1
|
Antonioni A, Raho EM, Straudi S, Granieri E, Koch G, Fadiga L. The cerebellum and the Mirror Neuron System: A matter of inhibition? From neurophysiological evidence to neuromodulatory implications. A narrative review. Neurosci Biobehav Rev 2024; 164:105830. [PMID: 39069236 DOI: 10.1016/j.neubiorev.2024.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Mirror neurons show activity during both the execution (AE) and observation of actions (AO). The Mirror Neuron System (MNS) could be involved during motor imagery (MI) as well. Extensive research suggests that the cerebellum is interconnected with the MNS and may be critically involved in its activities. We gathered evidence on the cerebellum's role in MNS functions, both theoretically and experimentally. Evidence shows that the cerebellum plays a major role during AO and MI and that its lesions impair MNS functions likely because, by modulating the activity of cortical inhibitory interneurons with mirror properties, the cerebellum may contribute to visuomotor matching, which is fundamental for shaping mirror properties. Indeed, the cerebellum may strengthen sensory-motor patterns that minimise the discrepancy between predicted and actual outcome, both during AE and AO. Furthermore, through its connections with the hippocampus, the cerebellum might be involved in internal simulations of motor programs during MI. Finally, as cerebellar neuromodulation might improve its impact on MNS activity, we explored its potential neurophysiological and neurorehabilitation implications.
Collapse
Affiliation(s)
- Annibale Antonioni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy; Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara 44121, Italy.
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy
| | - Enrico Granieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy; Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome 00179, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy
| |
Collapse
|
2
|
Velázquez-Vargas CA, Taylor JA. Learning to Move and Plan like the Knight: Sequential Decision Making with a Novel Motor Mapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610359. [PMID: 39257833 PMCID: PMC11383687 DOI: 10.1101/2024.08.29.610359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Many skills that humans acquire throughout their lives, such as playing video games or sports, require substantial motor learning and multi-step planning. While both processes are typically studied separately, they are likely to interact during the acquisition of complex motor skills. In this work, we studied this interaction by assessing human performance in a sequential decision-making task that requires the learning of a non-trivial motor mapping. Participants were tasked to move a cursor from start to target locations in a grid world, using a standard keyboard. Notably, the specific keys were arbitrarily mapped to a movement rule resembling the Knight chess piece. In Experiment 1, we showed the learning of this mapping in the absence of planning, led to significant improvements in the task when presented with sequential decisions at a later stage. Computational modeling analysis revealed that such improvements resulted from an increased learning rate about the state transitions of the motor mapping, which also resulted in more flexible planning from trial to trial (less perseveration or habitual responses). In Experiment 2, we showed that incorporating mapping learning into the planning process, allows us to capture (1) differential task improvements for distinct planning horizons and (2) overall lower performance for longer horizons. Additionally, model analysis suggested that participants may limit their search to three steps ahead. We hypothesize that this limitation in planning horizon arises from capacity constraints in working memory, and may be the reason complex skills are often broken down into individual subroutines or components during learning.
Collapse
|
3
|
Berlijn AM, Huvermann DM, Schneider S, Bellebaum C, Timmann D, Minnerop M, Peterburs J. The Role of the Human Cerebellum for Learning from and Processing of External Feedback in Non-Motor Learning: A Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1532-1551. [PMID: 38379034 PMCID: PMC11269477 DOI: 10.1007/s12311-024-01669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
This review aimed to systematically identify and comprehensively review the role of the cerebellum in performance monitoring, focusing on learning from and on processing of external feedback in non-motor learning. While 1078 articles were screened for eligibility, ultimately 36 studies were included in which external feedback was delivered in cognitive tasks and which referenced the cerebellum. These included studies in patient populations with cerebellar damage and studies in healthy subjects applying neuroimaging. Learning performance in patients with different cerebellar diseases was heterogeneous, with only about half of all patients showing alterations. One patient study using EEG demonstrated that damage to the cerebellum was associated with altered neural processing of external feedback. Studies assessing brain activity with task-based fMRI or PET and one resting-state functional imaging study that investigated connectivity changes following feedback-based learning in healthy participants revealed involvement particularly of lateral and posterior cerebellar regions in processing of and learning from external feedback. Cerebellar involvement was found at different stages, e.g., during feedback anticipation and following the onset of the feedback stimuli, substantiating the cerebellum's relevance for different aspects of performance monitoring such as feedback prediction. Future research will need to further elucidate precisely how, where, and when the cerebellum modulates the prediction and processing of external feedback information, which cerebellar subregions are particularly relevant, and to what extent cerebellar diseases alter these processes.
Collapse
Affiliation(s)
- Adam M Berlijn
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Dana M Huvermann
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sandra Schneider
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Bellebaum
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Martina Minnerop
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty & Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Jutta Peterburs
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
4
|
Feng T, Zhang L, Wu Y, Tang L, Chen X, Li Y, Shan C. Exploring the Therapeutic Effects and Mechanisms of Transcranial Alternating Current Stimulation on Improving Walking Ability in Stroke Patients via Modulating Cerebellar Gamma Frequency Band-a Narrative Review. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1593-1603. [PMID: 37962773 PMCID: PMC11269344 DOI: 10.1007/s12311-023-01632-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
The cerebellum plays an important role in maintaining balance, posture control, muscle tone, and lower limb coordination in healthy individuals and stroke patients. At the same time, the relationship between cerebellum and motor learning has been widely concerned in recent years. Due to the relatively intact structure preservation and high plasticity after supratentorial stroke, non-invasive neuromodulation targeting the cerebellum is increasingly used to treat abnormal gait in stroke patients. The gamma frequency of transcranial alternating current stimulation (tACS) is commonly used to improve motor learning. It is an essential endogenous EEG oscillation in the gamma range during the swing phase, and rhythmic movement changes in the gait cycle. However, the effect of cerebellar tACS in the gamma frequency band on balance and walking after stroke remains unknown and requires further investigation.
Collapse
Affiliation(s)
- Tingyi Feng
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lichao Zhang
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuwei Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Tang
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xixi Chen
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanli Li
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunlei Shan
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Institute of Rehabilitation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Kerestes R, Laansma MA, Owens-Walton C, Perry A, van Heese EM, Al-Bachari S, Anderson TJ, Assogna F, Aventurato ÍK, van Balkom TD, Berendse HW, van den Berg KR, Mphys RB, Brioschi R, Carr J, Cendes F, Clark LR, Dalrymple-Alford JC, Dirkx MF, Druzgal J, Durrant H, Emsley HC, Garraux G, Haroon HA, Helmich RC, van den Heuvel OA, João RB, Johansson ME, Khachatryan S, Lochner C, McMillan CT, Melzer TR, Mosley P, Newman B, Opriessnig P, Parkes LM, Pellicano C, Piras F, Pitcher TL, Poston KL, Rango M, Roos A, Rummel C, Schmidt R, Schwingenschuh P, Silva LS, Smith V, Squarcina L, Stein DJ, Tavadyan Z, Tsai CC, Vecchio D, Vriend C, Wang JJ, Wiest R, Yasuda CL, Young CB, Jahanshad N, Thompson PM, van der Werf YD, Harding IH, ENIGMA-Parkinson’s Study. Cerebellar Volume and Disease Staging in Parkinson's Disease: An ENIGMA-PD Study. Mov Disord 2023; 38:2269-2281. [PMID: 37964373 PMCID: PMC10754393 DOI: 10.1002/mds.29611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Increasing evidence points to a pathophysiological role for the cerebellum in Parkinson's disease (PD). However, regional cerebellar changes associated with motor and non-motor functioning remain to be elucidated. OBJECTIVE To quantify cross-sectional regional cerebellar lobule volumes using three dimensional T1-weighted anatomical brain magnetic resonance imaging from the global ENIGMA-PD working group. METHODS Cerebellar parcellation was performed using a deep learning-based approach from 2487 people with PD and 1212 age and sex-matched controls across 22 sites. Linear mixed effects models compared total and regional cerebellar volume in people with PD at each Hoehn and Yahr (HY) disease stage, to an age- and sex- matched control group. Associations with motor symptom severity and Montreal Cognitive Assessment scores were investigated. RESULTS Overall, people with PD had a regionally smaller posterior lobe (dmax = -0.15). HY stage-specific analyses revealed a larger anterior lobule V bilaterally (dmax = 0.28) in people with PD in HY stage 1 compared to controls. In contrast, smaller bilateral lobule VII volume in the posterior lobe was observed in HY stages 3, 4, and 5 (dmax = -0.76), which was incrementally lower with higher disease stage. Within PD, cognitively impaired individuals had lower total cerebellar volume compared to cognitively normal individuals (d = -0.17). CONCLUSIONS We provide evidence of a dissociation between anterior "motor" lobe and posterior "non-motor" lobe cerebellar regions in PD. Whereas less severe stages of the disease are associated with larger motor lobe regions, more severe stages of the disease are marked by smaller non-motor regions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rebecca Kerestes
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Max A. Laansma
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Conor Owens-Walton
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Andrew Perry
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC, Australia
| | - Eva M. van Heese
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Sarah Al-Bachari
- Faculty of Health and Medicine, The University of Lancaster, Lancaster, UK
| | - Tim J. Anderson
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Neurology Department, Te Wahtu Ora - Health New Zealand Waitaha Canterbury, Christchurch, New Zew Zealand
| | - Francesca Assogna
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Ítalo K. Aventurato
- Department of Neurology, University of Campinas - UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Tim D. van Balkom
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Amsterdam UMC, Dept. Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Henk W. Berendse
- Amsterdam UMC, Dept. Neurology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Kevin R.E. van den Berg
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Rebecca Betts Mphys
- School of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Ricardo Brioschi
- Department of Neurology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Jonathan Carr
- Division of Neurology, Tygerberg Hospital and Stellenbosch University, Cape Town, South Africa
| | - Fernando Cendes
- Department of Neurology, University of Campinas - UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Lyles R. Clark
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John C. Dalrymple-Alford
- New Zealand Brain Research Institute, Christchurch, New Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Michiel F. Dirkx
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, USA
| | - Helena Durrant
- School of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Hedley C.A. Emsley
- Lancaster Medical School, Lancaster University, Lancaster, UK
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Gaëtan Garraux
- GIGA-CRC in vivo imaging, University of Liège, Belgium
- Department of Neurology, CHU Liège, Liège, Belgium
| | - Hamied A. Haroon
- Division of Psychology, Communication & Human Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Rick C. Helmich
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Odile A. van den Heuvel
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Amsterdam UMC, Dept. Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Rafael B. João
- Department of Neurology, University of Campinas - UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Martin E. Johansson
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Samson Khachatryan
- Department of Neurology and Neurosurgery, National Institute of Health, Yerevan, Armenia
- Centers for Sleep and Movement Disorders, Somnus Neurology Clinic, Yerevan, Armenia
| | - Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Corey T. McMillan
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Tracy R. Melzer
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Philip Mosley
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- The Australian eHealth Research Centre, CSIRO Health and Biosecurity, Brisbane, Queensland, Australia
| | - Benjamin Newman
- Department of Radiology and Medical Imaging, University of Virginia, USA
| | - Peter Opriessnig
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Laura M. Parkes
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Clelia Pellicano
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Toni L. Pitcher
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Kathleen L. Poston
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Mario Rango
- Excellence Center for Advanced MR Techniques and Parkinson’s Disease Center, Neurology unit, Fondazione IRCCS Cà Granda Maggiore Policlinico Hospital, University of Milan, Milan, Italy
- Dept of Neurosciences, Neurology Unit, Fondazione Ca’ Granda, IRCCS, Ospedale Policlinico, Univeristy of Milan, Milano, Italy
| | - Annerine Roos
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Christian Rummel
- Support Center for Advanced Neuroimaging, (SCAN) University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Reinhold Schmidt
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Lucas S. Silva
- Department of Neurology, University of Campinas - UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Viktorija Smith
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Letizia Squarcina
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Dan J. Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Zaruhi Tavadyan
- Department of Neurology and Neurosurgery, National Institute of Health, Yerevan, Armenia
- Centers for Sleep and Movement Disorders, Somnus Neurology Clinic, Yerevan, Armenia
| | - Chih-Chien Tsai
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Chris Vriend
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam UMC, Dept. Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, the Netherlands
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan City, Taiwan
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung Branch Keelung City, Taiwan
- Healthy Ageing Research Center, ChangGung University, Taiwan
- Department of Chemical Engineering, Ming-Chi University of Technology, New Taipei City, Taiwan
| | - Roland Wiest
- Support Center for Advanced Neuroimaging, (SCAN) University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Clarissa L. Yasuda
- Department of Neurology, University of Campinas - UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Christina B. Young
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Ysbrand D. van der Werf
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Ian H. Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
6
|
Soussi C, Berthoz S, Chirokoff V, Chanraud S. Interindividual Brain and Behavior Differences in Adaptation to Unexpected Uncertainty. BIOLOGY 2023; 12:1323. [PMID: 37887033 PMCID: PMC10604029 DOI: 10.3390/biology12101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
To adapt to a new environment, individuals must alternate between exploiting previously learned "action-consequence" combinations and exploring new actions for which the consequences are unknown: they face an exploration/exploitation trade-off. The neural substrates of these behaviors and the factors that may relate to the interindividual variability in their expression remain overlooked, in particular when considering neural connectivity patterns. Here, to trigger environmental uncertainty, false feedbacks were introduced in the second phase of an associative learning task. Indices reflecting exploitation and cost of uncertainty were computed. Changes in the intrinsic connectivity were determined using resting-state functional connectivity (rFC) analyses before and after performing the "cheated" phase of the task in the MRI. We explored their links with behavioral and psychological factors. Dispersion in the participants' cost of uncertainty was used to categorize two groups. These groups showed different patterns of rFC changes. Moreover, in the overall sample, exploitation was correlated with rFC changes between (1) the anterior cingulate cortex and the cerebellum region 3, and (2) the left frontal inferior gyrus (orbital part) and the right frontal inferior gyrus (triangular part). Anxiety and doubt about action propensity were weakly correlated with some rFC changes. These results demonstrate that the exploration/exploitation trade-off involves the modulation of cortico-cerebellar intrinsic connectivity.
Collapse
Affiliation(s)
- Célia Soussi
- INCIA CNRS 5287, University of Bordeaux, 33076 Bordeaux, France; (C.S.); (V.C.); (S.C.)
- UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, NeuroPresage Team, Cyceron, Normandy University, 14000 Caen, France
| | - Sylvie Berthoz
- INCIA CNRS 5287, University of Bordeaux, 33076 Bordeaux, France; (C.S.); (V.C.); (S.C.)
- Department of Psychiatry for Adolescents and Young Adults, Institut Mutualiste Montsouris, 75014 Paris, France
| | - Valentine Chirokoff
- INCIA CNRS 5287, University of Bordeaux, 33076 Bordeaux, France; (C.S.); (V.C.); (S.C.)
- Ecole Pratique des Hautes Etudes, Section of Life and Earth Sciences, PSL Research University, 75014 Paris, France
| | - Sandra Chanraud
- INCIA CNRS 5287, University of Bordeaux, 33076 Bordeaux, France; (C.S.); (V.C.); (S.C.)
- Ecole Pratique des Hautes Etudes, Section of Life and Earth Sciences, PSL Research University, 75014 Paris, France
| |
Collapse
|
7
|
Cosentino S, Shih LC. Does essential tremor increase risk of cognitive impairment and dementia? Yes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:195-231. [PMID: 35750363 DOI: 10.1016/bs.irn.2022.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Essential Tremor (ET), by definition, is a disorder of movement. Yet over the years, epidemiologic, clinical, pathologic, and neuroimaging studies have converged to reveal a cognitive side of ET. The cognitive symptoms in ET are heterogeneous and are likely to reflect heterogeneous underlying mechanisms. In this chapter, we review and synthesize a diverse set of studies from both population-based settings to cohorts with more detailed investigations into cognition to consider the various mechanisms by which cognitive symptoms may emerge in a subset of individuals with ET. As part of our analysis, we consider questions surrounding ET diagnosis and the possibility of comorbid disease as potential factors that, upon closer examination, appear to strengthen the argument in favor of ET as a risk factor for dementia. Importantly, we also consider the clinical relevance of cognitive impairment in ET. While ET is not universally characterized by significant cognitive deficits, the data from epidemiological, cognitive, neuroimaging, and postmortem neuropathologic studies converge to reveal an increased risk for cognitive impairment and dementia among individuals with ET. We conclude by offering directions for future research, and a neurocognitive framework with which to consider existing findings and to use in the design of novel studies dedicated to clarifying the basis, nature, and course of cognitive impairments in ET.
Collapse
Affiliation(s)
- Stephanie Cosentino
- Cognitive Neuroscience Division of the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, United States; Department of Neurology, Columbia University Irving Medical Center, New York, United States.
| | - Ludy C Shih
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, Boston Medical Center, Boston, Massachusetts, United States; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States.
| |
Collapse
|
8
|
The Neurophysiology of the Cerebellum in Emotion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:87-108. [DOI: 10.1007/978-3-030-99550-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
9
|
Shenker JJ, Steele CJ, Chakravarty MM, Zatorre RJ, Penhune VB. Early musical training shapes cortico-cerebellar structural covariation. Brain Struct Funct 2021; 227:407-419. [PMID: 34657166 DOI: 10.1007/s00429-021-02409-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 10/05/2021] [Indexed: 01/18/2023]
Abstract
Adult abilities in complex cognitive domains such as music appear to depend critically on the age at which training or experience begins, and relevant experience has greater long-term effects during periods of peak maturational change. Previous work has shown that early trained musicians (ET; < age 7) out-perform later-trained musicians (LT; > age 7) on tests of musical skill, and also have larger volumes of the ventral premotor cortex (vPMC) and smaller volumes of the cerebellum. These cortico-cerebellar networks mature and function in relation to one another, suggesting that early training may promote coordinated developmental plasticity. To test this hypothesis, we examined structural covariation between cerebellar volume and cortical thickness (CT) in sensorimotor regions in ET and LT musicians and non-musicians (NMs). Results show that ETs have smaller volumes in cerebellar lobules connected to sensorimotor cortices, while both musician groups had greater cortical thickness in right pre-supplementary motor area (SMA) and right PMC compared to NMs. Importantly, early musical training had a specific effect on structural covariance between the cerebellum and cortex: NMs showed negative correlations between left lobule VI and right pre-SMA and PMC, but this relationship was reduced in ET musicians. ETs instead showed a significant negative correlation between vermal IV and right pre-SMA and dPMC. Together, these results suggest that early musical training has differential impacts on the maturation of cortico-cerebellar networks important for optimizing sensorimotor performance. This conclusion is consistent with the hypothesis that connected brain regions interact during development to reciprocally influence brain and behavioral maturation.
Collapse
Affiliation(s)
- Joseph J Shenker
- Department of Psychology, Concordia University, Montreal, QC, Canada. .,BRAMS: International Laboratory for Brain, Music, and Sound Research, Montreal, QC, Canada.
| | - Christopher J Steele
- Department of Psychology, Concordia University, Montreal, QC, Canada.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Robert J Zatorre
- BRAMS: International Laboratory for Brain, Music, and Sound Research, Montreal, QC, Canada.,Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Virginia B Penhune
- Department of Psychology, Concordia University, Montreal, QC, Canada.,BRAMS: International Laboratory for Brain, Music, and Sound Research, Montreal, QC, Canada
| |
Collapse
|
10
|
Peterburs J, Liang Y, Cheng DT, Desmond JE. Sensory acquisition functions of the cerebellum in verbal working memory. Brain Struct Funct 2021; 226:833-844. [PMID: 33481104 PMCID: PMC7981326 DOI: 10.1007/s00429-020-02212-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 12/30/2020] [Indexed: 11/03/2022]
Abstract
Several fMRI studies have shown that the superior cerebellum exhibits load-dependent activations during encoding of letters in a Sternberg verbal working memory (VWM) task. It has been hypothesized that the cerebellum regulates the acquisition of sensory data across all modalities, and thus, that VWM load activations may reflect high- vs low-load differences in sensory acquisition demands. Therefore, increased difficulty in sensory data acquisition should elicit greater activation in the cerebellum. The present fMRI study manipulated sensory acquisition in VWM by presenting visually degraded and non-degraded stimuli with high and low memory loads, thereby identifying load-dependent regions of interest in the cerebellum, and then testing if these regions showed greater activation for degraded stimuli. Results yielded partial support for the sensory acquisition hypothesis in a load-dependent region of the vermis, which showed significantly greater activation for degraded relative to non-degraded stimuli. Because eye movements did not differ for these stimulus types, and degradation-related activations were present after co-varying eye movements, this activation appears to be related to perceptual rather than oculomotor demands. In contrast to the vermis, load-sensitive regions of the cerebellar hemispheres did not show increased activation for degraded stimuli. These findings point to an overall function of association-based prediction that may underlie general cerebellar function, with perceptual prediction of stimuli from partial representations occurring in the vermis, and articulatory prediction occurring in the hemispheres.
Collapse
Affiliation(s)
- Jutta Peterburs
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biological Psychology, Heinrich-Heine-University, Institute of Experimental Psychology, Düsseldorf, Germany.
- Department of Medicine, Medical Psychology, MSH Medical School Hamburg, Hamburg, Germany.
| | - Yu Liang
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dominic T Cheng
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychology, Auburn University, Auburn, AL, USA
| | - John E Desmond
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Gellersen HM, Guell X, Sami S. Differential vulnerability of the cerebellum in healthy ageing and Alzheimer's disease. Neuroimage Clin 2021; 30:102605. [PMID: 33735787 PMCID: PMC7974323 DOI: 10.1016/j.nicl.2021.102605] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/12/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022]
Abstract
Recent findings challenge the prior notion that the cerebellum remains unaffected by Alzheimer's disease (AD). Yet, it is unclear whether AD exacerbates age-related cerebellar grey matter decline or engages distinct structural and functional territories. We performed a meta-analysis of cerebellar grey matter loss in normal ageing and AD. We mapped voxels with structural decline onto established brain networks, functional parcellations, and along gradients that govern the functional organisation of the cerebellum. Importantly, these gradients track continuous changes in cerebellar specialisation providing a more nuanced measure of the functional profile of regions vulnerable to ageing and AD. Gradient 1 progresses from motor to cognitive territories; Gradient 2 isolates attentional processing; Gradient 3 captures lateralisation differences in cognitive functions. We identified bilateral and right-lateralised posterior cerebellar atrophy in ageing and AD, respectively. Age- and AD-related structural decline only showed partial spatial overlap in right lobule VI/Crus I. Despite the seemingly distinct patterns of AD- and age-related atrophy, the functional profiles of these regions were similar. Both participate in the same macroscale networks (default mode, frontoparietal, attention), support executive functions and language processing, and did not exhibit a difference in relative positions along Gradients 1 or 2. However, Gradient 3 values were significantly different in ageing vs. AD, suggesting that the roles of left and right atrophied cerebellar regions exhibit subtle functional differences despite their membership in similar macroscale networks. These findings provide an unprecedented characterisation of structural and functional differences and similarities in cerebellar grey matter loss between normal ageing and AD.
Collapse
Affiliation(s)
- Helena M Gellersen
- Behavioural and Clinical Neuroscience Institute (BCNI), Department of Psychology, University of Cambridge, Cambridge, UK.
| | - Xavier Guell
- Massachusetts Institute of Technology, Massachusetts General Hospital, and Harvard Medical School, USA.
| | - Saber Sami
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
12
|
Wong CHY, Liu J, Lee TMC, Tao J, Wong AWK, Chau BKH, Chen L, Chan CCH. Fronto-cerebellar connectivity mediating cognitive processing speed. Neuroimage 2020; 226:117556. [PMID: 33189930 DOI: 10.1016/j.neuroimage.2020.117556] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022] Open
Abstract
Processing speed is an important construct in understanding cognition. This study was aimed to control task specificity for understanding the neural mechanisms underlying cognitive processing speed. Forty young adult subjects performed attention tasks of two modalities (auditory and visual) and two levels of task rules (compatible and incompatible). Block-design fMRI captured BOLD signals during the tasks. Thirteen regions of interest were defined with reference to publicly available activation maps for processing speed tasks. Cognitive speed was derived from task reaction times, which yielded six sets of connectivity measures. Mixed-effect LASSO regression revealed six significant paths suggestive of a cerebello-frontal network predicting the cognitive speed. Among them, three are long range (two fronto-cerebellar, one cerebello-frontal), and three are short range (fronto-frontal, cerebello-cerebellar, and cerebello-thalamic). The long-range connections are likely to relate to cognitive control, and the short-range connections relate to rule-based stimulus-response processes. The revealed neural network suggests that automaticity, acting on the task rules and interplaying with effortful top-down attentional control, accounts for cognitive speed.
Collapse
Affiliation(s)
- Clive H Y Wong
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
| | - Jiao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou, Fujian 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, United States; Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation (Fujian University of Traditional Chinese Medicine), Ministry of Education.
| | - Tatia M C Lee
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China.
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou, Fujian 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation (Fujian University of Traditional Chinese Medicine), Ministry of Education.
| | - Alex W K Wong
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, United States; Department of Neurology, Washington University School of Medicine, St. Louis, United States.
| | - Bolton K H Chau
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong.
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou, Fujian 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation (Fujian University of Traditional Chinese Medicine), Ministry of Education.
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
13
|
Cognitive Fatigability is Independent of Subjective Cognitive Fatigue and Mood in Multiple Sclerosis. Cogn Behav Neurol 2020; 33:113-121. [PMID: 32496296 DOI: 10.1097/wnn.0000000000000228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sustained cognitive testing is used to detect cognitive fatigability and is often considered a substitute for subjective cognitive fatigue (CF). However, the relationship between cognitive fatigability and subjective CF in people with multiple sclerosis (PwMS) remains undetermined. OBJECTIVE To explore potential associations between fatigability induced by sustained cognitive testing and subjective CF in PwMS. METHODS We gave 120 PwMS and 60 demographically matched, healthy individuals the Beck Depression Inventory-FastScreen (BDI-FS) to measure mood and the Modified Fatigue Impact Scale to measure CF. In addition, we used the Quotient ADHD Test, a sustained attention test, to measure cognitive fatigability. We also explored potential correlations between the individuals' performance on the sustained attention test and thalamic volume using recent MRI scans. RESULTS Forty-one (34.2%) of the PwMS exhibited cognitive fatigability. These 41 were found to be significantly older (P=0.006), had been diagnosed with the disease for longer (P=0.03), had higher scores (P<0.001) on the Expanded Disability Status Scale, and had reduced thalamic volume (P=0.04) compared with the 79 (65.8%) PwMS not exhibiting cognitive fatigability. The PwMS exhibiting cognitive fatigability scored similarly on the BDI-FS (P=0.21) and self-reported similar rates of CF (P=0.62) as the PwMS not exhibiting cognitive fatigability. CONCLUSION Cognitive fatigability induced by sustained cognitive testing is not an accurate clinical alternative to subjective CF. This study provides evidence to support cognitive fatigability and CF in PwMS as two distinct concepts.
Collapse
|
14
|
D'Mello AM, Gabrieli JDE, Nee DE. Evidence for Hierarchical Cognitive Control in the Human Cerebellum. Curr Biol 2020; 30:1881-1892.e3. [PMID: 32275880 PMCID: PMC7289516 DOI: 10.1016/j.cub.2020.03.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/05/2020] [Accepted: 03/11/2020] [Indexed: 11/23/2022]
Abstract
In non-habitual situations, cognitive control aligns actions with both short- and long-term goals. The capacity for cognitive control is tightly tied to the prefrontal cortex, whose expansion in humans relative to other species is thought to support our superior cognitive control. However, the posterolateral cerebellum has also expanded greatly relative to non-human primates and has an organizational structure that mirrors the prefrontal cortex. Nevertheless, cerebellar contributions to cognitive control are poorly understood. Here, we sought to explore whether a functional hierarchical processing framework, applied to the cerebellum, could elucidate cerebellar contributions to cognitive control. Using functional magnetic resonance imaging, we show that a gradient within the posterolateral cerebellum supports cognitive control with motor-adjacent cerebellar sub-regions supporting control of concrete, proximal actions and motor-distal, cerebellar sub-regions supporting abstract, future processing. This gradient was functionally hierarchical, with regions higher in the hierarchy influencing the relationship between regions lower in the hierarchy. This functional hierarchy provides the infrastructure by which context can inform current actions and prepare for future goals. Crucially, this mirrors the hierarchical organization of cognitive control within the prefrontal cortex. Based on these findings, we propose that the cerebellum contains within itself a parallel but separate hierarchical organization that, along with the prefrontal cortex, supports complex cognition.
Collapse
Affiliation(s)
- Anila M D'Mello
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 01239, USA.
| | - John D E Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Derek Evan Nee
- Department of Psychology, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
15
|
Balsters JH, Zerbi V, Sallet J, Wenderoth N, Mars RB. Primate homologs of mouse cortico-striatal circuits. eLife 2020; 9:e53680. [PMID: 32298231 PMCID: PMC7162658 DOI: 10.7554/elife.53680] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 04/05/2020] [Indexed: 01/11/2023] Open
Abstract
With the increasing necessity of animal models in biomedical research, there is a vital need to harmonise findings across species by establishing similarities and differences in rodent and primate neuroanatomy. Using connectivity fingerprint matching, we compared cortico-striatal circuits across humans, non-human primates, and mice using resting-state fMRI data in all species. Our results suggest that the connectivity patterns for the nucleus accumbens and cortico-striatal motor circuits (posterior/lateral putamen) were conserved across species, making them reliable targets for cross-species comparisons. However, a large number of human and macaque striatal voxels were not matched to any mouse cortico-striatal circuit (mouse->human: 85% unassigned; mouse->macaque 69% unassigned; macaque->human; 31% unassigned). These unassigned voxels were localised to the caudate nucleus and anterior putamen, overlapping with executive function and social/language regions of the striatum and connected to prefrontal-projecting cerebellar lobules and anterior prefrontal cortex, forming circuits that seem to be unique for non-human primates and humans.
Collapse
Affiliation(s)
- Joshua Henk Balsters
- Department of Psychology, Royal Holloway University of LondonEghamUnited Kingdom
- Neural Control of Movement Laboratory, Department of Health Sciences and TechnologyETH ZurichSwitzerland
| | - Valerio Zerbi
- Neural Control of Movement Laboratory, Department of Health Sciences and TechnologyETH ZurichSwitzerland
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
| | - Nicole Wenderoth
- Neural Control of Movement Laboratory, Department of Health Sciences and TechnologyETH ZurichSwitzerland
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| |
Collapse
|
16
|
Li X, Su H, Zhong N, Chen T, Du J, Xiao K, Xu D, Song W, Jiang H, Zhao M. Aberrant Resting-State Cerebellar-Cerebral Functional Connectivity in Methamphetamine-Dependent Individuals After Six Months Abstinence. Front Psychiatry 2020; 11:191. [PMID: 32296352 PMCID: PMC7137100 DOI: 10.3389/fpsyt.2020.00191] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/27/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Structural and functional alterations in the cerebellum have been consistently reported in addiction literatures. However, evidence implicating the resting-state cerebellar-cerebral functional connectivity in methamphetamine (MA) use disorder still remains limited. METHODS Resting-state functional magnetic resonance imaging (fMRI) scans were obtained from 34 MA dependent individuals with about six months abstinence and 31 healthy controls (well matched for age, gender and education) in this study. Seed-based functional connectivity analysis was employed to investigate the differences in cerebellar-cerebral functional connectivity between two groups. The correlations between significant functional connectivity and each clinical characteristic were also explored. RESULTS Compared to healthy controls, MA dependent individuals showed disrupted functional connectivity between the cerebellum and several cerebral functional networks, including the default-mode, affective-limbic, and sensorimotor networks. Within the MA group, functional connectivity of the right cerebellar lobule VI-precuneus coupling was negatively correlated with addiction severity. CONCLUSION The present study suggests that cerebellar dysfunction, in particular aberrant cerebellar-cerebral functional connectivity, might involve in neurobiological mechanism of MA dependence, which supply a potential target for therapeutic interventions in the future.
Collapse
Affiliation(s)
- Xiaotong Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Xiao
- Department of Physiological Rehabilitation, Shanghai Drug Rehabilitation Administration Bureau, Shanghai, China
| | - Ding Xu
- Department of Physiological Rehabilitation, Shanghai Drug Rehabilitation Administration Bureau, Shanghai, China
| | - Weidong Song
- Department of Physiological Rehabilitation, Shanghai Drug Rehabilitation Administration Bureau, Shanghai, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China.,Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Edde M, Di Scala G, Dupuy M, Dilharreguy B, Catheline G, Chanraud S. Learning-driven cerebellar intrinsic functional connectivity changes in men. J Neurosci Res 2019; 98:668-679. [PMID: 31762075 DOI: 10.1002/jnr.24555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/18/2019] [Accepted: 10/27/2019] [Indexed: 12/22/2022]
Abstract
Learning involves distributed but coordinated activity among the widespread connected brain areas. Increase in areas connections' strength may be established offline, that is, aside from the task itself, in a resting-state. The resulting functional connectivity may hence constitute a neural trace of the learning episode. The present study examined whether a conditional visuomotor learning task previously shown to activate the cerebellum would modify cerebellar intrinsic connectivity in groups of young and older male subjects. In the group of young subjects, resting-state connectivity within several cerebellar networks (fronto-cerebellar, temporo-cerebellar, cerebello-cerebellar) was modified following the task. In most cases, modulation resulted in increased anticorrelations between cerebellar and cortical areas and the amplitude of changes was correlated with learning efficacy. The group of older subjects drastically differed, with sparser modifications of resting-state functional connectivity and no cerebellar networks involved. The findings of this exploratory study indicate that associative learning modifies the strength of intrinsic connectivity in young subjects but to a lesser degree in older subjects. They further suggest that functional connectivity within cerebellar networks may play an operative role in this kind of learning.
Collapse
Affiliation(s)
- Manon Edde
- Laboratoire Neurobiologie et Vie Quotidienne, EPHE, PSL Research University, Bordeaux, France
| | - Georges Di Scala
- UMR 5287, Institut de Neurosciences Intégratives et Cognitives d'Aquitaine, Neuroimagerie et Cognition Humaine, CNRS, Université de Bordeaux, Bordeaux, France
| | - Maud Dupuy
- UMR 5287, Institut de Neurosciences Intégratives et Cognitives d'Aquitaine, Neuroimagerie et Cognition Humaine, CNRS, Université de Bordeaux, Bordeaux, France
| | - Bixente Dilharreguy
- UMR 5287, Institut de Neurosciences Intégratives et Cognitives d'Aquitaine, Neuroimagerie et Cognition Humaine, CNRS, Université de Bordeaux, Bordeaux, France
| | - Gwenaëlle Catheline
- Laboratoire Neurobiologie et Vie Quotidienne, EPHE, PSL Research University, Bordeaux, France.,UMR 5287, Institut de Neurosciences Intégratives et Cognitives d'Aquitaine, Neuroimagerie et Cognition Humaine, CNRS, Université de Bordeaux, Bordeaux, France
| | - Sandra Chanraud
- Laboratoire Neurobiologie et Vie Quotidienne, EPHE, PSL Research University, Bordeaux, France.,UMR 5287, Institut de Neurosciences Intégratives et Cognitives d'Aquitaine, Neuroimagerie et Cognition Humaine, CNRS, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
18
|
Hardwick RM, Forrence AD, Krakauer JW, Haith AM. Time-dependent competition between goal-directed and habitual response preparation. Nat Hum Behav 2019; 3:1252-1262. [DOI: 10.1038/s41562-019-0725-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 08/09/2019] [Indexed: 12/18/2022]
|
19
|
Bächinger M, Lehner R, Thomas F, Hanimann S, Balsters J, Wenderoth N. Human motor fatigability as evoked by repetitive movements results from a gradual breakdown of surround inhibition. eLife 2019; 8:46750. [PMID: 31524600 PMCID: PMC6746551 DOI: 10.7554/elife.46750] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/22/2019] [Indexed: 01/08/2023] Open
Abstract
Motor fatigability emerges when demanding tasks are executed over an extended period of time. Here, we used repetitive low-force movements that cause a gradual reduction in movement speed (or 'motor slowing') to study the central component of fatigability in healthy adults. We show that motor slowing is associated with a gradual increase of net excitability in the motor network and, specifically, in primary motor cortex (M1), which results from overall disinhibition. Importantly, we link performance decrements to a breakdown of surround inhibition in M1, which is associated with high coactivation of antagonistic muscle groups. This is consistent with the model that a loss of inhibitory control might broaden the tuning of population vectors such that movement patterns become more variable, ill-timed and effortful. We propose that the release of inhibition in M1 is an important mechanism underpinning motor fatigability and, potentially, also pathological fatigue as frequently observed in patients with brain disorders.
Collapse
Affiliation(s)
- Marc Bächinger
- Department of Health Sciences and Technology, Neural Control of Movement Lab, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich, Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, Zurich, Switzerland
| | - Rea Lehner
- Department of Health Sciences and Technology, Neural Control of Movement Lab, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich, Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, Zurich, Switzerland
| | - Felix Thomas
- Department of Health Sciences and Technology, Neural Control of Movement Lab, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich, Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, Zurich, Switzerland
| | - Samira Hanimann
- Department of Health Sciences and Technology, Neural Control of Movement Lab, Zurich, Switzerland
| | - Joshua Balsters
- Department of Health Sciences and Technology, Neural Control of Movement Lab, Zurich, Switzerland.,Department of Psychology, Royal Holloway University of London, Egham, United Kingdom
| | - Nicole Wenderoth
- Department of Health Sciences and Technology, Neural Control of Movement Lab, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich, Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Huberdeau DM, Krakauer JW, Haith AM. Practice induces a qualitative change in the memory representation for visuomotor learning. J Neurophysiol 2019; 122:1050-1059. [DOI: 10.1152/jn.00830.2018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adaptation of our movements to changes in the environment is known to be supported by multiple learning processes that operate in parallel. One is an implicit recalibration process driven by sensory-prediction errors; the other process counters the perturbation through more deliberate compensation. Prior experience is known to enable adaptation to occur more rapidly, a phenomenon known as “savings,” but exactly how experience alters each underlying learning process remains unclear. We measured the relative contributions of implicit recalibration and deliberate compensation to savings across 2 days of practice adapting to a visuomotor rotation. The rate of implicit recalibration showed no improvement with repeated practice. Instead, practice led to deliberate compensation being expressed even when preparation time was very limited. This qualitative change is consistent with the proposal that practice establishes a cached association linking target locations to appropriate motor output, facilitating a transition from deliberate to automatic action selection. NEW & NOTEWORTHY Recent research has shown that savings for visuomotor adaptation is attributable to retrieval of intentional, strategic compensation. This does not seem consistent with the implicit nature of memory for motor skills and calls into question the validity of visuomotor adaptation of reaching movements as a model for motor skill learning. Our findings suggest a solution: that additional practice adapting to a visuomotor perturbation leads to the caching of the initially explicit strategy for countering it.
Collapse
Affiliation(s)
- David M. Huberdeau
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John W. Krakauer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Adrian M. Haith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
Diedrichsen J, King M, Hernandez-Castillo C, Sereno M, Ivry RB. Universal Transform or Multiple Functionality? Understanding the Contribution of the Human Cerebellum across Task Domains. Neuron 2019; 102:918-928. [PMID: 31170400 PMCID: PMC6686189 DOI: 10.1016/j.neuron.2019.04.021] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 01/18/2023]
Abstract
An impressive body of research over the past 30 years has implicated the human cerebellum in a broad range of functions, including motor control, perception, language, working memory, cognitive control, and social cognition. The relatively uniform anatomy and physiology of the cerebellar cortex has given rise to the idea that this structure performs the same computational function across diverse domains. Here we highlight evidence from the human neuroimaging literature that documents the striking functional heterogeneity of the cerebellum, both in terms of task-evoked activity patterns and, as measured under task-free conditions, functional connectivity with the neocortex. Building on these observations, we discuss the theoretical challenges these results present to the idea of a universal cerebellar computation and consider the alternative concept of multiple functionality, the idea that the same underlying circuit implements functionally distinct computations.
Collapse
Affiliation(s)
- Jörn Diedrichsen
- Brain and Mind Institute, Western University London, ON N6A 5B7, Canada; Department of Statistical and Actuarial Sciences, Western University, London, ON N6A 5B7, Canada; Department of Computer Science, Western University, London, ON N6A 5B7, Canada.
| | - Maedbh King
- Department of Psychology, University of California, Berkeley, CA 94720, USA
| | | | - Marty Sereno
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Miquel M, Nicola SM, Gil-Miravet I, Guarque-Chabrera J, Sanchez-Hernandez A. A Working Hypothesis for the Role of the Cerebellum in Impulsivity and Compulsivity. Front Behav Neurosci 2019; 13:99. [PMID: 31133834 PMCID: PMC6513968 DOI: 10.3389/fnbeh.2019.00099] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/23/2019] [Indexed: 12/27/2022] Open
Abstract
Growing evidence associates cerebellar abnormalities with several neuropsychiatric disorders in which compulsive symptomatology and impulsivity are part of the disease pattern. Symptomatology of autism, addiction, obsessive-compulsive (OCD), and attention deficit/hyperactivity (ADHD) disorders transcends the sphere of motor dysfunction and essentially entails integrative processes under control of prefrontal-thalamic-cerebellar loops. Patients with brain lesions affecting the cortico-striatum thalamic circuitry and the cerebellum indeed exhibit compulsive symptoms. Specifically, lesions of the posterior cerebellar vermis cause affective dysregulation and deficits in executive function. These deficits may be due to impairment of one of the main functions of the cerebellum, implementation of forward internal models of the environment. Actions that are independent of internal models may not be guided by predictive relationships or a mental representation of the goal. In this review article, we explain how this deficit might affect executive functions. Additionally, regionalized cerebellar lesions have been demonstrated to impair other brain functions such as the emergence of habits and behavioral inhibition, which are also altered in compulsive disorders. Similar to the infralimbic cortex, clinical studies and research in animal models suggest that the cerebellum is not required for learning goal-directed behaviors, but it is critical for habit formation. Despite this accumulating data, the role of the cerebellum in compulsive symptomatology and impulsivity is still a matter of discussion. Overall, findings point to a modulatory function of the cerebellum in terminating or initiating actions through regulation of the prefrontal cortices. Specifically, the cerebellum may be crucial for restraining ongoing actions when environmental conditions change by adjusting prefrontal activity in response to the new external and internal stimuli, thereby promoting flexible behavioral control. We elaborate on this explanatory framework and propose a working hypothesis for the involvement of the cerebellum in compulsive and impulsive endophenotypes.
Collapse
Affiliation(s)
- Marta Miquel
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| | - Saleem M Nicola
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Isis Gil-Miravet
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| | - Julian Guarque-Chabrera
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| | - Aitor Sanchez-Hernandez
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
23
|
Dong G, Wang L, Du X, Potenza MN. Gender-related differences in neural responses to gaming cues before and after gaming: implications for gender-specific vulnerabilities to Internet gaming disorder. Soc Cogn Affect Neurosci 2019; 13:1203-1214. [PMID: 30272247 PMCID: PMC6234325 DOI: 10.1093/scan/nsy084] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/21/2018] [Indexed: 12/17/2022] Open
Abstract
Backgrounds More males than females play video games and develop problems with gaming. However, little is known regarding how males and females who game on the Internet may differ with respect to neural responses to gaming cues. Methods Behavioral and functional magnetic resonance imaging (fMRI) data were recorded from 40 female and 68 male Internet gamers. This study included three components including participation in a pre-gaming cue-craving task, 30 min of online gaming and a post-gaming cue-elicited-craving task. Group differences were examined at pre-gaming, post-gaming and post- vs pre-gaming times. Correlations between brain responses and behavioral performance were calculated. Results Gaming-related cues elicited higher cravings in male vs female subjects. Prior to gaming, males demonstrated greater activations in the striatum, orbitofrontal cortex (OFC), inferior frontal cortex and bilateral declive. Following gaming, male subjects demonstrated greater activations in the medial frontal gyrus and bilateral middle temporal gyri. In a post–pre comparison, male subjects demonstrated greater thalamic activation than did female subjects. Conclusions Short-term gaming elicited in males vs females more craving-related activations to gaming cues. These results suggest neural mechanisms for why males may be more vulnerable than females in developing Internet gaming disorder.
Collapse
Affiliation(s)
- Guangheng Dong
- School of Psychology, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Lingxiao Wang
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxia Du
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Marc N Potenza
- Department of Psychiatry, Department of Neuroscience, Child Study Center, and National Center on Addiction and Substance Abuse, Yale University School of Medicine, New Haven, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA
| |
Collapse
|
24
|
|
25
|
Prefrontal activation during Stroop and Wisconsin card sort tasks in children with developmental coordination disorder: a NIRS study. Exp Brain Res 2018; 236:3053-3064. [DOI: 10.1007/s00221-018-5358-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/10/2018] [Indexed: 11/30/2022]
|
26
|
Wang M, Dong G, Wang L, Zheng H, Potenza MN. Brain responses during strategic online gaming of varying proficiencies: Implications for better gaming. Brain Behav 2018; 8:e01076. [PMID: 30020566 PMCID: PMC6085917 DOI: 10.1002/brb3.1076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Online gaming is a complex and competitive activity. However, little attention has been paid to brain activities relating to gaming proficiency. METHODS In the current study, fMRI data were obtained from 70 subjects while they were playing online games. Based on their playing, we selected 24 clips from each subject for three levels of gaming proficiency (good, poor, and average), with each clip lasting for 8 seconds. RESULTS When comparing the brain responses during the three conditions, good-play trials, relative to poor- or average-play trials, were associated with greater activation of the declive, postcentral gyrus, and striatum. In post-hoc analyses taking the identified clusters as regions of interest to calculate their functional connectivity, activation of the declive during good-play conditions was associated with that in the precentral gyrus and thalamus, and activation in the striatum was associated with that in the inferior frontal gyrus and middle frontal cortex. CONCLUSIONS Taken together, findings suggest specific regional brain activations and functional connectivity patterns involving brain regions and circuits involved in sensory, motor, automatic and executive functioning and their coordination are associated with better gaming. Specifically, for basic functions, such as simple reaction, motor control, and motor coordination, people need to perform them automatically; for highly cognitive functions, such as plan and strategic playing, people need to engage more executive functions in finishing these works. The automatically processed basic functions spare cognitive resources for the highly cognitive functions, which facilitates their gaming behaviors.
Collapse
Affiliation(s)
- Min Wang
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Guangheng Dong
- Department of Psychology, Zhejiang Normal University, Jinhua, China.,Institute of Psychological and Brain Sciences, Zhejiang Normal University, Jinhua, China
| | - Lingxiao Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
| | - Hui Zheng
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Marc N Potenza
- Department of Psychiatry, Department of Neurobiology, Child Study Center, and National Center on Addiction and Substance Abuse, Yale University School of Medicine, New Haven, Connecticut.,Connecticut Mental Health Center, New Haven, Connecticut
| |
Collapse
|
27
|
Haith AM, Krakauer JW. The multiple effects of practice: skill, habit and reduced cognitive load. Curr Opin Behav Sci 2018; 20:196-201. [PMID: 30944847 PMCID: PMC6443249 DOI: 10.1016/j.cobeha.2018.01.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
When learning a new skill, even if we have been instructed exactly what to do, it is often necessary to practice for hours or even weeks before we achieve proficient and fluid performance. Practice has a multitude of effects on behavior, including increasing the speed of performance, rendering the practiced behavior habitual and reducing the cognitive load required to perform the task. These effects are often collectively referred to as automaticity. Here, we argue that these effects can be explained as multiple consequences of a single principle: caching of the outcome of frequently occuring computations. We further argue that, in the context of more complex task representations, caching different intermediate computations can give rise to more nuanced behavioral signatures, including dissociation between skill, habit and cognitive load.
Collapse
Affiliation(s)
- Adrian M Haith
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - John W Krakauer
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
28
|
Gorbet DJ, Sergio LE. Move faster, think later: Women who play action video games have quicker visually-guided responses with later onset visuomotor-related brain activity. PLoS One 2018; 13:e0189110. [PMID: 29364891 PMCID: PMC5783344 DOI: 10.1371/journal.pone.0189110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/20/2017] [Indexed: 11/18/2022] Open
Abstract
A history of action video game (AVG) playing is associated with improvements in several visuospatial and attention-related skills and these improvements may be transferable to unrelated tasks. These facts make video games a potential medium for skill-training and rehabilitation. However, examinations of the neural correlates underlying these observations are almost non-existent in the visuomotor system. Further, the vast majority of studies on the effects of a history of AVG play have been done using almost exclusively male participants. Therefore, to begin to fill these gaps in the literature, we present findings from two experiments. In the first, we use functional MRI to examine brain activity in experienced, female AVG players during visually-guided reaching. In the second, we examine the kinematics of visually-guided reaching in this population. Imaging data demonstrate that relative to women who do not play, AVG players have less motor-related preparatory activity in the cuneus, middle occipital gyrus, and cerebellum. This decrease is correlated with estimates of time spent playing. Further, these correlations are strongest during the performance of a visuomotor mapping that spatially dissociates eye and arm movements. However, further examinations of the full time-course of visuomotor-related activity in the AVG players revealed that the decreased activity during motor preparation likely results from a later onset of activity in AVG players, which occurs closer to beginning motor execution relative to the non-playing group. Further, the data presented here suggest that this later onset of preparatory activity represents greater neural efficiency that is associated with faster visually-guided responses.
Collapse
Affiliation(s)
- Diana J. Gorbet
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
- * E-mail:
| | - Lauren E. Sergio
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Non-invasive Cerebellar Stimulation: a Promising Approach for Stroke Recovery? THE CEREBELLUM 2017; 17:359-371. [DOI: 10.1007/s12311-017-0906-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Mormina E, Petracca M, Bommarito G, Piaggio N, Cocozza S, Inglese M. Cerebellum and neurodegenerative diseases: Beyond conventional magnetic resonance imaging. World J Radiol 2017; 9:371-388. [PMID: 29104740 PMCID: PMC5661166 DOI: 10.4329/wjr.v9.i10.371] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/18/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
The cerebellum plays a key role in movement control and in cognition and cerebellar involvement is described in several neurodegenerative diseases. While conventional magnetic resonance imaging (MRI) is widely used for brain and cerebellar morphologic evaluation, advanced MRI techniques allow the investigation of cerebellar microstructural and functional characteristics. Volumetry, voxel-based morphometry, diffusion MRI based fiber tractography, resting state and task related functional MRI, perfusion, and proton MR spectroscopy are among the most common techniques applied to the study of cerebellum. In the present review, after providing a brief description of each technique’s advantages and limitations, we focus on their application to the study of cerebellar injury in major neurodegenerative diseases, such as multiple sclerosis, Parkinson’s and Alzheimer’s disease and hereditary ataxia. A brief introduction to the pathological substrate of cerebellar involvement is provided for each disease, followed by the review of MRI studies exploring structural and functional cerebellar abnormalities and by a discussion of the clinical relevance of MRI measures of cerebellar damage in terms of both clinical status and cognitive performance.
Collapse
Affiliation(s)
- Enricomaria Mormina
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Neuroradiology Unit, Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, 98100 Messina, Italy
| | - Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80138 Naples, Italy
| | - Giulia Bommarito
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
| | - Niccolò Piaggio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
- Department of Neuroradiology, San Martino Hospital, 16132 Genoa, Italy
| | - Sirio Cocozza
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80138 Naples, Italy
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
31
|
Shine JM, Poldrack RA. Principles of dynamic network reconfiguration across diverse brain states. Neuroimage 2017; 180:396-405. [PMID: 28782684 DOI: 10.1016/j.neuroimage.2017.08.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/04/2017] [Accepted: 08/02/2017] [Indexed: 11/15/2022] Open
Abstract
Recent methodological advances have enabled researchers to track the network structure of the human brain over time. Together, these studies provide novel insights into effective brain function, highlighting the importance of the systems-level perspective in understanding the manner in which the human brain organizes its activity to facilitate behavior. Here, we review a range of recent fMRI and electrophysiological studies that have mapped the relationship between inter-regional communication and network structure across a diverse range of brain states. In doing so, we identify both behavioral and biological axes that may underlie the tendency for network reconfiguration. We conclude our review by providing suggestions for future research endeavors that may help to refine our understanding of the functioning of the human brain.
Collapse
Affiliation(s)
- James M Shine
- Department of Psychology, Stanford University, Stanford, CA, USA; The University of Sydney, Sydney, NSW, Australia.
| | | |
Collapse
|
32
|
Guell X, Gabrieli JDE, Schmahmann JD. Embodied cognition and the cerebellum: Perspectives from the Dysmetria of Thought and the Universal Cerebellar Transform theories. Cortex 2017; 100:140-148. [PMID: 28779872 DOI: 10.1016/j.cortex.2017.07.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/23/2017] [Accepted: 07/01/2017] [Indexed: 11/16/2022]
Abstract
In this report, we analyze the relationship between embodied cognition and current theories of the cerebellum, particularly the Dysmetria of Thought theory and the concept of the Universal Cerebellar Transform (UCT). First, we describe the UCT and the Dysmetria of Thought theories, highlight evidence supporting these hypotheses and discuss their mechanisms, functions and relevance. We then propose the following relationships. (i) The UCT strengthens embodied cognition because it provides an example of embodiment where the nature and intensity of the dependence between cognitive, affective and sensorimotor processes are defined. (ii) Conversely, embodied cognition bolsters the UCT theory because it contextualizes a cerebellum-focused theory within a general neurological theory. (iii) Embodied cognition supports the extension to other brain regions of the principles of organization of cerebral cortical connections that underlie the UCT: The notion that cytoarchitectonically determined transforms manifest via connectivity as sensorimotor, cognitive and affective functions resonates with the embodiment thesis that cognitive, affective and sensorimotor systems are interdependent. (iv) Embodied cognition might shape future definitions of the UCT because embodiment redefines the relationship between the neurological systems modulated by the UCT. We conclude by analyzing the relationship between our hypotheses and the concept of syntax and action semantics deficits in motor diseases.
Collapse
Affiliation(s)
- Xavier Guell
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge MA, USA; Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston MA, USA
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston MA, USA; Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston MA, USA.
| |
Collapse
|
33
|
Are individuals with higher psychopathic traits better learners at lying? Behavioural and neural evidence. Transl Psychiatry 2017; 7:e1175. [PMID: 28742075 PMCID: PMC5538125 DOI: 10.1038/tp.2017.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 05/18/2017] [Accepted: 06/07/2017] [Indexed: 11/09/2022] Open
Abstract
High psychopathy is characterized by untruthfulness and manipulativeness. However, existing evidence on higher propensity or capacity to lie among non-incarcerated high-psychopathic individuals is equivocal. Of particular importance, no research has investigated whether greater psychopathic tendency is associated with better 'trainability' of lying. An understanding of whether the neurobehavioral processes of lying are modifiable through practice offers significant theoretical and practical implications. By employing a longitudinal design involving university students with varying degrees of psychopathic traits, we successfully demonstrate that the performance speed of lying about face familiarity significantly improved following two sessions of practice, which occurred only among those with higher, but not lower, levels of psychopathic traits. Furthermore, this behavioural improvement associated with higher psychopathic tendency was predicted by a reduction in lying-related neural signals and by functional connectivity changes in the frontoparietal and cerebellum networks. Our findings provide novel and pivotal evidence suggesting that psychopathic traits are the key modulating factors of the plasticity of both behavioural and neural processes underpinning lying. These findings broadly support conceptualization of high-functioning individuals with higher psychopathic traits as having preserved, or arguably superior, functioning in neural networks implicated in cognitive executive processing, but deficiencies in affective neural processes, from a neuroplasticity perspective.
Collapse
|
34
|
Turner BO, Crossley MJ, Ashby FG. Hierarchical control of procedural and declarative category-learning systems. Neuroimage 2017; 150:150-161. [PMID: 28213114 DOI: 10.1016/j.neuroimage.2017.02.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/30/2017] [Accepted: 02/13/2017] [Indexed: 01/30/2023] Open
Abstract
Substantial evidence suggests that human category learning is governed by the interaction of multiple qualitatively distinct neural systems. In this view, procedural memory is used to learn stimulus-response associations, and declarative memory is used to apply explicit rules and test hypotheses about category membership. However, much less is known about the interaction between these systems: how is control passed between systems as they interact to influence motor resources? Here, we used fMRI to elucidate the neural correlates of switching between procedural and declarative categorization systems. We identified a key region of the cerebellum (left Crus I) whose activity was bidirectionally modulated depending on switch direction. We also identified regions of the default mode network (DMN) that were selectively connected to left Crus I during switching. We propose that the cerebellum-in coordination with the DMN-serves a critical role in passing control between procedural and declarative memory systems.
Collapse
|
35
|
Liu X, Liu L, Hou F, Zhou Z, Wu Q, Li H. Altered gray matter volume and functional connectivity of the motor network in young divers. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2017; 25:701-710. [PMID: 28697581 DOI: 10.3233/xst-17305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND Motor learning and professional sports training can induce plastic changes in brain structures that are associated with distinct training demands. OBJECTIVE To testify the hypothesis of that regional gray matter structures in the motor-related cortex and its functional connectivity (FC) are altered in young divers. METHODS We undertook T1-voxel-based morphometry (VBM) structural and resting-state functional magnetic resonance imaging in groups of diving athletes (DAs) and demographically-matched healthy controls. RESULTS Gray matter volume was lower in some regions in Das. By selecting the five most reduced regions, i.e. superior frontal gyrus, orbitofrontal cortex (OFC), insula, hippocampus, and cerebellum posterior lobe, as regions of interest (ROIs) for FC analysis, results showed that DAs had greater FC between the inferior temporal gyrus and superior frontal gyrus, OFC and cerebellum posterior lobe. Conversely, the divers had lesser FC between OFC and putamen, superior frontal gyrus and caudate. CONCLUSIONS VBM differences suggest that diving training entails more effective synaptic and/or neuronal pruning processes in motor structures. Indeed, cortical volumetric decreases in the DAs group are associated with increased FC among certain motor-related regions. We conclude that motor learning in adolescence alters brain structure in association with changes in FC between the relevant cortical and subcortical regions.
Collapse
Affiliation(s)
- Xia Liu
- Medical Imaging Center, The First Affiliated Clinical Hospital of Jinan University, Guangzhou, China
| | - Liansheng Liu
- Department of Medical Imaging, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Fen Hou
- Medical Imaging Center, The First Affiliated Clinical Hospital of Jinan University, Guangzhou, China
| | - Zhifeng Zhou
- Medical Imaging Center, The First Affiliated Clinical Hospital of Jinan University, Guangzhou, China
| | - Qingying Wu
- Sports Hospital, Ersha Sports Training Center of Guangdong Province, Guangzhou, China
| | - Hengguo Li
- Medical Imaging Center, The First Affiliated Clinical Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
36
|
Popa LS, Streng ML, Hewitt AL, Ebner TJ. The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning. THE CEREBELLUM 2016; 15:93-103. [PMID: 26112422 DOI: 10.1007/s12311-015-0685-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cerebellum is essential for error-driven motor learning and is strongly implicated in detecting and correcting for motor errors. Therefore, elucidating how motor errors are represented in the cerebellum is essential in understanding cerebellar function, in general, and its role in motor learning, in particular. This review examines how motor errors are encoded in the cerebellar cortex in the context of a forward internal model that generates predictions about the upcoming movement and drives learning and adaptation. In this framework, sensory prediction errors, defined as the discrepancy between the predicted consequences of motor commands and the sensory feedback, are crucial for both on-line movement control and motor learning. While many studies support the dominant view that motor errors are encoded in the complex spike discharge of Purkinje cells, others have failed to relate complex spike activity with errors. Given these limitations, we review recent findings in the monkey showing that complex spike modulation is not necessarily required for motor learning or for simple spike adaptation. Also, new results demonstrate that the simple spike discharge provides continuous error signals that both lead and lag the actual movements in time, suggesting errors are encoded as both an internal prediction of motor commands and the actual sensory feedback. These dual error representations have opposing effects on simple spike discharge, consistent with the signals needed to generate sensory prediction errors used to update a forward internal model.
Collapse
Affiliation(s)
- Laurentiu S Popa
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth St. S.E., Minneapolis, MN, 55455, USA
| | - Martha L Streng
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth St. S.E., Minneapolis, MN, 55455, USA
| | - Angela L Hewitt
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth St. S.E., Minneapolis, MN, 55455, USA
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth St. S.E., Minneapolis, MN, 55455, USA.
| |
Collapse
|
37
|
Seyed Majidi N, Verhage MC, Donchin O, Holland P, Frens MA, van der Geest JN. Cerebellar tDCS does not improve performance in probabilistic classification learning. Exp Brain Res 2016; 235:421-428. [PMID: 27766351 PMCID: PMC5272892 DOI: 10.1007/s00221-016-4800-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/11/2016] [Indexed: 11/20/2022]
Abstract
In this study, the role of the cerebellum in a cognitive learning task using transcranial direct current stimulation (tDCS) was investigated. Using a weather prediction task, subjects had to learn the probabilistic associations between a stimulus (a combination of cards) and an outcome (sun or rain). This task is a variant of a probabilistic classification learning task, for which it has been reported that prefrontal tDCS enhances performance. Using a between-subject design, all 30 subjects learned to improve their performance with increasing accuracies and shortened response times over a series of 500 trials. Subjects also became more confident in their prediction during the experiment. However, no differences in performance and learning were observed between subjects receiving sham stimulation (n = 10) or anodal stimulation (2 mA for 20 min) over either the right cerebellum (n = 10) or the left prefrontal cortex (n = 10). This suggests that stimulating the brain with cerebellar tDCS does not readily influence probabilistic classification performances, probably due to the rather complex nature of this cognitive task.
Collapse
Affiliation(s)
- N Seyed Majidi
- Department of Neuroscience (Ee1202), Erasmus MC, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - M C Verhage
- Department of Neuroscience (Ee1202), Erasmus MC, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - O Donchin
- Department of Biomedical Engineering, Zlotowski Centre for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel
| | - P Holland
- Department of Neuroscience (Ee1202), Erasmus MC, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands.,Department of Biomedical Engineering, Zlotowski Centre for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel
| | - M A Frens
- Department of Neuroscience (Ee1202), Erasmus MC, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands.,Erasmus University College, Rotterdam, The Netherlands
| | - J N van der Geest
- Department of Neuroscience (Ee1202), Erasmus MC, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands.
| |
Collapse
|
38
|
Lesage E, Nailer EL, Miall RC. Cerebellar BOLD signal during the acquisition of a new lexicon predicts its early consolidation. BRAIN AND LANGUAGE 2016; 161:33-44. [PMID: 26303580 PMCID: PMC5066914 DOI: 10.1016/j.bandl.2015.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 07/04/2015] [Accepted: 07/10/2015] [Indexed: 06/04/2023]
Abstract
Cerebellar contributions to language are presently poorly understood, but it has been argued that the cerebellar role in motor learning can be extended to learning in cognitive and linguistic domains. Here, we used fMRI to investigate whether the cerebellum is recruited in mapping novel words onto existing semantic concepts. On separate days, participants performed a Basque vocabulary learning task and a control English synonym task in the MRI scanner. Learning-related BOLD activity was found in left inferior frontal gyrus, bilateral insula, pre-SMA, left superior parietal cortex, right caudate, the right cerebellar vermis and right cerebellar Crus II. The extent to which the cerebellar regions, but not the cerebral areas, were recruited during learning correlated positively with participants' off-line improvement in performance after the learning task. These data provide evidence for a cerebellar role in lexical learning, and suggest that the right cerebellum may contribute toward consolidation of lexico-semantic associations in the language network.
Collapse
Affiliation(s)
- Elise Lesage
- School of Psychology, University of Birmingham, UK; Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
| | - Emma L Nailer
- School of Psychology, University of Birmingham, UK; School of Education, University of Birmingham, UK
| | | |
Collapse
|
39
|
Argyropoulos GPD. The cerebellum, internal models and prediction in 'non-motor' aspects of language: A critical review. BRAIN AND LANGUAGE 2016; 161:4-17. [PMID: 26320734 DOI: 10.1016/j.bandl.2015.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 07/25/2015] [Accepted: 08/06/2015] [Indexed: 06/04/2023]
Abstract
The emergence of studies on cerebellar contributions in 'non-motor' aspects of predictive language processing has long been awaited by researchers investigating the neural foundations of language and cognition. Despite (i) progress in research implicating the cerebellum in language processing, (ii) the widely-accepted nature of the uniform, multi-modal computation that the cerebellum implements in the form of internal models, as well as (iii) the long tradition of psycholinguistic studies addressing prediction mechanisms, research directly addressing cerebellar contributions to 'non-motor' predictive language processing has only surfaced in the last five years. This paper provides the first review of this novel field, along with a critical assessment of the studies conducted so far. While encouraging, the evidence for cerebellar involvement in 'non-motor' aspects of predictive language processing remains inconclusive under further scrutiny. Future directions are finally discussed with respect to outstanding questions in this novel field of research.
Collapse
Affiliation(s)
- Georgios P D Argyropoulos
- Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
40
|
Katz C, Knops A. Decreased cerebellar-cerebral connectivity contributes to complex task performance. J Neurophysiol 2016; 116:1434-48. [PMID: 27334957 DOI: 10.1152/jn.00684.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 06/13/2016] [Indexed: 11/22/2022] Open
Abstract
The cerebellum's role in nonmotor processes is now well accepted, but cerebellar interaction with cerebral targets is not well understood. Complex cognitive tasks activate cerebellar, parietal, and frontal regions, but the effective connectivity between these regions has never been tested. To this end, we used psycho-physiological interactions (PPI) analysis to test connectivity changes of cerebellar and parietal seed regions in complex (2-digit by 1-digit multiplication, e.g., 12 × 3) vs. simple (1-digit by 1-digit multiplication, e.g., 4 × 3) task conditions ("complex - simple"). For cerebellar seed regions (lobule VI, hemisphere and vermis), we found significantly decreased cerebellar-parietal, cerebellar-cingulate, and cerebellar-frontal connectivity in complex multiplication. For parietal seed regions (PFcm, PFop, PFm) we found significantly increased parietal-parietal and parietal-frontal connectivity in complex multiplication. These results suggest that decreased cerebellar-cerebral connectivity contributes to complex task performance. Interestingly, BOLD activity contrasts revealed partially overlapping parietal areas of increased BOLD activity but decreased cerebellar-parietal PPI connectivity.
Collapse
Affiliation(s)
- Curren Katz
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - André Knops
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
41
|
Chevignard M, Câmara-Costa H, Doz F, Dellatolas G. Core deficits and quality of survival after childhood medulloblastoma: a review. Neurooncol Pract 2016; 4:82-97. [PMID: 31385962 DOI: 10.1093/nop/npw013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Medulloblastoma is the most common malignant central nervous system tumor in children. Treatment most often includes surgical resection, craniospinal irradiation, and adjuvant chemotherapy. Although survival has improved dramatically, the tumor and its treatments have devastating long-term side effects that negatively impact quality of survival (QoS). The objective was to review the literature on QoS following childhood medulloblastoma. Methods This narrative review is based on a Medline database search and examination of the reference lists of papers selected. Results Frequent problems after medulloblastoma treatment include medical complications, such as long-term neurological and sensory (hearing loss) impairments; endocrine deficits, including growth problems; and secondary tumors. Neurocognitive impairment is repeatedly reported, with decreasing cognitive performances over time. Although all cognitive domains may be affected, low processing speed, attention difficulties, and working memory difficulties are described as the core cognitive deficits resulting from both cerebellar damage and the negative effect of radiation on white matter development. Long-term psychosocial limitations include low academic achievement, unemployment, and poor community integration with social isolation. Important negative prognostic factors include young age at diagnosis, conventional craniospinal radiotherapy, presence of postoperative cerebellar mutism, and perioperative complications. The influence of environmental factors, such as family background and interventions, remains understudied. Conclusion Future studies should focus on the respective impact of radiation, cerebellar damage, genomic and molecular subgroup parameters, and environmental factors on cognitive and psychosocial outcomes. Long-term (probably lifelong) follow-up into adulthood is required in order to monitor development and implement timely, suitable, multi-disciplinary rehabilitation interventions and special education or support when necessary.
Collapse
Affiliation(s)
- Mathilde Chevignard
- Rehabilitation Department for children with acquired neurological injury, Saint Maurice Hospitals, Saint Maurice, France (M.C.); Sorbonne Universités, UPMC University Paris 06, CNRS UMR 7371, INSERM UMR S 1146, Laboratoire d'Imagerie Biomédicale (LIB), F-75005, Paris, France (M.C.); Groupe de Recherche Clinique Handicap Cognitif et Réadaptation; UPMC Paris 6, Paris, France (M.C.); Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France.(H.C.-C, G.D.); Institut Curie and University Paris Descartes, Sorbonne Paris Cité, France (F.D.)
| | - Hugo Câmara-Costa
- Rehabilitation Department for children with acquired neurological injury, Saint Maurice Hospitals, Saint Maurice, France (M.C.); Sorbonne Universités, UPMC University Paris 06, CNRS UMR 7371, INSERM UMR S 1146, Laboratoire d'Imagerie Biomédicale (LIB), F-75005, Paris, France (M.C.); Groupe de Recherche Clinique Handicap Cognitif et Réadaptation; UPMC Paris 6, Paris, France (M.C.); Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France.(H.C.-C, G.D.); Institut Curie and University Paris Descartes, Sorbonne Paris Cité, France (F.D.)
| | - François Doz
- Rehabilitation Department for children with acquired neurological injury, Saint Maurice Hospitals, Saint Maurice, France (M.C.); Sorbonne Universités, UPMC University Paris 06, CNRS UMR 7371, INSERM UMR S 1146, Laboratoire d'Imagerie Biomédicale (LIB), F-75005, Paris, France (M.C.); Groupe de Recherche Clinique Handicap Cognitif et Réadaptation; UPMC Paris 6, Paris, France (M.C.); Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France.(H.C.-C, G.D.); Institut Curie and University Paris Descartes, Sorbonne Paris Cité, France (F.D.)
| | - Georges Dellatolas
- Rehabilitation Department for children with acquired neurological injury, Saint Maurice Hospitals, Saint Maurice, France (M.C.); Sorbonne Universités, UPMC University Paris 06, CNRS UMR 7371, INSERM UMR S 1146, Laboratoire d'Imagerie Biomédicale (LIB), F-75005, Paris, France (M.C.); Groupe de Recherche Clinique Handicap Cognitif et Réadaptation; UPMC Paris 6, Paris, France (M.C.); Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France.(H.C.-C, G.D.); Institut Curie and University Paris Descartes, Sorbonne Paris Cité, France (F.D.)
| |
Collapse
|
42
|
Abstract
Alcohol use disorder (AUD) represents a major public health issue due to its prevalence and severe health consequences. It may affect several aspects of an individual's life including work and relationships, and it also increases risk for additional problems such as brain injury. The causes and outcomes of AUD are varied; thus, attempting to understand this complex phenomenon requires investigation from multiple perspectives. Magnetic resonance imaging (MRI) is a powerful means to investigate brain anatomical and functional alterations related to AUD. Recent advances in MRI methods allow better investigation of the alterations to structural and functional brain networks in AUD. Here, we focus on findings from studies using multiple MRI techniques, which converge to support the considerable vulnerability of frontal systems. Indeed, MRI studies provide evidence for a "disconnection syndrome" which could be involved in the poor behavioral control observed in AUD.
Collapse
|
43
|
Moberget T, Ivry RB. Cerebellar contributions to motor control and language comprehension: searching for common computational principles. Ann N Y Acad Sci 2016; 1369:154-71. [PMID: 27206249 PMCID: PMC5260470 DOI: 10.1111/nyas.13094] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The past 25 years have seen the functional domain of the cerebellum extend beyond the realm of motor control, with considerable discussion of how this subcortical structure contributes to cognitive domains including attention, memory, and language. Drawing on evidence from neuroanatomy, physiology, neuropsychology, and computational work, sophisticated models have been developed to describe cerebellar function in sensorimotor control and learning. In contrast, mechanistic accounts of how the cerebellum contributes to cognition have remained elusive. Inspired by the homogeneous cerebellar microanatomy and a desire for parsimony, many researchers have sought to extend mechanistic ideas from motor control to cognition. One influential hypothesis centers on the idea that the cerebellum implements internal models, representations of the context-specific dynamics of an agent's interactions with the environment, enabling predictive control. We briefly review cerebellar anatomy and physiology, to review the internal model hypothesis as applied in the motor domain, before turning to extensions of these ideas in the linguistic domain, focusing on speech perception and semantic processing. While recent findings are consistent with this computational generalization, they also raise challenging questions regarding the nature of cerebellar learning, and may thus inspire revisions of our views on the role of the cerebellum in sensorimotor control.
Collapse
Affiliation(s)
- Torgeir Moberget
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Norway
| | - Richard B. Ivry
- Department of Psychology, and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California
| |
Collapse
|
44
|
Collins AGE, Frank MJ. Motor Demands Constrain Cognitive Rule Structures. PLoS Comput Biol 2016; 12:e1004785. [PMID: 26966909 PMCID: PMC4788431 DOI: 10.1371/journal.pcbi.1004785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/02/2016] [Indexed: 11/18/2022] Open
Abstract
Study of human executive function focuses on our ability to represent cognitive rules independently of stimulus or response modality. However, recent findings suggest that executive functions cannot be modularized separately from perceptual and motor systems, and that they instead scaffold on top of motor action selection. Here we investigate whether patterns of motor demands influence how participants choose to implement abstract rule structures. In a learning task that requires integrating two stimulus dimensions for determining appropriate responses, subjects typically structure the problem hierarchically, using one dimension to cue the task-set and the other to cue the response given the task-set. However, the choice of which dimension to use at each level can be arbitrary. We hypothesized that the specific structure subjects adopt would be constrained by the motor patterns afforded within each rule. Across four independent data-sets, we show that subjects create rule structures that afford motor clustering, preferring structures in which adjacent motor actions are valid within each task-set. In a fifth data-set using instructed rules, this bias was strong enough to counteract the well-known task switch-cost when instructions were incongruent with motor clustering. Computational simulations confirm that observed biases can be explained by leveraging overlap in cortical motor representations to improve outcome prediction and hence infer the structure to be learned. These results highlight the importance of sensorimotor constraints in abstract rule formation and shed light on why humans have strong biases to invent structure even when it does not exist.
Collapse
Affiliation(s)
- Anne Gabrielle Eva Collins
- Department of Cognitive, Linguistic and Psychological Sciences, Brown Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
- Department of Psychology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| | - Michael Joshua Frank
- Department of Cognitive, Linguistic and Psychological Sciences, Brown Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
45
|
O'Callaghan C, Hornberger M, Balsters JH, Halliday GM, Lewis SJG, Shine JM. Cerebellar atrophy in Parkinson's disease and its implication for network connectivity. Brain 2016; 139:845-55. [PMID: 26794597 DOI: 10.1093/brain/awv399] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022] Open
Abstract
Pathophysiological and atrophic changes in the cerebellum are documented in Parkinson's disease. Without compensatory activity, such abnormalities could potentially have more widespread effects on both motor and non-motor symptoms. We examined how atrophic change in the cerebellum impacts functional connectivity patterns within the cerebellum and between cerebellar-cortical networks in 42 patients with Parkinson's disease and 29 control subjects. Voxel-based morphometry confirmed grey matter loss across the motor and cognitive cerebellar territories in the patient cohort. The extent of cerebellar atrophy correlated with decreased resting-state connectivity between the cerebellum and large-scale cortical networks, including the sensorimotor, dorsal attention and default networks, but with increased connectivity between the cerebellum and frontoparietal networks. The severity of patients' motor impairment was predicted by a combination of cerebellar atrophy and decreased cerebellar-sensorimotor connectivity. These findings demonstrate that cerebellar atrophy is related to both increases and decreases in cerebellar-cortical connectivity in Parkinson's disease, identifying potential cerebellar driven functional changes associated with sensorimotor deficits. A post hoc analysis exploring the effect of atrophy in the subthalamic nucleus, a cerebellar input source, confirmed that a significant negative relationship between grey matter volume and intrinsic cerebellar connectivity seen in controls was absent in the patients. This suggests that the modulatory relationship of the subthalamic nucleus on intracerebellar connectivity is lost in Parkinson's disease, which may contribute to pathological activation within the cerebellum. The results confirm significant changes in cerebellar network activity in Parkinson's disease and reveal that such changes occur in association with atrophy of the cerebellum.
Collapse
Affiliation(s)
- Claire O'Callaghan
- 1 Brain and Mind Research Institute, University of Sydney, Sydney, Australia 2 Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Michael Hornberger
- 3 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Joshua H Balsters
- 4 Department of Health Sciences and Technology, Neural Control of Movement Laboratory, ETH Zurich, Switzerland
| | - Glenda M Halliday
- 5 Neuroscience Research Australia, Sydney, Australia 6 Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Simon J G Lewis
- 1 Brain and Mind Research Institute, University of Sydney, Sydney, Australia
| | - James M Shine
- 1 Brain and Mind Research Institute, University of Sydney, Sydney, Australia 5 Neuroscience Research Australia, Sydney, Australia 7 School of Psychology, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
46
|
Have we been ignoring the elephant in the room? Seven arguments for considering the cerebellum as part of addiction circuitry. Neurosci Biobehav Rev 2015; 60:1-11. [PMID: 26602022 DOI: 10.1016/j.neubiorev.2015.11.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 12/23/2022]
Abstract
Addiction involves alterations in multiple brain regions that are associated with functions such as memory, motivation and executive control. Indeed, it is now well accepted that addictive drugs produce long-lasting molecular and structural plasticity changes in corticostriatal-limbic loops. However, there are brain regions that might be relevant to addiction other than the prefrontal cortex, amygdala, hippocampus and basal ganglia. In addition to these circuits, a growing amount of data suggests the involvement of the cerebellum in many of the brain functions affected in addicts, though this region has been overlooked, traditionally, in the addiction field. Therefore, in the present review we provide seven arguments as to why we should consider the cerebellum in drug addiction. We present and discuss compelling evidence about the effects of drugs of abuse on cerebellar plasticity, the involvement of the cerebellum in drug-induced cue-related memories, and several findings showing that the instrumental memory and executive functions also recruit the cerebellar circuitry. In addition, a hypothetical model of the cerebellum's role relative to other areas within corticostriatal-limbic networks is also provided. Our goal is not to review animal and human studies exhaustively but to support the inclusion of cerebellar alterations as a part of the physiopathology of addiction disorder.
Collapse
|
47
|
Batson MA, Petridou N, Klomp DWJ, Frens MA, Neggers SFW. Single session imaging of cerebellum at 7 Tesla: obtaining structure and function of multiple motor subsystems in individual subjects. PLoS One 2015; 10:e0134933. [PMID: 26259014 PMCID: PMC4530960 DOI: 10.1371/journal.pone.0134933] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/15/2015] [Indexed: 12/11/2022] Open
Abstract
The recent increase in the use of high field MR systems is accompanied by a demand for acquisition techniques and coil systems that can take advantage of increased power and accuracy without being susceptible to increased noise. Physical location and anatomical complexity of targeted regions must be considered when attempting to image deeper structures with small nuclei and/or complex cytoarchitechtonics (i.e. small microvasculature and deep nuclei), such as the brainstem and the cerebellum (Cb). Once these obstacles are overcome, the concomitant increase in signal strength at higher field strength should allow for faster acquisition of MR images. Here we show that it is technically feasible to quickly and accurately detect blood oxygen level dependent (BOLD) signal changes and obtain anatomical images of Cb at high spatial resolutions in individual subjects at 7 Tesla in a single one-hour session. Images were obtained using two high-density multi-element surface coils (32 channels in total) placed beneath the head at the level of Cb, two channel transmission, and three-dimensional sensitivity encoded (3D, SENSE) acquisitions to investigate sensorimotor activations in Cb. Two classic sensorimotor tasks were used to detect Cb activations. BOLD signal changes during motor activity resulted in concentrated clusters of activity within the Cb lobules associated with each task, observed consistently and independently in each subject: Oculomotor vermis (VI/VII) and CrusI/II for pro- and anti-saccades; ipsilateral hemispheres IV-VI for finger tapping; and topographical separation of eye- and hand- activations in hemispheres VI and VIIb/VIII. Though fast temporal resolution was not attempted here, these functional patches of highly specific BOLD signal changes may reflect small-scale shunting of blood in the microvasculature of Cb. The observed improvements in acquisition time and signal detection are ideal for individualized investigations such as differentiation of functional zones prior to surgery.
Collapse
Affiliation(s)
- Melissa A. Batson
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- * E-mail:
| | - Natalia Petridou
- Radiology Department, Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W. J. Klomp
- Radiology Department, Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten A. Frens
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Erasmus University College, Rotterdam, The Netherlands
| | - Sebastiaan F. W. Neggers
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
48
|
Wu T, Hallett M, Chan P. Motor automaticity in Parkinson's disease. Neurobiol Dis 2015; 82:226-234. [PMID: 26102020 DOI: 10.1016/j.nbd.2015.06.014] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022] Open
Abstract
Bradykinesia is the most important feature contributing to motor difficulties in Parkinson's disease (PD). However, the pathophysiology underlying bradykinesia is not fully understood. One important aspect is that PD patients have difficulty in performing learned motor skills automatically, but this problem has been generally overlooked. Here we review motor automaticity associated motor deficits in PD, such as reduced arm swing, decreased stride length, freezing of gait, micrographia and reduced facial expression. Recent neuroimaging studies have revealed some neural mechanisms underlying impaired motor automaticity in PD, including less efficient neural coding of movement, failure to shift automated motor skills to the sensorimotor striatum, instability of the automatic mode within the striatum, and use of attentional control and/or compensatory efforts to execute movements usually performed automatically in healthy people. PD patients lose previously acquired automatic skills due to their impaired sensorimotor striatum, and have difficulty in acquiring new automatic skills or restoring lost motor skills. More investigations on the pathophysiology of motor automaticity, the effect of L-dopa or surgical treatments on automaticity, and the potential role of using measures of automaticity in early diagnosis of PD would be valuable.
Collapse
Affiliation(s)
- Tao Wu
- Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China.
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Piu Chan
- Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
49
|
Liljeholm M, Dunne S, O'Doherty JP. Differentiating neural systems mediating the acquisition vs. expression of goal-directed and habitual behavioral control. Eur J Neurosci 2015; 41:1358-71. [PMID: 25892332 PMCID: PMC4465201 DOI: 10.1111/ejn.12897] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 01/20/2023]
Abstract
Considerable behavioral data indicate that operant actions can become habitual, as demonstrated by insensitivity to changes in the action-outcome contingency and in subjective outcome values. Notably, although several studies have investigated the neural substrates of habits, none has clearly differentiated the areas of the human brain that support habit formation from those that implement habitual control. We scanned participants with functional magnetic resonance imaging as they learned and performed an operant task in which the conditional structure of the environment encouraged either goal-directed encoding of the consequences of actions, or a habit-like mapping of actions to antecedent cues. Participants were also scanned during a subsequent assessment of insensitivity to outcome devaluation. We identified dissociable roles of the cerebellum and ventral striatum, across learning and test performance, in behavioral insensitivity to outcome devaluation. We also showed that the inferior parietal lobule (an area previously implicated in several aspects of goal-directed action selection, including the attribution of intent and awareness of agency) predicted sensitivity to outcome devaluation. Finally, we revealed a potential functional homology between the human subgenual cortex and rodent infralimbic cortex in the implementation of habitual control. In summary, our findings suggested a broad systems division, at the cortical and subcortical levels, between brain areas mediating the encoding and expression of action-outcome and stimulus-response associations.
Collapse
Affiliation(s)
- Mimi Liljeholm
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
- Department of Cognitive Sciences, University of California, Irvine, 92697
| | - Simon Dunne
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
- Division of the Humanities and Social Sciences and Computation and Neural Systems Program, California Institute of Technology, Pasadena, California 91125
| | - John P. O'Doherty
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
- Division of the Humanities and Social Sciences and Computation and Neural Systems Program, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
50
|
Abstract
During learning, performance changes often involve a transition from controlled processing in which performance is flexible and responsive to ongoing error feedback, but effortful and slow, to a state in which processing becomes swift and automatic. In this state, performance is unencumbered by the requirement to process feedback, but its insensitivity to feedback reduces its flexibility. Many properties of automatic processing are similar to those that one would expect of forward models, and many have suggested that these may be instantiated in cerebellar circuitry. Since hierarchically organized frontal lobe areas can both send and receive commands, I discuss the possibility that they can act both as controllers and controlled objects and that their behaviors can be independently modeled by forward models in cerebellar circuits. Since areas of the prefrontal cortex contribute to this hierarchically organized system and send outputs to the cerebellar cortex, I suggest that the cerebellum is likely to contribute to the automation of cognitive skills, and to the formation of habitual behavior which is resistant to error feedback. An important prerequisite to these ideas is that cerebellar circuitry should have access to higher order error feedback that signals the success or failure of cognitive processing. I have discussed the pathways through which such feedback could arrive via the inferior olive and the dopamine system. Cerebellar outputs inhibit both the inferior olive and the dopamine system. It is possible that learned representations in the cerebellum use this as a mechanism to suppress the processing of feedback in other parts of the nervous system. Thus, cerebellar processes that control automatic performance may be completed without triggering the engagement of controlled processes by prefrontal mechanisms.
Collapse
Affiliation(s)
- Narender Ramnani
- Department of Psychology, Royal Holloway, University of London, Egham, UK.
| |
Collapse
|