1
|
Lum JS, Brown ML, Farrawell NE, Bartlett R, Chisholm CG, Gorman J, Dosseto A, Dux F, McInnes LE, Ecroyd H, McAlary L, Crouch PJ, Donnelly PS, Yerbury JJ. A polytherapy approach demonstrates therapeutic efficacy for the treatment of SOD1 associated amyotrophic lateral sclerosis. EBioMedicine 2025; 115:105692. [PMID: 40222103 PMCID: PMC12018197 DOI: 10.1016/j.ebiom.2025.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND SOD1 mutations are a significant contributor of familial amyotrophic lateral sclerosis (ALS) cases. SOD1 mutations increase the propensity for the protein to misfold and aggregate into insoluble proteinaceous deposits within motor neurons and neighbouring cells. The small molecule, CuATSM, has repeatedly shown in mouse models to be a promising therapeutic treatment for SOD1-associated ALS and is currently in Phase II/III clinical trials for the treatment of ALS. We have previously shown CuATSM stabilises various ALS-associated variants of the SOD1 protein, reducing misfolding and toxicity. Two additional FDA-approved small molecules, ebselen and telbivudine, have also been identified to reduce mutant SOD1 toxicity, providing additional potential therapeutic candidates that could be used in combination with CuATSM. Here, we aimed to investigate if CuATSM, ebselen and telbivudine (CET) polytherapy could improve on the therapeutic efficacy of CuATSM monotherapy for the treatment of SOD1-associated ALS. METHODS We utilised a 3D checkerboard approach to investigate whether a matrix of different concentrations CuATSM, ebselen and telbivudine could provide therapeutic improvements on cell survival, SOD1 folding and aggregation in SOD1G93A-transfected NSC-34 cells, compared to CuATSM alone. To progress the preclinical development of CET polytherapy, we evaluated the bioavailability and safety of in vivo polytherapy administration. Furthermore, we assessed and compared the effects of CET- and CuATSM-treatment on disease onset, motor function, survival and neuropathological features in SOD1G93A mice. FINDINGS CET polytherapy reduced inclusion formation and increased cell survival of NSC-34 cells overexpressing SOD1G93A compared to higher concentrations of CuATSM monotherapy. In addition, CET administration was bioavailable and tolerable in mice. CET treatment in SOD1G93A mice delayed disease onset, reduced motor impairments, and increased survival compared to vehicle- and CuATSM-treated mice. In line with these findings, biochemical analysis of lumbar spinal cords showed CET administration improved SOD1 folding, decreased misfolded SOD1 accumulation, and reduced motor neuron loss. INTERPRETATION These findings support CET polytherapy as an advantageous alternative compared to CuATSM monotherapy and highlight the potential of utilising small molecules targeting SOD1 as a polytherapy avenue for the treatment of SOD1-associated ALS. FUNDING This work was supported by a FightMND Drug Development Grant, an Australian National Health and Medical Research Council (NHMRC) Investigator Grant (No. 1194872) and a Motor Neuron Disease Research Institute of Australia Bill Gole Postdoctoral Fellowship.
Collapse
Affiliation(s)
- Jeremy S Lum
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia; School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Mikayla L Brown
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Natalie E Farrawell
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rachael Bartlett
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Christen G Chisholm
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jody Gorman
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Florian Dux
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Lachlan E McInnes
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Luke McAlary
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Peter J Crouch
- Department of Anatomy and Physiology, Centre for Muscle Research, University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Justin J Yerbury
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
2
|
Chen L, Shen Q, Liu Y, Zhang Y, Sun L, Ma X, Song N, Xie J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct Target Ther 2025; 10:31. [PMID: 39894843 PMCID: PMC11788444 DOI: 10.1038/s41392-024-02071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
As essential micronutrients, metal ions such as iron, manganese, copper, and zinc, are required for a wide range of physiological processes in the brain. However, an imbalance in metal ions, whether excessive or insufficient, is detrimental and can contribute to neuronal death through oxidative stress, ferroptosis, cuproptosis, cell senescence, or neuroinflammation. These processes have been found to be involved in the pathological mechanisms of neurodegenerative diseases. In this review, the research history and milestone events of studying metal ions, including iron, manganese, copper, and zinc in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), will be introduced. Then, the upstream regulators, downstream effector, and crosstalk of mental ions under both physiologic and pathologic conditions will be summarized. Finally, the therapeutic effects of metal ion chelators, such as clioquinol, quercetin, curcumin, coumarin, and their derivatives for the treatment of neurodegenerative diseases will be discussed. Additionally, the promising results and limitations observed in clinical trials of these metal ion chelators will also be addressed. This review will not only provide a comprehensive understanding of the role of metal ions in disease development but also offer perspectives on their modulation for the prevention or treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Qingqing Shen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yunqi Zhang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Liping Sun
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
3
|
McAlary L, Nan JR, Shyu C, Sher M, Plotkin SS, Cashman NR. Amyloidogenic regions in beta-strands II and III modulate the aggregation and toxicity of SOD1 in living cells. Open Biol 2024; 14:230418. [PMID: 38835240 DOI: 10.1098/rsob.230418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/16/2024] [Indexed: 06/06/2024] Open
Abstract
Mutations in the protein superoxide dismutase-1 (SOD1) promote its misfolding and aggregation, ultimately causing familial forms of the debilitating neurodegenerative disease amyotrophic lateral sclerosis (ALS). Currently, over 220 (mostly missense) ALS-causing mutations in the SOD1 protein have been identified, indicating that common structural features are responsible for aggregation and toxicity. Using in silico tools, we predicted amyloidogenic regions in the ALS-associated SOD1-G85R mutant, finding seven regions throughout the structure. Introduction of proline residues into β-strands II (I18P) or III (I35P) reduced the aggregation propensity and toxicity of SOD1-G85R in cells, significantly more so than proline mutations in other amyloidogenic regions. The I18P and I35P mutations also reduced the capability of SOD1-G85R to template onto previously formed non-proline mutant SOD1 aggregates as measured by fluorescence recovery after photobleaching. Finally, we found that, while the I18P and I35P mutants are less structurally stable than SOD1-G85R, the proline mutants are less aggregation-prone during proteasome inhibition, and less toxic to cells overall. Our research highlights the importance of a previously underappreciated SOD1 amyloidogenic region in β-strand II (15QGIINF20) to the aggregation and toxicity of SOD1 in ALS mutants, and suggests that β-strands II and III may be good targets for the development of SOD1-associated ALS therapies.
Collapse
Affiliation(s)
- Luke McAlary
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Jeremy R Nan
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Clay Shyu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Mine Sher
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Genome Sciences and Technology Program, University of British Columbia, Vancouver, BC, Canada
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Graber DJ, Cook WJ, Sentman ML, Murad-Mabaera JM, Sentman CL. Human CD4+CD25+ T cells expressing a chimeric antigen receptor against aberrant superoxide dismutase 1 trigger antigen-specific immunomodulation. Cytotherapy 2024; 26:126-135. [PMID: 38043051 PMCID: PMC10872388 DOI: 10.1016/j.jcyt.2023.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/12/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND AIMS Amyotrophic lateral sclerosis (ALS) is a fatal disease associated with motor neuron degeneration, accumulation of aggregated misfolded proteins and neuroinflammation in motor regions of the central nervous system (CNS). Clinical trials using regulatory T cells (Tregs) are ongoing because of Tregs' immunomodulatory function, ability to traffic to the CNS, high numbers correlating with slower disease in ALS and disease-modifying activity in ALS mouse models. In the current study, a chimeric antigen receptor (CAR) was developed and characterized in human Tregs to enhance their immunomodulatory activity when in contact with an ALS protein aggregate. METHODS A CAR (DG05-28-3z) consisting of a human superoxide dismutase 1 (hSOD1)-binding single-chain variable fragment, CD28 hinge, transmembrane and co-stimulatory domain and CD3ζ signaling domain was created and expressed in human Tregs. Human Tregs were isolated by either magnetic enrichment for CD4+CD25hi cells (Enr-Tregs) or cell sorting for CD4+CD25hiCD127lo cells (FP-Tregs), transduced and expanded for 17 days. RESULTS The CAR bound preferentially to the ALS mutant G93A-hSOD1 protein relative to the wild-type hSOD1 protein. The CAR Tregs produced IL-10 when cultured with aggregated G93A-hSOD1 proteins or spinal cord explants from G93A-hSOD1 transgenic mice. Co-culturing DG05-28-3z CAR Tregs with human monocytes/macrophages inhibited production of tumor necrosis factor alpha and reactive oxygen species. Expanded FP-Tregs resulted in more robust Tregs compared with Enr-Tregs. FP-Tregs produced similar IL-10 and less interferon gamma, had lower Treg-specific demethylated region methylation and expressed higher FoxP3 and CD39. CONCLUSIONS Taken together, this study demonstrates that gene-modified Tregs can be developed to target an aggregated ALS-relevant protein to elicit CAR-mediated Treg effector functions and provides an approach for generating Treg therapies for ALS with the goal of enhanced disease site-specific immunomodulation.
Collapse
Affiliation(s)
- David J Graber
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Center for Synthetic Immunity, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - W James Cook
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Center for Synthetic Immunity, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Marie-Louise Sentman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Center for Synthetic Immunity, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | | | - Charles L Sentman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Center for Synthetic Immunity, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA.
| |
Collapse
|
5
|
Flores-Estrada J, Cano-Martínez A, Vargas-González Á, Castrejón-Téllez V, Cornejo-Garrido J, Martínez-Rosas M, Guarner-Lans V, Rubio-Ruíz ME. Hepatoprotective Mechanisms Induced by Spinach Methanolic Extract in Rats with Hyperglycemia-An Immunohistochemical Analysis. Antioxidants (Basel) 2023; 12:2013. [PMID: 38001866 PMCID: PMC10669258 DOI: 10.3390/antiox12112013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Spinach methanolic extract (SME) has a hepatoprotective effect due to its polyphenolic antioxidants; however, its action in parenchymal (PQ) and non-parenchymal (nPQ) cells remains unknown. This study investigates the hepatoprotective effect of SME on streptozotocin-induced hyperglycemic rats (STZ), focusing on immunohistochemical analyses. Methods: The extract was prepared, and the total polyphenols and antioxidant activity were quantified. Adult male Wistar rats were divided into four groups (n = 8): normoglycemic rats (NG), STZ-induced hyperglycemic (STZ), STZ treated with 400 mg/kg SME (STZ-SME), and NG treated with SME (SME) for 12 weeks. Serum liver transaminases and lipid peroxidation levels in tissue were determined. The distribution pattern and relative levels of markers related to oxidative stress [reactive oxygen species (ROS), superoxide dismutase-1, catalase, and glutathione peroxidase-1], of cytoprotective molecules [nuclear NRF2 and heme oxygenase-1 (HO-1)], of inflammatory mediators [nuclear NF-κB, TNF-α], proliferation (PCNA), and of fibrogenesis markers [TGF-β, Smad2/3, MMP-9, and TIMP1] were evaluated. Results: SME had antioxidant capacity, and it lowered serum transaminase levels in STZ-SME compared to STZ. It reduced NOX4 staining, and lipid peroxidation levels were related to low formation of ROS. In STZ-SME, the immunostaining for antioxidant enzymes increased in nPQ cells compared to STZ. However, enzymes were also localized in extra and intracellular vesicles in STZ. Nuclear NRF2 staining and HO-1 expression in PQ and nPQ were higher in STZ-SME than in STZ. Inflammatory factors were decreased in STZ-SME and were related to the percentage decrease in NF-κB nuclear staining in nPQ cells. Similarly, TGF-β (in the sinusoids) and MMP-9 (in nPQ) were increased in the STZ-SME group compared to the other groups; however, staining for CTGF, TIMP1, and Smad2/3 was lower. Conclusions: SME treatment in hyperglycemic rats induced by STZ may have hepatoprotective properties due to its scavenger capacity and the regulation of differential expression of antioxidant enzymes between the PQ and nPQ cells, reducing inflammatory and fibrogenic biomarkers in liver tissue.
Collapse
Affiliation(s)
| | - Agustina Cano-Martínez
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (A.C.-M.); (Á.V.-G.); (V.C.-T.); (M.M.-R.); (V.G.-L.); (M.E.R.-R.)
| | - Álvaro Vargas-González
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (A.C.-M.); (Á.V.-G.); (V.C.-T.); (M.M.-R.); (V.G.-L.); (M.E.R.-R.)
| | - Vicente Castrejón-Téllez
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (A.C.-M.); (Á.V.-G.); (V.C.-T.); (M.M.-R.); (V.G.-L.); (M.E.R.-R.)
| | - Jorge Cornejo-Garrido
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional, Mexico City 07320, Mexico;
| | - Martín Martínez-Rosas
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (A.C.-M.); (Á.V.-G.); (V.C.-T.); (M.M.-R.); (V.G.-L.); (M.E.R.-R.)
| | - Verónica Guarner-Lans
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (A.C.-M.); (Á.V.-G.); (V.C.-T.); (M.M.-R.); (V.G.-L.); (M.E.R.-R.)
| | - María Esther Rubio-Ruíz
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (A.C.-M.); (Á.V.-G.); (V.C.-T.); (M.M.-R.); (V.G.-L.); (M.E.R.-R.)
| |
Collapse
|
6
|
Rubino V, La Rosa G, Pipicelli L, Carriero F, Damiano S, Santillo M, Terrazzano G, Ruggiero G, Mondola P. Insights on the Multifaceted Roles of Wild-Type and Mutated Superoxide Dismutase 1 in Amyotrophic Lateral Sclerosis Pathogenesis. Antioxidants (Basel) 2023; 12:1747. [PMID: 37760050 PMCID: PMC10525763 DOI: 10.3390/antiox12091747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive motor neurodegenerative disease. Cell damage in ALS is the result of many different, largely unknown, pathogenetic mechanisms. Astrocytes and microglial cells play a critical role also for their ability to enhance a deranged inflammatory response. Excitotoxicity, due to excessive glutamate levels and increased intracellular Ca2+ concentration, has also been proposed to play a key role in ALS pathogenesis/progression. Reactive Oxygen Species (ROS) behave as key second messengers for multiple receptor/ligand interactions. ROS-dependent regulatory networks are usually mediated by peroxides. Superoxide Dismutase 1 (SOD1) physiologically mediates intracellular peroxide generation. About 10% of ALS subjects show a familial disease associated with different gain-of-function SOD1 mutations. The occurrence of sporadic ALS, not clearly associated with SOD1 defects, has been also described. SOD1-dependent pathways have been involved in neuron functional network as well as in immune-response regulation. Both, neuron depolarization and antigen-dependent T-cell activation mediate SOD1 exocytosis, inducing increased interaction of the enzyme with a complex molecular network involved in the regulation of neuron functional activity and immune response. Here, alteration of SOD1-dependent pathways mediating increased intracellular Ca2+ levels, altered mitochondria functions and defective inflammatory process regulation have been proposed to be relevant for ALS pathogenesis/progression.
Collapse
Affiliation(s)
- Valentina Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Luca Pipicelli
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Flavia Carriero
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (F.C.); (G.T.)
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Giuseppe Terrazzano
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (F.C.); (G.T.)
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| |
Collapse
|
7
|
Song J, Dikwella N, Sinske D, Roselli F, Knöll B. SRF deletion results in earlier disease onset in a mouse model of amyotrophic lateral sclerosis. JCI Insight 2023; 8:e167694. [PMID: 37339001 PMCID: PMC10445689 DOI: 10.1172/jci.insight.167694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/16/2023] [Indexed: 06/22/2023] Open
Abstract
Changes in neuronal activity modulate the vulnerability of motoneurons (MNs) in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). So far, the molecular basis of neuronal activity's impact in ALS is poorly understood. Herein, we investigated the impact of deleting the neuronal activity-stimulated transcription factor (TF) serum response factor (SRF) in MNs of SOD1G93A mice. SRF was present in vulnerable MMP9+ MNs. Ablation of SRF in MNs induced an earlier disease onset starting around 7-8 weeks after birth, as revealed by enhanced weight loss and decreased motor ability. This earlier disease onset in SRF-depleted MNs was accompanied by a mild elevation of neuroinflammation and neuromuscular synapse degeneration, whereas overall MN numbers and mortality were unaffected. In SRF-deficient mice, MNs showed impaired induction of autophagy-encoding genes, suggesting a potentially new SRF function in transcriptional regulation of autophagy. Complementary, constitutively active SRF-VP16 enhanced autophagy-encoding gene transcription and autophagy progression in cells. Furthermore, SRF-VP16 decreased ALS-associated aggregate induction. Chemogenetic modulation of neuronal activity uncovered SRF as having important TF-mediating activity-dependent effects, which might be beneficial to reduce ALS disease burden. Thus, our data identify SRF as a gene regulator connecting neuronal activity with the cellular autophagy program initiated in degenerating MNs.
Collapse
Affiliation(s)
- Jialei Song
- Institute of Neurobiochemistry and
- Department of Neurology, Ulm University, Ulm, Germany
| | - Natalie Dikwella
- Institute of Neurobiochemistry and
- Department of Neurology, Ulm University, Ulm, Germany
| | | | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases-Ulm (DZNE-Ulm), Ulm, Germany
| | | |
Collapse
|
8
|
Hosomi A, Okachi C, Fujiwara Y. Human SOD1 is secreted via a conventional secretion pathway in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2023; 666:101-106. [PMID: 37182284 DOI: 10.1016/j.bbrc.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
Soluble proteins sorted through the secretory pathway contain an N-terminal signal peptide that induces their translocation into the endoplasmic reticulum (ER) from the cytosol. However, a few proteins that lack a signal peptide are still translocated into the ER, such as SOD1. SOD1 is a causative gene of amyotrophic lateral sclerosis (ALS). A relationship has been suggested between the secretion of SOD1 and the pathogenesis of ALS; however, the transport mechanism of SOD1 remains unclear. We herein report that SOD1 was translocated into the ER lumen through the translocon Sec61 and was then secreted extracellularly. The present results indicate the potential of suppressing the secretion of SOD1 as a therapeutic target for ALS.
Collapse
Affiliation(s)
- Akira Hosomi
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan; Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan.
| | - Chinatsu Okachi
- Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| | - Yudai Fujiwara
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| |
Collapse
|
9
|
McCluskey G, Morrison KE, Donaghy C, Rene F, Duddy W, Duguez S. Extracellular Vesicles in Amyotrophic Lateral Sclerosis. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010121. [PMID: 36676070 PMCID: PMC9867379 DOI: 10.3390/life13010121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Amyotrophic Lateral Sclerosis is a progressive neurodegenerative disease and is the most common adult motor neuron disease. The disease pathogenesis is complex with the perturbation of multiple pathways proposed, including mitochondrial dysfunction, RNA processing, glutamate excitotoxicity, endoplasmic reticulum stress, protein homeostasis and endosomal transport/extracellular vesicle (EV) secretion. EVs are nanoscopic membrane-bound particles that are released from cells, involved in the intercellular communication of proteins, lipids and genetic material, and there is increasing evidence of their role in ALS. After discussing the biogenesis of EVs, we review their roles in the propagation of pathological proteins in ALS, such as TDP-43, SOD1 and FUS, and their contribution to disease pathology. We also discuss the ALS related genes which are involved in EV formation and vesicular trafficking, before considering the EV protein and RNA dysregulation found in ALS and how these have been investigated as potential biomarkers. Finally, we highlight the potential use of EVs as therapeutic agents in ALS, in particular EVs derived from mesenchymal stem cells and EVs as drug delivery vectors for potential treatment strategies.
Collapse
Affiliation(s)
- Gavin McCluskey
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Correspondence: (G.M.); (S.D.)
| | - Karen E. Morrison
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Faculty of Medicine, Health & Life Sciences, Queen’s University, Belfast BT9 6AG, UK
| | - Colette Donaghy
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - Frederique Rene
- INSERM U1118, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France
| | - William Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Correspondence: (G.M.); (S.D.)
| |
Collapse
|
10
|
P2X7 receptor activation mediates superoxide dismutase 1 (SOD1) release from murine NSC-34 motor neurons. Purinergic Signal 2022; 18:451-467. [PMID: 35478453 PMCID: PMC9832181 DOI: 10.1007/s11302-022-09863-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/05/2022] [Indexed: 01/15/2023] Open
Abstract
Mutant superoxide dismutase 1 (SOD1) can be constitutively released from motor neurons and transmitted to naïve motor neurons to promote the progression of amyotrophic lateral sclerosis (ALS). However, the biological impacts of this process and the precise mechanisms of SOD1 release remain to be fully resolved. Using biochemical and fluorescent techniques, this study aimed to determine if P2X7 receptor activation could induce mutant SOD1 release from motor neurons and whether this released SOD1 could be transmitted to motor neurons or microglia to mediate effects associated with neurodegeneration in ALS. Aggregated SOD1G93A, released from murine NSC-34 motor neurons transiently transfected with SOD1G93A, could be transmitted to naïve NSC-34 cells and murine EOC13 microglia to induce endoplasmic reticulum (ER) stress and tumour necrosis factor-alpha (TNFα) release, respectively. Immunoblotting revealed NSC-34 cells expressed P2X7. Extracellular ATP induced cation dye uptake into these cells, which was blocked by the P2X7 antagonist AZ10606120, demonstrating these cells express functional P2X7. Moreover, ATP induced the rapid release of aggregated SOD1G93A from NSC-34 cells transiently transfected with SOD1G93A, a process blocked by AZ10606120 and revealing a role for P2X7 in this process. ATP-induced SOD1G93A release coincided with membrane blebbing. Finally, aggregated SOD1G93A released via P2X7 activation could also be transmitted to NSC-34 and EOC13 cells to induce ER stress and TNFα release, respectively. Collectively, these results identify a novel role for P2X7 in the prion-like propagation of SOD1 in ALS and provide a possible explanation for the therapeutic benefits of P2X7 antagonism previously observed in ALS SOD1G93A mice.
Collapse
|
11
|
McAlary L, Shephard VK, Sher M, Rice LJ, Yerbury JJ, Cashman NR, Plotkin SS. Assessment of protein inclusions in cultured cells using automated image analysis. STAR Protoc 2022; 3:101748. [PMID: 36201320 PMCID: PMC9535320 DOI: 10.1016/j.xpro.2022.101748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Proteinaceous inclusions are associated with neurodegenerative diseases and cell models are often used to determine genetic and chemical modifiers of their formation. This protocol involves the usage of automated microscopy and machine learning-based image analysis to accurately quantify the levels of protein inclusion formation in cultured cells from fluorescence microscopy images. This protocol is highly scalable and can be applied to a few images or large datasets. For complete details on the use and execution of this protocol, please refer to McAlary et al. (2022).
Collapse
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia,Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia,Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada,Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada,Genome Science and Technology Program, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada,Corresponding author
| | - Victoria K. Shephard
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia,Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Mine Sher
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada,Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| | - Lauren J. Rice
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia,Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia,Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Neil R. Cashman
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| | - Steven S. Plotkin
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada,Genome Science and Technology Program, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada,Corresponding author
| |
Collapse
|
12
|
Ruff KM, Choi YH, Cox D, Ormsby AR, Myung Y, Ascher DB, Radford SE, Pappu RV, Hatters DM. Sequence grammar underlying the unfolding and phase separation of globular proteins. Mol Cell 2022; 82:3193-3208.e8. [PMID: 35853451 PMCID: PMC10846692 DOI: 10.1016/j.molcel.2022.06.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 05/05/2022] [Accepted: 06/15/2022] [Indexed: 12/23/2022]
Abstract
Aberrant phase separation of globular proteins is associated with many diseases. Here, we use a model protein system to understand how the unfolded states of globular proteins drive phase separation and the formation of unfolded protein deposits (UPODs). We find that for UPODs to form, the concentrations of unfolded molecules must be above a threshold value. Additionally, unfolded molecules must possess appropriate sequence grammars to drive phase separation. While UPODs recruit molecular chaperones, their compositional profiles are also influenced by synergistic physicochemical interactions governed by the sequence grammars of unfolded proteins and cellular proteins. Overall, the driving forces for phase separation and the compositional profiles of UPODs are governed by the sequence grammars of unfolded proteins. Our studies highlight the need for uncovering the sequence grammars of unfolded proteins that drive UPOD formation and cause gain-of-function interactions whereby proteins are aberrantly recruited into UPODs.
Collapse
Affiliation(s)
- Kiersten M Ruff
- Department of Biomedical Engineering, Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yoon Hee Choi
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Dezerae Cox
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Angelique R Ormsby
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Yoochan Myung
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; Systems and Computational Biology, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; Systems and Computational Biology, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sheena E Radford
- Astbury Centre for Structural and Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Rohit V Pappu
- Department of Biomedical Engineering, Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Danny M Hatters
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
13
|
Brown ML, McAlary L, Lum JS, Farrawell NE, Yerbury JJ. Cells Overexpressing ALS-Associated SOD1 Variants Are Differentially Susceptible to CuATSM-Associated Toxicity. ACS Chem Neurosci 2022; 13:2371-2379. [PMID: 35900338 DOI: 10.1021/acschemneuro.2c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
CuATSM has repeatedly demonstrated to be therapeutically effective in SOD1 mouse models of amyotrophic lateral sclerosis (ALS), leading to current clinical trials. CuATSM acts to stabilize ALS-associated mutant SOD1 protein by supplying copper. However, in vitro work has demonstrated that CuATSM is only therapeutic for wild-type-like SOD1 mutants, not metal-binding-region mutants, suggesting that CuATSM may have genotype-specific effects. Furthermore, relatively high doses of CuATSM have been shown to produce adverse events in humans and mice. Here, we investigated the genotype-specific therapeutic window of CuATSM. NSC-34 cells transiently expressing copper-binding or non-binding mutations of SOD1 were treated with a broad range of CuATSM concentrations and examined for survival via time-lapse microscopy. Determination of the no-observed-adverse-effect level and the LC50 suggest that CuATSM-associated toxicity is dependent on the amount of copper-depleted SOD1 available as well as the mutant's ability to bind copper. Our results suggest that the particular variant of SOD1 mutant is crucial in not only determining the level of efficacy achieved but also potential adverse events.
Collapse
Affiliation(s)
- Mikayla L Brown
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Luke McAlary
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jeremy S Lum
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Natalie E Farrawell
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
14
|
McAlary L, Shephard VK, Wright GSA, Yerbury JJ. A copper chaperone-mimetic polytherapy for SOD1-associated amyotrophic lateral sclerosis. J Biol Chem 2022; 298:101612. [PMID: 35065969 PMCID: PMC8885447 DOI: 10.1016/j.jbc.2022.101612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons progressively and rapidly degenerate, eventually leading to death. The first protein found to contain ALS-associated mutations was copper/zinc superoxide dismutase 1 (SOD1), which is conformationally stable when it contains its metal ligands and has formed its native intramolecular disulfide. Mutations in SOD1 reduce protein folding stability via disruption of metal binding and/or disulfide formation, resulting in misfolding, aggregation, and ultimately cellular toxicity. A great deal of effort has focused on preventing the misfolding and aggregation of SOD1 as a potential therapy for ALS; however, the results have been mixed. Here, we utilize a small-molecule polytherapy of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuATSM) and ebselen to mimic the metal delivery and disulfide bond promoting activity of the cellular chaperone of SOD1, the “copper chaperone for SOD1.” Using microscopy with automated image analysis, we find that polytherapy using CuATSM and ebselen is highly effective and acts in synergy to reduce inclusion formation in a cell model of SOD1 aggregation for multiple ALS-associated mutants. Polytherapy reduces mutant SOD1-associated cell death, as measured by live-cell microscopy. Measuring dismutase activity via zymography and immunoblotting for disulfide formation showed that polytherapy promoted more effective maturation of transfected SOD1 variants beyond either compound alone. Our data suggest that a polytherapy of CuATSM and ebselen may merit more study as an effective method of treating SOD1-associated ALS.
Collapse
Affiliation(s)
- L McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia.
| | - V K Shephard
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - G S A Wright
- Department of Biochemistry & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - J J Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia.
| |
Collapse
|
15
|
Petrozziello T, Boscia F, Tedeschi V, Pannaccione A, de Rosa V, Corvino A, Severino B, Annunziato L, Secondo A. Na +/Ca 2+ exchanger isoform 1 takes part to the Ca 2+-related prosurvival pathway of SOD1 in primary motor neurons exposed to beta-methylamino-L-alanine. Cell Commun Signal 2022; 20:8. [PMID: 35022040 PMCID: PMC8756626 DOI: 10.1186/s12964-021-00813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background The cycad neurotoxin beta-methylamino-l-alanine (L-BMAA), one of the environmental trigger factor for amyotrophic lateral sclerosis/Parkinson-dementia complex (ALS/PDC), may cause neurodegeneration by disrupting organellar Ca2+ homeostasis. Through the activation of Akt/ERK1/2 pathway, the Cu,Zn-superoxide dismutase (SOD1) and its non-metallated form, ApoSOD1, prevent endoplasmic reticulum (ER) stress-induced cell death in motor neurons exposed to L-BMAA. This occurs through the rapid increase of intracellular Ca2+ concentration ([Ca2+]i) in part flowing from the extracellular compartment and in part released from ER. However, the molecular components of this mechanism remain uncharacterized. Methods By an integrated approach consisting on the use of siRNA strategy, Western blotting, confocal double- labeling immunofluorescence, patch-clamp electrophysiology, and Fura 2-/SBFI-single-cell imaging, we explored in rat motor neuron-enriched cultures the involvement of the plasma membrane proteins Na+/Ca2+ exchanger (NCX) and purinergic P2X7 receptor as well as that of the intracellular cADP-ribose (cADPR) pathway, in the neuroprotective mechanism of SOD1. Results We showed that SOD1-induced [Ca2+]i rise was prevented neither by A430879, a P2X7 receptor specific antagonist or 8-bromo-cADPR, a cell permeant antagonist of cADP-ribose, but only by the pan inhibitor of NCX, CB-DMB. The same occurred for the ApoSOD1. Confocal double labeling immunofluorescence showed a huge expression of plasmalemmal NCX1 and intracellular NCX3 isoforms. Furthermore, we identified NCX1 reverse mode as the main mechanism responsible for the neuroprotective ER Ca2+ refilling elicited by SOD1 and ApoSOD1 through which they promoted translocation of active Akt in the nuclei of a subset of primary motor neurons. Finally, the activation of NCX1 by the specific agonist CN-PYB2 protected motor neurons from L-BMAA-induced cell death, mimicking the effect of SOD1. Conclusion Collectively, our data indicate that SOD1 and ApoSOD1 exert their neuroprotective effect by modulating ER Ca2+ content through the activation of NCX1 reverse mode and Akt nuclear translocation in a subset of primary motor neurons. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00813-z.
Collapse
Affiliation(s)
- Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via S. Pansini 5, 80131, Naples, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via S. Pansini 5, 80131, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via S. Pansini 5, 80131, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via S. Pansini 5, 80131, Naples, Italy
| | - Valeria de Rosa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via S. Pansini 5, 80131, Naples, Italy
| | - Angela Corvino
- Department of Pharmacy, School of Medicine, "Federico II" University of Naples, Via D. Montesano 49, 80131, Naples, Italy
| | - Beatrice Severino
- Department of Pharmacy, School of Medicine, "Federico II" University of Naples, Via D. Montesano 49, 80131, Naples, Italy
| | | | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
16
|
Guida N, Sanguigno L, Mascolo L, Calabrese L, Serani A, Molinaro P, Lau CG, Annunziato L, Formisano L. The Transcriptional Complex Sp1/KMT2A by Up-Regulating Restrictive Element 1 Silencing Transcription Factor Accelerates Methylmercury-Induced Cell Death in Motor Neuron-Like NSC34 Cells Overexpressing SOD1-G93A. Front Neurosci 2021; 15:771580. [PMID: 34899171 PMCID: PMC8662822 DOI: 10.3389/fnins.2021.771580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Methylmercury (MeHg) exposure has been related to amyotrophic lateral sclerosis (ALS) pathogenesis and molecular mechanisms of its neurotoxicity has been associated to an overexpression of the Restrictive Element 1 Silencing Transcription factor (REST). Herein, we evaluated the possibility that MeHg could accelerate neuronal death of the motor neuron-like NSC34 cells transiently overexpressing the human Cu2+/Zn2+superoxide dismutase 1 (SOD1) gene mutated at glycine 93 (SOD1-G93A). Indeed, SOD1-G93A cells exposed to 100 nM MeHg for 24 h showed a reduction in cell viability, as compared to cells transfected with empty vector or with unmutated SOD1 construct. Interestingly, cell survival reduction in SOD1-G93A cells was associated with an increase of REST mRNA and protein levels. Furthermore, MeHg increased the expression of the transcriptional factor Sp1 and promoted its binding to REST gene promoter sequence. Notably, Sp1 knockdown reverted MeHg-induced REST increase. Co-immunoprecipitation experiments demonstrated that Sp1 physically interacted with the epigenetic writer Lysine-Methyltransferase-2A (KMT2A). Moreover, knocking-down of KMT2A reduced MeHg-induced REST mRNA and protein increase in SOD1-G93A cells. Finally, we found that MeHg-induced REST up-regulation triggered necropoptotic cell death, monitored by RIPK1 increased protein expression. Interestingly, REST knockdown or treatment with the necroptosis inhibitor Necrostatin-1 (Nec) decelerated MeH-induced cell death in SOD1-G93A cells. Collectively, this study demonstrated that MeHg hastens necroptotic cell death in SOD1-G93A cells via Sp1/KMT2A complex, that by epigenetic mechanisms increases REST gene expression.
Collapse
Affiliation(s)
| | - Luca Sanguigno
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Luigi Mascolo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Lucrezia Calabrese
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - C Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | | | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|
17
|
Farrawell NE, Yerbury JJ. Mutant Cu/Zn Superoxide Dismutase (A4V) Turnover Is Altered in Cells Containing Inclusions. Front Mol Neurosci 2021; 14:771911. [PMID: 34803609 PMCID: PMC8597841 DOI: 10.3389/fnmol.2021.771911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
SOD1 mutations account for ∼20% of familial amyotrophic lateral sclerosis (ALS) cases in which the hallmark pathological feature is insoluble SOD1 aggregates within motor neurons. Here, we investigated the degradation and synthesis of mutant SOD1 to determine whether the aggregation of mutant SOD1A4V affects these processes. We confirm that, in general, the degradation of mutant SOD1A4V occurs at a significantly faster rate than wild-type SOD1. We also report that the turnover and synthesis of mutant SOD1A4V is impaired in the presence of insoluble SOD1A4V aggregates. However, the timing of aggregation of SOD1A4V did not coincide with UPS dysfunction. Together, these results reveal the impact of SOD1 aggregation on protein degradation pathways, highlighting the importance of the UPS in preventing neurodegenerative disorders such as ALS.
Collapse
Affiliation(s)
- Natalie E Farrawell
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
18
|
Cicardi ME, Marrone L, Azzouz M, Trotti D. Proteostatic imbalance and protein spreading in amyotrophic lateral sclerosis. EMBO J 2021; 40:e106389. [PMID: 33792056 PMCID: PMC8126909 DOI: 10.15252/embj.2020106389] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/18/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder whose exact causative mechanisms are still under intense investigation. Several lines of evidence suggest that the anatomical and temporal propagation of pathological protein species along the neural axis could be among the main driving mechanisms for the fast and irreversible progression of ALS pathology. Many ALS-associated proteins form intracellular aggregates as a result of their intrinsic prion-like properties and/or following impairment of the protein quality control systems. During the disease course, these mutated proteins and aberrant peptides are released in the extracellular milieu as soluble or aggregated forms through a variety of mechanisms. Internalization by recipient cells may seed further aggregation and amplify existing proteostatic imbalances, thus triggering a vicious cycle that propagates pathology in vulnerable cells, such as motor neurons and other susceptible neuronal subtypes. Here, we provide an in-depth review of ALS pathology with a particular focus on the disease mechanisms of seeding and transmission of the most common ALS-associated proteins, including SOD1, FUS, TDP-43, and C9orf72-linked dipeptide repeats. For each of these proteins, we report historical, biochemical, and pathological evidence of their behaviors in ALS. We further discuss the possibility to harness pathological proteins as biomarkers and reflect on the implications of these findings for future research.
Collapse
Affiliation(s)
- Maria Elena Cicardi
- Department of NeuroscienceWeinberg ALS CenterVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Lara Marrone
- Department of NeuroscienceSheffield Institute for Translational Neuroscience (SITraN)University of SheffieldSheffieldUK
| | - Mimoun Azzouz
- Department of NeuroscienceSheffield Institute for Translational Neuroscience (SITraN)University of SheffieldSheffieldUK
| | - Davide Trotti
- Department of NeuroscienceWeinberg ALS CenterVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
19
|
A Metal-Free, Disulfide Oxidized Form of Superoxide Dismutase 1 as a Primary Misfolded Species with Prion-Like Properties in the Extracellular Environments Surrounding Motor Neuron-Like Cells. Int J Mol Sci 2021; 22:ijms22084155. [PMID: 33923808 PMCID: PMC8074096 DOI: 10.3390/ijms22084155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
Superoxide dismutase 1 (SOD1) is a metalloenzyme with high structural stability, but a lack of Cu and Zn ions decreases its stability and enhances the likelihood of misfolding, which is a pathological hallmark of amyotrophic lateral sclerosis (ALS). A growing body of evidence has demonstrated that misfolded SOD1 has prion-like properties such as transmissibility between cells and intracellular propagation of misfolding of natively folded SOD1. Recently, we found that SOD1 is misfolded in the cerebrospinal fluid of sporadic ALS patients, providing a route by which misfolded SOD1 spreads via the extracellular environment of the central nervous system. Unlike intracellular misfolded SOD1, it is unknown which extracellular misfolded species is most relevant to prion-like properties. Here, we determined a conformational feature of extracellular misfolded SOD1 that is linked to prion-like properties. Using culture media from motor neuron-like cells, NSC-34, extracellular misfolded wild-type, and four ALS-causing SOD1 mutants were characterized as a metal-free, disulfide oxidized form of SOD1 (apo-SOD1S-S). Extracellular misfolded apo-SOD1S-S exhibited cell-to-cell transmission from the culture medium to recipient cells as well as intracellular propagation of SOD1 misfolding in recipient cells. Furthermore, culture medium containing misfolded apo-SOD1S-S exerted cytotoxicity to motor neuron-like cells, which was blocked by removal of misfolded apo-SOD1S-S from the medium. We conclude that misfolded apo-SOD1S-S is a primary extracellular species that is linked to prion-like properties.
Collapse
|
20
|
Rozas P, Pinto C, Martínez Traub F, Díaz R, Pérez V, Becerra D, Ojeda P, Ojeda J, Wright MT, Mella J, Plate L, Henríquez JP, Hetz C, Medinas DB. Protein disulfide isomerase ERp57 protects early muscle denervation in experimental ALS. Acta Neuropathol Commun 2021; 9:21. [PMID: 33541434 PMCID: PMC7863244 DOI: 10.1186/s40478-020-01116-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive fatal neurodegenerative disease that affects motoneurons. Mutations in superoxide dismutase 1 (SOD1) have been described as a causative genetic factor for ALS. Mice overexpressing ALS-linked mutant SOD1 develop ALS symptoms accompanied by histopathological alterations and protein aggregation. The protein disulfide isomerase family member ERp57 is one of the main up-regulated proteins in tissue of ALS patients and mutant SOD1 mice, whereas point mutations in ERp57 were described as possible risk factors to develop the disease. ERp57 catalyzes disulfide bond formation and isomerization in the endoplasmic reticulum (ER), constituting a central component of protein quality control mechanisms. However, the actual contribution of ERp57 to ALS pathogenesis remained to be defined. Here, we studied the consequences of overexpressing ERp57 in experimental ALS using mutant SOD1 mice. Double transgenic SOD1G93A/ERp57WT animals presented delayed deterioration of electrophysiological activity and maintained muscle innervation compared to single transgenic SOD1G93A littermates at early-symptomatic stage, along with improved motor performance without affecting survival. The overexpression of ERp57 reduced mutant SOD1 aggregation, but only at disease end-stage, dissociating its role as an anti-aggregation factor from the protection of neuromuscular junctions. Instead, proteomic analysis revealed that the neuroprotective effects of ERp57 overexpression correlated with increased levels of synaptic and actin cytoskeleton proteins in the spinal cord. Taken together, our results suggest that ERp57 operates as a disease modifier at early stages by maintaining motoneuron connectivity.
Collapse
Affiliation(s)
- Pablo Rozas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70086, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Cristina Pinto
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Faculty of Biological Sciences, Center for Advanced Microscopy (CMA Bio-Bio), Universidad de Concepción, Concepción, Chile
| | - Francisca Martínez Traub
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70086, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Rodrigo Díaz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70086, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Viviana Pérez
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Faculty of Biological Sciences, Center for Advanced Microscopy (CMA Bio-Bio), Universidad de Concepción, Concepción, Chile
| | - Daniela Becerra
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70086, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Patricia Ojeda
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70086, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Jorge Ojeda
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Faculty of Biological Sciences, Center for Advanced Microscopy (CMA Bio-Bio), Universidad de Concepción, Concepción, Chile
| | - Madison T Wright
- Department of Chemistry and Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Jessica Mella
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Faculty of Biological Sciences, Center for Advanced Microscopy (CMA Bio-Bio), Universidad de Concepción, Concepción, Chile
| | - Lars Plate
- Department of Chemistry and Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Juan Pablo Henríquez
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Faculty of Biological Sciences, Center for Advanced Microscopy (CMA Bio-Bio), Universidad de Concepción, Concepción, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70086, Santiago, Chile.
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.
- Buck Institute for Research on Aging, Novato, CA, USA.
| | - Danilo B Medinas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70086, Santiago, Chile.
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
21
|
McAlary L, Chew YL, Lum JS, Geraghty NJ, Yerbury JJ, Cashman NR. Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. Front Cell Neurosci 2020; 14:581907. [PMID: 33328890 PMCID: PMC7671971 DOI: 10.3389/fncel.2020.581907] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of the motor neurons that innervate muscle, resulting in gradual paralysis and culminating in the inability to breathe or swallow. This neuronal degeneration occurs in a spatiotemporal manner from a point of onset in the central nervous system (CNS), suggesting that there is a molecule that spreads from cell-to-cell. There is strong evidence that the onset and progression of ALS pathology is a consequence of protein misfolding and aggregation. In line with this, a hallmark pathology of ALS is protein deposition and inclusion formation within motor neurons and surrounding glia of the proteins TAR DNA-binding protein 43, superoxide dismutase-1, or fused in sarcoma. Collectively, the observed protein aggregation, in conjunction with the spatiotemporal spread of symptoms, strongly suggests a prion-like propagation of protein aggregation occurs in ALS. In this review, we discuss the role of protein aggregation in ALS concerning protein homeostasis (proteostasis) mechanisms and prion-like propagation. Furthermore, we examine the experimental models used to investigate these processes, including in vitro assays, cultured cells, invertebrate models, and murine models. Finally, we evaluate the therapeutics that may best prevent the onset or spread of pathology in ALS and discuss what lies on the horizon for treating this currently incurable disease.
Collapse
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Yee Lian Chew
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Stephen Lum
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Nicholas John Geraghty
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Justin John Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Neil R. Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
García-Huerta P, Troncoso-Escudero P, Wu D, Thiruvalluvan A, Cisternas-Olmedo M, Henríquez DR, Plate L, Chana-Cuevas P, Saquel C, Thielen P, Longo KA, Geddes BJ, Lederkremer GZ, Sharma N, Shenkman M, Naphade S, Sardi SP, Spichiger C, Richter HG, Court FA, Tshilenge KT, Ellerby LM, Wiseman RL, Gonzalez-Billault C, Bergink S, Vidal RL, Hetz C. Insulin-like growth factor 2 (IGF2) protects against Huntington's disease through the extracellular disposal of protein aggregates. Acta Neuropathol 2020; 140:737-764. [PMID: 32642868 PMCID: PMC8513574 DOI: 10.1007/s00401-020-02183-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/06/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
Abstract
Impaired neuronal proteostasis is a salient feature of many neurodegenerative diseases, highlighting alterations in the function of the endoplasmic reticulum (ER). We previously reported that targeting the transcription factor XBP1, a key mediator of the ER stress response, delays disease progression and reduces protein aggregation in various models of neurodegeneration. To identify disease modifier genes that may explain the neuroprotective effects of XBP1 deficiency, we performed gene expression profiling of brain cortex and striatum of these animals and uncovered insulin-like growth factor 2 (Igf2) as the major upregulated gene. Here, we studied the impact of IGF2 signaling on protein aggregation in models of Huntington's disease (HD) as proof of concept. Cell culture studies revealed that IGF2 treatment decreases the load of intracellular aggregates of mutant huntingtin and a polyglutamine peptide. These results were validated using induced pluripotent stem cells (iPSC)-derived medium spiny neurons from HD patients and spinocerebellar ataxia cases. The reduction in the levels of mutant huntingtin was associated with a decrease in the half-life of the intracellular protein. The decrease in the levels of abnormal protein aggregation triggered by IGF2 was independent of the activity of autophagy and the proteasome pathways, the two main routes for mutant huntingtin clearance. Conversely, IGF2 signaling enhanced the secretion of soluble mutant huntingtin species through exosomes and microvesicles involving changes in actin dynamics. Administration of IGF2 into the brain of HD mice using gene therapy led to a significant decrease in the levels of mutant huntingtin in three different animal models. Moreover, analysis of human postmortem brain tissue and blood samples from HD patients showed a reduction in IGF2 level. This study identifies IGF2 as a relevant factor deregulated in HD, operating as a disease modifier that buffers the accumulation of abnormal protein species.
Collapse
Affiliation(s)
- Paula García-Huerta
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Sector B, Second Floor, Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70086, Santiago, Chile
| | - Paulina Troncoso-Escudero
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Sector B, Second Floor, Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70086, Santiago, Chile
- Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile
| | - Di Wu
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arun Thiruvalluvan
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marisol Cisternas-Olmedo
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile
| | - Daniel R Henríquez
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Department of Cell Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Lars Plate
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Pedro Chana-Cuevas
- Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile
| | - Cristian Saquel
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile
| | - Peter Thielen
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, 02115, USA
| | | | | | - Gerardo Z Lederkremer
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Neeraj Sharma
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Marina Shenkman
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Swati Naphade
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - S Pablo Sardi
- Rare and Neurological Diseases Therapeutic Area, Sanofi, 49 New York Avenue, Framingham, MA, 01701, USA
| | - Carlos Spichiger
- Faculty of Sciences, Institute of Biochemistry and Microbiology, University Austral of Chile, Valdivia, Chile
| | - Hans G Richter
- Faculty of Medicine, Institute of Anatomy, Histology and Pathology, University Austral of Chile, Valdivia, Chile
| | - Felipe A Court
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Lisa M Ellerby
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Christian Gonzalez-Billault
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Department of Cell Biology, Faculty of Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Steven Bergink
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rene L Vidal
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
- Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile.
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Sector B, Second Floor, Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70086, Santiago, Chile.
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
| |
Collapse
|
23
|
Gyawali A, Kang YS. Transport Alteration of 4-Phenyl Butyric Acid Mediated by a Sodium- and Proton-Coupled Monocarboxylic Acid Transporter System in ALS Model Cell Lines (NSC-34) Under Inflammatory States. J Pharm Sci 2020; 110:1374-1384. [PMID: 33098824 DOI: 10.1016/j.xphs.2020.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/20/2022]
Abstract
4-Phenyl butyric acid (PBA) has histone deacetylase inhibitory and neuroprotective effects. We aimed to examine the transport alteration activity of PBA in control (WT) and disease (MT) model cell lines of an amyotrophic lateral sclerosis (ALS) model. The transport characteristics of PBA were examined uptake rates and mRNA expression levels in NSC-34 cell lines. PBA uptake was pH, sodium, and concentration dependent. The Km and Vmax values for PBA uptake in the MT were more than two-fold higher than those in the WT. The presence of monocarboxylic acids (MA) and inhibitors of MA transporter (MCT) inhibited the uptake of PBA. PBA showed competitive inhibition in the presence of MAs in both cell lines. SiRNA transfection studies showed that PBA can be transported to NSC-34 cell lines through sodium-coupled MCT1. TNF-α and H2O2 increased, but LPS and glutamate reduced the uptake rate after the pretreatment of the MT cell lines. SMCT1 mRNA expression levels, in the presence of oxidative stress inducing agents, showed consistent results with the uptake results. These results demonstrate that PBA can be transported to the ALS model NSC-34 cell lines by sodium- and proton-coupled MCTs, and MA plays a vital role in the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Asmita Gyawali
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul, Republic of Korea
| | - Young-Sook Kang
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Damiano S, Sozio C, La Rosa G, Guida B, Faraonio R, Santillo M, Mondola P. Metabolism Regulation and Redox State: Insight into the Role of Superoxide Dismutase 1. Int J Mol Sci 2020; 21:ijms21186606. [PMID: 32927603 PMCID: PMC7554782 DOI: 10.3390/ijms21186606] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Energy metabolism and redox state are strictly linked; energy metabolism is a source of reactive oxygen species (ROS) that, in turn, regulate the flux of metabolic pathways. Moreover, to assure redox homeostasis, metabolic pathways and antioxidant systems are often coordinately regulated. Several findings show that superoxide dismutase 1 (SOD1) enzyme has effects that go beyond its superoxide dismutase activity and that its functions are not limited to the intracellular compartment. Indeed, SOD1 is secreted through unconventional secretory pathways, carries out paracrine functions and circulates in the blood bound to lipoproteins. Striking experimental evidence links SOD1 to the redox regulation of metabolism. Important clues are provided by the systemic effects on energy metabolism observed in mutant SOD1-mediated amyotrophic lateral sclerosis (ALS). The purpose of this review is to analyze in detail the involvement of SOD1 in redox regulation of metabolism, nutrient sensing, cholesterol metabolism and regulation of mitochondrial respiration. The scientific literature on the relationship between ALS, mutated SOD1 and metabolism will also be explored, in order to highlight the metabolic functions of SOD1 whose biological role still presents numerous unexplored aspects that deserve further investigation.
Collapse
Affiliation(s)
- Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Naples, Italy; (S.D.); (C.S.); (G.L.R.); (B.G.)
| | - Concetta Sozio
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Naples, Italy; (S.D.); (C.S.); (G.L.R.); (B.G.)
| | - Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Naples, Italy; (S.D.); (C.S.); (G.L.R.); (B.G.)
| | - Bruna Guida
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Naples, Italy; (S.D.); (C.S.); (G.L.R.); (B.G.)
| | - Raffaella Faraonio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli “Federico II”, 80131 Naples, Italy;
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Naples, Italy; (S.D.); (C.S.); (G.L.R.); (B.G.)
- Correspondence: (M.S.); (P.M.); Tel.: +39-081-746-3233 (M.S.); +39-081-746-3225 (P.M.)
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Naples, Italy; (S.D.); (C.S.); (G.L.R.); (B.G.)
- Correspondence: (M.S.); (P.M.); Tel.: +39-081-746-3233 (M.S.); +39-081-746-3225 (P.M.)
| |
Collapse
|
25
|
McAlary L, Yerbury JJ, Cashman NR. The prion-like nature of amyotrophic lateral sclerosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:261-296. [PMID: 32958236 DOI: 10.1016/bs.pmbts.2020.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The misfolding, aggregation, and deposition of specific proteins is the key hallmark of most progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). ALS is characterized by the rapid and progressive degenerations of motor neurons in the spinal cord and motor cortex, resulting in paralysis of those who suffer from it. Pathologically, there are three major aggregating proteins associated with ALS, including TAR DNA-binding protein of 43kDa (TDP-43), superoxide dismutase-1 (SOD1), and fused in sarcoma (FUS). While there are ALS-associated mutations found in each of these proteins, the most prevalent aggregation pathology is that of wild-type TDP-43 (97% of cases), with the remaining split between mutant forms of SOD1 (~2%) and FUS (~1%). Considering the progressive nature of ALS and its association with the aggregation of specific proteins, a growing notion is that the spread of pathology and symptoms can be explained by a prion-like mechanism. Prion diseases are a group of highly infectious neurodegenerative disorders caused by the misfolding, aggregation, and spread of a transmissible conformer of prion protein (PrP). Pathogenic PrP is capable of converting healthy PrP into a toxic form through template-directed misfolding. Application of this finding to other neurodegenerative disorders, and in particular ALS, has revolutionized our understanding of cause and progression of these disorders. In this chapter, we first provide a background on ALS pathology and genetic origin. We then detail and discuss the evidence supporting a prion-like propagation of protein misfolding and aggregation in ALS with a particular focus on SOD1 and TDP-43 as these are the most well-established models in the field.
Collapse
Affiliation(s)
- L McAlary
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - J J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - N R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
26
|
San Gil R, Cox D, McAlary L, Berg T, Walker AK, Yerbury JJ, Ooi L, Ecroyd H. Neurodegenerative disease-associated protein aggregates are poor inducers of the heat shock response in neuronal cells. J Cell Sci 2020; 133:jcs.243709. [PMID: 32661089 DOI: 10.1242/jcs.243709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Protein aggregates that result in inclusion formation are a pathological hallmark common to many neurodegenerative diseases, including amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. Under conditions of cellular stress, activation of the heat shock response (HSR) results in an increase in the levels of molecular chaperones and is a first line of cellular defence against inclusion formation. It remains to be established whether neurodegenerative disease-associated proteins and inclusions are themselves capable of inducing an HSR in neuronal cells. To address this, we generated a neuroblastoma cell line that expresses a fluorescent reporter protein under conditions of heat shock transcription factor 1 (HSF1)-mediated HSR induction. We show that the HSR is not induced by exogenous treatment with aggregated forms of recombinant α-synuclein or the G93A mutant of superoxide dismutase-1 (SOD1G93A) nor intracellular expression of SOD1G93A or a pathogenic form of polyglutamine-expanded huntingtin (Htt72Q). These results suggest that pathogenic proteins evade detection or impair induction of the HSR in neuronal cells. A failure of protein aggregation to induce an HSR might contribute to the development of inclusion pathology in neurodegenerative diseases.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rebecca San Gil
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| | - Dezerae Cox
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia
| | - Luke McAlary
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Tracey Berg
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia .,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
27
|
Perri ER, Parakh S, Vidal M, Mehta P, Ma Y, Walker AK, Atkin JD. The Cysteine (Cys) Residues Cys-6 and Cys-111 in Mutant Superoxide Dismutase 1 (SOD1) A4V Are Required for Induction of Endoplasmic Reticulum Stress in Amyotrophic Lateral Sclerosis. J Mol Neurosci 2020; 70:1357-1368. [PMID: 32445072 DOI: 10.1007/s12031-020-01551-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the degeneration of motor neurons. Between 12 and 20% of inherited cases and approximately 1-2% of all cases are caused by mutations in the gene encoding dismutase 1 (SOD1). Mutant SOD1 A4V (alanine to valine) induces endoplasmic reticulum (ER) stress, which is increasingly implicated as a pathway to motor neuron degeneration and death in ALS. However, it remains unclear how ER stress is induced by mutant SOD1 A4V. Previous studies have established that it is induced early in pathophysiology and it precedes the formation of mutant SOD1 inclusions. SOD1 contains four cysteine residues, two of which form an intra-subunit disulphide bond involving Cys-57 and Cys-146. The remaining two cysteines, Cys-6 and Cys-111, remain unpaired and have been implicated in mutant SOD1 aggregation. In this study, we examined the relationship between the SOD1 A4V cysteine residues and aggregation, ER stress induction and toxicity. We report here that mutation of Cys-6 and Cys-111 in mutant SOD1 A4V, but not Cys-57 or Cys-146, ameliorates ER stress, inclusion formation and apoptosis in neuronal cell lines. These results imply that protein misfolding, induced by Cys-6 and Cys-111, is required for these pathological events in neuronal cells.
Collapse
Affiliation(s)
- Emma R Perri
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sonam Parakh
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Marta Vidal
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Prachi Mehta
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yi Ma
- Department of General Surgery, Monash Health, Melbourne, Victoria, Australia
| | - Adam K Walker
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Julie D Atkin
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia. .,Department of General Surgery, Monash Health, Melbourne, Victoria, Australia.
| |
Collapse
|
28
|
Cu/Zn-superoxide dismutase and wild-type like fALS SOD1 mutants produce cytotoxic quantities of H 2O 2 via cysteine-dependent redox short-circuit. Sci Rep 2019; 9:10826. [PMID: 31346243 PMCID: PMC6658568 DOI: 10.1038/s41598-019-47326-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
The Cu/Zn−superoxide dismutase (SOD1) is a ubiquitous enzyme that catalyzes the dismutation of superoxide radicals to oxygen and hydrogen peroxide. In addition to this principal reaction, the enzyme is known to catalyze, with various efficiencies, several redox side-reactions using alternative substrates, including biological thiols, all involving the catalytic copper in the enzyme’s active-site, which is relatively surface exposed. The accessibility and reactivity of the catalytic copper is known to increase upon SOD1 misfolding, structural alterations caused by a mutation or environmental stresses. These competing side-reactions can lead to the formation of particularly toxic ROS, which have been proposed to contribute to oxidative damage in amyotrophic lateral sclerosis (ALS), a neurodegenerative disease that affects motor neurons. Here, we demonstrated that metal-saturated SOD1WT (holo-SOD1WT) and a familial ALS (fALS) catalytically active SOD1 mutant, SOD1G93A, are capable, under defined metabolic circumstances, to generate cytotoxic quantities of H2O2 through cysteine (CSH)/glutathione (GSH) redox short-circuit. Such activity may drain GSH stores, therefore discharging cellular antioxidant potential. By analyzing the distribution of thiol compounds throughout the CNS, the location of potential hot-spots of ROS production can be deduced. These hot-spots may constitute the origin of oxidative damage to neurons in ALS.
Collapse
|
29
|
Beltran S, Nassif M, Vicencio E, Arcos J, Labrador L, Cortes BI, Cortez C, Bergmann CA, Espinoza S, Hernandez MF, Matamala JM, Bargsted L, Matus S, Rojas-Rivera D, Bertrand MJM, Medinas DB, Hetz C, Manque PA, Woehlbier U. Network approach identifies Pacer as an autophagy protein involved in ALS pathogenesis. Mol Neurodegener 2019; 14:14. [PMID: 30917850 PMCID: PMC6437924 DOI: 10.1186/s13024-019-0313-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a multifactorial fatal motoneuron disease without a cure. Ten percent of ALS cases can be pointed to a clear genetic cause, while the remaining 90% is classified as sporadic. Our study was aimed to uncover new connections within the ALS network through a bioinformatic approach, by which we identified C13orf18, recently named Pacer, as a new component of the autophagic machinery and potentially involved in ALS pathogenesis. METHODS Initially, we identified Pacer using a network-based bioinformatic analysis. Expression of Pacer was then investigated in vivo using spinal cord tissue from two ALS mouse models (SOD1G93A and TDP43A315T) and sporadic ALS patients. Mechanistic studies were performed in cell culture using the mouse motoneuron cell line NSC34. Loss of function of Pacer was achieved by knockdown using short-hairpin constructs. The effect of Pacer repression was investigated in the context of autophagy, SOD1 aggregation, and neuronal death. RESULTS Using an unbiased network-based approach, we integrated all available ALS data to identify new functional interactions involved in ALS pathogenesis. We found that Pacer associates to an ALS-specific subnetwork composed of components of the autophagy pathway, one of the main cellular processes affected in the disease. Interestingly, we found that Pacer levels are significantly reduced in spinal cord tissue from sporadic ALS patients and in tissues from two ALS mouse models. In vitro, Pacer deficiency lead to impaired autophagy and accumulation of ALS-associated protein aggregates, which correlated with the induction of cell death. CONCLUSIONS This study, therefore, identifies Pacer as a new regulator of proteostasis associated with ALS pathology.
Collapse
Affiliation(s)
- S Beltran
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile.,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile
| | - M Nassif
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile.,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile
| | - E Vicencio
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile.,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile
| | - J Arcos
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile.,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile
| | - L Labrador
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile.,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile
| | - B I Cortes
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile.,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile
| | - C Cortez
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile
| | - C A Bergmann
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile.,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile
| | - S Espinoza
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile
| | - M F Hernandez
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile.,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile
| | - J M Matamala
- Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago, Chile
| | - L Bargsted
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago, Chile
| | - S Matus
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago, Chile.,Fundación Ciencia & Vida, Zañartu 1482, 7780272, Santiago, Chile.,Neurounion Biomedical Foundation, 7780272, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
| | - D Rojas-Rivera
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile.,VIB Center for Inflammation Research, Technologiepark 927, Zwijnaarde, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde, 9052, Ghent, Belgium
| | - M J M Bertrand
- VIB Center for Inflammation Research, Technologiepark 927, Zwijnaarde, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde, 9052, Ghent, Belgium
| | - D B Medinas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Independencia, 1027, Santiago, Chile
| | - C Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA, 94945, USA.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Independencia, 1027, Santiago, Chile.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, 02115, USA
| | - P A Manque
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile. .,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile. .,Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - U Woehlbier
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile. .,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile.
| |
Collapse
|
30
|
Farrawell NE, Yerbury MR, Plotkin SS, McAlary L, Yerbury JJ. CuATSM Protects Against the In Vitro Cytotoxicity of Wild-Type-Like Copper-Zinc Superoxide Dismutase Mutants but not Mutants That Disrupt Metal Binding. ACS Chem Neurosci 2019; 10:1555-1564. [PMID: 30462490 DOI: 10.1021/acschemneuro.8b00527] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the SOD1 gene are associated with some forms of familial amyotrophic lateral sclerosis (fALS). There are more than 150 different mutations in the SOD1 gene that have various effects on the copper-zinc superoxide dismutase (SOD1) enzyme structure, including the loss of metal binding and a decrease in dimer affinity. The copper-based therapeutic CuATSM has been proven to be effective at rescuing neuronal cells from SOD1 mutant toxicity and has also increased the life expectancy of mice expressing the human transgenes SOD1G93A and SOD1G37R. Furthermore, CuATSM is currently the subject of a phase I/II clinical trial in Australia as a treatment for ALS. To determine if CuATSM protects against a broad variety of SOD1 mutations, we used a well-established cell culture model of SOD1-fALS. NSC-34 cells expressing SOD1-EGFP constructs were treated with CuATSM and examined by time-lapse microscopy. Our results show a concentration-dependent protection of cells expressing mutant SOD1A4V over the experimental time period. We tested the efficacy of CuATSM on 10 SOD1-fALS mutants and found that while protection was observed in cells expressing pathogenic wild-type-like mutants, cells expressing a truncation mutant or metal binding region mutants were not. We also show that CuATSM rescue is associated with an increase in human SOD1 activity and a decrease in the level of SOD1 aggregation in vitro. In conclusion, CuATSM has shown to be a promising therapeutic for SOD1-associated ALS; however, our in vitro results suggest that the protection afforded varies depending on the SOD1 variant, including negligible protection to mutants with deficient copper binding.
Collapse
Affiliation(s)
- Natalie E. Farrawell
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Biological Sciences, Centre of Medicine and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Maddison R. Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Biological Sciences, Centre of Medicine and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Steven S. Plotkin
- Department of Physics & Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Genome Sciences and Technology Program, The University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Luke McAlary
- Department of Physics & Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Biological Sciences, Centre of Medicine and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
31
|
Kumar Ghosh D, Nanaji Shrikondawar A, Ranjan A. Local structural unfolding at the edge-strands of beta sheets is the molecular basis for instability and aggregation of G85R and G93A mutants of superoxide dismutase 1. J Biomol Struct Dyn 2019; 38:647-659. [DOI: 10.1080/07391102.2019.1584125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Akshaykumar Nanaji Shrikondawar
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
| |
Collapse
|
32
|
Experimental Mutations in Superoxide Dismutase 1 Provide Insight into Potential Mechanisms Involved in Aberrant Aggregation in Familial Amyotrophic Lateral Sclerosis. G3-GENES GENOMES GENETICS 2019; 9:719-728. [PMID: 30622123 PMCID: PMC6404617 DOI: 10.1534/g3.118.200787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mutations in more than 80 different positions in superoxide dismutase 1 (SOD1) have been associated with amyotrophic lateral sclerosis (fALS). There is substantial evidence that a common consequence of these mutations is to induce the protein to misfold and aggregate. How these mutations perturb native structure to heighten the propensity to misfold and aggregate is unclear. In the present study, we have mutagenized Glu residues at positions 40 and 133 that are involved in stabilizing the β-barrel structure of the native protein and a critical Zn binding domain, respectively, to examine how specific mutations may cause SOD1 misfolding and aggregation. Mutations associated with ALS as well as experimental mutations were introduced into these positions. We used an assay in which mutant SOD1 was fused to yellow fluorescent protein (SOD1:YFP) to visualize the formation of cytosolic inclusions by mutant SOD1. We then used existing structural data on SOD1, to predict how different mutations might alter local 3D conformation. Our findings reveal an association between mutant SOD1 aggregation and amino acid substitutions that are predicted to introduce steric strain, sometimes subtly, in the 3D conformation of the peptide backbone.
Collapse
|
33
|
Crosby K, Crown AM, Roberts BL, Brown H, Ayers JI, Borchelt DR. Loss of charge mutations in solvent exposed Lys residues of superoxide dismutase 1 do not induce inclusion formation in cultured cell models. PLoS One 2018; 13:e0206751. [PMID: 30399166 PMCID: PMC6219784 DOI: 10.1371/journal.pone.0206751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Mutations in superoxide dismutase 1 (SOD1) associated with familial amyotrophic lateral sclerosis (fALS) induce the protein to misfold and aggregate. Missense mutations at more than 80 different amino acid positions have been associated with disease. How these mutations heighten the propensity of SOD1 to misfold and aggregate is unclear. With so many mutations, it is possible that more than one mechanism of aggregation may be involved. Of many possible mechanisms to explain heightened aggregation, one that has been suggested is that mutations that eliminate charged amino acids could diminish repulsive forces that would inhibit aberrant protein:protein interactions. Mutations at twenty-one charged residues in SOD1 have been associated with fALS, but of the 11 Lys residues in the protein, only 1 has been identified as mutated in ALS patients. Here, we examined whether loss of positively charged surface Lys residues in SOD1 would induce misfolding and formation of intracellular inclusions. We mutated four different Lys residues (K30, K36, K75, K91) in SOD1 that are not particularly well conserved, and expressed these variants as fusion proteins with yellow fluorescent protein (YFP) to assess inclusion formation. We also assessed whether these mutations induced binding to a conformation-restricted SOD1 antibody, designated C4F6, which recognizes non-natively folded protein. Although we observed some mutations to cause enhanced C4F6 binding, we did not observe that mutations that reduce charge at these positions caused the protein to form intracellular inclusions. Our findings may have implications for the low frequency of mutations at Lys residues SOD1 in ALS patients.
Collapse
Affiliation(s)
- Keith Crosby
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
| | - Anthony M. Crown
- College of Arts and Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Brittany L. Roberts
- College of Arts and Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Hilda Brown
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
- SantaFe HealthCare Alzheimer’s Disease Research Center, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Jacob I. Ayers
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
| | - David R. Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
- College of Arts and Sciences, University of Florida, Gainesville, Florida, United States of America
- SantaFe HealthCare Alzheimer’s Disease Research Center, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
34
|
Pokrishevsky E, McAlary L, Farrawell NE, Zhao B, Sher M, Yerbury JJ, Cashman NR. Tryptophan 32-mediated SOD1 aggregation is attenuated by pyrimidine-like compounds in living cells. Sci Rep 2018; 8:15590. [PMID: 30349065 PMCID: PMC6197196 DOI: 10.1038/s41598-018-32835-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022] Open
Abstract
Over 160 mutations in superoxide dismutase 1 (SOD1) are associated with familial amyotrophic lateral sclerosis (fALS), where the main pathological feature is deposition of SOD1 into proteinaceous cytoplasmic inclusions. We previously showed that the tryptophan residue at position 32 (W32) mediates the prion-like propagation of SOD1 misfolding in cells, and that a W32S substitution blocks this phenomenon. Here, we used in vitro protein assays to demonstrate that a W32S substitution in SOD1-fALS mutants significantly diminishes their propensity to aggregate whilst paradoxically decreasing protein stability. We also show SOD1-W32S to be resistant to seeded aggregation, despite its high abundance of unfolded protein. A cell-based aggregation assay demonstrates that W32S substitution significantly mitigates inclusion formation. Furthermore, this assay reveals that W32 in SOD1 is necessary for the formation of a competent seed for aggregation under these experimental conditions. Following the observed importance of W32 for aggregation, we established that treatment of living cells with the W32-interacting 5-Fluorouridine (5-FUrd), and its FDA approved analogue 5-Fluorouracil (5-FU), substantially attenuate inclusion formation similarly to W32S substitution. Altogether, we highlight W32 as a significant contributor to SOD1 aggregation, and propose that 5-FUrd and 5-FU present promising lead drug candidates for the treatment of SOD1-associated ALS.
Collapse
Affiliation(s)
- Edward Pokrishevsky
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Luke McAlary
- Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Natalie E Farrawell
- Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Beibei Zhao
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Mine Sher
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Justin J Yerbury
- Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
35
|
Medinas DB, Rozas P, Martínez Traub F, Woehlbier U, Brown RH, Bosco DA, Hetz C. Endoplasmic reticulum stress leads to accumulation of wild-type SOD1 aggregates associated with sporadic amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2018; 115:8209-8214. [PMID: 30038021 PMCID: PMC6094144 DOI: 10.1073/pnas.1801109115] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abnormal modifications to mutant superoxide dismutase 1 (SOD1) are linked to familial amyotrophic lateral sclerosis (fALS). Misfolding of wild-type SOD1 (SOD1WT) is also observed in postmortem tissue of a subset of sporadic ALS (sALS) cases, but cellular and molecular mechanisms generating abnormal SOD1WT species are unknown. We analyzed aberrant human SOD1WT species over the lifetime of transgenic mice and found the accumulation of disulfide-cross-linked high-molecular-weight SOD1WT aggregates during aging. Subcellular fractionation of spinal cord tissue and protein overexpression in NSC-34 motoneuron-like cells revealed that endoplasmic reticulum (ER) localization favors oxidation and disulfide-dependent aggregation of SOD1WT We established a pharmacological paradigm of chronic ER stress in vivo, which recapitulated SOD1WTaggregation in young transgenic mice. These species were soluble in nondenaturing detergents and did not react with a SOD1 conformation-specific antibody. Interestingly, SOD1WT aggregation under ER stress correlated with astrocyte activation in the spinal cord of transgenic mice. Finally, the disulfide-cross-linked SOD1WT species were also found augmented in spinal cord tissue of sALS patients, correlating with the presence of ER stress markers. Overall, this study suggests that ER stress increases the susceptibility of SOD1WT to aggregate during aging, operating as a possible risk factor for developing ALS.
Collapse
Affiliation(s)
- Danilo B Medinas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile 8380453;
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile 7800003
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile 8380453
| | - Pablo Rozas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile 8380453
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile 7800003
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile 8380453
| | - Francisca Martínez Traub
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile 8380453
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile 7800003
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile 8380453
| | - Ute Woehlbier
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile 8380453
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile 8380453
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile 8580745
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile 8380453;
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile 7800003
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile 8380453
- Buck Institute for Research on Aging, Novato, CA 94945
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115
| |
Collapse
|
36
|
Tang BL. Unconventional Secretion and Intercellular Transfer of Mutant Huntingtin. Cells 2018; 7:59. [PMID: 29904030 PMCID: PMC6025013 DOI: 10.3390/cells7060059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 01/17/2023] Open
Abstract
The mechanism of intercellular transmission of pathological agents in neurodegenerative diseases has received much recent attention. Huntington's disease (HD) is caused by a monogenic mutation in the gene encoding Huntingtin (HTT). Mutant HTT (mHTT) harbors a CAG repeat extension which encodes an abnormally long polyglutamine (polyQ) repeat at HTT's N-terminus. Neuronal pathology in HD is largely due to the toxic gain-of-function by mHTT and its proteolytic products, which forms both nuclear and cytoplasmic aggregates that perturb nuclear gene transcription, RNA splicing and transport as well cellular membrane dynamics. The neuropathological effects of mHTT have been conventionally thought to be cell-autonomous in nature. Recent findings have, however, indicated that mHTT could be secreted by neurons, or transmitted from one neuronal cell to another via different modes of unconventional secretion, as well as via tunneling nanotubes (TNTs). These modes of transmission allow the intercellular spread of mHTT and its aggregates, thus plausibly promoting neuropathology within proximal neuronal populations and between neurons that are connected within neural circuits. Here, the various possible modes for mHTT's neuronal cell exit and intercellular transmission are discussed.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, 117597 Singapore, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, 117456 Singapore, Singapore.
| |
Collapse
|
37
|
Farrawell NE, Lambert-Smith I, Mitchell K, McKenna J, McAlary L, Ciryam P, Vine KL, Saunders DN, Yerbury JJ. SOD1 A4V aggregation alters ubiquitin homeostasis in a cell model of ALS. J Cell Sci 2018; 131:jcs.209122. [PMID: 29748379 DOI: 10.1242/jcs.209122] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 05/01/2018] [Indexed: 12/11/2022] Open
Abstract
A hallmark of amyotrophic lateral sclerosis (ALS) pathology is the accumulation of ubiquitylated protein inclusions within motor neurons. Recent studies suggest the sequestration of ubiquitin (Ub) into inclusions reduces the availability of free Ub, which is essential for cellular function and survival. However, the dynamics of the Ub landscape in ALS have not yet been described. Here, we show that Ub homeostasis is altered in a cell model of ALS induced by expressing mutant SOD1 (SOD1A4V). By monitoring the distribution of Ub in cells expressing SOD1A4V, we show that Ub is present at the earliest stages of SOD1A4V aggregation, and that cells containing SOD1A4V aggregates have greater ubiquitin-proteasome system (UPS) dysfunction. Furthermore, SOD1A4V aggregation is associated with the redistribution of Ub and depletion of the free Ub pool. Ubiquitomics analysis indicates that expression of SOD1A4V is associated with a shift of Ub to a pool of supersaturated proteins, including those associated with oxidative phosphorylation and metabolism, corresponding with altered mitochondrial morphology and function. Taken together, these results suggest that misfolded SOD1 contributes to UPS dysfunction and that Ub homeostasis is an important target for monitoring pathological changes in ALS.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Natalie E Farrawell
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia 2522.,Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW, Australia 2522
| | - Isabella Lambert-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia 2522.,Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW, Australia 2522
| | - Kristen Mitchell
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia 2522.,Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW, Australia 2522
| | - Jessie McKenna
- School of Medical Sciences, Faculty of Medicine, UNSW Australia 2052
| | - Luke McAlary
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia 2522.,Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW, Australia 2522.,Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| | - Prajwal Ciryam
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.,Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208-3500, USA.,Department of Neurology, Columbia University College of Physicians & Surgeons, New York, NY 10032-3784, USA
| | - Kara L Vine
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia 2522.,Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW, Australia 2522
| | - Darren N Saunders
- School of Medical Sciences, Faculty of Medicine, UNSW Australia 2052
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia 2522 .,Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW, Australia 2522
| |
Collapse
|
38
|
Damiano S, Sasso A, Accetta R, Monda M, De Luca B, Pavone LM, Belfiore A, Santillo M, Mondola P. Effect of Mutated Cu, Zn Superoxide Dismutase (SOD1 G93A) on Modulation of Transductional Pathway Mediated by M1 Muscarinic Receptor in SK-N-BE and NSC-34 Cells. Front Physiol 2018; 9:611. [PMID: 29881358 PMCID: PMC5976866 DOI: 10.3389/fphys.2018.00611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/04/2018] [Indexed: 01/13/2023] Open
Abstract
The constitutive secretion of antioxidant Cu-Zn Superoxide dismutase (SOD1) has been widely demonstrated in many cellular lines. In addition, we showed that as well as the basal SOD1 secretion, this enzyme is also exported through depolarization of excitable cells by high extracellular K concentration. Recent data showed that SOD1 was able to activate muscarinic M1 receptor producing the activation, via phospholipase C, of ERK1-2 and AKT pathways. It is also known that about 20% of familial amyotrophic lateral sclerosis (fALS) is due to mutations in the gene coding for SOD1. The aim of the present research is to evaluate whether, analogously to wild type SOD1 (SOD1wt), the mutated form of SOD1G93A is able to activate ERK1-2 and AKT through muscarinic M1 receptor in SK-N-BE as well as in motoneuron like NSC-34. Our results demonstrated that in NSC-34 and SK-N-BE cells mutated SOD1G93A carried out a more evident activation of ERK1-2 and AKT and a stronger increase of intracellular calcium levels compared to SOD1WT; we also demonstrated that these effects are mediated by the M1 receptor as shown using pirenzepine, a specific M1 inhibitor and the calcium chelator BAPTA. Of note, M1 receptor pathway activation by SOD1G93A, but not by SOD1WT, is associated with both an increase of reactive oxygen species and a cytotoxic effect.
Collapse
Affiliation(s)
- Simona Damiano
- Dipartimento di Medicina e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Anna Sasso
- Dipartimento di Medicina e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Roberta Accetta
- Dipartimento di Medicina e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Marcellino Monda
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Bruno De Luca
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi Michele Pavone
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Anna Belfiore
- Dipartimento di Medicina e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Mariarosaria Santillo
- Dipartimento di Medicina e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Paolo Mondola
- Dipartimento di Medicina e Chirurgia, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
39
|
Parakh S, Jagaraj CJ, Vidal M, Ragagnin AMG, Perri ER, Konopka A, Toth RP, Galper J, Blair IP, Thomas CJ, Walker AK, Yang S, Spencer DM, Atkin JD. ERp57 is protective against mutant SOD1-induced cellular pathology in amyotrophic lateral sclerosis. Hum Mol Genet 2018; 27:1311-1331. [DOI: 10.1093/hmg/ddy041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/29/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sonam Parakh
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Cyril J Jagaraj
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Marta Vidal
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Audrey M G Ragagnin
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Emma R Perri
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Anna Konopka
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Reka P Toth
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jasmin Galper
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ian P Blair
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Colleen J Thomas
- Department of Physiology, Anatomy and Microbiology, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Adam K Walker
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Shu Yang
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Damian M Spencer
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Julie D Atkin
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
40
|
Ayers JI, Cashman NR. Prion-like mechanisms in amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:337-354. [PMID: 29887144 DOI: 10.1016/b978-0-444-63945-5.00018-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prion hypothesis - a protein conformation capable of replicating without a nucleic acid genome - was heretical at the time of its discovery. However, the characteristics of the disease-misfolded prion protein and its ability to transmit disease, replicate, and spread are now widely accepted throughout the scientific community. In fact, in the last decade a wealth of evidence has emerged supporting similar properties observed for many of the misfolded proteins implicated in other neurodegenerative diseases, such as Alzheimer disease, Parkinson disease, tauopathies, and as described in this chapter, amyotrophic lateral sclerosis (ALS). Multiple studies have now demonstrated the ability for superoxide dismutase-1, 43-kDa transactive response (TAR) DNA-binding protein, fused-in sarcoma, and most recently, C9orf72-encoded polypeptides to display properties similar to those of prions. The majority of these are cell-free and in vitro assays, while superoxide dismutase-1 remains the only ALS-linked protein to demonstrate several prion-like properties in vivo. In this chapter, we provide an introduction to ALS and review the recent literature linking several proteins implicated in the familial forms of the disease to properties of the prion protein.
Collapse
Affiliation(s)
- Jacob I Ayers
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, United States
| | - Neil R Cashman
- Department of Medicine, Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
41
|
SOD1 Mutations Causing Familial Amyotrophic Lateral Sclerosis Induce Toxicity in Astrocytes: Evidence for Bystander Effects in a Continuum of Astrogliosis. Neurochem Res 2018; 43:166-179. [DOI: 10.1007/s11064-017-2385-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022]
|
42
|
Robinett NG, Peterson RL, Culotta VC. Eukaryotic copper-only superoxide dismutases (SODs): A new class of SOD enzymes and SOD-like protein domains. J Biol Chem 2017; 293:4636-4643. [PMID: 29259135 DOI: 10.1074/jbc.tm117.000182] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The copper-containing superoxide dismutases (SODs) represent a large family of enzymes that participate in the metabolism of reactive oxygen species by disproportionating superoxide anion radical to oxygen and hydrogen peroxide. Catalysis is driven by the redox-active copper ion, and in most cases, SODs also harbor a zinc at the active site that enhances copper catalysis and stabilizes the protein. Such bimetallic Cu,Zn-SODs are widespread, from the periplasm of bacteria to virtually every organelle in the human cell. However, a new class of copper-containing SODs has recently emerged that function without zinc. These copper-only enzymes serve as extracellular SODs in specific bacteria (i.e. Mycobacteria), throughout the fungal kingdom, and in the fungus-like oomycetes. The eukaryotic copper-only SODs are particularly unique in that they lack an electrostatic loop for substrate guidance and have an unusual open-access copper site, yet they can still react with superoxide at rates limited only by diffusion. Copper-only SOD sequences similar to those seen in fungi and oomycetes are also found in the animal kingdom, but rather than single-domain enzymes, they appear as tandem repeats in large polypeptides we refer to as CSRPs (copper-only SOD-repeat proteins). Here, we compare and contrast the Cu,Zn versus copper-only SODs and discuss the evolution of copper-only SOD protein domains in animals and fungi.
Collapse
Affiliation(s)
- Natalie G Robinett
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Ryan L Peterson
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205.
| |
Collapse
|
43
|
Perera ND, Sheean RK, Lau CL, Shin YS, Beart PM, Horne MK, Turner BJ. Rilmenidine promotes MTOR-independent autophagy in the mutant SOD1 mouse model of amyotrophic lateral sclerosis without slowing disease progression. Autophagy 2017; 14:534-551. [PMID: 28980850 PMCID: PMC5915012 DOI: 10.1080/15548627.2017.1385674] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 09/15/2017] [Accepted: 09/25/2017] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy/autophagy is the main intracellular catabolic pathway in neurons that eliminates misfolded proteins, aggregates and damaged organelles associated with ageing and neurodegeneration. Autophagy is regulated by both MTOR-dependent and -independent pathways. There is increasing evidence that autophagy is compromised in neurodegenerative disorders, which may contribute to cytoplasmic sequestration of aggregation-prone and toxic proteins in neurons. Genetic or pharmacological modulation of autophagy to promote clearance of misfolded proteins may be a promising therapeutic avenue for these disorders. Here, we demonstrate robust autophagy induction in motor neuronal cells expressing SOD1 or TARDBP/TDP-43 mutants linked to amyotrophic lateral sclerosis (ALS). Treatment of these cells with rilmenidine, an anti-hypertensive agent and imidazoline-1 receptor agonist that induces autophagy, promoted autophagic clearance of mutant SOD1 and efficient mitophagy. Rilmenidine administration to mutant SOD1G93A mice upregulated autophagy and mitophagy in spinal cord, leading to reduced soluble mutant SOD1 levels. Importantly, rilmenidine increased autophagosome abundance in motor neurons of SOD1G93A mice, suggesting a direct action on target cells. Despite robust induction of autophagy in vivo, rilmenidine worsened motor neuron degeneration and symptom progression in SOD1G93A mice. These effects were associated with increased accumulation and aggregation of insoluble and misfolded SOD1 species outside the autophagy pathway, and severe mitochondrial depletion in motor neurons of rilmenidine-treated mice. These findings suggest that rilmenidine treatment may drive disease progression and neurodegeneration in this mouse model due to excessive mitophagy, implying that alternative strategies to beneficially stimulate autophagy are warranted in ALS.
Collapse
Affiliation(s)
- Nirma D. Perera
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Rebecca K. Sheean
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Chew L. Lau
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Yea Seul Shin
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Philip M. Beart
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm K. Horne
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Bradley J. Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
44
|
Ciregia F, Urbani A, Palmisano G. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases. Front Mol Neurosci 2017; 10:276. [PMID: 28912682 PMCID: PMC5583211 DOI: 10.3389/fnmol.2017.00276] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) can be classified into apoptotic bodies, microvesicles (MVs), and exosomes, based on their origin or size. Exosomes are the smallest and best characterized vesicles which derived from the endosomal system. These vesicles are released from many different cell types including neuronal cells and their functions in the nervous system are investigated. They have been proposed as novel means for intercellular communication, which takes part not only to the normal neuronal physiology but also to the transmission of pathogenic proteins. Indeed, exosomes are fundamental to assemble and transport proteins during development, but they can also transfer neurotoxic misfolded proteins in pathogenesis. The present review will focus on their roles in neurological diseases, specifically brain tumors, such as glioblastoma (GBM), neuroblastoma (NB), medulloblastoma (MB), and metastatic brain tumors and chronic neurodegenerative diseases, such as Alzheimer, Parkinson, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington, and Prion diseseases highlighting their involvement in spreading neurotoxicity, in therapeutics, and in pathogenesis.
Collapse
Affiliation(s)
- Federica Ciregia
- Department of Pharmacy, University of PisaPisa, Italy.,Department of Clinical and Experimental Medicine, SOD Endocrinology and Metabolism of Organ and Cell Transplants, University of PisaPisa, Italy
| | - Andrea Urbani
- Istituto di Biochimica e Biochimica Clinica, Università CattolicaRome, Italy.,Proteomics and Metabonomics Unit, IRCCS-Fondazione Santa LuciaRome, Italy
| | - Giuseppe Palmisano
- Proteomics and Metabonomics Unit, IRCCS-Fondazione Santa LuciaRome, Italy.,GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao PauloSao Paulo, Brazil
| |
Collapse
|
45
|
Cruz-Garcia D, Brouwers N, Duran JM, Mora G, Curwin AJ, Malhotra V. A diacidic motif determines unconventional secretion of wild-type and ALS-linked mutant SOD1. J Cell Biol 2017; 216:2691-2700. [PMID: 28794127 PMCID: PMC5584182 DOI: 10.1083/jcb.201704056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/28/2017] [Accepted: 07/27/2017] [Indexed: 01/08/2023] Open
Abstract
Starvation-induced unconventional secretion of Acb1 requires ESCRT-I, -II, and -III and Grh1. Cruz-Garcia et al. report that SOD1 and its mutant form linked to amyotrophic lateral sclerosis are also secreted upon nutrient starvation in a Grh1- and ESCRT-I–, -II–, and -III–dependent process. The authors identify a conserved diacidic motif in Acb1 and SOD1 that is necessary for their export in yeast and human cells. The nutrient starvation-specific unconventional secretion of Acb1 in Saccharomyces cerevisiae requires ESCRT-I, -II, and -III and Grh1. In this study, we report that another signal sequence lacking cytoplasmic protein, superoxide dismutase 1 (SOD1), and its mutant form linked to amyotrophic lateral sclerosis (ALS), is also secreted by yeast upon nutrient starvation in a Grh1- and ESCRT-I–, -II–, and -III–dependent process. Our analyses reveal that a conserved diacidic motif (Asp-Glu) in these proteins is necessary for their export. Importantly, secretion of wild-type human SOD1 and the ALS-linked mutant in human cells also require the diacidic residues. Altogether, these findings reveal information encoded within the cytoplasmic proteins required for their unconventional secretion and provide a means to unravel the significance of the cytoplasmic versus the secreted form of mutant SOD1 in the pathology of ALS. We also propose how cells, based on a signal-induced change in cytoplasmic physiology, select a small pool of a subset of cytoplasmic proteins for unconventional secretion.
Collapse
Affiliation(s)
- David Cruz-Garcia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Nathalie Brouwers
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Juan M Duran
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Gabriel Mora
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Amy J Curwin
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain .,Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
46
|
Misfolded SOD1 is not a primary component of sporadic ALS. Acta Neuropathol 2017; 134:97-111. [PMID: 28247063 DOI: 10.1007/s00401-017-1688-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 12/11/2022]
Abstract
A common feature of inherited and sporadic ALS is accumulation of abnormal proteinaceous inclusions in motor neurons and glia. SOD1 is the major protein component accumulating in patients with SOD1 mutations, as well as in mutant SOD1 mouse models. ALS-linked mutations of SOD1 have been shown to increase its propensity to misfold and/or aggregate. Antibodies specific for monomeric or misfolded SOD1 have detected misfolded SOD1 accumulating predominantly in spinal cord motor neurons of ALS patients with SOD1 mutations. We now use seven different conformationally sensitive antibodies to misfolded human SOD1 (including novel high affinity antibodies currently in pre-clinical development) coupled with immunohistochemistry, immunofluorescence and immunoprecipitation to test for the presence of misfolded SOD1 in high quality human autopsy samples. Whereas misfolded SOD1 is readily detectable in samples from patients with SOD1 mutations, it is below detection limits for all of our measures in spinal cord and cortex tissues from patients with sporadic or non-SOD1 inherited ALS. The absence of evidence for accumulated misfolded SOD1 supports a conclusion that SOD1 misfolding is not a primary component of sporadic ALS.
Collapse
|
47
|
Remondelli P, Renna M. The Endoplasmic Reticulum Unfolded Protein Response in Neurodegenerative Disorders and Its Potential Therapeutic Significance. Front Mol Neurosci 2017; 10:187. [PMID: 28670265 PMCID: PMC5472670 DOI: 10.3389/fnmol.2017.00187] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) is the cell compartment involved in secretory protein translocation and quality control of secretory protein folding. Different conditions can alter ER function, resulting in the accumulation of unfolded or misfolded proteins within the ER lumen. Such a condition, known as ER stress, elicits an integrated adaptive response known as the unfolded protein response (UPR) that aims to restore proteostasis within the secretory pathway. Conversely, in prolonged cell stress or insufficient adaptive response, UPR signaling causes cell death. ER dysfunctions are involved and contribute to neuronal degeneration in several human diseases, including Alzheimer, Parkinson and Huntington disease and amyotrophic lateral sclerosis. The correlations between ER stress and its signal transduction pathway known as the UPR with neuropathological changes are well established. In addition, much evidence suggests that genetic or pharmacological modulation of UPR could represent an effective strategy for minimizing the progressive neuronal loss in neurodegenerative diseases. Here, we review recent results describing the main cellular mechanisms linking ER stress and UPR to neurodegeneration. Furthermore, we provide an up-to-date panoramic view of the currently pursued strategies for ameliorating the toxic effects of protein unfolding in disease by targeting the ER UPR pathway.
Collapse
Affiliation(s)
- Paolo Remondelli
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università degli Studi di SalernoSalerno, Italy
| | - Maurizio Renna
- Cambridge Institute for Medical Research, Department of Medical Genetics, Wellcome Trust, Addenbrooke's Hospital, University of CambridgeCambridge, United Kingdom
| |
Collapse
|
48
|
Shahheydari H, Ragagnin A, Walker AK, Toth RP, Vidal M, Jagaraj CJ, Perri ER, Konopka A, Sultana JM, Atkin JD. Protein Quality Control and the Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Continuum. Front Mol Neurosci 2017; 10:119. [PMID: 28539871 PMCID: PMC5423993 DOI: 10.3389/fnmol.2017.00119] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, has an important regulatory role in cellular function. Protein quality control mechanisms, including protein folding and protein degradation processes, have a crucial function in post-mitotic neurons. Cellular protein quality control relies on multiple strategies, including molecular chaperones, autophagy, the ubiquitin proteasome system, endoplasmic reticulum (ER)-associated degradation (ERAD) and the formation of stress granules (SGs), to regulate proteostasis. Neurodegenerative diseases are characterized by the presence of misfolded protein aggregates, implying that protein quality control mechanisms are dysfunctional in these conditions. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that are now recognized to overlap clinically and pathologically, forming a continuous disease spectrum. In this review article, we detail the evidence for dysregulation of protein quality control mechanisms across the whole ALS-FTD continuum, by discussing the major proteins implicated in ALS and/or FTD. We also discuss possible ways in which protein quality mechanisms could be targeted therapeutically in these disorders and highlight promising protein quality control-based therapeutics for clinical trials.
Collapse
Affiliation(s)
- Hamideh Shahheydari
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Audrey Ragagnin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Adam K Walker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Reka P Toth
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Marta Vidal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Cyril J Jagaraj
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Emma R Perri
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Anna Konopka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Jessica M Sultana
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityMelbourne, VIC, Australia
| |
Collapse
|
49
|
Petrozziello T, Secondo A, Tedeschi V, Esposito A, Sisalli M, Scorziello A, Di Renzo G, Annunziato L. ApoSOD1 lacking dismutase activity neuroprotects motor neurons exposed to beta-methylamino-L-alanine through the Ca 2+/Akt/ERK1/2 prosurvival pathway. Cell Death Differ 2017; 24:511-522. [PMID: 28085149 PMCID: PMC5344211 DOI: 10.1038/cdd.2016.154] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/04/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe human adult-onset neurodegenerative disease affecting lower and upper motor neurons. In >20% of cases, the familial form of ALS is caused by mutations in the gene encoding Cu,Zn-superoxide dismutase (SOD1). Interestingly, administration of wild-type SOD1 to SOD1G93A transgenic rats ameliorates motor symptoms through an unknown mechanism. Here we investigated whether the neuroprotective effects of SOD1 are due to the Ca2+-dependent activation of such prosurvival signaling pathway and not to its catalytic activity. To this aim, we also examined the mechanism of neuroprotective action of ApoSOD1, the metal-depleted state of SOD1 that lacks dismutase activity, in differentiated motor neuron-like NSC-34 cells and in primary motor neurons exposed to the cycad neurotoxin beta-methylamino-L-alanine (L-BMAA). Preincubation of ApoSOD1 and SOD1, but not of human recombinant SOD1G93A, prevented cell death in motor neurons exposed to L-BMAA. Moreover, ApoSOD1 elicited ERK1/2 and Akt phosphorylation in motor neurons through an early increase of intracellular Ca2+ concentration ([Ca2+]i). Accordingly, inhibition of ERK1/2 by siMEK1 and PD98059 counteracted ApoSOD1- and SOD1-induced neuroprotection. Similarly, transfection of the dominant-negative form of Akt in NSC-34 motor neurons and treatment with the selective PI3K inhibitor LY294002 prevented ApoSOD1- and SOD1-mediated neuroprotective effects in L-BMAA-treated motor neurons. Furthermore, ApoSOD1 and SOD1 prevented the expression of the two markers of L-BMAA-induced ER stress GRP78 and caspase-12. Collectively, our data indicate that ApoSOD1, which is devoid of any catalytic dismutase activity, exerts a neuroprotective effect through an early activation of Ca2+/Akt/ERK1/2 pro-survival pathway that, in turn, prevents ER stress in a neurotoxic model of ALS.
Collapse
Affiliation(s)
- Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via Sergio Pansini 5, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via Sergio Pansini 5, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via Sergio Pansini 5, Naples, Italy
| | - Alba Esposito
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via Sergio Pansini 5, Naples, Italy
| | - MariaJosè Sisalli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via Sergio Pansini 5, Naples, Italy
| | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via Sergio Pansini 5, Naples, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via Sergio Pansini 5, Naples, Italy
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via Sergio Pansini 5, Naples, Italy.,Fondazione IRCCS SDN, Naples, Italy
| |
Collapse
|
50
|
Mondola P, Damiano S, Sasso A, Santillo M. The Cu, Zn Superoxide Dismutase: Not Only a Dismutase Enzyme. Front Physiol 2016; 7:594. [PMID: 27965593 PMCID: PMC5126113 DOI: 10.3389/fphys.2016.00594] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/15/2016] [Indexed: 01/09/2023] Open
Abstract
The Cu,Zn superoxide dismutase (SOD1) is an ubiquitary cytosolic dimeric carbohydrate free molecule, belonging to a family of isoenzymes involved in the scavenger of superoxide anions. This effect certainly represents the main and well known function ascribed to this enzyme. Here we highlight new aspects of SOD1 physiology that point out some inedited effects of this enzyme in addition to the canonic role of oxygen radical enzymatic dismutation. In the last two decades our research group produced many data obtained in in vitro studies performed in many cellular lines, mainly neuroblastoma SK-N-BE cells, indicating that this enzyme is secreted either constitutively or after depolarization induced by high extracellular K+ concentration. In addition, we gave many experimental evidences showing that SOD1 is able to stimulate, through muscarinic M1 receptor, pathways involving ERK1/2, and AKT activation. These effects are accompanied with an intracellular calcium increase. In the last part of this review we describe researches that link deficient extracellular secretion of mutant SOD1G93A to its intracellular accumulation and toxicity in NSC-34 cells. Alternatively, SOD1G93A toxicity has been attributed to a decrease of Km for H2O2 with consequent OH radical formation. Interestingly, this last inedited effect of SOD1G93A could represent a gain of function that could be involved in the pathogenesis of familial Amyotrophic Lateral Sclerosis (fALS).
Collapse
Affiliation(s)
- Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Fisiologia Umana, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Fisiologia Umana, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Anna Sasso
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Fisiologia Umana, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Fisiologia Umana, Università degli Studi di Napoli "Federico II," Napoli, Italy
| |
Collapse
|