1
|
Stavres J, Aultman RS, Newsome TA. Exercise pressor responses are exaggerated relative to force production during, but not following, thirty-minutes of rhythmic handgrip exercise. Eur J Appl Physiol 2024; 124:1547-1559. [PMID: 38155209 DOI: 10.1007/s00421-023-05390-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
PURPOSE This study tested the hypothesis that blood pressure responses would increase relative to force production in response to prolonged bouts of muscular work. METHODS Fifteen individuals performed two minutes of static handgrip (SHG; 35% MVC), followed by three minutes of post-exercise-cuff-occlusion (PECO), before and after thirty minutes of rest (control), or rhythmic handgrip exercise (RHG) of the contralateral and ipsilateral forearms. Beat-by-beat recordings of mean arterial pressure (MAP), heart rate (HR), and handgrip force (kg) were averaged across one-minute periods at baseline, and minutes 5, 10, 15, 20, 25, and 30 of RHG. MAP was also normalized to handgrip force, providing a relative measure of exercise pressor responses (mmHg/kg). Hemodynamic responses to SHG and PECO were also compared before and after contralateral RHG, ipsilateral RHG, and control, respectively. Similar to the RHG trial, areas under the curve were calculated for MAP (blood pressure index; BPI) and normalized to the time tension index (BPInorm). RESULTS HR and MAP significantly increased during RHG (15.3 ± 1.4% and 20.4 ± 3.2%, respectively, both p < 0.01), while force output decreased by up to 36.6 ± 8.0% (p < 0.01). This resulted in a 51.6 ± 9.4% increase in BPInorm during 30 min of RHG (p < 0.01). In contrast, blood pressure responses to SHG and PECO were unchanged following RHG (all p ≥ 0.07), and only the mean HR (4.2 ± 1.5%, p = 0.01) and ΔHR (67.2 ± 18.1%, p < 0.01) response to SHG were exaggerated following ipsilateral RHG. CONCLUSIONS The magnitude of exercise pressor responses relative to force production progressively increases during, but not following, prolonged bouts of muscular work.
Collapse
Affiliation(s)
- Jon Stavres
- School of Kinesiology and Nutrition, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, USA.
| | - Ryan S Aultman
- School of Kinesiology and Nutrition, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, USA
| | - Ta'Quoris A Newsome
- School of Kinesiology and Nutrition, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, USA
| |
Collapse
|
2
|
Souza JR, Lima-Silveira L, Accorsi-Mendonça D, Machado BH. Enhancement of the Evoked Excitatory Transmission in the Nucleus Tractus Solitarius Neurons after Sustained Hypoxia in Mice Depends on A 2A Receptors. Neuroscience 2024; 536:57-71. [PMID: 37979842 DOI: 10.1016/j.neuroscience.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
The first synapses of the afferents of peripheral chemoreceptors are located in the Nucleus Tractus Solitarius (NTS) and there is evidence that short-term sustained hypoxia (SH - 24 h, FiO2 0.1) facilitates glutamatergic transmission in NTS neurons of rats. Adenosine is an important neuromodulator of synaptic transmission and hypoxia contributes to increase its extracellular concentration. The A2A receptors mediate the excitatory actions of adenosine and are active players in the modulation of neuronal networks in the NTS. Herein, we used knockout mice for A2A receptors (A2AKO) and electrophysiological recordings of NTS neurons were performed to evaluate the contribution of these receptors in the changes in synaptic transmission in NTS neurons of mice submitted to SH. The membrane passive properties and excitability of NTS neurons were not affected by SH and were similar between A2AKO and wild-type mice. The overall amplitude of spontaneous glutamatergic currents in NTS neurons of A2AKO mice was lower than in Balb/c WT mice. SH increased the amplitude of evoked glutamatergic currents of NTS neurons from WT mice by a non-presynaptic mechanism, but this enhancement was not observed in NTS neurons of A2AKO mice. Under normoxia, the amplitude of evoked glutamatergic currents was similar between WT and A2AKO mice. The data indicate that A2A receptors (a) modulate spontaneous glutamatergic currents, (b) do not modulate the evoked glutamatergic transmission in the NTS neurons under control conditions, and (c) are required for the enhancement of glutamatergic transmission observed in the NTS neurons of mice submitted to SH.
Collapse
Affiliation(s)
- Juliana R Souza
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Ludmila Lima-Silveira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Daniela Accorsi-Mendonça
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil.
| |
Collapse
|
3
|
Ostrowski D, Heesch CM, Kline DD, Hasser EM. Nucleus tractus solitarii is required for the development and maintenance of phrenic and sympathetic long-term facilitation after acute intermittent hypoxia. Front Physiol 2023; 14:1120341. [PMID: 36846346 PMCID: PMC9949380 DOI: 10.3389/fphys.2023.1120341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Exposure to acute intermittent hypoxia (AIH) induces prolonged increases (long term facilitation, LTF) in phrenic and sympathetic nerve activity (PhrNA, SNA) under basal conditions, and enhanced respiratory and sympathetic responses to hypoxia. The mechanisms and neurocircuitry involved are not fully defined. We tested the hypothesis that the nucleus tractus solitarii (nTS) is vital to augmentation of hypoxic responses and the initiation and maintenance of elevated phrenic (p) and splanchnic sympathetic (s) LTF following AIH. nTS neuronal activity was inhibited by nanoinjection of the GABAA receptor agonist muscimol before AIH exposure or after development of AIH-induced LTF. AIH but not sustained hypoxia induced pLTF and sLTF with maintained respiratory modulation of SSNA. nTS muscimol before AIH increased baseline SSNA with minor effects on PhrNA. nTS inhibition also markedly blunted hypoxic PhrNA and SSNA responses, and prevented altered sympathorespiratory coupling during hypoxia. Inhibiting nTS neuronal activity before AIH exposure also prevented the development of pLTF during AIH and the elevated SSNA after muscimol did not increase further during or following AIH exposure. Furthermore, nTS neuronal inhibition after the development of AIH-induced LTF substantially reversed but did not eliminate the facilitation of PhrNA. Together these findings demonstrate that mechanisms within the nTS are critical for initiation of pLTF during AIH. Moreover, ongoing nTS neuronal activity is required for full expression of sustained elevations in PhrNA following exposure to AIH although other regions likely also are important. Together, the data indicate that AIH-induced alterations within the nTS contribute to both the development and maintenance of pLTF.
Collapse
Affiliation(s)
- Daniela Ostrowski
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States,Department of Biology, Truman State University, Kirksville, MO, United States
| | - Cheryl M. Heesch
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - David D. Kline
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Eileen M. Hasser
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States,*Correspondence: Eileen M. Hasser,
| |
Collapse
|
4
|
Stavres J, Luck JC, Ducrocq GP, Cauffman AE, Pai S, Sinoway LI. Central and peripheral modulation of exercise pressor reflex sensitivity after nonfatiguing work. Am J Physiol Regul Integr Comp Physiol 2020; 319:R575-R583. [PMID: 32877237 DOI: 10.1152/ajpregu.00127.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autonomic blood pressure control is fundamentally altered during a single bout of exercise, as evidenced by the downward resetting of the baroreflex following exercise (postexercise hypotension). However, it is unclear if an acute bout of exercise is also associated with a change in the sensitivity of the exercise pressor response to a controlled stimulus, such as a static contraction. This study tested the hypothesis that the blood pressure response to a controlled static contraction would be attenuated after unilateral cycling of the contralateral (opposite) leg, but preserved after cycling of the ipsilateral (same) leg. To test this, the blood pressure response to 90 s of isometric plantar flexion [50% maximal voluntary contraction (MVC)] was compared before and after 20 min of contralateral and ipsilateral single-leg cycling at 20% peak oxygen consumption and rest (control) in 10 healthy subjects (three males and seven females). The mean arterial pressure response was significantly attenuated after contralateral single-leg cycling (+9.8 ± 7.5% ∆mmHg vs. +6.7 ± 6.6% ∆mmHg pre and postexercise, respectively, P = 0.04) and rest (+9.0 ± 7.5% ∆mmHg vs. +6.6 ± 5.2% ∆mmHg pre and postexercise, respectively, P = 0.03). In contrast, the pressor response nonsignificantly increased following ipsilateral single-leg cycling (+5.5 ± 5.2% ∆mmHg vs. +8.9 ± 7.2% ∆mmHg pre and postexercise, respectively, P = 0.08). The heart rate, leg blood flow, and leg conductance responses to plantar flexion were not affected by any condition (P ≥ 0.12). These results are consistent with the notion that peripheral, but not central mechanisms promote exercise pressor reflex sensitivity after exercise.
Collapse
Affiliation(s)
- Jon Stavres
- Penn State Heart and Vascular Institute, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - J Carter Luck
- Penn State Heart and Vascular Institute, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Guillaume P Ducrocq
- Penn State Heart and Vascular Institute, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Aimee E Cauffman
- Penn State Heart and Vascular Institute, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Samuel Pai
- Penn State Heart and Vascular Institute, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
5
|
Bunner W, Landry T, Laing BT, Li P, Rao Z, Yuan Y, Huang H. ARC AgRP/NPY Neuron Activity Is Required for Acute Exercise-Induced Food Intake in Un-Trained Mice. Front Physiol 2020; 11:411. [PMID: 32435204 PMCID: PMC7218131 DOI: 10.3389/fphys.2020.00411] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/06/2020] [Indexed: 11/29/2022] Open
Abstract
While much is known about the role of agouti-regulated peptide/neuropeptide Y (AgRP/NPY) and pro-opiomelanocortin (POMC) neurons to regulate energy homeostasis, little is known about how forced energy expenditure, such as exercise, modulates these neurons and if these neurons are involved in post-exercise feeding behaviors. We utilized multiple mouse models to investigate the effects of acute, moderate-intensity exercise on food intake and neuronal activity in the arcuate nucleus (ARC) of the hypothalamus. NPY-GFP reporter mice were utilized for immunohistochemistry and patch-clamp electrophysiology experiments investigating neuronal activation immediately after acute treadmill exercise. Additionally, ARCAgRP/NPY neuron inhibition was performed using the Designer Receptors Exclusively Activated by Designer Drugs (DREADD) system in AgRP-Cre transgenic mice to investigate the importance of AgRP/NPY neurons in post-exercise feeding behaviors. Our experiments revealed that acute moderate-intensity exercise significantly increased food intake, ARCAgRP/NPY neuron activation, and PVNSim1 neuron activation, while having no effect on ARCPOMC neurons. Strikingly, this exercise-induced refeeding was completely abolished when ARCAgRP/NPY neuron activity was inhibited. While acute exercise also increased PVNSim1 neuron activity, inhibition of ARCAgRP/NPY neurons had no effect on PVNSim1 neuronal activation. Overall, our results reveal that ARCAgRP/NPY activation is required for acute exercise induced food intake in mice, thus providing insight into the critical role of ARCAgRP/NPY neurons in maintaining energy homeostasis in cases of exercise-mediated energy deficit.
Collapse
Affiliation(s)
- Wyatt Bunner
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States.,Human Performance Laboratory, College of Health and Human Performance, East Carolina University, Greenville, NC, United States.,Department of Kinesiology, East Carolina University, Greenville, NC, United States
| | - Taylor Landry
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States.,Human Performance Laboratory, College of Health and Human Performance, East Carolina University, Greenville, NC, United States.,Department of Kinesiology, East Carolina University, Greenville, NC, United States
| | - Brenton Thomas Laing
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States.,Human Performance Laboratory, College of Health and Human Performance, East Carolina University, Greenville, NC, United States.,Department of Kinesiology, East Carolina University, Greenville, NC, United States
| | - Peixin Li
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States.,Human Performance Laboratory, College of Health and Human Performance, East Carolina University, Greenville, NC, United States.,Department of Kinesiology, East Carolina University, Greenville, NC, United States
| | - Zhijian Rao
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States.,Human Performance Laboratory, College of Health and Human Performance, East Carolina University, Greenville, NC, United States.,Department of Kinesiology, East Carolina University, Greenville, NC, United States
| | - Yuan Yuan
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States.,Human Performance Laboratory, College of Health and Human Performance, East Carolina University, Greenville, NC, United States.,Department of Kinesiology, East Carolina University, Greenville, NC, United States
| | - Hu Huang
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States.,Human Performance Laboratory, College of Health and Human Performance, East Carolina University, Greenville, NC, United States.,Department of Kinesiology, East Carolina University, Greenville, NC, United States.,Department of Physiology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
6
|
|
7
|
Neonatal Sepsis Alters the Excitability of Regular Spiking Cells in the Nucleus of the Solitary Tract in Rats. Shock 2019; 54:265-271. [DOI: 10.1097/shk.0000000000001453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Stavres J, Fischer SM, McDaniel J. Exaggerated post exercise hypotension following concentric but not eccentric resistance exercise: Implications for metabolism. Eur J Sport Sci 2019; 19:983-993. [PMID: 30606088 DOI: 10.1080/17461391.2018.1564368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Post exercise hypotension (PEH) is primarily attributed to post-exercise vasodilation via central and peripheral mechanisms. However, the specific contribution of metabolic cost during exercise, independent of force production, is less clear. This study aimed to use isolated concentric and eccentric exercise to examine the role of metabolic activity in eliciting PEH, independent of total work. Twelve participants (6 male) completed upper and lower body concentric (CONC), eccentric (ECC), and traditional (TRAD) exercise sessions matched for work (3 × 10 in TRAD and 3 × 20 in CONC and ECC; all at 65% 1RM). Blood pressure was collected at baseline and every 15 min after exercise for 120 min. Brachial blood flow and vascular conductance were also assessed at baseline, immediately after exercise, and every 30 min after exercise. ⩒O2 was lower during ECC compared to CONC and TRAD (-2.7 mL/Kg/min ± 0.4 and -2.2 mL/Kg/min ± 0.4, respectively p < 0.001). CONC augmented the PEH response (Peak ΔMAP -3.3 mmHg ± 0.9 [mean ± SE], p = 0.006) through 75 min of recovery and ECC elicited a post-exercise hypertensive response through 120 min of recovery (Peak ΔMAP +4.5 mmHg ± 0.8, p < 0.001). CONC and TRAD elicited greater increases in brachial blood flow post exercise than ECC (Peak Δ brachial flow +190.4 mL/min ± 32.3, +202.3 mL/min ± 39.2, and 69.6 mL/min ± 19.8, respectively, p ≤ 0.005), while conductance increased immediately post exercise in all conditions and then decreased throughout recovery following ECC (-32.9 mL/min/mmHg ± 9.3, p = 0.005). These data suggest that more metabolically demanding concentric exercise augments PEH compared to work-matched eccentric exercise.
Collapse
Affiliation(s)
- Jon Stavres
- a School of Health Sciences, Kent State University , Kent , OH , USA.,b Penn State Milton S. Hershey Medical Center , Hershey , PA , USA
| | - Stephen M Fischer
- a School of Health Sciences, Kent State University , Kent , OH , USA
| | - John McDaniel
- a School of Health Sciences, Kent State University , Kent , OH , USA.,c Louis Stokes Cleveland VA Medical Center , Cleveland , OH , USA
| |
Collapse
|
9
|
Shen Y, Park JB, Lee SY, Han SK, Ryu PD. Exercise training normalizes elevated firing rate of hypothalamic presympathetic neurons in heart failure rats. Am J Physiol Regul Integr Comp Physiol 2018; 316:R110-R120. [PMID: 30485115 DOI: 10.1152/ajpregu.00225.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Exercise training (ExT) normalizes elevated sympathetic nerve activity in heart failure (HF), but the underlying mechanisms are not well understood. In this study, we examined the effects of 3 wk of ExT on the electrical activity of the hypothalamic presympathetic neurons in the brain slice of HF rats. HF rats were prepared by ligating the left descending coronary artery. The electrophysiological properties of paraventricular nucleus neurons projecting to the rostral ventrolateral medulla (PVN-RVLM) were examined using the slice patch-clamp technique. The neuronal firing rate was elevated in HF rats, and ExT induced a reduction in the firing rate ( P < 0.01). This ExT-induced decrease in the firing rate was associated with an increased frequency of spontaneous and miniature inhibitory postsynaptic current (IPSCs; P < 0.05). There was no significant change in excitatory postsynaptic current. Replacing Ca2+ with Mg2+ in the recording solution reduced the elevated IPSC frequency in HF rats with ExT ( P < 0.01) but not in those without ExT, indicating an increase in the probability of GABA release. In contrast, ExT did not restore the reduced GABAA receptor-mediated tonic inhibitory current in HF rats. A GABAA receptor blocker (bicuculline, 20 μM) increased the firing rate in HF rats with ExT ( P < 0.01) but not in those without ExT. Collectively, these results show that ExT normalized the elevated firing activity by increasing synaptic GABA release in PVN-RVLM neurons in HF rats. Our findings provide a brain mechanism underlying the beneficial effects of ExT in HF, which may shed light on the pathophysiology of other diseases accompanied by sympathetic hyperactivation.
Collapse
Affiliation(s)
- Yiming Shen
- Department of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul , Republic of Korea
| | - Jin Bong Park
- Department of Physiology, School of Medicine, Chungnam National University , Daejeon , Republic of Korea
| | - So Yeong Lee
- Department of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul , Republic of Korea
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Pan Dong Ryu
- Department of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul , Republic of Korea
| |
Collapse
|
10
|
Spontaneous cardiac baroreflex sensitivity is enhanced during post-exercise ischemia in men but not in women. Eur J Appl Physiol 2018; 119:103-111. [DOI: 10.1007/s00421-018-4004-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 10/01/2018] [Indexed: 01/04/2023]
|
11
|
Chen CY, Di Lucente J, Lin YC, Lien CC, Rogawski MA, Maezawa I, Jin LW. Defective GABAergic neurotransmission in the nucleus tractus solitarius in Mecp2-null mice, a model of Rett syndrome. Neurobiol Dis 2017; 109:25-32. [PMID: 28927958 DOI: 10.1016/j.nbd.2017.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/14/2017] [Accepted: 09/14/2017] [Indexed: 01/12/2023] Open
Abstract
Rett syndrome (RTT) is a devastating neurodevelopmental disorder caused by loss-of-function mutations in the X-linked methyl-CpG binding protein 2 (Mecp2) gene. GABAergic dysfunction has been implicated contributing to the respiratory dysfunction, one major clinical feature of RTT. The nucleus tractus solitarius (NTS) is the first central site integrating respiratory sensory information that can change the nature of the reflex output. We hypothesized that deficiency in Mecp2 gene reduces GABAergic neurotransmission in the NTS. Using whole-cell patch-clamp recordings in NTS slices, we measured spontaneous inhibitory postsynaptic currents (sIPSCs), miniature IPSCs (mIPSCs), NTS-evoked IPSCs (eIPSCs), and GABAA receptor (GABAA-R) agonist-induced responses. Compared to those from wild-type mice, NTS neurons from Mecp2-null mice had significantly (p<0.05) reduced sIPSC amplitude, sIPSC frequency, and mIPSC amplitude but not mIPSC frequency. Mecp2-null mice also had decreased eIPSC amplitude with no change in paired-pulse ratio. The data suggest reduced synaptic receptor-mediated phasic GABA transmission in Mecp2-null mice. In contrast, muscimol (GABAA-R agonist, 0.3-100μM) and THIP (selective extrasynaptic GABAA-R agonist, 5μM) induced significantly greater current response in Mecp2-null mice, suggesting increased extrasynaptic receptors. Using qPCR, we found a 2.5 fold increase in the delta subunit of the GABAA-Rs in the NTS in Mecp2-null mice, consistent with increased extrasynaptic receptors. As the NTS was recently found required for respiratory pathology in RTT, our results provide a mechanism for NTS dysfunction which involves shifting the balance of synaptic/extrasynaptic receptors in favor of extrasynaptic site, providing a target for boosting GABAergic inhibition in RTT.
Collapse
Affiliation(s)
- Chao-Yin Chen
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA 95616, United States.
| | - Jacopo Di Lucente
- Department of Pathology and Laboratory Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Yen-Chu Lin
- Department of Pathology and Laboratory Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Cheng-Chang Lien
- Institute of Neuroscience, National Yang-Ming University, Taipei 112, Taiwan
| | - Michael A Rogawski
- Department of Neurology, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, United States; M.I.N.D. (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, United States; M.I.N.D. (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, One Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
12
|
Brasileiro-Santos MDS, Santos ADC. Neural mechanismsand post-exercise hypotension: The importance of experimental studies. MOTRIZ: REVISTA DE EDUCACAO FISICA 2017. [DOI: 10.1590/s1980-6574201700si0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Ab Kadir S, Wan-Mohtar WAAQI, Mohammad R, Abdul Halim Lim S, Sabo Mohammed A, Saari N. Evaluation of commercial soy sauce koji strains of Aspergillus oryzae for γ-aminobutyric acid (GABA) production. J Ind Microbiol Biotechnol 2016; 43:1387-95. [PMID: 27541157 DOI: 10.1007/s10295-016-1828-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/08/2016] [Indexed: 11/25/2022]
Abstract
In this study, four selected commercial strains of Aspergillus oryzae were collected from soy sauce koji. These A. oryzae strains designated as NSK, NSZ, NSJ and NST shared similar morphological characteristics with the reference strain (A. oryzae FRR 1675) which confirmed them as A. oryzae species. They were further evaluated for their ability to produce γ-aminobutyric acid (GABA) by cultivating the spore suspension in a broth medium containing 0.4 % (w/v) of glutamic acid as a substrate for GABA production. The results showed that these strains were capable of producing GABA; however, the concentrations differed significantly (P < 0.05) among themselves. Based on the A. oryzae strains, highest GABA concentration was obtained from NSK (194 mg/L) followed by NSZ (63 mg/L), NSJ (51.53 mg/L) and NST (31.66 mg/L). Therefore, A. oryzae NSK was characterized and the sequence was found to be similar to A. oryzae and A. flavus with 99 % similarity. The evolutionary distance (K nuc) between sequences of identical fungal species was calculated and a phylogenetic tree prepared from the K nuc data showed that the isolate belonged to the A. oryzae species. This finding may allow the development of GABA-rich ingredients using A. oryzae NSK as a starter culture for soy sauce production.
Collapse
Affiliation(s)
- Safuan Ab Kadir
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Fermentation Centre, Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Rosfarizan Mohammad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Sarina Abdul Halim Lim
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Abdulkarim Sabo Mohammed
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
14
|
Sévoz-Couche C, Brouillard C. Key role of 5-HT 3 receptors in the nucleus tractus solitarii in cardiovagal stress reactivity. Neurosci Biobehav Rev 2016; 74:423-432. [PMID: 27131969 DOI: 10.1016/j.neubiorev.2016.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 01/01/2023]
Abstract
Serotonin plays a modulatory role in central control of the autonomic nervous system (ANS). The nucleus tractus solitarii (NTS) in the medulla is an area of viscerosomatic integration innervated by both central and peripheral serotonergic fibers. Influences from different origins therefore trigger the release of serotonin into the NTS and exert multiple influences on the ANS. This major influence on the ANS is also mediated by activation of several receptors in the NTS. In particular, the NTS is the central zone with the highest density of serotonin3 (5-HT3) receptors. In this review, we present evidence that 5-HT3 receptors in the NTS play a key role in one of the crucial homeostatic responses to acute and chronic stress: inhibitory modulation of the parasympathetic component of the ANS. The possible functional interactions of 5-HT3 receptors with GABAA and NK1 receptors in the NTS are also discussed.
Collapse
Affiliation(s)
- Caroline Sévoz-Couche
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.
| | - Charly Brouillard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| |
Collapse
|
15
|
Activation of 5-hyrdoxytryptamine 7 receptors within the rat nucleus tractus solitarii modulates synaptic properties. Brain Res 2016; 1635:12-26. [PMID: 26779891 DOI: 10.1016/j.brainres.2016.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 12/22/2022]
Abstract
Serotonin (5-HT) is a potent neuromodulator with multiple receptor types within the cardiorespiratory system, including the nucleus tractus solitarii (nTS)--the central termination site of visceral afferent fibers. The 5-HT7 receptor facilitates cardiorespiratory reflexes through its action in the brainstem and likely in the nTS. However, the mechanism and site of action for these effects is not clear. In this study, we examined the expression and function of 5-HT7 receptors in the nTS of Sprague-Dawley rats. 5-HT7 receptor mRNA and protein were identified across the rostrocaudal extent of the nTS. To determine 5-HT7 receptor function, we examined nTS synaptic properties following 5-HT7 receptor activation in monosynaptic nTS neurons in the in vitro brainstem slice preparation. Application of 5-HT7 receptor agonists altered tractus solitarii evoked and spontaneous excitatory postsynaptic currents which were attenuated with a selective 5-HT7 receptor antagonist. 5-HT7 receptor-mediated changes in excitatory postsynaptic currents were also altered by block of 5-HT1A and GABAA receptors. Interestingly, 5-HT7 receptor activation also reduced the amplitude but not frequency of GABAA-mediated inhibitory currents. Together these results indicate a complex role for 5-HT7 receptors in the nTS that mediate its diverse effects on cardiorespiratory parameters.
Collapse
|
16
|
Hsu YC, Tsai SF, Yu L, Chuang JI, Wu FS, Jen CJ, Kuo YM. Long-term moderate exercise accelerates the recovery of stress-evoked cardiovascular responses. Stress 2016; 19:125-32. [PMID: 26473638 DOI: 10.3109/10253890.2015.1108305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Psychological stress is an important global health problem. It is well documented that stress increases the incidences of various cardiovascular disorders. Regular exercise is known to reduce resting blood pressure (BP) and heart rate (HR). This study was designed to clarify the effects of long-term exercise on stress-evoked cardiovascular responses and to emphasize post-stress recovery effects. Male Wistar rats underwent 8 weeks of moderate treadmill training, with cardiovascular responses, autonomic nervous system activities and local Fos reactivity changes in the cardiovascular regulation center were monitored before, during and after immobilization stress. A spectral analysis of cardiovascular parameters was used to examine autonomic nervous activities. We found that long-term exercise (i) lowered resting BP, HR and sympathetic activity, but increased resting parasympathetic activity and baroreflex sensitivity (BRS); (ii) accelerated post-stress recovery of stress-evoked cardiovascular and sympathetic responses along with increased BRS and (iii) accelerated post-stress recovery of stress-evoked neuron activations in the paraventricular nucleus, but delayed it in the nucleus of the tractus solitarius. We conclude that, in rats, long-term exercise accelerated recovery of stress-evoked cardiovascular responses differentially altering hypothalamic and medullar neuron activities.
Collapse
Affiliation(s)
- Yuan-Chang Hsu
- a Institute of Basic Medical Sciences, National Cheng Kung University , Tainan , Taiwan
| | - Sheng-Feng Tsai
- a Institute of Basic Medical Sciences, National Cheng Kung University , Tainan , Taiwan
| | - Lung Yu
- a Institute of Basic Medical Sciences, National Cheng Kung University , Tainan , Taiwan
- b Institute of Behavioral Medicine, National Cheng Kung University , Tainan , Taiwan
| | - Jih-Ing Chuang
- a Institute of Basic Medical Sciences, National Cheng Kung University , Tainan , Taiwan
- c Department of Physiology , National Cheng Kung University , Tainan , Taiwan , and
| | - Fong-Sen Wu
- a Institute of Basic Medical Sciences, National Cheng Kung University , Tainan , Taiwan
- c Department of Physiology , National Cheng Kung University , Tainan , Taiwan , and
| | - Chauying J Jen
- a Institute of Basic Medical Sciences, National Cheng Kung University , Tainan , Taiwan
- c Department of Physiology , National Cheng Kung University , Tainan , Taiwan , and
| | - Yu-Min Kuo
- a Institute of Basic Medical Sciences, National Cheng Kung University , Tainan , Taiwan
- d Department of Cell Biology and Anatomy , National Cheng Kung University , Tainan , Taiwan
| |
Collapse
|
17
|
Yoshida R, Noguchi K, Shigemura N, Jyotaki M, Takahashi I, Margolskee RF, Ninomiya Y. Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds. Diabetes 2015; 64:3751-62. [PMID: 26116698 PMCID: PMC4876703 DOI: 10.2337/db14-1462] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/16/2015] [Indexed: 01/19/2023]
Abstract
Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor-deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds.
Collapse
Affiliation(s)
- Ryusuke Yoshida
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kenshi Noguchi
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan Section of Orthodontics and Dentofacial Orthopedics, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masafumi Jyotaki
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | | | - Yuzo Ninomiya
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan
| |
Collapse
|
18
|
Luttrell MJ, Halliwill JR. Recovery from exercise: vulnerable state, window of opportunity, or crystal ball? Front Physiol 2015; 6:204. [PMID: 26257656 PMCID: PMC4510411 DOI: 10.3389/fphys.2015.00204] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/05/2015] [Indexed: 11/17/2022] Open
Abstract
Why should we study the recovery from exercise as a discrete phenomenon from exercise itself? We identify three distinct (but not mutually exclusive) rationales that drive the need to investigate the physiology of recovery from exercise. (1) Some individuals are at a heightened risk of clinical outcomes in the immediate post-exercise period; thus the potential negative outcomes of this “vulnerable state” must be weighed against the numerous benefits of exercise training, and may be mitigated to reduce risk. (2) Many of the signaling mechanisms responsible for the beneficial effects of exercise training remain amplified during the exercise recovery period, and may present a “window of opportunity” that can be exploited by interventions to enhance the beneficial adaptations to exercise training, especially in clinical populations. (3) On an individual level, exercise recovery responses may provide investigators with a “crystal ball” ability to predict future clinical outcomes even in apparently healthy individuals. In short, the physiology of recovery is a multi-faceted and complex process, likely involving systems and pathways that are distinct from the physiology of exercise itself. For these reasons, it merits ongoing study.
Collapse
Affiliation(s)
| | - John R Halliwill
- Department of Human Physiology, University of Oregon Eugene, OR, USA
| |
Collapse
|
19
|
Mendonca GV, Fernhall B. The influence of water ingestion on postexercise hypotension and standing haemodynamics. Clin Physiol Funct Imaging 2015; 36:447-456. [DOI: 10.1111/cpf.12249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/16/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Goncalo V. Mendonca
- Laboratory of Motor Behavior; Faculty of Human Kinetics; University of Lisbon; Lisbon Portugal
| | - Bo Fernhall
- College of Applied Health Sciences; University of Illinois at Chicago; Chicago IL USA
| |
Collapse
|
20
|
Singh AM, Duncan RE, Neva JL, Staines WR. Aerobic exercise modulates intracortical inhibition and facilitation in a nonexercised upper limb muscle. BMC Sports Sci Med Rehabil 2014; 6:23. [PMID: 25031838 PMCID: PMC4100033 DOI: 10.1186/2052-1847-6-23] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 06/17/2014] [Indexed: 11/14/2022]
Abstract
Background Despite growing interest in the relationship between exercise and short-term neural plasticity, the effects of exercise on motor cortical (M1) excitability are not well studied. Acute, lower-limb aerobic exercise may potentially modulate M1 excitability in working muscles, but the effects on muscles not involved in the exercise are unknown. Here we examined the excitability changes in an upper limb muscle representation following a single session of lower body aerobic exercise. Investigating the response to exercise in a non-exercised muscle may help to determine the clinical usefulness of lower-body exercise interventions for upper limb neurorehabilitation. Methods In this study, transcranial magnetic stimulation was used to assess input–output curves, short-interval intracortical inhibition (SICI), long-interval intracortical inhibition (LICI) and intracortical facilitation (ICF) in the extensor carpi radialis muscle in twelve healthy individuals following a single session of moderate stationary biking. Additionally, we examined whether the presence of a common polymorphism of the brain-derived neurotrophic factor (BDNF) gene would affect the response of these measures to exercise. Results We observed significant increases in ICF and decreases in SICI following exercise. No changes in LICI were detected, and no differences were observed in input–output curves following exercise, or between BDNF groups. Conclusions The current results demonstrate that the modulation of intracortical excitability following aerobic exercise is not limited to those muscles involved in the exercise, and that while exercise does not directly modulate the excitability of motor neurons, it may facilitate the induction of experience-dependent plasticity via a decrease in intracortical inhibition and increase in intracortical facilitation. These findings indicate that exercise may create favourable conditions for adaptive plasticity in M1 and may be an effective adjunct to traditional training or rehabilitation methods.
Collapse
Affiliation(s)
- Amaya M Singh
- Department of Kinesiology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Robin E Duncan
- Department of Kinesiology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Jason L Neva
- Department of Kinesiology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - W Richard Staines
- Department of Kinesiology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
21
|
Ostrowski TD, Ostrowski D, Hasser EM, Kline DD. Depressed GABA and glutamate synaptic signaling by 5-HT1A receptors in the nucleus tractus solitarii and their role in cardiorespiratory function. J Neurophysiol 2014; 111:2493-504. [PMID: 24671532 PMCID: PMC4044435 DOI: 10.1152/jn.00764.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/19/2014] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-HT), and its 5-HT1A receptor (5-HT1AR) subtype, is a powerful modulator of the cardiorespiratory system and its sensory reflexes. The nucleus tractus solitarii (nTS) serves as the first central station for visceral afferent integration and is critical for cardiorespiratory reflex responses. However, the physiological and synaptic role of 5-HT1ARs in the nTS is relatively unknown. In the present study, we examined the distribution and modulation of 5-HT1ARs on cardiorespiratory and synaptic parameters in the nTS. 5-HT1ARs were widely distributed to cell bodies within the nTS but not synaptic terminals. In anesthetized rats, activation of 5-HT1ARs by microinjection of the 5-HT1AR agonist 8-OH-DPAT into the caudal nTS decreased minute phrenic neural activity via a reduction in phrenic amplitude. In brain stem slices, 8-OH-DPAT decreased the amplitude of glutamatergic tractus solitarii-evoked excitatory postsynaptic currents, and reduced overall spontaneous excitatory nTS network activity. These effects persisted in the presence of GABAA receptor blockade and were antagonized by coapplication of 5-HT1AR blocker WAY-100135. 5-HT1AR blockade alone had no effect on tractus solitarii-evoked excitatory postsynaptic currents, but increased excitatory network activity. On the other hand, GABAergic nTS-evoked inhibitory postsynaptic currents did not change by activation of the 5-HT1ARs, but spontaneous inhibitory nTS network activity decreased. Blocking 5-HT1ARs tended to increase nTS-evoked inhibitory postsynaptic currents and inhibitory network activity. Taken together, 5-HT1ARs in the caudal nTS decrease breathing, likely via attenuation of afferent transmission, as well as overall nTS network activity.
Collapse
Affiliation(s)
- Tim D Ostrowski
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Daniela Ostrowski
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Eileen M Hasser
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - David D Kline
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
22
|
Lawrence MM, Cooley ID, Huet YM, Arthur ST, Howden R. Factors influencing isometric exercise training-induced reductions in resting blood pressure. Scand J Med Sci Sports 2014; 25:131-42. [DOI: 10.1111/sms.12225] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2014] [Indexed: 01/13/2023]
Affiliation(s)
- M. M. Lawrence
- Laboratory of Systems Physiology; Department of Kinesiology; University of North Carolina at Charlotte; Charlotte North Carolina USA
| | - I. D. Cooley
- Laboratory of Systems Physiology; Department of Kinesiology; University of North Carolina at Charlotte; Charlotte North Carolina USA
| | - Y. M. Huet
- Laboratory of Systems Physiology; Department of Kinesiology; University of North Carolina at Charlotte; Charlotte North Carolina USA
| | - S. T. Arthur
- Laboratory of Systems Physiology; Department of Kinesiology; University of North Carolina at Charlotte; Charlotte North Carolina USA
| | - R. Howden
- Laboratory of Systems Physiology; Department of Kinesiology; University of North Carolina at Charlotte; Charlotte North Carolina USA
| |
Collapse
|
23
|
Substance P differentially modulates firing rate of solitary complex (SC) neurons from control and chronic hypoxia-adapted adult rats. PLoS One 2014; 9:e88161. [PMID: 24516602 PMCID: PMC3917864 DOI: 10.1371/journal.pone.0088161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/03/2014] [Indexed: 11/19/2022] Open
Abstract
NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H(+)-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS). Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus) neurons from control and chronic hypoxia-adapted (CHx) adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats.
Collapse
|
24
|
Blood pressure regulation X: what happens when the muscle pump is lost? Post-exercise hypotension and syncope. Eur J Appl Physiol 2013; 114:561-78. [PMID: 24197081 DOI: 10.1007/s00421-013-2761-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/22/2013] [Indexed: 01/19/2023]
Abstract
Syncope which occurs suddenly in the setting of recovery from exercise, known as post-exercise syncope, represents a failure of integrative physiology during recovery from exercise. We estimate that between 50 and 80% of healthy individuals will develop pre-syncopal signs and symptoms if subjected to a 15-min head-up tilt following exercise. Post-exercise syncope is most often neurally mediated syncope during recovery from exercise, with a combination of factors associated with post-exercise hypotension and loss of the muscle pump contributing to the onset of the event. One can consider the initiating reduction in blood pressure as the tip of the proverbial iceberg. What is needed is a clear model of what lies under the surface; a model that puts the observational variations in context and provides a rational framework for developing strategic physical or pharmacological countermeasures to ultimately protect cerebral perfusion and avert loss of consciousness. This review summarizes the current mechanistic understanding of post-exercise syncope and attempts to categorize the variation of the physiological processes that arise in multiple exercise settings. Newer investigations into the basic integrative physiology of recovery from exercise provide insight into the mechanisms and potential interventions that could be developed as countermeasures against post-exercise syncope. While physical counter maneuvers designed to engage the muscle pump and augment venous return are often found to be beneficial in preventing a significant drop in blood pressure after exercise, countermeasures that target the respiratory pump and pharmacological countermeasures based on the involvement of histamine receptors show promise.
Collapse
|
25
|
Sekizawa SI, Horwitz BA, Horowitz JM, Chen CY. Protection of signal processing at low temperature in baroreceptive neurons in the nucleus tractus solitarius of Syrian hamsters, a hibernating species. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1153-62. [PMID: 24068050 DOI: 10.1152/ajpregu.00165.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We previously described synaptic currents between baroreceptor fibers and second-order neurons in the nucleus tractus solitarius (NTS) that were larger in Syrian hamsters than in rats. This suggested that although electrical activity throughout the hamster brain decreased as brain temperature declined, the greater synaptic input to its NTS would support continued operation of cardiorespiratory reflexes at low body temperatures. Here, we focused on properties that would protect these neurons against potential damage from the larger synaptic inputs, testing the hypotheses that hamster NTS neurons exhibit: 1) intrinsic N-methyl-D-aspartate receptor (NMDAR) properties that limit Ca(2+) influx to a greater degree than do rat NTS neurons and 2) properties that reduce gating signals to NMDARs to a greater degree than in rat NTS neurons. Whole cell patch-clamp recordings on anatomically identified second-order NTS baroreceptive neurons showed that NMDAR-mediated synaptic currents between sensory fibers and second-order NTS neurons were larger in hamsters than in rats at 33°C and 15°C, with no difference in their permeability to Ca(2+). However, at 15°C, but not at 33°C, non-NMDAR currents evoked by glutamate released from baroreceptor fibers had significantly shorter durations in hamsters than in rats. Thus, hamster NMDARs did not exhibit lower Ca(2+) influx than did rats (negating hypothesis 1), but they did exhibit significant differences in non-NMDAR neuronal properties at low temperature (consistent with hypothesis 2). The latter (shorter duration of non-NMDAR currents) would likely limit NMDAR coincidence gating and may help protect hamster NTS neurons, enabling them to contribute to signal processing at low body temperatures.
Collapse
|
26
|
Nakamura Y, Izumi H, Shimizu T, Hisaoka-Nakashima K, Morioka N, Nakata Y. Volume Transmission of Substance P in Striatum Induced by Intraplantar Formalin Injection Attenuates Nociceptive Responses via Activation of the Neurokinin 1 Receptor. J Pharmacol Sci 2013; 121:257-71. [DOI: 10.1254/jphs.12218fp] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
27
|
Costa MFDLE, Araújo DID. Efeitos agudos de uma sessão de reabilitação cardíaca sobre a pressão arterial. FISIOTERAPIA EM MOVIMENTO 2012. [DOI: 10.1590/s0103-51502012000400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
INTRODUÇÃO: Hipertensão arterial é uma condição mórbida presente em grande parte dos adultos. Estudos evidenciam que exercícios físicos de moderada intensidade e curta duração têm efeitos satisfatórios na redução da pressão arterial. OBJETIVO: Mensurar a duração do efeito hipotensor de uma única sessão de reabilitação cardíaca a partir da prática de exercício aeróbico de curta duração e moderada intensidade. MATERIAIS E MÉTODOS: O estudo foi prospectivo e quase-experimental. Participaram do estudo nove voluntários hipertensos e sedentários (cinco do sexo feminino e quatro do masculino), monitorizados pelo exame de medida ambulatorial da pressão arterial por 12 horas e 30 minutos. Foi realizada uma única sessão de treinamento aeróbico por dez minutos em bicicleta ergométrica numa intensidade moderada. RESULTADOS: Houve redução tanto na PAS (pressão arterial sistólica) como na PAD (pressão arterial diastólica) (ANOVA, p < 0,001) durante as 12 horas de estudo. CONCLUSÃO: Uma sessão de exercício físico de curta duração com intensidade moderada foi suficiente para reduzir os níveis pressóricos dos voluntários analisados por um período de 12 horas.
Collapse
|
28
|
Halliwill JR, Buck TM, Lacewell AN, Romero SA. Postexercise hypotension and sustained postexercise vasodilatation: what happens after we exercise? Exp Physiol 2012; 98:7-18. [PMID: 22872658 DOI: 10.1113/expphysiol.2011.058065] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A single bout of aerobic exercise produces a postexercise hypotension associated with a sustained postexercise vasodilatation of the previously exercised muscle. Work over the last few years has determined key pathways for the obligatory components of postexercise hypotension and sustained postexercise vasodilatation and points the way to possible benefits that may result from these robust responses. During the exercise recovery period, the combination of centrally mediated decreases in sympathetic nerve activity with a reduced signal transduction from sympathetic nerve activation into vasoconstriction, as well as local vasodilator mechanisms, contributes to the fall in arterial blood pressure seen after exercise. Important findings from recent studies include the recognition that skeletal muscle afferents may play a primary role in postexercise resetting of the baroreflex via discrete receptor changes within the nucleus tractus solitarii and that sustained postexercise vasodilatation of the previously active skeletal muscle is primarily the result of histamine H(1) and H(2) receptor activation. Future research directions include further exploration of the potential benefits of these changes in the longer term adaptations associated with exercise training, as well as investigation of how the recovery from exercise may provide windows of opportunity for targeted interventions in patients with hypertension and diabetes.
Collapse
Affiliation(s)
- John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, OR 97403-1240, USA.
| | | | | | | |
Collapse
|
29
|
Nakamura Y, Une Y, Miyano K, Abe H, Hisaoka K, Morioka N, Nakata Y. Activation of transient receptor potential ankyrin 1 evokes nociception through substance P release from primary sensory neurons. J Neurochem 2012; 120:1036-47. [PMID: 22182301 DOI: 10.1111/j.1471-4159.2011.07628.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To examine mechanisms underlying substance P (SP) release from primary sensory neurons in response to activation of the non-selective cation channel transient receptor potential ankyrin 1 (TRPA1), SP release from cultured rat dorsal root ganglion neurons was measured, using radioimmunoassay, by stimulating TRPA1 with allyl isothiocyanate (AITC), a TRPA1 agonist. AITC-evoked SP release occurred in a concentration- and time-dependent manner. Interestingly, p38 mitogen-activated protein kinase (p38) inhibitor SB203580 significantly attenuated AITC-evoked SP release. The in vivo effect of AITC-evoked SP release from primary sensory neurons in mice was evaluated. Hind paw intraplantar injection of AITC induced nociceptive behaviors and inflammation (edema, thermal hyperalgesia). AITC-induced thermal hyperalgesia and edema were inhibited by intraplantar pre-treatment with either SB203580 or neurokinin-1 receptor antagonist CP96345. Moreover, intrathecal pre-treatment with either CP96345 or SB203580 inhibited AITC-induced nociceptive behaviors and thermal hyperalgesia. Immunohistochemical studies demonstrated that intraplantar AITC injection induced the phosphorylation of p38 in mouse dorsal root ganglion neurons containing SP. These findings suggest that activation of TRPA1 evokes SP release from the primary sensory neurons through phosphorylation of p38, subsequent nociceptive behaviors and inflammatory responses. Furthermore, the data also indicate that blocking the effects of TRPA1 activation at the periphery leads to significant antinociception.
Collapse
Affiliation(s)
- Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Sekizawa SI, Horowitz JM, Horwitz BA, Chen CY. Realignment of signal processing within a sensory brainstem nucleus as brain temperature declines in the Syrian hamster, a hibernating species. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:267-82. [PMID: 22262373 DOI: 10.1007/s00359-011-0706-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 11/28/2011] [Accepted: 12/13/2011] [Indexed: 01/24/2023]
Abstract
Crucial for survival, the central nervous system must reliably process sensory information over all stages of a hibernation bout to ensure homeostatic regulation is maintained and well-matched to dramatically altered behavioral states. Comparing neural responses in the nucleus tractus solitarius of rats and euthermic Syrian hamsters, we tested the hypothesis that hamster neurons have adaptations sustaining signal processing while conserving energy. Using patch-clamp techniques, we classified second-order neurons in the nucleus as rapid-onset or delayed-onset spiking phenotypes based on their spiking onset to a depolarizing pulse (following a -80 mV prepulse). As temperature decreased from 33 to 15°C, the excitability of all neurons decreased. However, hamster rapid-onset spiking neurons had the highest spiking response and shortest action potential width at every temperature, while hamster delayed-onset spiking neurons had the most negative resting membrane potential. The frequency of spontaneous excitatory postsynaptic currents in both phenotypes decreased as temperature decreased, yet the amplitudes of tractus solitarius stimulation-evoked currents were greater in hamsters than in rats regardless of phenotype and temperature. Changes were significant (P < 0.05), supporting our hypothesis by showing that, as temperature falls, rapid-onset neurons contribute more to signal processing but less to energy conservation than do delayed-onset neurons.
Collapse
Affiliation(s)
- Shin-Ichi Sekizawa
- Department of Pharmacology, University of California Davis, GBSF 3617, 451 Health Sciences Drive, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
31
|
Wilkinson KA, Fu Z, Powell FL. Ventilatory effects of substance P-saporin lesions in the nucleus tractus solitarii of chronically hypoxic rats. Am J Physiol Regul Integr Comp Physiol 2011; 301:R343-50. [PMID: 21593425 PMCID: PMC3154706 DOI: 10.1152/ajpregu.00375.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 05/16/2011] [Indexed: 01/09/2023]
Abstract
During ventilatory acclimatization to hypoxia (VAH), time-dependent increases in ventilation lower Pco(2) levels, and this persists on return to normoxia. We hypothesized that plasticity in the caudal nucleus tractus solitarii (NTS) contributes to VAH, as the NTS receives the first synapse from the carotid body chemoreceptor afferents and also contains CO(2)-sensitive neurons. We lesioned cells in the caudal NTS containing the neurokinin-1 receptor by microinjecting the neurotoxin saporin conjugated to substance P and measured ventilatory responses in awake, unrestrained rats 18 days later. Lesions did not affect hypoxic or hypercapnic ventilatory responses in normoxic control rats, in contrast to published reports for similar lesions in other central chemosensitive areas. Also, lesions did not affect the hypercapnic ventilatory response in chronically hypoxic rats (inspired Po(2) = 90 Torr for 7 days). These results suggest functional differences between central chemoreceptor sites. However, lesions significantly increased ventilation in normoxia or acute hypoxia in chronically hypoxic rats. Hence, chronic hypoxia increases an inhibitory effect of neurokinin-1 receptor neurons in the NTS on ventilatory drive, indicating that these neurons contribute to plasticity during chronic hypoxia, although such plasticity does not explain VAH.
Collapse
Affiliation(s)
- Katherine A Wilkinson
- Division of Physiology, Department of Medicine, University of California, San Diego, USA.
| | | | | |
Collapse
|
32
|
Sekizawa SI, Joad JP, Pinkerton KE, Bonham AC. Distinct tachykinin NK(1) receptor function in primate nucleus tractus solitarius neurons is dysregulated after second-hand tobacco smoke exposure. Br J Pharmacol 2011; 163:782-91. [PMID: 21323902 PMCID: PMC3111680 DOI: 10.1111/j.1476-5381.2011.01271.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 12/14/2010] [Accepted: 01/10/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Second-hand tobacco smoke (SHS) exposure in children increases the risk of asthma and sudden infant death syndrome. Epidemiological and experimental data have suggested SHS can alter neuroplasticity in the CNS, associated with substance P. We hypothesized that exposure to SHS in young primates changed the effect of substance P on the plasticity of neurons in the nucleus tractus solitarius (NTS), where airway sensory information is first processed in the CNS. EXPERIMENTAL APPROACH Thirteen-month-old rhesus monkeys were exposed to filtered air (FA, n= 5) or SHS (n= 5) for >6 months from 50 days of their fetal age. Whole-cell patch-clamp recordings were performed on NTS neurons in brainstem slices from these animals to record the intrinsic cell excitability in the absence or presence of the NK(1) receptor antagonist, SR140333 (3 µM). KEY RESULTS Neurons were electrophysiologically classified based on their spiking onset from a hyperpolarized membrane potential into two phenotypes: rapid-onset spiking (RS) and delayed-onset spiking (DS) types. In RS neurons, SR140333 reduced the spiking response, similarly in both FA- and SHS-exposed animals. In DS neurons, SR140333 almost abolished the spiking response in FA-exposed animals, but had no effect in SHS-exposed animals. CONCLUSIONS AND IMPLICATIONS The contribution of NK(1) receptors to cell excitability depended on firing phenotype of primate NTS neurons and was disrupted by SHS exposure, specifically in DS neurons. Our findings reveal a novel NK(1) receptor function in the primate brainstem and support the hypothesis that chronic exposure to SHS in children causes tachykinin-related neuroplastic changes in the CNS.
Collapse
|
33
|
Willie CK, Ainslie PN, Taylor CE, Jones H, Sin PY, Tzeng YC. Neuromechanical Features of the Cardiac Baroreflex After Exercise. Hypertension 2011; 57:927-33. [DOI: 10.1161/hypertensionaha.110.164616] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A single bout of exercise is associated with postexercise hypotension, transient decreases in autonomic function, and changes in baroreflex sensitivity. The baroreflex is less sensitive to falling blood pressure than to rising blood pressure; we characterized the cardiac baroreflex in terms of hysteresis and its mechanical and neural components. We hypothesized that hysteresis would be exacerbated postexercise because of a greater relative decrease in falling blood pressure. In 10 healthy young humans (5 men), we used bolus injections of sodium nitroprusside and phenylephrine hydrochloride to drive transient decreases and increases in blood pressure, respectively, to quantify cardiac baroreflex sensitivity to falling and rising blood pressure. This was completed before and at 10, 30, and 60 minutes after 40 minutes of cycling at 60% estimated maximal oxygen consumption. Analyses of beat-to-beat blood pressure, R-R intervals and heart rate, and carotid artery diameter were used to determine the integrated cardiac baroreflex response; this was further quantified into a mechanical component (systolic blood pressure versus carotid diameter) and a neural component (carotid diameter versus R-R interval). There were 2 principle findings: after aerobic exercise baroreflex sensitivity is reduced and hysteresis manifests, and the reduction in sensitivity to falling blood pressure is mediated by decreased mechanical and neural gains, whereas the decreased baroreflex sensitivity to rising blood pressure is mediated by a reduced mechanical gain only. We suggest that impaired neural transduction of the cardiac baroreflex, and its influence on hysteresis, plays an important role in transient autonomic dysfunction after exercise.
Collapse
Affiliation(s)
- Christopher K. Willie
- From the Department of Human Kinetics (C.K.W., P.N.A.), Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; Research Institute for Sport and Exercise Sciences (C.E.T., H.J.), Liverpool John Moores University, Liverpool, United Kingdom; Cardiovascular Systems Laboratory (P.Y.W.S., Y.-C.T.), Department of Surgery and Anesthesia, University of Otago, Wellington, New Zealand
| | - Philip N. Ainslie
- From the Department of Human Kinetics (C.K.W., P.N.A.), Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; Research Institute for Sport and Exercise Sciences (C.E.T., H.J.), Liverpool John Moores University, Liverpool, United Kingdom; Cardiovascular Systems Laboratory (P.Y.W.S., Y.-C.T.), Department of Surgery and Anesthesia, University of Otago, Wellington, New Zealand
| | - Chloe E. Taylor
- From the Department of Human Kinetics (C.K.W., P.N.A.), Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; Research Institute for Sport and Exercise Sciences (C.E.T., H.J.), Liverpool John Moores University, Liverpool, United Kingdom; Cardiovascular Systems Laboratory (P.Y.W.S., Y.-C.T.), Department of Surgery and Anesthesia, University of Otago, Wellington, New Zealand
| | - Helen Jones
- From the Department of Human Kinetics (C.K.W., P.N.A.), Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; Research Institute for Sport and Exercise Sciences (C.E.T., H.J.), Liverpool John Moores University, Liverpool, United Kingdom; Cardiovascular Systems Laboratory (P.Y.W.S., Y.-C.T.), Department of Surgery and Anesthesia, University of Otago, Wellington, New Zealand
| | - Peter Y.W. Sin
- From the Department of Human Kinetics (C.K.W., P.N.A.), Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; Research Institute for Sport and Exercise Sciences (C.E.T., H.J.), Liverpool John Moores University, Liverpool, United Kingdom; Cardiovascular Systems Laboratory (P.Y.W.S., Y.-C.T.), Department of Surgery and Anesthesia, University of Otago, Wellington, New Zealand
| | - Yu-Chieh Tzeng
- From the Department of Human Kinetics (C.K.W., P.N.A.), Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; Research Institute for Sport and Exercise Sciences (C.E.T., H.J.), Liverpool John Moores University, Liverpool, United Kingdom; Cardiovascular Systems Laboratory (P.Y.W.S., Y.-C.T.), Department of Surgery and Anesthesia, University of Otago, Wellington, New Zealand
| |
Collapse
|
34
|
Hart EC, Rasmussen P, Secher NH, George KP, Cable NT, Volianitis S, Shave R. The carotid baroreflex is reset following prolonged exercise in humans. Acta Physiol (Oxf) 2010; 200:291-9. [PMID: 20608902 DOI: 10.1111/j.1748-1716.2010.02160.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Alterations in the carotid baroreflex (CBR) control of arterial pressure may explain the reduction in arterial pressure and left ventricular (LV) function after prolonged exercise. We examined the CBR control of heart rate (HR) and mean arterial pressure (MAP), in addition to changes in LV function, pre- to post-exercise. METHODS Seven males (age, mean ± SEM; 29 ± 4 years) completed 4 h of ergometer rowing at a workload of 10-15% below the lactate threshold. The CBR control of HR and MAP was assessed via the rapid neck-suction/pressure protocol. LV systolic function was measured by echocardiography, where ejection fraction (EF), the ratio of systolic blood pressure to end systolic volume (SBP/ESV) and stroke volume (SV) were estimated. RESULTS Following exercise MAP was reduced (12 ± 3%) and HR was elevated (35 ± 5%; P < 0.05). Furthermore, CBR control of MAP was relocated to the left on the stimulus-response curve (P < 0.05) demonstrating that the CBR operated around a lower arterial pressure. Concomitantly, LV systolic function was reduced, indicated by a decrease in EF (22 ± 2%), SBP/ESV (32 ± 14%) and SV (25 ± 5%, P < 0.05). The reduced EF and SBP/ESV were associated with the decreased MAP operating point (r² = 0.71 and r² = 0.47, respectively, P < 0.05). CONCLUSION The CBR is reset after prolonged exercise to a lower prevailing arterial pressure. This resetting of the CBR may contribute to the reduction arterial pressure and LV function after exercise.
Collapse
Affiliation(s)
- E C Hart
- Centre for Sports Medicine and Human Performance, Brunel University, London, UK.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
A single bout of exercise can lead to a postexercise decrease in blood pressure in hypertensive individuals, called postexercise hypotension. Compelling evidence suggests that the central baroreflex pathway plays a crucial role in the development of postexercise hypotension. This review focuses on the exercise-induced changes in brainstem nuclei involved in blood pressure regulation.
Collapse
Affiliation(s)
- Chao-Yin Chen
- Department of Pharmacology, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
36
|
Retrograde release of endocannabinoids inhibits presynaptic GABA release to second-order baroreceptive neurons in NTS. Auton Neurosci 2010; 158:44-50. [PMID: 20580326 DOI: 10.1016/j.autneu.2010.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 06/01/2010] [Accepted: 06/02/2010] [Indexed: 12/31/2022]
Abstract
In prior studies, we found that activation of cannabinoid-1 receptors in the nucleus tractus solitarii (NTS) prolonged baroreflex-induced sympathoinhibition in rats. In many regions of the central nervous system, activation of cannabinoid-1 receptors presynaptically inhibits γ-aminobutyric acid (GABA) release, disinhibiting postsynaptic neurons. To determine if cannabinoid-1 receptor-mediated presynaptic inhibition of GABA release occurs in the NTS, we recorded miniature inhibitory postsynaptic currents in anatomically identified second-order baroreceptive NTS neurons in the presence of ionotropic glutamate receptor antagonists and tetrodotoxin. The cannabinoid-1 receptor agonists, WIN 55212-2 (0.3-30 μM) and methanandamide (3 μM) decreased the frequency of miniature inhibitory postsynaptic currents in a concentration-dependent manner, an effect that was blocked by the cannabinoid-1 receptor antagonist, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM 251, 5 μM). Importantly, depolarization of second-order baroreceptive neurons decreased the frequency of miniature inhibitory postsynaptic currents; an effect which was blocked by the cannabinoid-1 receptor antagonist. The data indicate that depolarization of second-order baroreceptive NTS neurons induces endocannabinoid release from the neurons, leading to activation of presynaptic cannabinoid-1 receptors, inhibition of GABA release and subsequent enhanced baroreflex signaling in the NTS. The data suggest that endocannabinoid signaling in the NTS regulates short-term synaptic plasticity and provide a mechanism for endocannabinoid modulation of central baroreflex control.
Collapse
|
37
|
Localized suppression of cortical growth hormone-releasing hormone receptors state-specifically attenuates electroencephalographic delta waves. J Neurosci 2010; 30:4151-9. [PMID: 20237285 DOI: 10.1523/jneurosci.6047-09.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Growth hormone-releasing hormone (GHRH) promotes non-rapid eye movement sleep (NREMS), in part via a well characterized hypothalamic sleep-promoting site. However, GHRH may also act in the cortex to influence sleep. Application of GHRH to the surface of the cortex changes electroencephalographic (EEG) delta power. GHRH and the GHRH receptor (GHRHR) mRNAs are detectable in the rat cortex, and the expression of cortical GHRHR is activity dependent. Here, we microinjected a GHRH antagonist or GHRHR small interfering RNA (siGHRHR) onto the somatosensory cortex surface in rats. The unilateral application of the GHRH antagonist ipsilaterally decreased EEG delta wave power during NREMS, but not wakefulness, during the initial 40 min after injection. Similarly, the injection of siGHRHR reduced cortical expression of GHRHR and suppressed NREMS EEG delta wave power during 20-24 h after injection. Using the fura-2 calcium imaging technique, cultured cortical cells responded to GHRH by increasing intracellular calcium. Approximately 18% of the GHRH-responsive cells were GABAergic as illustrated by glutamic acid decarboxylase-67 (GAD67) immunostaining. Double labeling for GAD67 and GHRHR in vitro and in vivo indicated that only a minority of cortical GHRHR-containing cells were GABAergic. Our data suggest that endogenous cortical GHRH activates local cortical cells to affect EEG delta wave power state-specifically. Results are also consistent with the hypothesis that GHRH contributes to local network state regulation.
Collapse
|
38
|
Zhang W, Mifflin S. Plasticity of GABAergic mechanisms within the nucleus of the solitary tract in hypertension. Hypertension 2010; 55:201-6. [PMID: 20048192 DOI: 10.1161/hypertensionaha.109.146407] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Weirong Zhang
- Department of Integrative Physiology and the Cardiovascular Research Institute, The University of North Texas Health Science Center, Fort Worth, Tex 76107-2699, USA
| | | |
Collapse
|
39
|
Nucleus of solitary tract mediates cardiac sympathetic afferent reflex in rats. Pflugers Arch 2009; 459:1-9. [DOI: 10.1007/s00424-009-0699-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/27/2009] [Accepted: 07/03/2009] [Indexed: 02/07/2023]
|