-known right hemispheric dominance during binaural and both monaural conditions. Thereafter, reconstruction of source activity employing individual anatomy of the participant and subsequent network analysis revealed that while the sources are common among different stimulation conditions, differential levels of source activation and differential patterns of directed information flow using Granger causality among sources underlie processing of binaurally and monaurally presented tones. Particularly, we show bidirectional interactions involving the right superior temporal gyrus and inferior frontal gyrus underlie right hemispheric dominance of 40 Hz ASSR during both monaural and binaural conditions. On the other hand, for monaural conditions, the strength of inter-hemispheric flow from left primary auditory areas to right superior temporal areas followed a pattern that comply with the generally observed contralateral dominance of sensory signal processing.
Collapse
Affiliation(s)
- Neeraj Kumar
- Cognitive Brain Dynamics Lab, National Brain Research Centre, NH 8, Manesar, Gurgaon, 122052, India.
| | - Amit Jaiswal
- Cognitive Brain Dynamics Lab, National Brain Research Centre, NH 8, Manesar, Gurgaon, 122052, India
| | - Dipanjan Roy
- Cognitive Brain Dynamics Lab, National Brain Research Centre, NH 8, Manesar, Gurgaon, 122052, India
| | - Arpan Banerjee
- Cognitive Brain Dynamics Lab, National Brain Research Centre, NH 8, Manesar, Gurgaon, 122052, India.
| |
Collapse
|
38
|
Cavelli ML, Mao R, Findlay G, Driessen K, Bugnon T, Tononi G, Cirelli C. Sleep/wake changes in perturbational complexity in rats and mice. iScience 2023; 26:106186. [PMID: 36895652 PMCID: PMC9988678 DOI: 10.1016/j.isci.2023.106186] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/31/2022] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
In humans, the level of consciousness is assessed by quantifying the spatiotemporal complexity of cortical responses using Perturbational Complexity Index (PCI) and related PCIst (st, state transitions). Here we validate PCIst in freely moving rats and mice by showing that it is lower in NREM sleep and slow wave anesthesia than in wake or REM sleep, as in humans. We then show that (1) low PCIst is associated with the occurrence of an OFF period of neuronal silence; (2) stimulation of deep, but not superficial, cortical layers leads to reliable PCIst changes across sleep/wake and anesthesia; (3) consistent PCIst changes are independent of which single area is being stimulated or recorded, except for recordings in mouse prefrontal cortex. These experiments show that PCIst can reliably measure vigilance states in unresponsive animals and support the hypothesis that it is low when an OFF period disrupts causal interactions in cortical networks.
Collapse
Affiliation(s)
- Matias Lorenzo Cavelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Departamento de Fisiología de Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Rong Mao
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Graham Findlay
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Kort Driessen
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Tom Bugnon
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| |
Collapse
|
39
|
Chiarion G, Sparacino L, Antonacci Y, Faes L, Mesin L. Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends. Bioengineering (Basel) 2023; 10:bioengineering10030372. [PMID: 36978763 PMCID: PMC10044923 DOI: 10.3390/bioengineering10030372] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Understanding how different areas of the human brain communicate with each other is a crucial issue in neuroscience. The concepts of structural, functional and effective connectivity have been widely exploited to describe the human connectome, consisting of brain networks, their structural connections and functional interactions. Despite high-spatial-resolution imaging techniques such as functional magnetic resonance imaging (fMRI) being widely used to map this complex network of multiple interactions, electroencephalographic (EEG) recordings claim high temporal resolution and are thus perfectly suitable to describe either spatially distributed and temporally dynamic patterns of neural activation and connectivity. In this work, we provide a technical account and a categorization of the most-used data-driven approaches to assess brain-functional connectivity, intended as the study of the statistical dependencies between the recorded EEG signals. Different pairwise and multivariate, as well as directed and non-directed connectivity metrics are discussed with a pros-cons approach, in the time, frequency, and information-theoretic domains. The establishment of conceptual and mathematical relationships between metrics from these three frameworks, and the discussion of novel methodological approaches, will allow the reader to go deep into the problem of inferring functional connectivity in complex networks. Furthermore, emerging trends for the description of extended forms of connectivity (e.g., high-order interactions) are also discussed, along with graph-theory tools exploring the topological properties of the network of connections provided by the proposed metrics. Applications to EEG data are reviewed. In addition, the importance of source localization, and the impacts of signal acquisition and pre-processing techniques (e.g., filtering, source localization, and artifact rejection) on the connectivity estimates are recognized and discussed. By going through this review, the reader could delve deeply into the entire process of EEG pre-processing and analysis for the study of brain functional connectivity and learning, thereby exploiting novel methodologies and approaches to the problem of inferring connectivity within complex networks.
Collapse
Affiliation(s)
- Giovanni Chiarion
- Mathematical Biology and Physiology, Department Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| | - Laura Sparacino
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Yuri Antonacci
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Luca Faes
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Luca Mesin
- Mathematical Biology and Physiology, Department Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
40
|
Wang Y, Li Y, Sun F, Xu Y, Xu F, Wang S, Wang X. Altered neuromagnetic activity in default mode network in childhood absence epilepsy. Front Neurosci 2023; 17:1133064. [PMID: 37008207 PMCID: PMC10060817 DOI: 10.3389/fnins.2023.1133064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
PurposeThe electrophysiological characterization of resting state oscillatory functional connectivity within the default mode network (DMN) during interictal periods in childhood absence epilepsy (CAE) remains unclear. Using magnetoencephalographic (MEG) recordings, this study investigated how the connectivity within the DMN was altered in CAE.MethodsUsing a cross-sectional design, we analyzed MEG data from 33 children newly diagnosed with CAE and 26 controls matched for age and sex. The spectral power and functional connectivity of the DMN were estimated using minimum norm estimation combined with the Welch technique and corrected amplitude envelope correlation.ResultsDefault mode network showed stronger activation in the delta band during the ictal period, however, the relative spectral power in other bands was significantly lower than that in the interictal period (pcorrected < 0.05 for DMN regions, except bilateral medial frontal cortex, left medial temporal lobe, left posterior cingulate cortex in the theta band, and the bilateral precuneus in the alpha band). It should be noted that the significant power peak in the alpha band was lost compared with the interictal data. Compared with controls, the interictal relative spectral power of DMN regions (except bilateral precuneus) in CAE patients was significantly increased in the delta band (pcorrected < 0.01), whereas the values of all DMN regions in the beta-gamma 2 band were significantly decreased (pcorrected < 0.01). In the higher frequency band (alpha-gamma1), especially in the beta and gamma1 band, the ictal node strength of DMN regions except the left precuneus was significantly higher than that in the interictal periods (pcorrected < 0.01), and the node strength of the right inferior parietal lobe increased most significantly in the beta band (Ictal: 3.8712 vs. Interictal: 0.7503, pcorrected < 0.01). Compared with the controls, the interictal node strength of DMN increased in all frequency bands, especially the right medial frontal cortex in the beta band (Controls: 0.1510 vs. Interictal: 3.527, pcorrected < 0.01). Comparing relative node strength between groups, the right precuneus in CAE children decreased significantly (β: Controls: 0.1009 vs. Interictal: 0.0475; γ 1: Controls:0.1149 vs. Interictal:0.0587, pcorrected < 0.01) such that it was no longer the central hub.ConclusionThese findings indicated DMN abnormalities in CAE patients, even in interictal periods without interictal epileptic discharges. Abnormal functional connectivity in CAE may reflect abnormal anatomo-functional architectural integration in DMN, as a result of cognitive mental impairment and unconsciousness during absence seizure. Future studies are needed to examine if the altered functional connectivity can be used as a biomarker for treatment responses, cognitive dysfunction, and prognosis in CAE patients.
Collapse
|
41
|
Fujio K, Obata H, Takeda K, Kawashima N. Cortical oscillations and interareal synchronization as a preparatory activity for postural response. Eur J Neurosci 2023; 57:1516-1528. [PMID: 36878880 DOI: 10.1111/ejn.15956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation originates from various areas in the central nervous system. Recent studies have revealed that the corticospinal pathway is one of the key nodes for an appropriate postural response. The corticospinal pathway that mediates the early part of the electromyographic response is modulated with prediction before a perturbation occurs. Temporal prediction explicitly exhibiting an onset timing contributes to enhancing corticospinal excitability. However, how the cortical activities in the sensorimotor area with temporal prediction are processed before the corticospinal pathway enhancement remains unclear. In this study, using electroencephalography, we investigated how temporal prediction affects both neural oscillations and synchronization between sensorimotor and distal areas. Our results revealed that desynchronization of cortical oscillation at α- and β-bands was observed in the sensorimotor and parietooccipital areas (Cz, CPz, Pz and POz), and those are nested in the phase at θ-band frequency. Furthermore, a reduction in the interareal phase synchrony in the α-band was induced after the timing cue for the perturbation onset. The phase synchrony at the low frequency can relay the temporal prediction among the distant areas and initiate the modulation of the local cortical activities. Such modulations contribute to the preparation for sensory processing and motor execution that are necessary for optimal responses.
Collapse
Affiliation(s)
- Kimiya Fujio
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Hiroki Obata
- Department of Humanities and Social Science Laboratory, Institute of Liberal Arts, Kyushu Institute of Technology, Fukuoka, Japan
| | - Kenta Takeda
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| |
Collapse
|
42
|
Gupta A, Bhushan B, Behera L. Neural response to sad autobiographical recall and sad music listening post recall reveals distinct brain activation in alpha and gamma bands. PLoS One 2023; 18:e0279814. [PMID: 36607985 PMCID: PMC9821717 DOI: 10.1371/journal.pone.0279814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Although apparently paradoxical, sad music has been effective in coping with sad life experiences. The underpinning brain neural correlates of this are not well explored. We performed Electroencephalography (EEG) source-level analysis for the brain during a sad autobiographical recall (SAR) and upon exposure to sad music. We specifically investigated the Cingulate cortex complex and Parahippocampus (PHC) regions, areas prominently involved in emotion and memory processing. Results show enhanced alpha band lag phase-synchronization in the brain during sad music listening, especially within and between the Posterior cingulate cortex (PCC) and (PHC) compared to SAR. This enhancement was lateralized for alpha1 and alpha2 bands in the left and right hemispheres, respectively. We also observed a significant increase in alpha2 brain current source density (CSD) during sad music listening compared to SAR and baseline resting state in the region of interest (ROI). Brain during SAR condition had enhanced right hemisphere lateralized functional connectivity and CSD in gamma band compared to sad music listening and baseline resting state. Our findings show that the brain during the SAR state had enhanced gamma-band activity, signifying increased content binding capacity. At the same time, the brain is associated with an enhanced alpha band activity while sad music listening, signifying increased content-specific information processing. Thus, the results suggest that the brain's neural correlates during sad music listening are distinct from the SAR state as well as the baseline resting state and facilitate enhanced content-specific information processing potentially through three-channel neural pathways-(1) by enhancing the network connectivity in the region of interest (ROI), (2) by enhancing local cortical integration of areas in ROI, and (3) by enhancing sustained attention. We argue that enhanced content-specific information processing possibly supports the positive experience during sad music listening post a sad experience in a healthy population. Finally, we propose that sadness has two different characteristics under SAR state and sad music listening.
Collapse
Affiliation(s)
- Ashish Gupta
- Department of Electrical Engineering, Indian Institute of Technology, Kanpur, India
| | - Braj Bhushan
- Department of Humanities and Social Sciences, Indian Institute of Technology, Kanpur, India
| | - Laxmidhar Behera
- Department of Electrical Engineering, Indian Institute of Technology, Kanpur, India
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, India
| |
Collapse
|
43
|
Juan E, Górska U, Kozma C, Papantonatos C, Bugnon T, Denis C, Kremen V, Worrell G, Struck AF, Bateman LM, Merricks EM, Blumenfeld H, Tononi G, Schevon C, Boly M. Distinct signatures of loss of consciousness in focal impaired awareness versus tonic-clonic seizures. Brain 2023; 146:109-123. [PMID: 36383415 PMCID: PMC10582624 DOI: 10.1093/brain/awac291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/17/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022] Open
Abstract
Loss of consciousness is a hallmark of many epileptic seizures and carries risks of serious injury and sudden death. While cortical sleep-like activities accompany loss of consciousness during focal impaired awareness seizures, the mechanisms of loss of consciousness during focal to bilateral tonic-clonic seizures remain unclear. Quantifying differences in markers of cortical activation and ictal recruitment between focal impaired awareness and focal to bilateral tonic-clonic seizures may also help us to understand their different consequences for clinical outcomes and to optimize neuromodulation therapies. We quantified clinical signs of loss of consciousness and intracranial EEG activity during 129 focal impaired awareness and 50 focal to bilateral tonic-clonic from 41 patients. We characterized intracranial EEG changes both in the seizure onset zone and in areas remote from the seizure onset zone with a total of 3386 electrodes distributed across brain areas. First, we compared the dynamics of intracranial EEG sleep-like activities: slow-wave activity (1-4 Hz) and beta/delta ratio (a validated marker of cortical activation) during focal impaired awareness versus focal to bilateral tonic-clonic. Second, we quantified differences between focal to bilateral tonic-clonic and focal impaired awareness for a marker validated to detect ictal cross-frequency coupling: phase-locked high gamma (high-gamma phased-locked to low frequencies) and a marker of ictal recruitment: the epileptogenicity index. Third, we assessed changes in intracranial EEG activity preceding and accompanying behavioural generalization onset and their correlation with electromyogram channels. In addition, we analysed human cortical multi-unit activity recorded with Utah arrays during three focal to bilateral tonic-clonic seizures. Compared to focal impaired awareness, focal to bilateral tonic-clonic seizures were characterized by deeper loss of consciousness, even before generalization occurred. Unlike during focal impaired awareness, early loss of consciousness before generalization was accompanied by paradoxical decreases in slow-wave activity and by increases in high-gamma activity in parieto-occipital and temporal cortex. After generalization, when all patients displayed loss of consciousness, stronger increases in slow-wave activity were observed in parieto-occipital cortex, while more widespread increases in cortical activation (beta/delta ratio), ictal cross-frequency coupling (phase-locked high gamma) and ictal recruitment (epileptogenicity index). Behavioural generalization coincided with a whole-brain increase in high-gamma activity, which was especially synchronous in deep sources and could not be explained by EMG. Similarly, multi-unit activity analysis of focal to bilateral tonic-clonic revealed sustained increases in cortical firing rates during and after generalization onset in areas remote from the seizure onset zone. Overall, these results indicate that unlike during focal impaired awareness, the neural signatures of loss of consciousness during focal to bilateral tonic-clonic consist of paradoxical increases in cortical activation and neuronal firing found most consistently in posterior brain regions. These findings suggest differences in the mechanisms of ictal loss of consciousness between focal impaired awareness and focal to bilateral tonic-clonic and may account for the more negative prognostic consequences of focal to bilateral tonic-clonic.
Collapse
Affiliation(s)
- Elsa Juan
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Department of Psychology, University of Amsterdam, Amsterdam, 1018 WS, The Netherlands
| | - Urszula Górska
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Krakow, Poland
| | - Csaba Kozma
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cynthia Papantonatos
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tom Bugnon
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Colin Denis
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, 16000, Czech Republic
| | - Greg Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Aaron F Struck
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neurology, William S. Middleton Veterans Administration Hospital, Madison, WI 53705, USA
| | - Lisa M Bateman
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Edward M Merricks
- Department of Neurology, Columbia University, New York City, NY 10032, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Catherine Schevon
- Department of Neurology, Columbia University, New York City, NY 10032, USA
| | - Melanie Boly
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
44
|
Kasten FH, Herrmann CS. The hidden brain-state dynamics of tACS aftereffects. Neuroimage 2022; 264:119713. [PMID: 36309333 DOI: 10.1016/j.neuroimage.2022.119713] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/11/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Non-invasive techniques to electrically stimulate the brain such as transcranial direct and alternating current stimulation (tDCS/tACS) are increasingly used in human neuroscience and offer potential new avenues to treat brain disorders. Previous research has shown that stimulation effects may depend on brain-states. However, this work mostly focused on experimentally induced brain-states over the course of several minutes. Besides such global, long-term changes in brain-states, previous research suggests, that the brain is likely to spontaneously alternate between states in sub-second ranges, which is much closer to the time scale at which it is generally believed to operate. Here, we utilized Hidden Markov Models (HMM) to decompose magnetoencephalography data obtained before and after tACS into spontaneous, transient brain-states with distinct spatial, spectral and connectivity profiles. Only one out of four spontaneous brain-states, likely reflecting default mode network activity, showed evidence for an effect of tACS on the power of spontaneous α-oscillations. The identified state appears to disproportionally drive the overall (non-state resolved) tACS effect. No or only marginal effects were found in the remaining states. We found no evidence that tACS influenced the time spent in each state. Although stimulation was applied continuously, our results indicate that spontaneous brain-states and their underlying functional networks differ in their susceptibility to tACS. Global stimulation aftereffects may be disproportionally driven by distinct time periods during which the susceptible state is active. Our results may pave the ground for future work to understand which features make a specific brain-state susceptible to electrical stimulation.
Collapse
Affiliation(s)
- Florian H Kasten
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence "Hearing4All", Carl von Ossietzky University, Oldenburg, Germany; Centre de Recherche Cerveau & Cognition, CNRS, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence "Hearing4All", Carl von Ossietzky University, Oldenburg, Germany; Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany.
| |
Collapse
|
45
|
Understanding why infant-directed speech supports learning: A dynamic attention perspective. DEVELOPMENTAL REVIEW 2022. [DOI: 10.1016/j.dr.2022.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Pascarella A, Gianni E, Abbondanza M, Armonaite K, Pitolli F, Bertoli M, L’Abbate T, Grifoni J, Vitulano D, Bruni V, Conti L, Paulon L, Tecchio F. Normalized compression distance to measure cortico-muscular synchronization. Front Neurosci 2022; 16:933391. [PMID: 36440261 PMCID: PMC9687393 DOI: 10.3389/fnins.2022.933391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/19/2022] [Indexed: 06/29/2024] Open
Abstract
The neuronal functional connectivity is a complex and non-stationary phenomenon creating dynamic networks synchronization determining the brain states and needed to produce tasks. Here, as a measure that quantifies the synchronization between the neuronal electrical activity of two brain regions, we used the normalized compression distance (NCD), which is the length of the compressed file constituted by the concatenated two signals, normalized by the length of the two compressed files including each single signal. To test the NCD sensitivity to physiological properties, we used NCD to measure the cortico-muscular synchronization, a well-known mechanism to control movements, in 15 healthy volunteers during a weak handgrip. Independently of NCD compressor (Huffman or Lempel Ziv), we found out that the resulting measure is sensitive to the dominant-non dominant asymmetry when novelty management is required (p = 0.011; p = 0.007, respectively) and depends on the level of novelty when moving the non-dominant hand (p = 0.012; p = 0.024). Showing lower synchronization levels for less dexterous networks, NCD seems to be a measure able to enrich the estimate of functional two-node connectivity within the neuronal networks that control the body.
Collapse
Affiliation(s)
- Annalisa Pascarella
- Institute for the Applications of Calculus “M. Picone”, National Research Council, Rome, Italy
| | - Eugenia Gianni
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Matteo Abbondanza
- Department of Basic and Applied Sciences for Engineering (SBAI), University of Rome “La Sapienza”, Rome, Italy
| | - Karolina Armonaite
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
- Faculty of Psychology, Uninettuno University, Rome, Italy
| | - Francesca Pitolli
- Department of Basic and Applied Sciences for Engineering (SBAI), University of Rome “La Sapienza”, Rome, Italy
| | - Massimo Bertoli
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University “Gabriele D’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Teresa L’Abbate
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
- Faculty of Psychology, Uninettuno University, Rome, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University “Gabriele D’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Joy Grifoni
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
- Faculty of Psychology, Uninettuno University, Rome, Italy
| | - Domenico Vitulano
- Institute for the Applications of Calculus “M. Picone”, National Research Council, Rome, Italy
- Department of Basic and Applied Sciences for Engineering (SBAI), University of Rome “La Sapienza”, Rome, Italy
| | - Vittoria Bruni
- Institute for the Applications of Calculus “M. Picone”, National Research Council, Rome, Italy
- Department of Basic and Applied Sciences for Engineering (SBAI), University of Rome “La Sapienza”, Rome, Italy
| | - Livio Conti
- Faculty of Engineering, Uninettuno University, Rome, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione Roma Tor Vergata, Rome, Italy
| | - Luca Paulon
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
- Independent Researcher, Rome, Italy
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
47
|
Mercier MR, Dubarry AS, Tadel F, Avanzini P, Axmacher N, Cellier D, Vecchio MD, Hamilton LS, Hermes D, Kahana MJ, Knight RT, Llorens A, Megevand P, Melloni L, Miller KJ, Piai V, Puce A, Ramsey NF, Schwiedrzik CM, Smith SE, Stolk A, Swann NC, Vansteensel MJ, Voytek B, Wang L, Lachaux JP, Oostenveld R. Advances in human intracranial electroencephalography research, guidelines and good practices. Neuroimage 2022; 260:119438. [PMID: 35792291 PMCID: PMC10190110 DOI: 10.1016/j.neuroimage.2022.119438] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/23/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Since the second-half of the twentieth century, intracranial electroencephalography (iEEG), including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the human brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes with constraints, such as the individual's tailored sparsity of electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG research.
Collapse
Affiliation(s)
- Manuel R Mercier
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.
| | | | - François Tadel
- Signal & Image Processing Institute, University of Southern California, Los Angeles, CA United States of America
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Outer St, Beijing 100875, China
| | - Dillan Cellier
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America
| | - Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Liberty S Hamilton
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States of America; Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, TX, United States of America
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Anais Llorens
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
| | - Pierre Megevand
- Department of Clinical neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lucia Melloni
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, Frankfurt am Main 60322, Germany; Department of Neurology, NYU Grossman School of Medicine, 145 East 32nd Street, Room 828, New York, NY 10016, United States of America
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Vitória Piai
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Medical Psychology, Radboudumc, Donders Centre for Medical Neuroscience, Nijmegen, the Netherlands
| | - Aina Puce
- Department of Psychological & Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, Bloomington, IN, United States of America
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany; Perception and Plasticity Group, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sydney E Smith
- Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America
| | - Arjen Stolk
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States of America
| | - Nicole C Swann
- University of Oregon in the Department of Human Physiology, United States of America
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Bradley Voytek
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America; Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America; Halıcıoğlu Data Science Institute, University of California, La Jolla, San Diego, United States of America; Kavli Institute for Brain and Mind, University of California, La Jolla, San Diego, United States of America
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jean-Philippe Lachaux
- Lyon Neuroscience Research Center, EDUWELL Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; NatMEG, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Stoliker D, Egan GF, Friston KJ, Razi A. Neural Mechanisms and Psychology of Psychedelic Ego Dissolution. Pharmacol Rev 2022; 74:876-917. [PMID: 36786290 DOI: 10.1124/pharmrev.121.000508] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroimaging studies of psychedelics have advanced our understanding of hierarchical brain organization and the mechanisms underlying their subjective and therapeutic effects. The primary mechanism of action of classic psychedelics is binding to serotonergic 5-HT2A receptors. Agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy that can have a profound effect on hierarchical message-passing in the brain. Here, we review the cognitive and neuroimaging evidence for the effects of psychedelics: in particular, their influence on selfhood and subject-object boundaries-known as ego dissolution-surmised to underwrite their subjective and therapeutic effects. Agonism of 5-HT2A receptors, located at the apex of the cortical hierarchy, may have a particularly powerful effect on sentience and consciousness. These effects can endure well after the pharmacological half-life, suggesting that psychedelics may have effects on neural plasticity that may play a role in their therapeutic efficacy. Psychologically, this may be accompanied by a disarming of ego resistance that increases the repertoire of perceptual hypotheses and affords alternate pathways for thought and behavior, including those that undergird selfhood. We consider the interaction between serotonergic neuromodulation and sentience through the lens of hierarchical predictive coding, which speaks to the value of psychedelics in understanding how we make sense of the world and specific predictions about effective connectivity in cortical hierarchies that can be tested using functional neuroimaging. SIGNIFICANCE STATEMENT: Classic psychedelics bind to serotonergic 5-HT2A receptors. Their agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy, resulting in a profound effect on information processing in the brain. Here, we synthesize an abundance of brain imaging research with pharmacological and psychological interpretations informed by the framework of predictive coding. Moreover, predictive coding is suggested to offer more sophisticated interpretations of neuroimaging findings by bridging the role between the 5-HT2A receptors and large-scale brain networks.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Gary F Egan
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Karl J Friston
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Adeel Razi
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| |
Collapse
|
49
|
Chien SE, Yang YH, Ono Y, Yeh SL. Theta activity in semantic priming under visual crowding as revealed by magnetoencephalography. Neurosci Res 2022; 185:29-39. [PMID: 36113812 DOI: 10.1016/j.neures.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 11/27/2022]
Abstract
Crowding refers to impaired object recognition of peripheral visual targets caused by nearby flankers. It has been shown that the response to a word was faster when it was preceded by a semantically related than unrelated crowded prime, demonstrating that semantic priming survives crowding. This study examines neural correlates of semantic priming under visual crowding using magnetoencephalography with four conditions: prime (isolated, crowded) x prime-target relationship (related, unrelated). Participants judged whether the target was a word or a nonword. We found significant differences in θ activity at the left inferior frontal gyrus (IFG) for both isolated and crowded primes when comparing the unrelated and related conditions, although the activation was delayed with the crowded prime compared to the isolated prime. The locations within the IFG were also different: theta-band activation was at BA 45 in the isolated condition and at BA 47 in the crowded condition. Phase-locking-value analysis revealed that bilateral IFG was more synchronized with unrelated prime-target pairs than related pairs regardless of whether the primes were isolated or crowded, indicating the recruitment of the right hemisphere when the prime-target semantic relationship was remote. Finally, the distinct waveform patterns found in the isolated and crowded conditions from both the source localization and PLV analysis suggest different neural mechanisms for processing semantic information with isolated primes versus crowded primes.
Collapse
Affiliation(s)
- Sung-En Chien
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Yung-Hao Yang
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Yumie Ono
- School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Su-Ling Yeh
- Department of Psychology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan; Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
50
|
The dysfunction of mGluRIIs is involved in the disorder of hippocampal neural network in diabetic mice model. Exp Brain Res 2022; 240:2491-2498. [PMID: 35994067 DOI: 10.1007/s00221-022-06433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/02/2022] [Indexed: 11/04/2022]
Abstract
Cognitive dysfunction is a high incidence of diabetes mellitus (DM). However, the relationship between DM-induced cognitive defect and neuronal network oscillations is still unknown. In this study, adult male C57BL/6 J mice were intraperitoneally injected with streptozotocin (STZ) to duplicate DM. After 12 weeks, local field potentials were recorded in the perforant fiber pathway (PP) and dentate gyrus (DG) regions. Data showed that mice in the STZ group exhibited impairment of spatial learning and memory by the Morris Water Maze test. The low gamma (LG) and high gamma (HG) power were increased in the PP and DG areas of the STZ group. Moreover, the phase synchronization and the information flow at theta and LG rhythms between the PP and DG areas were decreased, and the theta-LG phase-amplitude coupling strength was markedly reduced in the PP region, DG region, and the PP-DG pathway in the STZ group. Additionally, the concentration of glutamate was increased by the high-performance liquid chromatography. Moreover, the NR2B and PSD95 expressions were markedly reduced, and the Akt/GSK-3β pathway was inhibited. Interestingly, the expressions of mGluRIIs (mGluR2 and mGluR3) were significantly decreased. The reduction of mGluRIIs may limit their function, such as restricting presynaptic glutamate release and reversing the dysfunction of NR2B via Akt/GSK-3β signaling pathway. In conclusion, our data suggest that DM alters the hippocampal neural network partly related to the dysfunction of mGluRIIs.
Collapse
|