1
|
Locascio A, Annona G, Caccavale F, D'Aniello S, Agnisola C, Palumbo A. Nitric Oxide Function and Nitric Oxide Synthase Evolution in Aquatic Chordates. Int J Mol Sci 2023; 24:11182. [PMID: 37446358 DOI: 10.3390/ijms241311182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Nitric oxide (NO) is a key signaling molecule in almost all organisms and is active in a variety of physiological and pathological processes. Our understanding of the peculiarities and functions of this simple gas has increased considerably by extending studies to non-mammal vertebrates and invertebrates. In this review, we report the nitric oxide synthase (Nos) genes so far characterized in chordates and provide an extensive, detailed, and comparative analysis of the function of NO in the aquatic chordates tunicates, cephalochordates, teleost fishes, and amphibians. This comprehensive set of data adds new elements to our understanding of Nos evolution, from the single gene commonly found in invertebrates to the three genes present in vertebrates.
Collapse
Affiliation(s)
- Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Giovanni Annona
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- Department of Research Infrastructure for Marine Biological Resources (RIMAR), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Filomena Caccavale
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
2
|
Sharma V, Fernando V, Letson J, Walia Y, Zheng X, Fackelman D, Furuta S. S-Nitrosylation in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22094600. [PMID: 33925645 PMCID: PMC8124305 DOI: 10.3390/ijms22094600] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
S-nitrosylation is a selective and reversible post-translational modification of protein thiols by nitric oxide (NO), which is a bioactive signaling molecule, to exert a variety of effects. These effects include the modulation of protein conformation, activity, stability, and protein-protein interactions. S-nitrosylation plays a central role in propagating NO signals within a cell, tissue, and tissue microenvironment, as the nitrosyl moiety can rapidly be transferred from one protein to another upon contact. This modification has also been reported to confer either tumor-suppressing or tumor-promoting effects and is portrayed as a process involved in every stage of cancer progression. In particular, S-nitrosylation has recently been found as an essential regulator of the tumor microenvironment (TME), the environment around a tumor governing the disease pathogenesis. This review aims to outline the effects of S-nitrosylation on different resident cells in the TME and the diverse outcomes in a context-dependent manner. Furthermore, we will discuss the therapeutic potentials of modulating S-nitrosylation levels in tumors.
Collapse
|
3
|
Dynamic regulation of the cholinergic system in the spinal central nervous system. Sci Rep 2020; 10:15338. [PMID: 32948826 PMCID: PMC7501295 DOI: 10.1038/s41598-020-72524-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022] Open
Abstract
While the role of cholinergic neurotransmission from motoneurons is well established during neuromuscular development, whether it regulates central nervous system development in the spinal cord is unclear. Zebrafish presents a powerful model to investigate how the cholinergic system is set up and evolves during neural circuit formation. In this study, we carried out a detailed spatiotemporal analysis of the cholinergic system in embryonic and larval zebrafish. In 1-day-old embryos, we show that spinal motoneurons express presynaptic cholinergic genes including choline acetyltransferase (chata), vesicular acetylcholine transporters (vachta, vachtb), high-affinity choline transporter (hacta) and acetylcholinesterase (ache), while nicotinic acetylcholine receptor (nAChR) subunits are mainly expressed in interneurons. However, in 3-day-old embryos, we found an unexpected decrease in presynaptic cholinergic transcript expression in a rostral to caudal gradient in the spinal cord, which continued during development. On the contrary, nAChR subunits remained highly expressed throughout the spinal cord. We found that protein and enzymatic activities of presynaptic cholinergic genes were also reduced in the rostral spinal cord. Our work demonstrating that cholinergic genes are initially expressed in the embryonic spinal cord, which is dynamically downregulated during development suggests that cholinergic signaling may play a pivotal role during the formation of intra-spinal locomotor circuit.
Collapse
|
4
|
Rochon ER, Corti P. Globins and nitric oxide homeostasis in fish embryonic development. Mar Genomics 2020; 49:100721. [PMID: 31711848 DOI: 10.1016/j.margen.2019.100721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/07/2019] [Accepted: 10/18/2019] [Indexed: 11/30/2022]
Abstract
Since the discovery of new members of the globin superfamily such as Cytoglobin, Neuroglobin and Globin X, in addition to the most well-known members, Hemoglobin and Myoglobin, different hypotheses have been suggested about their function in vertebrates. Globins are ubiquitously found in living organisms and can carry out different functions based on their ability to bind ligands such as O2, and nitric oxide (NO) and to catalyze reactions scavenging NO or generating NO by reducing nitrite. NO is a highly diffusible molecule with a central role in signaling important for egg maturation, fertilization and early embryonic development. The globins ability to scavenge or generate NO makes these proteins ideal candidates in regulating NO homeostasis depending on the micro environment and tissue NO demands. Different amounts of various globins have been found in zebrafish eggs and developing embryos where it's unlikely that they function as respiratory proteins and instead could play a role in maintaining embryonic NO homeostasis. Here we summarize the current knowledge concerning the role of NO in adult fish in comparison to mammals and we discuss NO function during embryonic development with possible implications for globins in maintaining embryonic NO homeostasis.
Collapse
Affiliation(s)
- Elizabeth R Rochon
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Paola Corti
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
5
|
Ye L, Mueller O, Bagwell J, Bagnat M, Liddle RA, Rawls JF. High fat diet induces microbiota-dependent silencing of enteroendocrine cells. eLife 2019; 8:48479. [PMID: 31793875 PMCID: PMC6937151 DOI: 10.7554/elife.48479] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
Enteroendocrine cells (EECs) are specialized sensory cells in the intestinal epithelium that sense and transduce nutrient information. Consumption of dietary fat contributes to metabolic disorders, but EEC adaptations to high fat feeding were unknown. Here, we established a new experimental system to directly investigate EEC activity in vivo using a zebrafish reporter of EEC calcium signaling. Our results reveal that high fat feeding alters EEC morphology and converts them into a nutrient insensitive state that is coupled to endoplasmic reticulum (ER) stress. We called this novel adaptation 'EEC silencing'. Gnotobiotic studies revealed that germ-free zebrafish are resistant to high fat diet induced EEC silencing. High fat feeding altered gut microbiota composition including enrichment of Acinetobacter bacteria, and we identified an Acinetobacter strain sufficient to induce EEC silencing. These results establish a new mechanism by which dietary fat and gut microbiota modulate EEC nutrient sensing and signaling.
Collapse
Affiliation(s)
- Lihua Ye
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, United States
| | - Olaf Mueller
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
| | - Jennifer Bagwell
- Department of Cell Biology, Duke University School of Medicine, Durham, United States
| | - Michel Bagnat
- Department of Cell Biology, Duke University School of Medicine, Durham, United States
| | - Rodger A Liddle
- Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, United States
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, United States
| |
Collapse
|
6
|
Hachoumi L, Sillar KT. Developmental stage-dependent switching in the neuromodulation of vertebrate locomotor central pattern generator networks. Dev Neurobiol 2019; 80:42-57. [PMID: 31705739 DOI: 10.1002/dneu.22725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/24/2019] [Accepted: 11/05/2019] [Indexed: 12/27/2022]
Abstract
Neuromodulation plays important and stage-dependent roles in regulating locomotor central pattern (CPG) outputs during vertebrate motor system development. Dopamine, serotonin and nitric oxide are three neuromodulators that potently influence CPG outputs in the development of Xenopus frog tadpole locomotion. However, their roles switch from predominantly inhibitory early in development to mainly excitatory at later stages. In this review, we compare the stage-dependent switching in neuromodulation in Xenopus with other vertebrate systems, notably the mouse and the zebrafish, and highlight features that appear to be phylogenetically conserved.
Collapse
Affiliation(s)
- Lamia Hachoumi
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Keith T Sillar
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
7
|
S-Nitrosylation: An Emerging Paradigm of Redox Signaling. Antioxidants (Basel) 2019; 8:antiox8090404. [PMID: 31533268 PMCID: PMC6769533 DOI: 10.3390/antiox8090404] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a highly reactive molecule, generated through metabolism of L-arginine by NO synthase (NOS). Abnormal NO levels in mammalian cells are associated with multiple human diseases, including cancer. Recent studies have uncovered that the NO signaling is compartmentalized, owing to the localization of NOS and the nature of biochemical reactions of NO, including S-nitrosylation. S-nitrosylation is a selective covalent post-translational modification adding a nitrosyl group to the reactive thiol group of a cysteine to form S-nitrosothiol (SNO), which is a key mechanism in transferring NO-mediated signals. While S-nitrosylation occurs only at select cysteine thiols, such a spatial constraint is partially resolved by transnitrosylation, where the nitrosyl moiety is transferred between two interacting proteins to successively transfer the NO signal to a distant location. As NOS is present in various subcellular locales, a stress could trigger concerted S-nitrosylation and transnitrosylation of a large number of proteins involved in divergent signaling cascades. S-nitrosylation is an emerging paradigm of redox signaling by which cells confer protection against oxidative stress.
Collapse
|
8
|
Large-Scale Analysis of the Diversity and Complexity of the Adult Spinal Cord Neurotransmitter Typology. iScience 2019; 19:1189-1201. [PMID: 31542702 PMCID: PMC6831849 DOI: 10.1016/j.isci.2019.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/24/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022] Open
Abstract
The development of nervous system atlases is a fundamental pursuit in neuroscience, since they constitute a fundamental tool to improve our understanding of the nervous system and behavior. As such, neurotransmitter maps are valuable resources to decipher the nervous system organization and functionality. We present here the first comprehensive quantitative map of neurons found in the adult zebrafish spinal cord. Our study overlays detailed information regarding the anatomical positions, sizes, neurotransmitter phenotypes, and the projection patterns of the spinal neurons. We also show that neurotransmitter co-expression is much more extensive than previously assumed, suggesting that spinal networks are more complex than first recognized. As a first direct application, we investigated the neurotransmitter diversity in the putative glutamatergic spinal V2a-interneuron assembly. These studies shed new light on the diverse and complex functions of this important interneuron class in the neuronal interplay governing the precise operation of the central pattern generators.
Collapse
|
9
|
Guerrero-Castilla A, Olivero-Verbel J, Sandoval IT, Jones DA. Toxic effects of a methanolic coal dust extract on fish early life stage. CHEMOSPHERE 2019; 227:100-108. [PMID: 30986591 DOI: 10.1016/j.chemosphere.2019.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Coal dust is a contaminant that impacts the terrestrial and aquatic environment with a complex mixture of chemicals, including PAHs and metals. This study aims to evaluate the toxic effect of a methanolic coal dust extract on a fish early life stage by analyzing phenotypic alterations, transcriptome changes, and mortality in zebrafish (ZF) embryos. ZF embryos were exposed to methanolic coal dust extract at 1-5000 mg·L-1 and monitored using bright field microscopy 24 and 48 hpf to determine malformations and mortality. In situ hybridization, RNA sequencing, and qRT-PCR were employed to identify transcriptome changes in malformed embryos. Three malformed phenotypes were generated in a dose-dependent manner. In situ hybridization analysis revealed brain, somite, dorsal cord, and heart tube development biomarker alterations. Gene expression profile analysis identified changes in genes related to structural constituent of muscle, calcium ion binding, actin binding, melanin metabolic process, muscle contraction, sarcomere organization, cardiac myofibril assembly, oxidation-reduction process, pore complex, supramolecular fiber, striated muscle thin filament, Z disc, and intermediate filament. This study shows, for the first time, the malformations generated by a mixture of pollutants from a methanolic coal dust extract on a fish early life stage, constituting a potential risk for normal embryonic development of other aquatic vertebrate organisms. Furthermore, we establish that phenotypes and changes in gene expression induced by the extract constitute a target for future studies about mechanical toxicity and their utility as sensitive tools in environmental risk assessments for biota and humans exposed to coal mining activities.
Collapse
Affiliation(s)
- Angélica Guerrero-Castilla
- Facultad de Ciencias de la Salud, Química y Farmacia, Universidad Arturo Prat, Casilla 121, Iquique, 1100000, Chile; Faculty of Pharmaceutical Sciences, Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, 130015, Colombia.
| | - Jesús Olivero-Verbel
- Faculty of Pharmaceutical Sciences, Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, 130015, Colombia
| | - Imelda T Sandoval
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - David A Jones
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
10
|
Woodard A, Barbery B, Wilkinson R, Strozyk J, Milner M, Doucette P, Doran J, Appleby K, Atwill H, Bell WE, Turner JE. The role of neuronal nitric oxide and its pathways in the protection and recovery from neurotoxin-induced de novo hypokinetic motor behaviors in the embryonic zebrafish ( Danio rerio). AIMS Neurosci 2019; 6:25-42. [PMID: 32341966 PMCID: PMC7179346 DOI: 10.3934/neuroscience.2019.1.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/13/2019] [Indexed: 11/18/2022] Open
Abstract
Neuronal nitric oxide (nNO) has been shown to affect motor function in the brain. Specifically, nNO acts in part through regulation of dopamine (DA) release, transporter function, and the elicitation of neuroprotection/neurodegeneration of neurons in conditions such as Parkinson's disease (PD). Recently, the zebrafish has been proposed to be a new model for the study of PD since neurotoxin damage to their nigrostriatal-like neurons exhibit PD-like motor dysfunctions similar to those of mammalian models and human patients. Results from this study demonstrate that treatment of 5 days post fertilization (dpf) fish with a nNO synthase inhibitor as a co-treatment with 6-OHDA facilitates long-term survival and accelerates the recovery from 6-OHDA-induced hypokinesia-like symptoms. These findings are unique in that under conditions of neurotoxin-induced stress, the inhibition of the NO-related S-nitrosylation indirect pathway dramatically facilitates recovery from 6-OHDA treatment but inhibition of the NO-sGC-cGMP direct pathway is essential for survival in 5 dpf treated fish. In conclusion, these results indicate that nNOS and the inhibition of the NO-linked S-nitrosylation pathway plays an important role in antagonizing the protection and recovery of fish from neurotoxin treatment. These data begin to help in the understanding of the role of NO as a neuroprotectant in dopaminergic pathways, particularly those that influence motor dysfunctions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - James E. Turner
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA
| |
Collapse
|
11
|
Berg EM, Bertuzzi M, Ampatzis K. Complementary expression of calcium binding proteins delineates the functional organization of the locomotor network. Brain Struct Funct 2018; 223:2181-2196. [PMID: 29423637 PMCID: PMC5968073 DOI: 10.1007/s00429-018-1622-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
Neuronal networks in the spinal cord generate and execute all locomotor-related movements by transforming descending signals from supraspinal areas into appropriate rhythmic activity patterns. In these spinal networks, neurons that arise from the same progenitor domain share similar distribution patterns, neurotransmitter phenotypes, morphological and electrophysiological features. However, subgroups of them participate in different functionally distinct microcircuits to produce locomotion at different speeds and of different modalities. To better understand the nature of this network complexity, here we characterized the distribution of parvalbumin (PV), calbindin D-28 k (CB) and calretinin (CR) which are regulators of intracellular calcium levels and can serve as anatomical markers for morphologically and potential functionally distinct neuronal subpopulations. We observed wide expression of CBPs in the adult zebrafish, in several spinal and reticulospinal neuronal populations with a diverse neurotransmitter phenotype. We also found that several spinal motoneurons express CR and PV. However, only the motoneuron pools that are responsible for generation of fast locomotion were CR-positive. CR can thus be used as a marker for fast motoneurons and might potentially label the fast locomotor module. Moreover, CB was mainly observed in the neuronal progenitor cells that are distributed around the central canal. Thus, our results suggest that during development the spinal neurons utilize CB and as the neurons mature and establish a neurotransmitter phenotype they use CR or/and PV. The detailed characterization of CBPs expression, in the spinal cord and brainstem neurons, is a crucial step toward a better understanding of the development and functionality of neuronal locomotor networks.
Collapse
Affiliation(s)
- Eva M Berg
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Maria Bertuzzi
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | |
Collapse
|
12
|
The Relationship between Estrogen and Nitric Oxide in the Prevention of Cardiac and Vascular Anomalies in the Developing Zebrafish (Danio Rerio). Brain Sci 2016; 6:brainsci6040051. [PMID: 27792175 PMCID: PMC5187565 DOI: 10.3390/brainsci6040051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/05/2016] [Accepted: 10/20/2016] [Indexed: 11/16/2022] Open
Abstract
It has been known that both estrogen (E2) and nitric oxide (NO) are critical for proper cardiovascular system (CVS) function. It has also been demonstrated that E2 acts as an upstream effector in the nitric oxide (NO) pathway. Results from this study indicate that the use of a nitric oxide synthase (NOS) inhibitor (NOSI) which targets specifically neuronal NOS (nNOS or NOS1), proadifen hydrochloride, caused a significant depression of fish heart rates (HR) accompanied by increased arrhythmic behavior. However, none of these phenotypes were evident with either the inhibition of endothelial NOS (eNOS) or inducible NOS (iNOS) isoforms. These cardiac arrhythmias could also be mimicked by inhibition of E2 synthesis with the aromatase inhibitor (AI), 4-OH-A, in a manner similar to that of nNOSI. In both scenarios, by using an NO donor (DETA-NO) in either NO + nNOSI or E2 + AI co-treatments, fish could be significantly rescued from decreased HR and increased arrhythmias. However, the addition of an NOS inhibitor (L-NAME) to the E2 + AI co-treatment fish prevented the rescue of low heart rates and arrhythmias, which strongly implicates the NO pathway as a downstream E2 targeted molecule for the maintenance of healthy cardiomyocyte contractile conditions in the developing zebrafish. Cardiac arrhythmias could be mimicked by the S-nitrosylation pathway inhibitor DTT (1,4-dithiothreitol) but not by ODQ (1H-[1–3]oxadiazolo[4,3-a]quinoxalin-1-one), the inhibitor of the NO receptor molecule sGC in the cGMP-dependent pathway. In both the nNOSI and AI-induced arrhythmic conditions, 100% of the fish expressed the phenotype, but could be rapidly rescued with maximum survival by a washout with dantrolene, a ryanodine Ca2+ channel receptor blocker, compared to the time it took for rescue using a control salt solution. In addition, of the three NOS isoforms, eNOS was the one most implicated in the maintenance of an intact developing fish vascular system. In conclusion, results from this study have shown that nNOS is the prominent isoform that is responsible, in part, for maintaining normal heart rates and prevention of arrhythmias in the developing zebrafish heart failure model. These phenomena are related to the upstream stimulatory regulation by E2. On the other hand, eNOS has a minimal effect and iNOS has little to no influence on this phenomenon. Data also suggests that nNOS acts on the zebrafish cardiomyocytes through the S-nitrosylation pathway to influence the SR ryanidine Ca2+ channels in the excitation-coupling phenomena. In contrast, eNOS is the prominent isoform that influences blood vessel development in this model.
Collapse
|
13
|
Murcia V, Johnson L, Baldasare M, Pouliot B, McKelvey J, Barbery B, Lozier J, Bell WE, Turner JE. Effects of Estrogen, Nitric Oxide, and Dopamine on Behavioral Locomotor Activities in the Embryonic Zebrafish: A Pharmacological Study. TOXICS 2016; 4:toxics4040024. [PMID: 29051426 PMCID: PMC5606654 DOI: 10.3390/toxics4040024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/01/2016] [Accepted: 09/14/2016] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO) has been shown to affect motor function. Specifically, NO has been shown to act through regulation of dopamine (DA) release, transporter function, and the elicitation of neuroprotection/neurodegeneration of neurons. Recently, zebrafish have been proposed to be a new model for the study of various types of motor dysfunctions, since neurotoxin damage to their nigrostriatal-like neurons exhibit motor anomalies similar to those of mammalian models and human patients. Results from this study demonstrate that when NO synthesis is inhibited in zebrafish, using a neuronal NO synthase inhibitor (nNOSI), a condition called ‘listless’ occurs, where the fish lack swimming abilities, are rigid, and have difficulty maintaining balance. Additionally, co-treatment with either NO or estrogen (E2), an upstream regulator of NO synthase, can rescue fish from the ‘listless’ phenotype caused by exposure to the neurotoxin 6-hydroxydopamine (6 OHDA). In turn, NO deprived zebrafish were rescued from the ‘listless’ phenotype when co-treated with L-DOPA, a precursor to DA. Interestingly, the longer fish are exposed to a 6 OHDA + nNOSI co-treatment, the slower the recovery after washout, compared to a single treatment of each. Most significantly, NO involvement in the motor homeostasis of the embryonic zebrafish was shown to be expressed through the NO-cGMP-dependent pathway, and response to nNOSI treatments is developmentally regulated. In conclusion, these results indicate that there is a link between E2, NO, and DA systems that regulate motor functions in the embryonic zebrafish.
Collapse
Affiliation(s)
- Vania Murcia
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA.
| | - Luke Johnson
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA.
| | - Meredith Baldasare
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA.
| | - Bridgette Pouliot
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA.
| | - John McKelvey
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA.
| | - Brandon Barbery
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA.
| | - Julie Lozier
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA.
| | - Wade E Bell
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA.
| | - James E Turner
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA.
| |
Collapse
|
14
|
Bradley SA, Steinert JR. Characterisation and comparison of temporal release profiles of nitric oxide generating donors. J Neurosci Methods 2015; 245:116-24. [PMID: 25749567 PMCID: PMC4401449 DOI: 10.1016/j.jneumeth.2015.02.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 01/11/2023]
Abstract
Nitric oxide release profiles were characterised for commonly used donors. Released NO differs greatly between donors and depends on storage conditions. High release donors (NOC-5, PAPA NONOate) decay quickly. SNP and GSNO show greater stability releasing consistent lower NO levels. This comprehensive characterisation provides knowledge to define NO concentrations released in vitro.
Background Nitric oxide (NO) is a vital signalling molecule in a variety of tissues including the neuronal, vascular and reproductive system. However, its high diffusibility and inactivation make characterisation of nitrergic signalling difficult. The use of NO donors is essential to characterise downstream signalling pathways but knowledge of donor release capacities is lacking, thus making comparisons of donor responses difficult. New method This study characterises NO profiles of commonly used NO donors. Donors were stored under defined conditions and temporal release profiles detected to allow determination of released NO concentrations. Results Using NO-sensitive microsensors we assessed release profiles of NO donors following different storage times and conditions. We found that donors such as NOC-5 and PAPA-NONOate decayed substantially within days, whereas SNP and GSNO showed greater stability releasing consistent levels of NO over days. In all donors tested, the amount of released NO differs between frozen and unfrozen stocks. Comparison with existing method(s) Fluorescent and amperometric approaches to measure NO concentrations yield a wide range of levels. However, due to a lack of characterisation of the release profiles, inconsistent effects on NO signalling have been widely documented. Our systematic assessment of release profiles of a range of NO donors therefore provides new essential data allowing for improved and defined investigations of nitrergic signalling. Conclusions This is the first systematic comparison of temporal release profiles of different NO donors allowing researchers to compare conditions across different studies and the use of defined NO levels by choosing specific donors and concentrations.
Collapse
Affiliation(s)
- Sophie A Bradley
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK
| | - Joern R Steinert
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK.
| |
Collapse
|
15
|
Nitrate (NO3−) and nitrite (NO2−) are endocrine disruptors to downregulate expression of tyrosine hydroxylase and motor behavior through conversion to nitric oxide in early development of zebrafish. Biochem Biophys Res Commun 2014; 452:608-13. [DOI: 10.1016/j.bbrc.2014.08.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 12/25/2022]
|
16
|
Jacox L, Sindelka R, Chen J, Rothman A, Dickinson A, Sive H. The extreme anterior domain is an essential craniofacial organizer acting through Kinin-Kallikrein signaling. Cell Rep 2014; 8:596-609. [PMID: 25043181 PMCID: PMC4135435 DOI: 10.1016/j.celrep.2014.06.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 04/24/2014] [Accepted: 06/17/2014] [Indexed: 12/29/2022] Open
Abstract
The extreme anterior domain (EAD) is a conserved embryonic region that includes the presumptive mouth. We show that the Kinin-Kallikrein pathway is active in the EAD and necessary for craniofacial development in Xenopus and zebrafish. The mouth failed to form and neural crest (NC) development and migration was abnormal after loss of function (LOF) in the pathway genes kng, encoding Bradykinin (xBdk), carboxypeptidase-N (cpn), which cleaves Bradykinin, and neuronal nitric oxide synthase (nNOS). Consistent with a role for nitric oxide (NO) in face formation, endogenous NO levels declined after LOF in pathway genes, but these were restored and a normal face formed after medial implantation of xBdk-beads into LOF embryos. Facial transplants demonstrated that Cpn function from within the EAD is necessary for the migration of first arch cranial NC into the face and for promoting mouth opening. The study identifies the EAD as an essential craniofacial organizer acting through Kinin-Kallikrein signaling.
Collapse
Affiliation(s)
- Laura Jacox
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA; Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA; Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA; Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA; Harvard Graduate School of Arts and Sciences, 1350 Massachusetts Avenue, Holyoke Center, 50, Cambridge, MA 02138, USA
| | - Radek Sindelka
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Justin Chen
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA; Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Alyssa Rothman
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Amanda Dickinson
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA; Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| |
Collapse
|
17
|
Sillar KT, Combes D, Simmers J. Neuromodulation in developing motor microcircuits. Curr Opin Neurobiol 2014; 29:73-81. [PMID: 24967995 DOI: 10.1016/j.conb.2014.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/23/2014] [Accepted: 05/24/2014] [Indexed: 01/14/2023]
Abstract
Neuromodulation confers operational flexibility on motor network output and resulting behaviour. Furthermore, neuromodulators play crucial long-term roles in the assembly and maturational shaping of the same networks as they develop. Although previous studies have identified such modulator-dependent contributions to microcircuit ontogeny, some of the underlying mechanisms are only now being elucidated. Deciphering the role of neuromodulatory systems in motor network development has potentially important implications for post-lesional regenerative strategies in adults.
Collapse
Affiliation(s)
- Keith T Sillar
- School of Psychology and Neuroscience, University of St Andrews, Westburn Lane, St Andrews, Fife KY16 9JP, Scotland, UK.
| | - Denis Combes
- Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS Unité Mixte de Recherche 5287, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - John Simmers
- Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS Unité Mixte de Recherche 5287, 146 rue Léo Saignat, 33076 Bordeaux, France
| |
Collapse
|
18
|
Jay M, Bradley S, McDearmid JR. Effects of nitric oxide on neuromuscular properties of developing zebrafish embryos. PLoS One 2014; 9:e86930. [PMID: 24489806 PMCID: PMC3904980 DOI: 10.1371/journal.pone.0086930] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
Nitric oxide is a bioactive signalling molecule that is known to affect a wide range of neurodevelopmental processes. However, its functional relevance to neuromuscular development is not fully understood. Here we have examined developmental roles of nitric oxide during formation and maturation of neuromuscular contacts in zebrafish. Using histochemical approaches we show that elevating nitric oxide levels reduces the number of neuromuscular synapses within the axial swimming muscles whilst inhibition of nitric oxide biosynthesis has the opposite effect. We further show that nitric oxide signalling does not change synapse density, suggesting that the observed effects are a consequence of previously reported changes in motor axon branch formation. Moreover, we have used in vivo patch clamp electrophysiology to examine the effects of nitric oxide on physiological maturation of zebrafish neuromuscular junctions. We show that developmental exposure to nitric oxide affects the kinetics of spontaneous miniature end plate currents and impacts the neuromuscular drive for locomotion. Taken together, our findings implicate nitrergic signalling in the regulation of zebrafish neuromuscular development and locomotor maturation.
Collapse
Affiliation(s)
- Michael Jay
- University of Leicester, Department of Biology, College of Medicine, Biological Sciences and Psychology, Leicester, United Kingdom
| | - Sophie Bradley
- University of Leicester, Department of Biology, College of Medicine, Biological Sciences and Psychology, Leicester, United Kingdom
| | - Jonathan Robert McDearmid
- University of Leicester, Department of Biology, College of Medicine, Biological Sciences and Psychology, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Ozel RE, Alkasir RSJ, Ray K, Wallace KN, Andreescu S. Comparative evaluation of intestinal nitric oxide in embryonic zebrafish exposed to metal oxide nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:4250-4261. [PMID: 23873807 DOI: 10.1002/smll.201301087] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/26/2013] [Indexed: 06/02/2023]
Abstract
Nanoparticle (NP) exposure may induce oxidative stress through generation of reactive oxygen and nitrogen species, which can lead to cellular and tissue damage. The digestive system is one of the initial organs affected by NP exposure. Here, it is demonstrated that exposure to metal oxide NPs induces differential changes in zebrafish intestinal NO concentrations. Intestinal NO concentrations are quantified electrochemically with a carbon fiber microelectrode inserted in the intestine of live embryos. Specificity of the electrochemical signals is demonstrated by NO-specific pharmacological manipulations and the results are correlated with the 4,5-diaminofluorescein-diacetate (DAF-FM-DA). NPs are demonstrated to either induce or reduce physiological NO levels depending on their redox reactivity, type and dose. NO level is altered following exposure of zebrafish embryos to CuO and CeO2 NPs at various stages and concentrations. CuO NPs increase NO concentration, suggesting an intestinal oxidative damage. In contrast, low CeO2 NP concentration exposure significantly reduces NO levels, suggesting NO scavenging activity. However, high concentration exposure results in increased NO. Alterations in NO concentration suggest changes in intestinal physiology and oxidative stress, which will ultimately correspond to NPs toxicity. This work also demonstrates the use of electrochemistry to monitor in vivo changes of NO within zebrafish organs.
Collapse
Affiliation(s)
- Rifat Emrah Ozel
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | | | | | | | | |
Collapse
|
20
|
Nitric oxide synthesis and cGMP production is important for neurite growth and synapse remodeling after axotomy. J Neurosci 2013; 33:5626-37. [PMID: 23536077 DOI: 10.1523/jneurosci.3659-12.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule with a variety of functions in the CNS, including a potential role in modulating neuronal growth and synapse formation. In the present study, we used tractable, identified neurons in the CNS of the pond snail Lymnaea stagnalis to study the role of endogenous NO signaling in neuronal growth and synaptic remodeling after nerve injury. Axonal damage of L. stagnalis neurons B1 and B2 induces extensive central growth of neurites that is accompanied by changes in existing electrical connections, the transient formation of novel electrical connections, and the formation of a novel excitatory chemical synapse from B2 to B1 neurons. Partial chronic inhibition of endogenous NO synthesis reduces neurite growth in NO-synthase-expressing B2, but has only minor effects on NOS-negative B1 neurons. Chronic application of an NO donor while inhibiting endogenous NO synthesis rescues neurite extension in B2 neurons and boosts growth of B1 neurons. Blocking soluble guanylate cyclase activity completely suppresses neurite extension and synaptic remodeling after nerve crush, demonstrating the importance of cGMP in these processes. Interestingly, inhibition of cGMP-dependent protein kinase only suppresses chemical synapse formation without effects on neuronal growth and electrical synapse remodeling. We conclude that NO signaling via cGMP is an important modulator of both neurite growth and synaptic remodeling after nerve crush. However, differential effects of cGMP-dependent protein kinase inhibition on neurite growth and synaptic remodeling suggest that these effects are mediated by separate signaling pathways.
Collapse
|
21
|
Evolutionary trend of exceptionally long human core promoter short tandem repeats. Gene 2012; 507:61-7. [PMID: 22796130 DOI: 10.1016/j.gene.2012.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/26/2012] [Accepted: 07/02/2012] [Indexed: 11/24/2022]
Abstract
Short tandem repeats (STRs) are variable elements that play a significant role in genome evolution by creating and maintaining quantitative genetic variation. Because of their proximity to the +1 transcription start site (TSS) and polymorphic nature, core promoter STRs may be considered a novel source of variation across species. In a genome-scale analysis of the entire human protein-coding genes annotated in the GeneCards database (19,927), we analyze the prevalence and repeat numbers of different classes of core promoter STRs in the interval between -120 and +1 to the TSS. We also analyze the evolutionary trend of exceptionally long core promoter STRs of ≥6-repeats. 133 genes (~2%) had core promoter STRs of ≥6-repeats. In the majority of those genes, the STR motifs were found to be conserved across evolution. Di-nucleotide repeats had the highest representation in the human core promoter long STRs (72 genes). Tri- (52 genes), tetra-, penta-, and hexa-nucleotide STRs (9 genes) were also present in the descending prevalence. The majority of those genes (84 genes) revealed directional expansion of core promoter STRs from mouse to human. However, in a number of genes, the difference in average allele size across species was sufficiently small that there might be a constraint on the evolution of average allele size. Random drift of STRs from mouse to human was also observed in a minority of genes. Future work on the genes listed in the current study may further our knowledge into the potential importance of core promoter STRs in human evolution.
Collapse
|
22
|
Borodinsky LN, Belgacem YH, Swapna I. Electrical activity as a developmental regulator in the formation of spinal cord circuits. Curr Opin Neurobiol 2012; 22:624-30. [PMID: 22370142 DOI: 10.1016/j.conb.2012.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
Spinal cord development is a complex process involving generation of the appropriate number of cells, acquisition of distinctive phenotypes and establishment of functional connections that enable execution of critical functions such as sensation and locomotion. Here we review the basic cellular events occurring during spinal cord development, highlighting studies that demonstrate the roles of electrical activity in this process. We conclude that the participation of different forms of electrical activity is evident from the beginning of spinal cord development and intermingles with other developmental cues and programs to implement dynamic and integrated control of spinal cord function.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Department of Physiology & Membrane Biology, and Shriners Hospital for Children Northern California, University of California Davis School of Medicine, Sacramento, CA 95819, United States.
| | | | | |
Collapse
|
23
|
Mattiello T, Costantini M, Di Matteo B, Livigni S, Andouche A, Bonnaud L, Palumbo A. The dynamic nitric oxide pattern in developing cuttlefish Sepia officinalis. Dev Dyn 2012; 241:390-402. [PMID: 22275228 DOI: 10.1002/dvdy.23722] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2011] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) is implied in many important biological processes in all metazoans from porifera to chordates. In the cuttlefish Sepia officinalis NO plays a key role in the defense system and neurotransmission. RESULTS Here, we detected for the first time NO, NO synthase (NOS) and transcript levels during the development of S. officinalis. The spatial pattern of NO and NOS is very dynamic, it begins during organogenesis in ganglia and epithelial tissues, as well as in sensory cells. At later stages, NO and NOS appear in organs and/or structures, including Hoyle organ, gills and suckers. Temporal expression of NOS, followed by real-time PCR, changes during development reaching the maximum level of expression at stage 26. CONCLUSIONS Overall these data suggest the involvement of NO during cuttlefish development in different fundamental processes, such as differentiation of neural and nonneural structures, ciliary beating, sensory cell maintaining, and organ functioning.
Collapse
Affiliation(s)
- Teresa Mattiello
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|