1
|
Zhao D, Si B. Formation of cognitive maps in large-scale environments by sensorimotor integration. Cogn Neurodyn 2025; 19:19. [PMID: 39801918 PMCID: PMC11717777 DOI: 10.1007/s11571-024-10200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 01/16/2025] Open
Abstract
Hippocampus in the mammalian brain supports navigation by building a cognitive map of the environment. However, only a few studies have investigated cognitive maps in large-scale arenas. To reveal the computational mechanisms underlying the formation of cognitive maps in large-scale environments, we propose a neural network model of the entorhinal-hippocampal neural circuit that integrates both spatial and non-spatial information. Spatial information is relayed from the grid units in medial entorhinal cortex (MEC) by integrating multimodal sensory-motor signals. Non-spatial, such as object, information is imparted from the visual units in lateral entorhinal cortex (LEC) by encoding visual scenes through a deep neural network. The synaptic weights from the grid units and the visual units to the place units in the hippocampus are learned by a competitive learning rule. We simulated the model in a large box maze. The place units in the model form irregularly-spaced multiple fields across the environment. When the strength of visual inputs is dominant, the responses of place units become conjunctive and egocentric. These results point to the key role of the hippocampus in balancing spatial and non-spatial information relayed via LEC and MEC.
Collapse
Affiliation(s)
- Dongye Zhao
- Information Science Academy, China Electronics Technology Group Corporation, Beijing, 100086 China
| | - Bailu Si
- School of Systems Science, Beijing Normal University, Beijing, 100875 China
- Chinese Institute for Brain Research, Beijing, 102206 China
| |
Collapse
|
2
|
Jacobson K, Ellis-Davies GCR. Abraham Patchornik: The Contemporary Relevance of His Work for Chemistry and Biology. JACS AU 2025; 5:3-16. [PMID: 39886589 PMCID: PMC11775701 DOI: 10.1021/jacsau.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 02/01/2025]
Abstract
Abraham Patchornik was born in 1926 in Ness Ziona, a town in Palestine founded by his great-grandfather Reuben Lehrer in 1883. He started to study chemistry as an undergraduate at the Hebrew University. However, this was interrupted by the war, and he completed his studies in various locations in West Jerusalem. From 1952 to 1956 Patchornik completed his PhD at the (new) Weizmann Institute of Science with Ephraim Katchalski. After a postdoc at the NIH, he returned to the Weizmann in 1958, when he joined the Department of Biophysics. In 1972-1979, he became chairman of the new Department of Organic Chemistry at the Weizmann, and his own research was geared toward applying creative chemistry to solve biological problems. Patchornik passed away in his hometown of Ness Ziona in 2014. Patchornik was a conceptual leader in peptide and polymer chemistry. Given the importance of selective functional group protection for the construction of oligomeric molecules, he became interested in using "nonstandard", orthogonal chemistry for this purpose, i.e. photosensitive protecting groups (PPGs) in place of thermal reactions. It was R.B. Woodward who suggested this strategy to Patchornik in 1965, while Patchornik was on sabbatical leave at Harvard. However, it was not until Patchornik returned to the Weizmann that this idea of a versatile PPG to enable multistep synthesis was realized. Here, we provide an account of the early photosensitive protecting groups that Patchornik and co-workers developed, and the immense impact they have had on various fields. In particular, we survey the use of PPGs in live cell physiology (i.e., caged compounds), and the development of gene chips via light-directed solid-phase synthesis. Further, we highlight recent work applying new PPGs for "photochemical delivery" of drugs, otherwise termed photopharmacology. Finally, we discuss the relationship between caged compounds and how contemporary neuroscience uses genetically encoded chromophores to control cell function.
Collapse
Affiliation(s)
- Kenneth
A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes & Digestive
& Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Graham C. R. Ellis-Davies
- Department
of Neuroscience, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
3
|
Somashekar BP, Bhalla US. Discriminating neural ensemble patterns through dendritic computations in randomly connected feedforward networks. eLife 2025; 13:RP100664. [PMID: 39854248 PMCID: PMC11759408 DOI: 10.7554/elife.100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
Co-active or temporally ordered neural ensembles are a signature of salient sensory, motor, and cognitive events. Local convergence of such patterned activity as synaptic clusters on dendrites could help single neurons harness the potential of dendritic nonlinearities to decode neural activity patterns. We combined theory and simulations to assess the likelihood of whether projections from neural ensembles could converge onto synaptic clusters even in networks with random connectivity. Using rat hippocampal and cortical network statistics, we show that clustered convergence of axons from three to four different co-active ensembles is likely even in randomly connected networks, leading to representation of arbitrary input combinations in at least 10 target neurons in a 100,000 population. In the presence of larger ensembles, spatiotemporally ordered convergence of three to five axons from temporally ordered ensembles is also likely. These active clusters result in higher neuronal activation in the presence of strong dendritic nonlinearities and low background activity. We mathematically and computationally demonstrate a tight interplay between network connectivity, spatiotemporal scales of subcellular electrical and chemical mechanisms, dendritic nonlinearities, and uncorrelated background activity. We suggest that dendritic clustered and sequence computation is pervasive, but its expression as somatic selectivity requires confluence of physiology, background activity, and connectomics.
Collapse
Affiliation(s)
- Bhanu Priya Somashekar
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Upinder Singh Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
4
|
Liu M, Sun X. Temporal integration on the dendrites of fast-spiking basket cells. Sci Rep 2024; 14:30278. [PMID: 39632942 PMCID: PMC11618596 DOI: 10.1038/s41598-024-81655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Neurons receive synaptic inputs with diverse temporal patterns in vivo, and their integration of these patterns is critical for understanding information processing mechanisms in the brain. Fast-spiking basket cells, which perform both supralinear and sublinear dendritic integration, are essential for inhibitory control in the hippocampus. However, their responses and the mechanisms underlying different temporal input patterns remain unclear. To address this question, we apply inputs with varying windows of time to a detailed compartmental model of basket cells. Our results reveal that when synaptic inputs are randomly dispersed, temporal integration in FS BCs exhibits a sigmoid-like response within the temporal window. In contrast, synchronous input protocols more effectively elicit action potentials, while asynchronous inputs generate more spikes in response to suprathreshold stimuli. Further analysis shows that the supralinear dendrites of fast-spiking basket cells primarily mediate this nonlinearity to asynchronous inputs, owing to their larger dendritic diameters. Moreover, we discover that delayed rectifier [Formula: see text] channels reduce sensitivity to synchronous inputs, whereas N-type [Formula: see text] channels enhance sensitivity to asynchronous inputs. These results provide insights into the mechanisms underlying the temporal coding of fast-spiking basket cells, which is crucial for understanding their role in neuronal oscillations.
Collapse
Affiliation(s)
- Ming Liu
- School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Xiaojuan Sun
- School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
- Key Laboratory of Mathematics and Information Networks (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing, 100876, China.
| |
Collapse
|
5
|
Liao Z, Gonzalez KC, Li DM, Yang CM, Holder D, McClain NE, Zhang G, Evans SW, Chavarha M, Simko J, Makinson CD, Lin MZ, Losonczy A, Negrean A. Functional architecture of intracellular oscillations in hippocampal dendrites. Nat Commun 2024; 15:6295. [PMID: 39060234 PMCID: PMC11282248 DOI: 10.1038/s41467-024-50546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Fast electrical signaling in dendrites is central to neural computations that support adaptive behaviors. Conventional techniques lack temporal and spatial resolution and the ability to track underlying membrane potential dynamics present across the complex three-dimensional dendritic arbor in vivo. Here, we perform fast two-photon imaging of dendritic and somatic membrane potential dynamics in single pyramidal cells in the CA1 region of the mouse hippocampus during awake behavior. We study the dynamics of subthreshold membrane potential and suprathreshold dendritic events throughout the dendritic arbor in vivo by combining voltage imaging with simultaneous local field potential recording, post hoc morphological reconstruction, and a spatial navigation task. We systematically quantify the modulation of local event rates by locomotion in distinct dendritic regions, report an advancing gradient of dendritic theta phase along the basal-tuft axis, and describe a predominant hyperpolarization of the dendritic arbor during sharp-wave ripples. Finally, we find that spatial tuning of dendritic representations dynamically reorganizes following place field formation. Our data reveal how the organization of electrical signaling in dendrites maps onto the anatomy of the dendritic tree across behavior, oscillatory network, and functional cell states.
Collapse
Affiliation(s)
- Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Kevin C Gonzalez
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Deborah M Li
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Catalina M Yang
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Donald Holder
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Natalie E McClain
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Guofeng Zhang
- Department of Neurobiology, Stanford University, Stanford, USA
| | - Stephen W Evans
- Department of Neurobiology, Stanford University, Stanford, USA
- The Boulder Creek Research Institute, Los Altos, USA
| | - Mariya Chavarha
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Jane Simko
- Department of Neuroscience, Columbia University, New York, USA
- Department of Neurology, Columbia University, New York, USA
| | - Christopher D Makinson
- Department of Neuroscience, Columbia University, New York, USA
- Department of Neurology, Columbia University, New York, USA
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, USA
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA.
- Kavli Institute for Brain Science, Columbia University, New York, USA.
| | - Adrian Negrean
- Department of Neuroscience, Columbia University, New York, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA.
- Allen Institute for Neural Dynamics, Seattle, USA.
| |
Collapse
|
6
|
Logue JB, Vilmont V, Zhang J, Wu Y, Zhou Y. Inhibition of 14-3-3 proteins increases the intrinsic excitability of mouse hippocampal CA1 pyramidal neurons. Eur J Neurosci 2024; 59:3309-3321. [PMID: 38646841 DOI: 10.1111/ejn.16349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
14-3-3 proteins are a family of regulatory proteins that are abundantly expressed in the brain and enriched at the synapse. Dysfunctions of these proteins have been linked to neurodevelopmental and neuropsychiatric disorders. Our group has previously shown that functional inhibition of these proteins by a peptide inhibitor, difopein, in the mouse brain causes behavioural alterations and synaptic plasticity impairment in the hippocampus. Recently, we found an increased cFOS expression in difopein-expressing dorsal CA1 pyramidal neurons, indicating enhanced neuronal activity by 14-3-3 inhibition in these cells. In this study, we used slice electrophysiology to determine the effects of 14-3-3 inhibition on the intrinsic excitability of CA1 pyramidal neurons from a transgenic 14-3-3 functional knockout (FKO) mouse line. Our data demonstrate an increase in intrinsic excitability associated with 14-3-3 inhibition, as well as reveal action potential firing pattern shifts after novelty-induced hyperlocomotion in the 14-3-3 FKO mice. These results provide novel information on the role 14-3-3 proteins play in regulating intrinsic and activity-dependent neuronal excitability in the hippocampus.
Collapse
Affiliation(s)
- Jordan B Logue
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Violet Vilmont
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Jiajing Zhang
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Yuying Wu
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Yi Zhou
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
7
|
Zhou H, Bi GQ, Liu G. Intracellular magnesium optimizes transmission efficiency and plasticity of hippocampal synapses by reconfiguring their connectivity. Nat Commun 2024; 15:3406. [PMID: 38649706 PMCID: PMC11035601 DOI: 10.1038/s41467-024-47571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Synapses at dendritic branches exhibit specific properties for information processing. However, how the synapses are orchestrated to dynamically modify their properties, thus optimizing information processing, remains elusive. Here, we observed at hippocampal dendritic branches diverse configurations of synaptic connectivity, two extremes of which are characterized by low transmission efficiency, high plasticity and coding capacity, or inversely. The former favors information encoding, pertinent to learning, while the latter prefers information storage, relevant to memory. Presynaptic intracellular Mg2+ crucially mediates the dynamic transition continuously between the two extreme configurations. Consequently, varying intracellular Mg2+ levels endow individual branches with diverse synaptic computations, thus modulating their ability to process information. Notably, elevating brain Mg2+ levels in aging animals restores synaptic configuration resembling that of young animals, coincident with improved learning and memory. These findings establish intracellular Mg2+ as a crucial factor reconfiguring synaptic connectivity at dendrites, thus optimizing their branch-specific properties in information processing.
Collapse
Affiliation(s)
- Hang Zhou
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, 518107, China.
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Guo-Qiang Bi
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, 518107, China
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230031, China
| | - Guosong Liu
- School of Medicine, Tsinghua University, Beijing, 100084, China.
- NeuroCentria Inc., Walnut Creek, CA, 94596, USA.
| |
Collapse
|
8
|
Liao Z, Gonzalez KC, Li DM, Yang CM, Holder D, McClain NE, Zhang G, Evans SW, Chavarha M, Yi J, Makinson CD, Lin MZ, Losonczy A, Negrean A. Functional architecture of intracellular oscillations in hippocampal dendrites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579750. [PMID: 38405778 PMCID: PMC10888786 DOI: 10.1101/2024.02.12.579750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Fast electrical signaling in dendrites is central to neural computations that support adaptive behaviors. Conventional techniques lack temporal and spatial resolution and the ability to track underlying membrane potential dynamics present across the complex three-dimensional dendritic arbor in vivo. Here, we perform fast two-photon imaging of dendritic and somatic membrane potential dynamics in single pyramidal cells in the CA1 region of the mouse hippocampus during awake behavior. We study the dynamics of subthreshold membrane potential and suprathreshold dendritic events throughout the dendritic arbor in vivo by combining voltage imaging with simultaneous local field potential recording, post hoc morphological reconstruction, and a spatial navigation task. We systematically quantify the modulation of local event rates by locomotion in distinct dendritic regions and report an advancing gradient of dendritic theta phase along the basal-tuft axis, then describe a predominant hyperpolarization of the dendritic arbor during sharp-wave ripples. Finally, we find spatial tuning of dendritic representations dynamically reorganizes following place field formation. Our data reveal how the organization of electrical signaling in dendrites maps onto the anatomy of the dendritic tree across behavior, oscillatory network, and functional cell states.
Collapse
Affiliation(s)
- Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Kevin C. Gonzalez
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Deborah M. Li
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Catalina M. Yang
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Donald Holder
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Natalie E. McClain
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Guofeng Zhang
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Stephen W. Evans
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Mariya Chavarha
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Jane Yi
- Department of Neuroscience, Columbia University, New York, United States
- Department of Neurology, Columbia University, New York, United States
| | - Christopher D. Makinson
- Department of Neuroscience, Columbia University, New York, United States
- Department of Neurology, Columbia University, New York, United States
| | - Michael Z. Lin
- Department of Neurobiology, Stanford University, Stanford, United States
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
- Kavli Institute for Brain Science, Columbia University, New York, United States
| | - Adrian Negrean
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| |
Collapse
|
9
|
Gebicke-Haerter PJ. The computational power of the human brain. Front Cell Neurosci 2023; 17:1220030. [PMID: 37608987 PMCID: PMC10441807 DOI: 10.3389/fncel.2023.1220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
At the end of the 20th century, analog systems in computer science have been widely replaced by digital systems due to their higher computing power. Nevertheless, the question keeps being intriguing until now: is the brain analog or digital? Initially, the latter has been favored, considering it as a Turing machine that works like a digital computer. However, more recently, digital and analog processes have been combined to implant human behavior in robots, endowing them with artificial intelligence (AI). Therefore, we think it is timely to compare mathematical models with the biology of computation in the brain. To this end, digital and analog processes clearly identified in cellular and molecular interactions in the Central Nervous System are highlighted. But above that, we try to pinpoint reasons distinguishing in silico computation from salient features of biological computation. First, genuinely analog information processing has been observed in electrical synapses and through gap junctions, the latter both in neurons and astrocytes. Apparently opposed to that, neuronal action potentials (APs) or spikes represent clearly digital events, like the yes/no or 1/0 of a Turing machine. However, spikes are rarely uniform, but can vary in amplitude and widths, which has significant, differential effects on transmitter release at the presynaptic terminal, where notwithstanding the quantal (vesicular) release itself is digital. Conversely, at the dendritic site of the postsynaptic neuron, there are numerous analog events of computation. Moreover, synaptic transmission of information is not only neuronal, but heavily influenced by astrocytes tightly ensheathing the majority of synapses in brain (tripartite synapse). At least at this point, LTP and LTD modifying synaptic plasticity and believed to induce short and long-term memory processes including consolidation (equivalent to RAM and ROM in electronic devices) have to be discussed. The present knowledge of how the brain stores and retrieves memories includes a variety of options (e.g., neuronal network oscillations, engram cells, astrocytic syncytium). Also epigenetic features play crucial roles in memory formation and its consolidation, which necessarily guides to molecular events like gene transcription and translation. In conclusion, brain computation is not only digital or analog, or a combination of both, but encompasses features in parallel, and of higher orders of complexity.
Collapse
Affiliation(s)
- Peter J. Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
10
|
Kim YJ, Ujfalussy BB, Lengyel M. Parallel functional architectures within a single dendritic tree. Cell Rep 2023; 42:112386. [PMID: 37060564 PMCID: PMC7614531 DOI: 10.1016/j.celrep.2023.112386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/31/2022] [Accepted: 03/28/2023] [Indexed: 04/16/2023] Open
Abstract
The input-output transformation of individual neurons is a key building block of neural circuit dynamics. While previous models of this transformation vary widely in their complexity, they all describe the underlying functional architecture as unitary, such that each synaptic input makes a single contribution to the neuronal response. Here, we show that the input-output transformation of CA1 pyramidal cells is instead best captured by two distinct functional architectures operating in parallel. We used statistically principled methods to fit flexible, yet interpretable, models of the transformation of input spikes into the somatic "output" voltage and to automatically select among alternative functional architectures. With dendritic Na+ channels blocked, responses are accurately captured by a single static and global nonlinearity. In contrast, dendritic Na+-dependent integration requires a functional architecture with multiple dynamic nonlinearities and clustered connectivity. These two architectures incorporate distinct morphological and biophysical properties of the neuron and its synaptic organization.
Collapse
Affiliation(s)
- Young Joon Kim
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK; Harvard Medical School, Boston, MA, USA.
| | - Balázs B Ujfalussy
- Laboratory of Biological Computation, Institute of Experimental Medicine, Budapest, Hungary
| | - Máté Lengyel
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Liu M, Sun X. Spatial integration of dendrites in fast-spiking basket cells. Front Neurosci 2023; 17:1132980. [PMID: 37081933 PMCID: PMC10110864 DOI: 10.3389/fnins.2023.1132980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Dendrites of fast-spiking basket cells (FS BCs) impact neural circuit functions in brain with both supralinear and sublinear integration strategies. Diverse spatial synaptic inputs and active properties of dendrites lead to distinct neuronal firing patterns. How the FS BCs with this bi-modal dendritic integration respond to different spatial dispersion of synaptic inputs remains unclear. In this study, we construct a multi-compartmental model of FS BC and analyze neuronal firings following simulated synaptic protocols from fully clustered to fully dispersed. Under these stimulation protocols, we find that supralinear dendrites dominate somatic firing of FS BC, while the preference for dispersing is due to sublinear dendrites. Moreover, we find that dendritic diameter and Ca2+-permeable AMPA conductance play an important role in it, while A-type K+ channel and NMDA conductance have little effect. The obtained results may give some implications for understanding dendritic computation.
Collapse
|
12
|
Ellis-Davies GC. Reverse Engineering Caged Compounds: Design Principles for their Application in Biology. Angew Chem Int Ed Engl 2023; 62:e202206083. [PMID: 36646644 PMCID: PMC10015297 DOI: 10.1002/anie.202206083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 01/18/2023]
Abstract
Light passes through biological tissue, and so it is used for imaging biological processes in situ. Such observation is part of the very essence of science, but mechanistic understanding requires intervention. For more than 50 years a "second function" for light has emerged; namely, that of photochemical control. Caged compounds are biologically inert signaling molecules that are activated by light. These optical probes enable external instruction of biological processes by stimulation of an individual element in complex signaling cascades in its native environment. Cause and effect are linked directly in spatial, temporal, and frequency domains in a quantitative manner by their use. I provide a guide to the basic properties required to make effective caged compounds for the biological sciences.
Collapse
|
13
|
Ellis‐Davies GCR. Reverse Engineering Caged Compounds: Design Principles for their Application in Biology. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202206083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Graham C. R. Ellis‐Davies
- Department of Neuroscience Icahn School of Medicine at Mount Sinai (Previously, Mount Sinai School of Medicine) 10029 New York NY USA
| |
Collapse
|
14
|
Moore JJ, Robert V, Rashid SK, Basu J. Assessing Local and Branch-specific Activity in Dendrites. Neuroscience 2022; 489:143-164. [PMID: 34756987 PMCID: PMC9125998 DOI: 10.1016/j.neuroscience.2021.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 01/12/2023]
Abstract
Dendrites are elaborate neural processes which integrate inputs from various sources in space and time. While decades of work have suggested an independent role for dendrites in driving nonlinear computations for the cell, only recently have technological advances enabled us to capture the variety of activity in dendrites and their coupling dynamics with the soma. Under certain circumstances, activity generated in a given dendritic branch remains isolated, such that the soma or even sister dendrites are not privy to these localized signals. Such branch-specific activity could radically increase the capacity and flexibility of coding for the cell as a whole. Here, we discuss these forms of localized and branch-specific activity, their functional relevance in plasticity and behavior, and their supporting biophysical and circuit-level mechanisms. We conclude by showcasing electrical and optical approaches in hippocampal area CA3, using original experimental data to discuss experimental and analytical methodology and key considerations to take when investigating the functional relevance of independent dendritic activity.
Collapse
Affiliation(s)
- Jason J Moore
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Vincent Robert
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Shannon K Rashid
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
15
|
Ricci P, Marchetti M, Sorelli M, Turrini L, Resta F, Gavryusev V, de Vito G, Sancataldo G, Vanzi F, Silvestri L, Pavone FS. Power-effective scanning with AODs for 3D optogenetic applications. JOURNAL OF BIOPHOTONICS 2022; 15:e202100256. [PMID: 35000289 DOI: 10.1002/jbio.202100256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 05/18/2023]
Abstract
Two-photon (2P) excitation is a cornerstone approach widely employed in neuroscience microscopy for deep optical access and sub-micrometric-resolution light targeting into the brain. However, besides structural and functional imaging, 2P optogenetic stimulations are less routinary, especially in 3D. This is because of the adopted scanning systems, often feebly effective, slow and mechanically constricted. Faster illumination can be achieved through acousto-optic deflectors (AODs) although their applicability to large volumes excitation has been limited by large efficiency drop along the optical axis. Here, we present a new AOD-based scheme for 2P 3D scanning that improves the power delivery between different illumination planes. We applied this approach to photostimulate an optogenetic actuator in zebrafish larvae, demonstrating the method efficiency observing increased activity responses and uniform activation probabilities from neuronal clusters addressed in the volume. This novel driving scheme can open to new AOD applications in neuroscience, allowing more effective 3D interrogation in large neuronal networks.
Collapse
Affiliation(s)
- Pietro Ricci
- European Laboratory for Non-Linear Spectroscopy, Florence
- Department of Physics and Astronomy, University of Florence, Florence
| | | | - Michele Sorelli
- European Laboratory for Non-Linear Spectroscopy, Florence
- Department of Physics and Astronomy, University of Florence, Florence
| | - Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Florence
- Department of Physics and Astronomy, University of Florence, Florence
| | - Francesco Resta
- European Laboratory for Non-Linear Spectroscopy, Florence
- Department of Physics and Astronomy, University of Florence, Florence
| | - Vladislav Gavryusev
- European Laboratory for Non-Linear Spectroscopy, Florence
- Department of Physics and Astronomy, University of Florence, Florence
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Florence
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | | | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Florence
- Department of Biology, University of Florence, Florence, Italy
| | - Ludovico Silvestri
- European Laboratory for Non-Linear Spectroscopy, Florence
- Department of Physics and Astronomy, University of Florence, Florence
- National Institute of Optics, Florence, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Florence
- Department of Physics and Astronomy, University of Florence, Florence
- L4T-Light4Tech, Florence, Italy
- National Institute of Optics, Florence, Italy
| |
Collapse
|
16
|
Braun W, Memmesheimer RM. High-frequency oscillations and sequence generation in two-population models of hippocampal region CA1. PLoS Comput Biol 2022; 18:e1009891. [PMID: 35176028 PMCID: PMC8890743 DOI: 10.1371/journal.pcbi.1009891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 03/02/2022] [Accepted: 02/02/2022] [Indexed: 11/19/2022] Open
Abstract
Hippocampal sharp wave/ripple oscillations are a prominent pattern of collective activity, which consists of a strong overall increase of activity with superimposed (140 − 200 Hz) ripple oscillations. Despite its prominence and its experimentally demonstrated importance for memory consolidation, the mechanisms underlying its generation are to date not understood. Several models assume that recurrent networks of inhibitory cells alone can explain the generation and main characteristics of the ripple oscillations. Recent experiments, however, indicate that in addition to inhibitory basket cells, the pattern requires in vivo the activity of the local population of excitatory pyramidal cells. Here, we study a model for networks in the hippocampal region CA1 incorporating such a local excitatory population of pyramidal neurons. We start by investigating its ability to generate ripple oscillations using extensive simulations. Using biologically plausible parameters, we find that short pulses of external excitation triggering excitatory cell spiking are required for sharp/wave ripple generation with oscillation patterns similar to in vivo observations. Our model has plausible values for single neuron, synapse and connectivity parameters, random connectivity and no strong feedforward drive to the inhibitory population. Specifically, whereas temporally broad excitation can lead to high-frequency oscillations in the ripple range, sparse pyramidal cell activity is only obtained with pulse-like external CA3 excitation. Further simulations indicate that such short pulses could originate from dendritic spikes in the apical or basal dendrites of CA1 pyramidal cells, which are triggered by coincident spike arrivals from hippocampal region CA3. Finally we show that replay of sequences by pyramidal neurons and ripple oscillations can arise intrinsically in CA1 due to structured connectivity that gives rise to alternating excitatory pulse and inhibitory gap coding; the latter denotes phases of silence in specific basket cell groups, which induce selective disinhibition of groups of pyramidal neurons. This general mechanism for sequence generation leads to sparse pyramidal cell and dense basket cell spiking, does not rely on synfire chain-like feedforward excitation and may be relevant for other brain regions as well.
Collapse
Affiliation(s)
- Wilhelm Braun
- Neural Network Dynamics and Computation, Institute of Genetics, University of Bonn, Bonn, Germany
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (WB); (R-MM)
| | - Raoul-Martin Memmesheimer
- Neural Network Dynamics and Computation, Institute of Genetics, University of Bonn, Bonn, Germany
- * E-mail: (WB); (R-MM)
| |
Collapse
|
17
|
Oberle HM, Ford AN, Dileepkumar D, Czarny J, Apostolides PF. Synaptic mechanisms of top-down control in the non-lemniscal inferior colliculus. eLife 2022; 10:e72730. [PMID: 34989674 PMCID: PMC8735864 DOI: 10.7554/elife.72730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/19/2021] [Indexed: 01/05/2023] Open
Abstract
Corticofugal projections to evolutionarily ancient, subcortical structures are ubiquitous across mammalian sensory systems. These 'descending' pathways enable the neocortex to control ascending sensory representations in a predictive or feedback manner, but the underlying cellular mechanisms are poorly understood. Here, we combine optogenetic approaches with in vivo and in vitro patch-clamp electrophysiology to study the projection from mouse auditory cortex to the inferior colliculus (IC), a major descending auditory pathway that controls IC neuron feature selectivity, plasticity, and auditory perceptual learning. Although individual auditory cortico-collicular synapses were generally weak, IC neurons often integrated inputs from multiple corticofugal axons that generated reliable, tonic depolarizations even during prolonged presynaptic activity. Latency measurements in vivo showed that descending signals reach the IC within 30 ms of sound onset, which in IC neurons corresponded to the peak of synaptic depolarizations evoked by short sounds. Activating ascending and descending pathways at latencies expected in vivo caused a NMDA receptor-dependent, supralinear excitatory postsynaptic potential summation, indicating that descending signals can nonlinearly amplify IC neurons' moment-to-moment acoustic responses. Our results shed light upon the synaptic bases of descending sensory control and imply that heterosynaptic cooperativity contributes to the auditory cortico-collicular pathway's role in plasticity and perceptual learning.
Collapse
Affiliation(s)
- Hannah M Oberle
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
- Neuroscience Graduate Program, University of MichiganAnn ArborUnited States
| | - Alexander N Ford
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
| | - Deepak Dileepkumar
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
| | - Jordyn Czarny
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
| | - Pierre F Apostolides
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
- Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
18
|
Sardi S, Vardi R, Tugendhaft Y, Sheinin A, Goldental A, Kanter I. Long anisotropic absolute refractory periods with rapid rise times to reliable responsiveness. Phys Rev E 2022; 105:014401. [PMID: 35193251 DOI: 10.1103/physreve.105.014401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/22/2021] [Indexed: 11/07/2022]
Abstract
Refractoriness is a fundamental property of excitable elements, such as neurons, indicating the probability for re-excitation in a given time lag, and is typically linked to the neuronal hyperpolarization following an evoked spike. Here we measured the refractory periods (RPs) in neuronal cultures and observed that an average anisotropic absolute RP could exceed 10 ms and its tail is 20 ms, independent of a large stimulation frequency range. It is an order of magnitude longer than anticipated and comparable with the decaying membrane potential time scale. It is followed by a sharp rise-time (relative RP) of merely ∼1 md to complete responsiveness. Extracellular stimulations result in longer absolute RPs than solely intracellular ones, and a pair of extracellular stimulations from two different routes exhibits distinct absolute RPs, depending on their order. Our results indicate that a neuron is an accurate excitable element, where the diverse RPs cannot be attributed solely to the soma and imply fast mutual interactions between different stimulation routes and dendrites. Further elucidation of neuronal computational capabilities and their interplay with adaptation mechanisms is warranted.
Collapse
Affiliation(s)
- Shira Sardi
- Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Roni Vardi
- Gonda Interdisciplinary Brain Research Center and the Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Yael Tugendhaft
- Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Anton Sheinin
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amir Goldental
- Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ido Kanter
- Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel.,Gonda Interdisciplinary Brain Research Center and the Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
19
|
Jenks KR, Tsimring K, Ip JPK, Zepeda JC, Sur M. Heterosynaptic Plasticity and the Experience-Dependent Refinement of Developing Neuronal Circuits. Front Neural Circuits 2021; 15:803401. [PMID: 34949992 PMCID: PMC8689143 DOI: 10.3389/fncir.2021.803401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 01/01/2023] Open
Abstract
Neurons remodel the structure and strength of their synapses during critical periods of development in order to optimize both perception and cognition. Many of these developmental synaptic changes are thought to occur through synapse-specific homosynaptic forms of experience-dependent plasticity. However, homosynaptic plasticity can also induce or contribute to the plasticity of neighboring synapses through heterosynaptic interactions. Decades of research in vitro have uncovered many of the molecular mechanisms of heterosynaptic plasticity that mediate local compensation for homosynaptic plasticity, facilitation of further bouts of plasticity in nearby synapses, and cooperative induction of plasticity by neighboring synapses acting in concert. These discoveries greatly benefited from new tools and technologies that permitted single synapse imaging and manipulation of structure, function, and protein dynamics in living neurons. With the recent advent and application of similar tools for in vivo research, it is now feasible to explore how heterosynaptic plasticity contribute to critical periods and the development of neuronal circuits. In this review, we will first define the forms heterosynaptic plasticity can take and describe our current understanding of their molecular mechanisms. Then, we will outline how heterosynaptic plasticity may lead to meaningful refinement of neuronal responses and observations that suggest such mechanisms are indeed at work in vivo. Finally, we will use a well-studied model of cortical plasticity—ocular dominance plasticity during a critical period of visual cortex development—to highlight the molecular overlap between heterosynaptic and developmental forms of plasticity, and suggest potential avenues of future research.
Collapse
Affiliation(s)
- Kyle R Jenks
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Katya Tsimring
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jacque Pak Kan Ip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jose C Zepeda
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
20
|
Sutton NM, Ascoli GA. Spiking Neural Networks and Hippocampal Function: A Web-Accessible Survey of Simulations, Modeling Methods, and Underlying Theories. COGN SYST RES 2021; 70:80-92. [PMID: 34504394 DOI: 10.1016/j.cogsys.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Computational modeling has contributed to hippocampal research in a wide variety of ways and through a large diversity of approaches, reflecting the many advanced cognitive roles of this brain region. The intensively studied neuron type circuitry of the hippocampus is a particularly conducive substrate for spiking neural models. Here we present an online knowledge base of spiking neural network simulations of hippocampal functions. First, we overview theories involving the hippocampal formation in subjects such as spatial representation, learning, and memory. Then we describe an original literature mining process to organize published reports in various key aspects, including: (i) subject area (e.g., navigation, pattern completion, epilepsy); (ii) level of modeling detail (Hodgkin-Huxley, integrate-and-fire, etc.); and (iii) theoretical framework (attractor dynamics, oscillatory interference, self-organizing maps, and others). Moreover, every peer-reviewed publication is also annotated to indicate the specific neuron types represented in the network simulation, establishing a direct link with the Hippocampome.org portal. The web interface of the knowledge base enables dynamic content browsing and advanced searches, and consistently presents evidence supporting every annotation. Moreover, users are given access to several types of statistical reports about the collection, a selection of which is summarized in this paper. This open access resource thus provides an interactive platform to survey spiking neural network models of hippocampal functions, compare available computational methods, and foster ideas for suitable new directions of research.
Collapse
Affiliation(s)
- Nate M Sutton
- Department of Bioengineering, 4400 University Drive, George Mason University, Fairfax, Virginia, 22030 (USA)
| | - Giorgio A Ascoli
- Department of Bioengineering, 4400 University Drive, George Mason University, Fairfax, Virginia, 22030 (USA).,Interdepartmental Neuroscience Program, 4400 University Drive, George Mason University, Fairfax, Virginia, 22030 (USA)
| |
Collapse
|
21
|
Pulikkottil VV, Somashekar BP, Bhalla US. Computation, wiring, and plasticity in synaptic clusters. Curr Opin Neurobiol 2021; 70:101-112. [PMID: 34509808 DOI: 10.1016/j.conb.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 01/19/2023]
Abstract
Synaptic clusters on dendrites are extraordinarily compact computational building blocks. They contribute to key local computations through biophysical and biochemical signaling that utilizes convergence in space and time as an organizing principle. However, these computations can only arise in very special contexts. Dendritic cluster computations, their highly organized input connectivity, and the mechanisms for their formation are closely linked, yet these have not been analyzed as parts of a single process. Here, we examine these linkages. The sheer density of axonal and dendritic arborizations means that there are far more potential connections (close enough for a spine to reach an axon) than actual ones. We see how dendritic clusters draw upon electrical, chemical, and mechano-chemical signaling to implement the rules for formation of connections and subsequent computations. Crucially, the same mechanisms that underlie their functions also underlie their formation.
Collapse
Affiliation(s)
| | - Bhanu Priya Somashekar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| |
Collapse
|
22
|
Kim N, Bahn S, Choi JH, Kim JS, Rah JC. Synapses from the Motor Cortex and a High-Order Thalamic Nucleus are Spatially Clustered in Proximity to Each Other in the Distal Tuft Dendrites of Mouse Somatosensory Cortex. Cereb Cortex 2021; 32:737-754. [PMID: 34355731 DOI: 10.1093/cercor/bhab236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/13/2022] Open
Abstract
The posterior medial nucleus of the thalamus (POm) and vibrissal primary motor cortex (vM1) convey essential information to the barrel cortex (S1BF) regarding whisker position and movement. Therefore, understanding the relative spatial relationship of these two inputs is a critical prerequisite for acquiring insights into how S1BF synthesizes information to interpret the location of an object. Using array tomography, we identified the locations of synapses from vM1 and POm on distal tuft dendrites of L5 pyramidal neurons where the two inputs are combined. Synapses from vM1 and POm did not show a significant branchlet preference and impinged on the same set of dendritic branchlets. Within dendritic branches, on the other hand, the two inputs formed robust spatial clusters of their own type. Furthermore, we also observed POm clusters in proximity to vM1 clusters. This work constitutes the first detailed description of the relative distribution of synapses from POm and vM1, which is crucial to elucidate the synaptic integration of whisker-based sensory information.
Collapse
Affiliation(s)
- Nari Kim
- Laboratory of Neurophysiology, Korea Brain Research Institute, Daegu 41067, Republic of Korea
| | - Sangkyu Bahn
- Laboratory of Computational Neuroscience, Korea Brain Research Institute, Daegu 41067, Republic of Korea
| | - Joon Ho Choi
- Laboratory of Neurophysiology, Korea Brain Research Institute, Daegu 41067, Republic of Korea
| | - Jinseop S Kim
- Laboratory of Computational Neuroscience, Korea Brain Research Institute, Daegu 41067, Republic of Korea.,Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jong-Cheol Rah
- Laboratory of Neurophysiology, Korea Brain Research Institute, Daegu 41067, Republic of Korea.,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, Republic of Korea
| |
Collapse
|
23
|
Isbister JB, Reyes-Puerta V, Sun JJ, Horenko I, Luhmann HJ. Clustering and control for adaptation uncovers time-warped spike time patterns in cortical networks in vivo. Sci Rep 2021; 11:15066. [PMID: 34326363 PMCID: PMC8322153 DOI: 10.1038/s41598-021-94002-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/29/2021] [Indexed: 12/04/2022] Open
Abstract
How information in the nervous system is encoded by patterns of action potentials (i.e. spikes) remains an open question. Multi-neuron patterns of single spikes are a prime candidate for spike time encoding but their temporal variability requires further characterisation. Here we show how known sources of spike count variability affect stimulus-evoked spike time patterns between neurons separated over multiple layers and columns of adult rat somatosensory cortex in vivo. On subsets of trials (clusters) and after controlling for stimulus-response adaptation, spike time differences between pairs of neurons are “time-warped” (compressed/stretched) by trial-to-trial changes in shared excitability, explaining why fixed spike time patterns and noise correlations are seldom reported. We show that predicted cortical state is correlated between groups of 4 neurons, introducing the possibility of spike time pattern modulation by population-wide trial-to-trial changes in excitability (i.e. cortical state). Under the assumption of state-dependent coding, we propose an improved potential encoding capacity.
Collapse
Affiliation(s)
- James B Isbister
- Oxford Centre for Theoretical Neuroscience and Artificial Intelligence, Department of Experimental Psychology, University of Oxford, Oxford, UK. .,The Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland.
| | - Vicente Reyes-Puerta
- Institute of Physiology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Jyh-Jang Sun
- Institute of Physiology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.,NERF, Kapeldreef 75, 3001, Leuven, Belgium.,imec, Remisebosweg 1, 3001, Leuven, Belgium
| | - Illia Horenko
- Faculty of Informatics, Universita della Svizzera Italiana, Via G. Buffi 13, 6900, Lugano, Switzerland
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
24
|
Goetz L, Roth A, Häusser M. Active dendrites enable strong but sparse inputs to determine orientation selectivity. Proc Natl Acad Sci U S A 2021; 118:e2017339118. [PMID: 34301882 PMCID: PMC8325157 DOI: 10.1073/pnas.2017339118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dendrites of neocortical pyramidal neurons are excitable. However, it is unknown how synaptic inputs engage nonlinear dendritic mechanisms during sensory processing in vivo, and how they in turn influence action potential output. Here, we provide a quantitative account of the relationship between synaptic inputs, nonlinear dendritic events, and action potential output. We developed a detailed pyramidal neuron model constrained by in vivo dendritic recordings. We drive this model with realistic input patterns constrained by sensory responses measured in vivo and connectivity measured in vitro. We show mechanistically that under realistic conditions, dendritic Na+ and NMDA spikes are the major determinants of neuronal output in vivo. We demonstrate that these dendritic spikes can be triggered by a surprisingly small number of strong synaptic inputs, in some cases even by single synapses. We predict that dendritic excitability allows the 1% strongest synaptic inputs of a neuron to control the tuning of its output. Active dendrites therefore allow smaller subcircuits consisting of only a few strongly connected neurons to achieve selectivity for specific sensory features.
Collapse
Affiliation(s)
- Lea Goetz
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom
| | - Arnd Roth
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
25
|
Actin Cytoskeleton Role in the Maintenance of Neuronal Morphology and Long-Term Memory. Cells 2021; 10:cells10071795. [PMID: 34359964 PMCID: PMC8305626 DOI: 10.3390/cells10071795] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Evidence indicates that long-term memory formation creates long-lasting changes in neuronal morphology within a specific neuronal network that forms the memory trace. Dendritic spines, which include most of the excitatory synapses in excitatory neurons, are formed or eliminated by learning. These changes may be long-lasting and correlate with memory strength. Moreover, learning-induced changes in the morphology of existing spines can also contribute to the formation of the neuronal network that underlies memory. Altering spines morphology after memory consolidation can erase memory. These observations strongly suggest that learning-induced spines modifications can constitute the changes in synaptic connectivity within the neuronal network that form memory and that stabilization of this network maintains long-term memory. The formation and elimination of spines and other finer morphological changes in spines are mediated by the actin cytoskeleton. The actin cytoskeleton forms networks within the spine that support its structure. Therefore, it is believed that the actin cytoskeleton mediates spine morphogenesis induced by learning. Any long-lasting changes in the spine morphology induced by learning require the preservation of the spine actin cytoskeleton network to support and stabilize the spine new structure. However, the actin cytoskeleton is highly dynamic, and the turnover of actin and its regulatory proteins that determine and support the actin cytoskeleton network structure is relatively fast. Molecular models, suggested here, describe ways to overcome the dynamic nature of the actin cytoskeleton and the fast protein turnover and to support an enduring actin cytoskeleton network within the spines, spines stability and long-term memory. These models are based on long-lasting changes in actin regulatory proteins concentrations within the spine or the formation of a long-lasting scaffold and the ability for its recurring rebuilding within the spine. The persistence of the actin cytoskeleton network within the spine is suggested to support long-lasting spine structure and the maintenance of long-term memory.
Collapse
|
26
|
Zybura A, Hudmon A, Cummins TR. Distinctive Properties and Powerful Neuromodulation of Na v1.6 Sodium Channels Regulates Neuronal Excitability. Cells 2021; 10:1595. [PMID: 34202119 PMCID: PMC8307729 DOI: 10.3390/cells10071595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) are critical determinants of cellular excitability. These ion channels exist as large heteromultimeric structures and their activity is tightly controlled. In neurons, the isoform Nav1.6 is highly enriched at the axon initial segment and nodes, making it critical for the initiation and propagation of neuronal impulses. Changes in Nav1.6 expression and function profoundly impact the input-output properties of neurons in normal and pathological conditions. While mutations in Nav1.6 may cause channel dysfunction, aberrant changes may also be the result of complex modes of regulation, including various protein-protein interactions and post-translational modifications, which can alter membrane excitability and neuronal firing properties. Despite decades of research, the complexities of Nav1.6 modulation in health and disease are still being determined. While some modulatory mechanisms have similar effects on other Nav isoforms, others are isoform-specific. Additionally, considerable progress has been made toward understanding how individual protein interactions and/or modifications affect Nav1.6 function. However, there is still more to be learned about how these different modes of modulation interact. Here, we examine the role of Nav1.6 in neuronal function and provide a thorough review of this channel's complex regulatory mechanisms and how they may contribute to neuromodulation.
Collapse
Affiliation(s)
- Agnes Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Theodore R. Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
27
|
Combe CL, Gasparini S. I h from synapses to networks: HCN channel functions and modulation in neurons. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:119-132. [PMID: 34181891 DOI: 10.1016/j.pbiomolbio.2021.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 01/16/2023]
Abstract
Hyperpolarization-activated cyclic nucleotide gated (HCN) channels and the current they carry, Ih, are widely and diversely distributed in the central nervous system (CNS). The distribution of the four subunits of HCN channels is variable within the CNS, within brain regions, and often within subcellular compartments. The precise function of Ih can depend heavily on what other channels are co-expressed. In this review, we give an overview of HCN channel structure, distribution, and modulation by cyclic adenosine monophosphate (cAMP). We then discuss HCN channel and Ih functions, where we have parsed the roles into two main effects: a steady effect on maintaining the resting membrane potential at relatively depolarized values, and slow channel dynamics. Within this framework, we discuss Ih involvement in resonance, synaptic integration, transmitter release, plasticity, and point out a special case, where the effects of Ih on the membrane potential and its slow channel dynamics have dual roles in thalamic neurons.
Collapse
Affiliation(s)
- Crescent L Combe
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Sonia Gasparini
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
28
|
Davidson AM, Mejía-Gómez H, Jacobowitz M, Mostany R. Dendritic Spine Density and Dynamics of Layer 5 Pyramidal Neurons of the Primary Motor Cortex Are Elevated With Aging. Cereb Cortex 2021; 30:767-777. [PMID: 31298696 DOI: 10.1093/cercor/bhz124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/17/2019] [Accepted: 05/20/2019] [Indexed: 01/04/2023] Open
Abstract
It is well established that motor impairment often occurs alongside healthy aging, leading to problems with fine motor skills and coordination. Although previously thought to be caused by neuronal death accumulating across the lifespan, it is now believed that the source of this impairment instead stems from more subtle changes in neural connectivity. The dendritic spine is a prime target for exploration of this problem because it is the postsynaptic partner of most excitatory synapses received by the pyramidal neuron, a cortical cell that carries much of the information processing load in the cerebral cortex. We repeatedly imaged the same dendrites in young adult and aged mouse motor cortex over the course of 1 month to look for differences in the baseline state of the dendritic spine population. These experiments reveal increased dendritic spine density, without obvious changes in spine clustering, occurring at the aged dendrite. Additionally, aged dendrites exhibit elevated spine turnover and stabilization alongside decreased long-term spine survival. These results suggest that at baseline the aged motor cortex may exist in a perpetual state of relative instability and attempts at compensation. This phenotype of aging may provide clues for future targets of aging-related motor impairment remediation.
Collapse
Affiliation(s)
- A M Davidson
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - H Mejía-Gómez
- Neuroscience Program, Brain Institute, Tulane University, New Orleans, LA 70118, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - M Jacobowitz
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - R Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA.,Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
29
|
Sáray S, Rössert CA, Appukuttan S, Migliore R, Vitale P, Lupascu CA, Bologna LL, Van Geit W, Romani A, Davison AP, Muller E, Freund TF, Káli S. HippoUnit: A software tool for the automated testing and systematic comparison of detailed models of hippocampal neurons based on electrophysiological data. PLoS Comput Biol 2021; 17:e1008114. [PMID: 33513130 PMCID: PMC7875359 DOI: 10.1371/journal.pcbi.1008114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 02/10/2021] [Accepted: 12/24/2020] [Indexed: 11/19/2022] Open
Abstract
Anatomically and biophysically detailed data-driven neuronal models have become widely used tools for understanding and predicting the behavior and function of neurons. Due to the increasing availability of experimental data from anatomical and electrophysiological measurements as well as the growing number of computational and software tools that enable accurate neuronal modeling, there are now a large number of different models of many cell types available in the literature. These models were usually built to capture a few important or interesting properties of the given neuron type, and it is often unknown how they would behave outside their original context. In addition, there is currently no simple way of quantitatively comparing different models regarding how closely they match specific experimental observations. This limits the evaluation, re-use and further development of the existing models. Further, the development of new models could also be significantly facilitated by the ability to rapidly test the behavior of model candidates against the relevant collection of experimental data. We address these problems for the representative case of the CA1 pyramidal cell of the rat hippocampus by developing an open-source Python test suite, which makes it possible to automatically and systematically test multiple properties of models by making quantitative comparisons between the models and electrophysiological data. The tests cover various aspects of somatic behavior, and signal propagation and integration in apical dendrites. To demonstrate the utility of our approach, we applied our tests to compare the behavior of several different rat hippocampal CA1 pyramidal cell models from the ModelDB database against electrophysiological data available in the literature, and evaluated how well these models match experimental observations in different domains. We also show how we employed the test suite to aid the development of models within the European Human Brain Project (HBP), and describe the integration of the tests into the validation framework developed in the HBP, with the aim of facilitating more reproducible and transparent model building in the neuroscience community.
Collapse
Affiliation(s)
- Sára Sáray
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Experimental Medicine, Budapest, Hungary
- * E-mail: (SS); (SK)
| | - Christian A. Rössert
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Shailesh Appukuttan
- Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique/Université Paris-Saclay, Gif-sur-Yvette, France
| | - Rosanna Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Paola Vitale
- Institute of Biophysics, National Research Council, Palermo, Italy
| | | | - Luca L. Bologna
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Werner Van Geit
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Armando Romani
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Andrew P. Davison
- Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique/Université Paris-Saclay, Gif-sur-Yvette, France
| | - Eilif Muller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, Canada
- CHU Sainte-Justine Research Center, Montreal, Canada
- Quebec Artificial Intelligence Institute (Mila), Montreal, Canada
| | - Tamás F. Freund
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Experimental Medicine, Budapest, Hungary
| | - Szabolcs Káli
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Experimental Medicine, Budapest, Hungary
- * E-mail: (SS); (SK)
| |
Collapse
|
30
|
Parzhin Y, Kosenko V, Podorozhniak A, Malyeyeva O, Timofeyev V. Detector neural network vs connectionist ANNs. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Seenivasan P, Narayanan R. Efficient phase coding in hippocampal place cells. PHYSICAL REVIEW RESEARCH 2020; 2:033393. [PMID: 32984841 PMCID: PMC7116119 DOI: 10.1103/physrevresearch.2.033393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Neural codes have been postulated to build efficient representations of the external world. The hippocampus, an encoding system, employs neuronal firing rates and spike phases to encode external space. Although the biophysical origin of such codes is at a single neuronal level, the role of neural components in efficient coding is not understood. The complexity of this problem lies in the dimensionality of the parametric space encompassing neural components, and is amplified by the enormous biological heterogeneity observed in each parameter. A central question that spans encoding systems therefore is how neurons arrive at efficient codes in the face of widespread biological heterogeneities. To answer this, we developed a conductance-based spiking model for phase precession, a phase code of external space exhibited by hippocampal place cells. Our model accounted for several experimental observations on place cell firing and electrophysiology: the emergence of phase precession from exact spike timings of conductance-based models with neuron-specific ion channels and receptors; biological heterogeneities in neural components and excitability; the emergence of subthreshold voltage ramp, increased firing rate, enhanced theta power within the place field; a signature reduction in extracellular theta frequency compared to its intracellular counterpart; and experience-dependent asymmetry in firing-rate profile. We formulated phase-coding efficiency, using Shannon's information theory, as an information maximization problem with spike phase as the response and external space within a single place field as the stimulus. We employed an unbiased stochastic search spanning an 11-dimensional neural space, involving thousands of iterations that accounted for the biophysical richness and neuron-to-neuron heterogeneities. We found a small subset of models that exhibited efficient spatial information transfer through the phase code, and investigated the distinguishing features of this subpopulation at the parametric and functional scales. At the parametric scale, which spans the molecular components that defined the neuron, several nonunique parametric combinations with weak pairwise correlations yielded models with similar high phase-coding efficiency. Importantly, placing additional constraints on these models in terms of matching other aspects of hippocampal neural responses did not hamper parametric degeneracy. We provide quantitative evidence demonstrating this parametric degeneracy to be a consequence of a many-to-one relationship between the different parameters and phase-coding efficiency. At the functional scale, involving the cellular-scale neural properties, our analyses revealed an important higher-order constraint that was exclusive to models exhibiting efficient phase coding. Specifically, we found a counterbalancing negative correlation between neuronal gain and the strength of external synaptic inputs as a critical functional constraint for the emergence of efficient phase coding. These observations implicate intrinsic neural properties as important contributors in effectuating such counterbalance, which can be achieved by recruiting nonunique parametric combinations. Finally, we show that a change in afferent statistics, manifesting as input asymmetry onto these neuronal models, induced an adaptive shift in the phase code that preserved its efficiency. Together, our analyses unveil parametric degeneracy as a mechanism to harness widespread neuron-to-neuron heterogeneity towards accomplishing stable and efficient encoding, provided specific higher-order functional constraints on the relationship of neural gain to external inputs are satisfied.
Collapse
|
32
|
Ujfalussy BB, Makara JK. Impact of functional synapse clusters on neuronal response selectivity. Nat Commun 2020; 11:1413. [PMID: 32179739 PMCID: PMC7075899 DOI: 10.1038/s41467-020-15147-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/20/2020] [Indexed: 12/24/2022] Open
Abstract
Clustering of functionally similar synapses in dendrites is thought to affect neuronal input-output transformation by triggering local nonlinearities. However, neither the in vivo impact of synaptic clusters on somatic membrane potential (sVm), nor the rules of cluster formation are elucidated. We develop a computational approach to measure the effect of functional synaptic clusters on sVm response of biophysical model CA1 and L2/3 pyramidal neurons to in vivo-like inputs. We demonstrate that small synaptic clusters appearing with random connectivity do not influence sVm. With structured connectivity, ~10-20 synapses/cluster are optimal for clustering-based tuning via state-dependent mechanisms, but larger selectivity is achieved by 2-fold potentiation of the same synapses. We further show that without nonlinear amplification of the effect of random clusters, action potential-based, global plasticity rules cannot generate functional clustering. Our results suggest that clusters likely form via local synaptic interactions, and have to be moderately large to impact sVm responses.
Collapse
Affiliation(s)
- Balázs B Ujfalussy
- Laboratory of Neuronal Signaling, Institute of Experimental Medicine, 1083, Budapest, Hungary.
| | - Judit K Makara
- Laboratory of Neuronal Signaling, Institute of Experimental Medicine, 1083, Budapest, Hungary
| |
Collapse
|
33
|
Cornford JH, Mercier MS, Leite M, Magloire V, Häusser M, Kullmann DM. Dendritic NMDA receptors in parvalbumin neurons enable strong and stable neuronal assemblies. eLife 2019; 8:e49872. [PMID: 31657720 PMCID: PMC6839945 DOI: 10.7554/elife.49872] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/26/2019] [Indexed: 12/15/2022] Open
Abstract
Parvalbumin-expressing (PV+) GABAergic interneurons mediate feedforward and feedback inhibition and have a key role in gamma oscillations and information processing. The importance of fast synaptic recruitment and action potential initiation and repolarization, and rapid synchronous GABA release by PV+ cells, is well established. In contrast, the functional significance of PV+ cell NMDA receptors (NMDARs), which generate relatively slow postsynaptic currents, is unclear. Underlining their potential importance, several studies implicate PV+ cell NMDAR disruption in impaired network function and circuit pathologies. Here, we show that dendritic NMDARs underlie supralinear integration of feedback excitation from local pyramidal neurons onto mouse CA1 PV+ cells. Furthermore, by incorporating NMDARs at feedback connections onto PV+ cells in spiking networks, we show that these receptors enable cooperative recruitment of PV+ interneurons, strengthening and stabilising principal cell assemblies. Failure of this phenomenon provides a parsimonious explanation for cognitive and sensory gating deficits in pathologies with impaired PV+ NMDAR signalling.
Collapse
Affiliation(s)
- Jonathan H Cornford
- UCL Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Marion S Mercier
- UCL Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Marco Leite
- UCL Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Vincent Magloire
- UCL Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Michael Häusser
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUnited Kingdom
| | - Dimitri M Kullmann
- UCL Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
34
|
Mitchell DE, Martineau É, Tazerart S, Araya R. Probing Single Synapses via the Photolytic Release of Neurotransmitters. Front Synaptic Neurosci 2019; 11:19. [PMID: 31354469 PMCID: PMC6640007 DOI: 10.3389/fnsyn.2019.00019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
The development of two-photon microscopy has revolutionized our understanding of how synapses are formed and how they transform synaptic inputs in dendritic spines-tiny protrusions that cover the dendrites of pyramidal neurons that receive most excitatory synaptic information in the brain. These discoveries have led us to better comprehend the neuronal computations that take place at the level of dendritic spines as well as within neuronal circuits with unprecedented resolution. Here, we describe a method that uses a two-photon (2P) microscope and 2P uncaging of caged neurotransmitters for the activation of single and multiple spines in the dendrites of cortical pyramidal neurons. In addition, we propose a cost-effective description of the components necessary for the construction of a one laser source-2P microscope capable of nearly simultaneous 2P uncaging of neurotransmitters and 2P calcium imaging of the activated spines and nearby dendrites. We provide a brief overview on how the use of these techniques have helped researchers in the last 15 years unravel the function of spines in: (a) information processing; (b) storage; and (c) integration of excitatory synaptic inputs.
Collapse
Affiliation(s)
- Diana E. Mitchell
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Éric Martineau
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Sabrina Tazerart
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Roberto Araya
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| |
Collapse
|
35
|
Single-Cell Membrane Potential Fluctuations Evince Network Scale-Freeness and Quasicriticality. J Neurosci 2019; 39:4738-4759. [PMID: 30952810 DOI: 10.1523/jneurosci.3163-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/01/2019] [Accepted: 03/25/2019] [Indexed: 11/21/2022] Open
Abstract
What information single neurons receive about general neural circuit activity is a fundamental question for neuroscience. Somatic membrane potential (V m) fluctuations are driven by the convergence of synaptic inputs from a diverse cross-section of upstream neurons. Furthermore, neural activity is often scale-free, implying that some measurements should be the same, whether taken at large or small scales. Together, convergence and scale-freeness support the hypothesis that single V m recordings carry useful information about high-dimensional cortical activity. Conveniently, the theory of "critical branching networks" (one purported explanation for scale-freeness) provides testable predictions about scale-free measurements that are readily applied to V m fluctuations. To investigate, we obtained whole-cell current-clamp recordings of pyramidal neurons in visual cortex of turtles with unknown genders. We isolated fluctuations in V m below the firing threshold and analyzed them by adapting the definition of "neuronal avalanches" (i.e., spurts of population spiking). The V m fluctuations which we analyzed were scale-free and consistent with critical branching. These findings recapitulated results from large-scale cortical population data obtained separately in complementary experiments using microelectrode arrays described previously (Shew et al., 2015). Simultaneously recorded single-unit local field potential did not provide a good match, demonstrating the specific utility of V m Modeling shows that estimation of dynamical network properties from neuronal inputs is most accurate when networks are structured as critical branching networks. In conclusion, these findings extend evidence of critical phenomena while also establishing subthreshold pyramidal neuron V m fluctuations as an informative gauge of high-dimensional cortical population activity.SIGNIFICANCE STATEMENT The relationship between membrane potential (V m) dynamics of single neurons and population dynamics is indispensable to understanding cortical circuits. Just as important to the biophysics of computation are emergent properties such as scale-freeness, where critical branching networks offer insight. This report makes progress on both fronts by comparing statistics from single-neuron whole-cell recordings with population statistics obtained with microelectrode arrays. Not only are fluctuations of somatic V m scale-free, they match fluctuations of population activity. Thus, our results demonstrate appropriation of the brain's own subsampling method (convergence of synaptic inputs) while extending the range of fundamental evidence for critical phenomena in neural systems from the previously observed mesoscale (fMRI, LFP, population spiking) to the microscale, namely, V m fluctuations.
Collapse
|
36
|
Durkee CA, Covelo A, Lines J, Kofuji P, Aguilar J, Araque A. G i/o protein-coupled receptors inhibit neurons but activate astrocytes and stimulate gliotransmission. Glia 2019; 67:1076-1093. [PMID: 30801845 DOI: 10.1002/glia.23589] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/06/2018] [Accepted: 12/26/2018] [Indexed: 12/31/2022]
Abstract
G protein-coupled receptors (GPCRs) play key roles in intercellular signaling in the brain. Their effects on cellular function have been largely studied in neurons, but their functional consequences on astrocytes are less known. Using both endogenous and chemogenetic approaches with DREADDs, we have investigated the effects of Gq and Gi/o GPCR activation on astroglial Ca2+ -based activity, gliotransmitter release, and the functional consequences on neuronal electrical activity. We found that while Gq GPCR activation led to cellular activation in both neurons and astrocytes, Gi/o GPCR activation led to cellular inhibition in neurons and cellular activation in astrocytes. Astroglial activation by either Gq or Gi/o protein-mediated signaling stimulated gliotransmitter release, which increased neuronal excitability. Additionally, activation of Gq and Gi/o DREADDs in vivo increased astrocyte Ca2+ activity and modified neuronal network electrical activity. Present results reveal additional complexity of the signaling consequences of excitatory and inhibitory neurotransmitters in astroglia-neuron network operation and brain function.
Collapse
Affiliation(s)
- Caitlin A Durkee
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Ana Covelo
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Justin Lines
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Juan Aguilar
- Laboratory of Experimental Neurophysiology, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
37
|
Thinking as a quantum phenomenon. Biosystems 2019; 176:32-40. [DOI: 10.1016/j.biosystems.2018.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 11/23/2022]
|
38
|
Ellis-Davies GCR. Two-Photon Uncaging of Glutamate. Front Synaptic Neurosci 2019; 10:48. [PMID: 30687075 PMCID: PMC6333857 DOI: 10.3389/fnsyn.2018.00048] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/11/2018] [Indexed: 01/26/2023] Open
Abstract
Two-photon microscopy produces the excited singlet state of a chromophore with wavelengths approximately double that used for normal excitation. Two photons are absorbed almost simultaneously, via a virtual state, and this makes the excitation technique inherently non-linear. It requires ultra-fast lasers to deliver the high flux density needed to access intrinsically very short lived intermediates, and in combination with lenses of high numerical aperture, this confines axial excitation highly. Since the two-photon excitation volume is similar to a large spine head, the technique has been widely used to study glutamatergic transmission in brain slices. Here I describe the principles of two-photon uncaging of glutamate and provide a practical guide to its application.
Collapse
|
39
|
Matheus Gauy M, Lengler J, Einarsson H, Meier F, Weissenberger F, Yanik MF, Steger A. A Hippocampal Model for Behavioral Time Acquisition and Fast Bidirectional Replay of Spatio-Temporal Memory Sequences. Front Neurosci 2018; 12:961. [PMID: 30618583 PMCID: PMC6306028 DOI: 10.3389/fnins.2018.00961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/03/2018] [Indexed: 01/09/2023] Open
Abstract
The hippocampus is known to play a crucial role in the formation of long-term memory. For this, fast replays of previously experienced activities during sleep or after reward experiences are believed to be crucial. But how such replays are generated is still completely unclear. In this paper we propose a possible mechanism for this: we present a model that can store experienced trajectories on a behavioral timescale after a single run, and can subsequently bidirectionally replay such trajectories, thereby omitting any specifics of the previous behavior like speed, etc, but allowing repetitions of events, even with different subsequent events. Our solution builds on well-known concepts, one-shot learning and synfire chains, enhancing them by additional mechanisms using global inhibition and disinhibition. For replays our approach relies on dendritic spikes and cholinergic modulation, as supported by experimental data. We also hypothesize a functional role of disinhibition as a pacemaker during behavioral time.
Collapse
Affiliation(s)
- Marcelo Matheus Gauy
- Department of Computer Science, Institute of Theoretical Computer Science, ETH Zurich, Zurich, Switzerland
| | - Johannes Lengler
- Department of Computer Science, Institute of Theoretical Computer Science, ETH Zurich, Zurich, Switzerland
| | - Hafsteinn Einarsson
- Department of Computer Science, Institute of Theoretical Computer Science, ETH Zurich, Zurich, Switzerland
| | - Florian Meier
- Department of Computer Science, Institute of Theoretical Computer Science, ETH Zurich, Zurich, Switzerland
| | - Felix Weissenberger
- Department of Computer Science, Institute of Theoretical Computer Science, ETH Zurich, Zurich, Switzerland
| | - Mehmet Fatih Yanik
- Department of Information Technology and Electrical Engineering, Institute for Neuroinformatics, ETH Zurich, Zurich, Switzerland
| | - Angelika Steger
- Department of Computer Science, Institute of Theoretical Computer Science, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Takahashi N. Synaptic topography - Converging connections and emerging function. Neurosci Res 2018; 141:29-35. [PMID: 30468748 DOI: 10.1016/j.neures.2018.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 10/16/2018] [Accepted: 11/01/2018] [Indexed: 11/25/2022]
Abstract
Brain circuits are constituted of individual neurons that are interconnected with a vast array of synapses. In order to understand how brain function emerges from this complex synaptic network, immense efforts have been made to trace the synaptic topography, i.e. arrangement of synaptic connections, of the network. In addition to anatomically elaborating the synaptic layout at multiple levels across brain regions, recent studies have attempted to elucidate the fundamental wiring principles that govern neural information processing in the brain, establishing a link between anatomy and function. In this review, I will discuss recent discoveries on the topographical organization of synaptic connections at the cell-to-cell and subcellular levels in the cortex and hippocampus. Accumulating evidence leads us to acknowledge the highly structured, non-random synaptic connectivity that emerges together with sensory feature preferences of neurons and synchronous neuronal activity.
Collapse
Affiliation(s)
- Naoya Takahashi
- Institute for Biology, Neuronal Plasticity, Humboldt University of Berlin, D-10117, Berlin, Germany.
| |
Collapse
|
41
|
Basak R, Narayanan R. Spatially dispersed synapses yield sharply-tuned place cell responses through dendritic spike initiation. J Physiol 2018; 596:4173-4205. [PMID: 29893405 PMCID: PMC6117611 DOI: 10.1113/jp275310] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/01/2018] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS The generation of dendritic spikes and the consequent sharp tuning of neuronal responses are together attainable even when iso-feature synapses are randomly dispersed across the dendritic arbor. Disparate combinations of channel conductances with distinct configurations of randomly dispersed place field synapses concomitantly yield similar sharp tuning profiles and similar functional maps of several intrinsic properties. Targeted synaptic plasticity converts silent cells to place cells for specific place fields in models with disparate channel combinations that receive dispersed synaptic inputs from multiple place field locations. Dispersed localization of iso-feature synapses is a strong candidate for achieving sharp feature selectivity in neurons across sensory-perceptual systems, with several degrees of freedom in relation to synaptic locations. Quantitative evidence for the possibility that degeneracy (i.e. the ability of disparate structural components to yield similar functional outcomes) could act as a broad framework that effectively accomplishes the twin goals of input-feature encoding and homeostasis of intrinsic properties without cross interferences. ABSTRACT A prominent hypothesis spanning several sensory-perceptual systems implicates spatially clustered synapses in the generation of dendritic spikes that mediate sharply-tuned neuronal responses to input features. In this conductance-based morphologically-precise computational study, we tested this hypothesis by systematically analysing the impact of distinct synaptic and channel localization profiles on sharpness of spatial tuning in hippocampal pyramidal neurons. We found that the generation of dendritic spikes, the emergence of an excitatory ramp in somatic voltage responses, the expression of several intrinsic somatodendritic functional maps and sharp tuning of place-cell responses were all attainable even when iso-feature synapses are randomly dispersed across the dendritic arbor of models with disparate channel combinations. Strikingly, the generation and propagation of dendritic spikes, reliant on dendritic sodium channels and N-methyl-d-asparate receptors, mediated the sharpness of spatial tuning achieved with dispersed synaptic localization. To ensure that our results were not artefacts of narrow parametric choices, we confirmed these conclusions with independent multiparametric stochastic search algorithms spanning thousands of unique models for each synaptic localization scenario. Next, employing virtual knockout models, we demonstrated a vital role for dendritically expressed voltage-gated ion channels, especially the transient potassium channels, in maintaining sharpness of place-cell tuning. Importantly, we established that synaptic potentiation targeted to afferents from one specific place field was sufficient to impart place field selectivity even when intrinsically disparate neurons received randomly dispersed afferents from multiple place field locations. Our results provide quantitative evidence for disparate combinations of channel and synaptic localization profiles to concomitantly yield similar tuning and similar intrinsic properties.
Collapse
Affiliation(s)
- Reshma Basak
- Cellular Neurophysiology LaboratoryMolecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Rishikesh Narayanan
- Cellular Neurophysiology LaboratoryMolecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
42
|
Intrinsic Mechanisms of Frequency Selectivity in the Proximal Dendrites of CA1 Pyramidal Neurons. J Neurosci 2018; 38:8110-8127. [PMID: 30076213 DOI: 10.1523/jneurosci.0449-18.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/21/2022] Open
Abstract
Gamma oscillations are thought to play a role in learning and memory. Two distinct bands, slow (25-50 Hz) and fast (65-100 Hz) gamma, have been identified in area CA1 of the rodent hippocampus. Slow gamma is phase locked to activity in area CA3 and presumably driven by the Schaffer collaterals (SCs). We used a combination of computational modeling and in vitro electrophysiology in hippocampal slices of male rats to test whether CA1 neurons responded to SC stimulation selectively at slow gamma frequencies and to identify the mechanisms involved. Both approaches demonstrated that, in response to temporally precise input at SCs, CA1 pyramidal neurons fire preferentially in the slow gamma range regardless of whether the input is at fast or slow gamma frequencies, suggesting frequency selectivity in CA1 output with respect to CA3 input. In addition, phase locking, assessed by the vector strength, was more precise for slow gamma than fast gamma input. This frequency selectivity was greatly attenuated when the slow Ca2+-dependent K+ (SK) current was removed from the model or blocked in vitro with apamin. Perfusion of slices with BaCl2 to block A-type K+ channels tightened this frequency selectivity. Both the broad-spectrum cholinergic agonist carbachol and the muscarinic agonist oxotremorine-M greatly attenuated the selectivity. The more precise firing at slower frequencies persisted throughout all of the pharmacological manipulations conducted. We propose that these intrinsic mechanisms provide a means by which CA1 phase locks to CA3 at different gamma frequencies preferentially in vivo as physiological conditions change with behavioral demands.SIGNIFICANCE STATEMENT Gamma frequency activity, one of multiple bands of synchronous activity, has been suggested to underlie various aspects of hippocampal function. Multisite recordings within the rat hippocampal formation indicate that different behavioral tasks are associated with synchronized activity between areas CA3 and CA1 at two different gamma bands: slow and fast gamma. In this study, we examine the intrinsic mechanisms that may allow CA1 to selectively "listen" to CA3 at slow compared with fast gamma and suggest mechanisms that gate this selectivity. Identifying the intrinsic mechanisms underlying differential gamma preference may help to explain the distinct types of CA3-CA1 synchronization observed in vivo under different behavioral conditions.
Collapse
|
43
|
Single excitatory axons form clustered synapses onto CA1 pyramidal cell dendrites. Nat Neurosci 2018; 21:353-363. [PMID: 29459763 DOI: 10.1038/s41593-018-0084-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/05/2018] [Indexed: 01/05/2023]
Abstract
CA1 pyramidal neurons are a major output of the hippocampus and encode features of experience that constitute episodic memories. Feature-selective firing of these neurons results from the dendritic integration of inputs from multiple brain regions. While it is known that synchronous activation of spatially clustered inputs can contribute to firing through the generation of dendritic spikes, there is no established mechanism for spatiotemporal synaptic clustering. Here we show that single presynaptic axons form multiple, spatially clustered inputs onto the distal, but not proximal, dendrites of CA1 pyramidal neurons. These compound connections exhibit ultrastructural features indicative of strong synapses and occur much more commonly in entorhinal than in thalamic afferents. Computational simulations revealed that compound connections depolarize dendrites in a biophysically efficient manner, owing to their inherent spatiotemporal clustering. Our results suggest that distinct afferent projections use different connectivity motifs that differentially contribute to dendritic integration.
Collapse
|
44
|
Boivin JR, Nedivi E. Functional implications of inhibitory synapse placement on signal processing in pyramidal neuron dendrites. Curr Opin Neurobiol 2018; 51:16-22. [PMID: 29454834 DOI: 10.1016/j.conb.2018.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/23/2018] [Indexed: 01/02/2023]
Abstract
A rich literature describes inhibitory innervation of pyramidal neurons in terms of the distinct inhibitory cell types that target the soma, axon initial segment, or dendritic arbor. Less attention has been devoted to how localization of inhibition to specific parts of the pyramidal dendritic arbor influences dendritic signal detection and integration. The effect of inhibitory inputs can vary based on their placement on dendritic spines versus shaft, their distance from the soma, and the branch order of the dendrite they inhabit. Inhibitory synapses are also structurally dynamic, and the implications of these dynamics depend on their dendritic location. Here we consider the heterogeneous roles of inhibitory synapses as defined by their strategic placement on the pyramidal cell dendritic arbor.
Collapse
Affiliation(s)
- Josiah R Boivin
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elly Nedivi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
45
|
Morel D, Singh C, Levy WB. Linearization of excitatory synaptic integration at no extra cost. J Comput Neurosci 2018; 44:173-188. [PMID: 29372434 DOI: 10.1007/s10827-017-0673-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 11/30/2022]
Abstract
In many theories of neural computation, linearly summed synaptic activation is a pervasive assumption for the computations performed by individual neurons. Indeed, for certain nominally optimal models, linear summation is required. However, the biophysical mechanisms needed to produce linear summation may add to the energy-cost of neural processing. Thus, the benefits provided by linear summation may be outweighed by the energy-costs. Using voltage-gated conductances in a relatively simple neuron model, this paper quantifies the cost of linearizing dendritically localized synaptic activation. Different combinations of voltage-gated conductances were examined, and many are found to produce linearization; here, four of these models are presented. Comparing the energy-costs to a purely passive model, reveals minimal or even no additional costs in some cases.
Collapse
Affiliation(s)
- Danielle Morel
- Physics Department, Emory & Henry College, Emory, VA, 24327, USA
| | - Chandan Singh
- Departments of Neurosurgery and of Psychology, University of Virginia, Charlottesville, VA, 22904, USA
| | - William B Levy
- Departments of Neurosurgery and of Psychology, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
46
|
Kim CM, Chow CC. Learning recurrent dynamics in spiking networks. eLife 2018; 7:37124. [PMID: 30234488 PMCID: PMC6195349 DOI: 10.7554/elife.37124] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/14/2018] [Indexed: 01/27/2023] Open
Abstract
Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifying the recurrent connectivity with a recursive least squares algorithm provides sufficient flexibility for synaptic and spiking rate dynamics of spiking networks to produce a wide range of spatiotemporal activity. We apply the training method to learn arbitrary firing patterns, stabilize irregular spiking activity in a network of excitatory and inhibitory neurons respecting Dale's law, and reproduce the heterogeneous spiking rate patterns of cortical neurons engaged in motor planning and movement. We identify sufficient conditions for successful learning, characterize two types of learning errors, and assess the network capacity. Our findings show that synaptically-coupled recurrent spiking networks possess a vast computational capability that can support the diverse activity patterns in the brain.
Collapse
Affiliation(s)
- Christopher M Kim
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUnited States
| | - Carson C Chow
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUnited States
| |
Collapse
|
47
|
Temporal Processing in the Visual Cortex of the Awake and Anesthetized Rat. eNeuro 2017; 4:eN-NWR-0059-17. [PMID: 28791331 PMCID: PMC5547194 DOI: 10.1523/eneuro.0059-17.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022] Open
Abstract
The activity pattern and temporal dynamics within and between neuron ensembles are essential features of information processing and believed to be profoundly affected by anesthesia. Much of our general understanding of sensory information processing, including computational models aimed at mathematically simulating sensory information processing, rely on parameters derived from recordings conducted on animals under anesthesia. Due to the high variety of neuronal subtypes in the brain, population-based estimates of the impact of anesthesia may conceal unit- or ensemble-specific effects of the transition between states. Using chronically implanted tetrodes into primary visual cortex (V1) of rats, we conducted extracellular recordings of single units and followed the same cell ensembles in the awake and anesthetized states. We found that the transition from wakefulness to anesthesia involves unpredictable changes in temporal response characteristics. The latency of single-unit responses to visual stimulation was delayed in anesthesia, with large individual variations between units. Pair-wise correlations between units increased under anesthesia, indicating more synchronized activity. Further, the units within an ensemble show reproducible temporal activity patterns in response to visual stimuli that is changed between states, suggesting state-dependent sequences of activity. The current dataset, with recordings from the same neural ensembles across states, is well suited for validating and testing computational network models. This can lead to testable predictions, bring a deeper understanding of the experimental findings and improve models of neural information processing. Here, we exemplify such a workflow using a Brunel network model.
Collapse
|
48
|
Das A, Narayanan R. Theta-frequency selectivity in the somatic spike-triggered average of rat hippocampal pyramidal neurons is dependent on HCN channels. J Neurophysiol 2017; 118:2251-2266. [PMID: 28768741 PMCID: PMC5626898 DOI: 10.1152/jn.00356.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/26/2017] [Indexed: 01/08/2023] Open
Abstract
The ability to distill specific frequencies from complex spatiotemporal patterns of afferent inputs is a pivotal functional requirement for neurons residing in networks receiving frequency-multiplexed inputs. Although the expression of theta-frequency subthreshold resonance is established in hippocampal pyramidal neurons, it is not known if their spike initiation dynamics manifest spectral selectivity, or if their intrinsic properties are tuned to process gamma-frequency inputs. Here, we measured the spike-triggered average (STA) of rat hippocampal pyramidal neurons through electrophysiological recordings and quantified spectral selectivity in their spike initiation dynamics and their coincidence detection window (CDW). Our results revealed strong theta-frequency selectivity in the STA, which was also endowed with gamma-range CDW, with prominent neuron-to-neuron variability that manifested distinct pairwise dissociations and correlations with different intrinsic measurements. Furthermore, we demonstrate that the STA and its measurements substantially adapted to the state of the neuron defined by its membrane potential and to the statistics of its afferent inputs. Finally, we tested the effect of pharmacologically blocking the hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels on the STA and found that the STA characteristic frequency reduced significantly to the delta-frequency band after HCN channel blockade. This delta-frequency selectivity in the STA emerged in the absence of subthreshold resonance, which was abolished by HCN channel blockade, thereby confirming computational predictions on the dissociation between these two forms of spectral selectivity. Our results expand the roles of HCN channels to theta-frequency selectivity in the spike initiation dynamics, apart from underscoring the critical role of interactions among different ion channels in regulating neuronal physiology.NEW & NOTEWORTHY We had previously predicted, using computational analyses, that the spike-triggered average (STA) of hippocampal neurons would exhibit theta-frequency (4-10 Hz) spectral selectivity and would manifest coincidence detection capabilities for inputs in the gamma-frequency band (25-150 Hz). Here, we confirmed these predictions through direct electrophysiological recordings of STA from rat CA1 pyramidal neurons and demonstrate that blocking HCN channels reduces the frequency of STA spectral selectivity to the delta-frequency range (0.5-4 Hz).
Collapse
Affiliation(s)
- Anindita Das
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
49
|
Lin EC, Combe CL, Gasparini S. Differential Contribution of Ca 2+-Dependent Mechanisms to Hyperexcitability in Layer V Neurons of the Medial Entorhinal Cortex. Front Cell Neurosci 2017; 11:182. [PMID: 28713246 PMCID: PMC5491848 DOI: 10.3389/fncel.2017.00182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/13/2017] [Indexed: 11/13/2022] Open
Abstract
Temporal lobe epilepsy is characterized by recurrent seizures in one or both temporal lobes of the brain; some in vitro models show that epileptiform discharges initiate in entorhinal layer V neurons and then spread into other areas of the temporal lobe. We previously found that, in the presence of GABAA receptor antagonists, stimulation of afferent fibers, terminating both at proximal and distal dendritic locations, initiated hyperexcitable bursts in layer V medial entorhinal neurons. We investigated the differential contribution of Ca2+-dependent mechanisms to the plateaus underlying these bursts at proximal and distal synapses. We found that the NMDA glutamatergic antagonist D,L-2-amino-5-phosphonovaleric acid (APV; 50 μM) reduced both the area and duration of the bursts at both proximal and distal synapses by about half. The L-type Ca2+ channel blocker nimodipine (10 μM) and the R- and T-type Ca2+ channel blocker NiCl2 (200 μM) decreased the area of the bursts to a lesser extent; none of these effects appeared to be location-dependent. Remarkably, the perfusion of flufenamic acid (FFA; 100 μM), to block Ca2+-activated non-selective cation currents (ICAN) mediated by transient receptor potential (TRP) channels, had a location-dependent effect, by abolishing burst firing and switching the suprathreshold response to a single action potential (AP) for proximal stimulation, but only minimally affecting the bursts evoked by distal stimulation. A similar outcome was found when FFA was pressure-applied locally around the proximal dendrite of the recorded neurons and in the presence of a selective blocker of melastatin TRP (TRPM) channels, 9-phenanthrol (100 μM), whereas a selective blocker of canonical TRP (TRPC) channels, SKF 96365, did not affect the bursts. These results indicate that different mechanisms might contribute to the initiation of hyperexcitability in layer V neurons at proximal and distal synapses and could shed light on the initiation of epileptiform activity in the entorhinal cortex.
Collapse
Affiliation(s)
- Eric C Lin
- Neuroscience Center of Excellence, Louisiana State University Health Sciences CenterNew Orleans, LA, United States
| | - Crescent L Combe
- Neuroscience Center of Excellence, Louisiana State University Health Sciences CenterNew Orleans, LA, United States
| | - Sonia Gasparini
- Neuroscience Center of Excellence, Louisiana State University Health Sciences CenterNew Orleans, LA, United States.,Department of Cell Biology and Anatomy, Louisiana State University Health Sciences CenterNew Orleans, LA, United States
| |
Collapse
|
50
|
Action potential initiation in a two-compartment model of pyramidal neuron mediated by dendritic Ca 2+ spike. Sci Rep 2017; 7:45684. [PMID: 28367964 PMCID: PMC5377381 DOI: 10.1038/srep45684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/02/2017] [Indexed: 11/12/2022] Open
Abstract
Dendritic Ca2+ spike endows cortical pyramidal cell with powerful ability of synaptic integration, which is critical for neuronal computation. Here we propose a two-compartment conductance-based model to investigate how the Ca2+ activity of apical dendrite participates in the action potential (AP) initiation to affect the firing properties of pyramidal neurons. We have shown that the apical input with sufficient intensity triggers a dendritic Ca2+ spike, which significantly boosts dendritic inputs as it propagates to soma. Such event instantaneously shifts the limit cycle attractor of the neuron and results in a burst of APs, which makes its firing rate reach a plateau steady-state level. Delivering current to two chambers simultaneously increases the level of neuronal excitability and decreases the threshold of input-output relation. Here the back-propagating APs facilitate the initiation of dendritic Ca2+ spike and evoke BAC firing. These findings indicate that the proposed model is capable of reproducing in vitro experimental observations. By determining spike initiating dynamics, we have provided a fundamental link between dendritic Ca2+ spike and output APs, which could contribute to mechanically interpreting how dendritic Ca2+ activity participates in the simple computations of pyramidal neuron.
Collapse
|