1
|
Mattera A, Alfieri V, Granato G, Baldassarre G. Chaotic recurrent neural networks for brain modelling: A review. Neural Netw 2025; 184:107079. [PMID: 39756119 DOI: 10.1016/j.neunet.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Even in the absence of external stimuli, the brain is spontaneously active. Indeed, most cortical activity is internally generated by recurrence. Both theoretical and experimental studies suggest that chaotic dynamics characterize this spontaneous activity. While the precise function of brain chaotic activity is still puzzling, we know that chaos confers many advantages. From a computational perspective, chaos enhances the complexity of network dynamics. From a behavioural point of view, chaotic activity could generate the variability required for exploration. Furthermore, information storage and transfer are maximized at the critical border between order and chaos. Despite these benefits, many computational brain models avoid incorporating spontaneous chaotic activity due to the challenges it poses for learning algorithms. In recent years, however, multiple approaches have been proposed to overcome this limitation. As a result, many different algorithms have been developed, initially within the reservoir computing paradigm. Over time, the field has evolved to increase the biological plausibility and performance of the algorithms, sometimes going beyond the reservoir computing framework. In this review article, we examine the computational benefits of chaos and the unique properties of chaotic recurrent neural networks, with a particular focus on those typically utilized in reservoir computing. We also provide a detailed analysis of the algorithms designed to train chaotic RNNs, tracing their historical evolution and highlighting key milestones in their development. Finally, we explore the applications and limitations of chaotic RNNs for brain modelling, consider their potential broader impacts beyond neuroscience, and outline promising directions for future research.
Collapse
Affiliation(s)
- Andrea Mattera
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy.
| | - Valerio Alfieri
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy; International School of Advanced Studies, Center for Neuroscience, University of Camerino, Via Gentile III Da Varano, 62032, Camerino, Italy
| | - Giovanni Granato
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy
| | - Gianluca Baldassarre
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy
| |
Collapse
|
2
|
Rossi KL, Budzinski RC, Medeiros ES, Boaretto BRR, Muller L, Feudel U. Dynamical properties and mechanisms of metastability: A perspective in neuroscience. Phys Rev E 2025; 111:021001. [PMID: 40103058 DOI: 10.1103/physreve.111.021001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Indexed: 03/20/2025]
Abstract
Metastability, characterized by a variability of regimes in time, is a ubiquitous type of neural dynamics. It has been formulated in many different ways in the neuroscience literature, however, which may cause some confusion. In this Perspective, we discuss metastability from the point of view of dynamical systems theory. We extract from the literature a very simple but general definition through the concept of metastable regimes as long-lived but transient epochs of activity with unique dynamical properties. This definition serves as an umbrella term that encompasses formulations from other works, and readily connects to concepts from dynamical systems theory. This allows us to examine general dynamical properties of metastable regimes, propose in a didactic manner several dynamics-based mechanisms that generate them, and discuss a theoretical tool to characterize them quantitatively. This Perspective leads to insights that help to address issues debated in the literature and also suggests pathways for future research.
Collapse
Affiliation(s)
- Kalel L Rossi
- Carl von Ossietzky University Oldenburg, Theoretical Physics/Complex Systems, ICBM, 26129 Oldenburg, Lower Saxony, Germany
| | - Roberto C Budzinski
- Western University, Department of Mathematics and Western Institute for Neuroscience, N6A 3K7 London, Ontario, Canada
- Fields Institute, Fields Lab for Network Science, M5T 3J1 Toronto, Ontario, Canada
| | - Everton S Medeiros
- São Paulo State University (UNESP), Institute of Geosciences and Exact Sciences, Avenida 24A 1515, 13506-900 Rio Claro, São Paulo, Brazil
| | - Bruno R R Boaretto
- Universidade Federal de São Paulo, Institute of Science and Technology, 12247-014 São José dos Campos, São Paulo, Brazil
- Universitat Politecnica de Catalunya, Department of Physics, 08222 Terrassa, Barcelona, Spain
| | - Lyle Muller
- Western University, Department of Mathematics and Western Institute for Neuroscience, N6A 3K7 London, Ontario, Canada
- Fields Institute, Fields Lab for Network Science, M5T 3J1 Toronto, Ontario, Canada
| | - Ulrike Feudel
- Carl von Ossietzky University Oldenburg, Theoretical Physics/Complex Systems, ICBM, 26129 Oldenburg, Lower Saxony, Germany
| |
Collapse
|
3
|
Khan HF, Dutta S, Scott AN, Xiao S, Yadav S, Chen X, Aryal UK, Kinzer-Ursem TL, Rochet JC, Jayant K. Site-specific seeding of Lewy pathology induces distinct pre-motor cellular and dendritic vulnerabilities in the cortex. Nat Commun 2024; 15:10775. [PMID: 39737978 PMCID: PMC11685769 DOI: 10.1038/s41467-024-54945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Circuit-based biomarkers distinguishing the gradual progression of Lewy pathology across synucleinopathies remain unknown. Here, we show that seeding of α-synuclein preformed fibrils in mouse dorsal striatum and motor cortex leads to distinct prodromal-phase cortical dysfunction across months. Our findings reveal that while both seeding sites had increased cortical pathology and hyperexcitability, distinct differences in electrophysiological and cellular ensemble patterns were crucial in distinguishing pathology spread between the two seeding sites. Notably, while beta-band spike-field-coherence reflected a significant increase beginning in Layer-5 and then spreading to Layer-2/3, the rate of entrainment and the propensity of stochastic beta-burst dynamics was markedly seeding location-specific. This beta dysfunction was accompanied by gradual superficial excitatory ensemble instability following cortical, but not striatal, preformed fibrils injection. We reveal a link between Layer-5 dendritic vulnerabilities and translaminar beta event dysfunction, which could be used to differentiate symptomatically similar synucleinopathies.
Collapse
Affiliation(s)
- Hammad F Khan
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Sayan Dutta
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Alicia N Scott
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Shulan Xiao
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Saumitra Yadav
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Xiaoling Chen
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Tamara L Kinzer-Ursem
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Jean-Christophe Rochet
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| | - Krishna Jayant
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Cihak HL, Kilpatrick ZP. Robustly encoding certainty in a metastable neural circuit model. Phys Rev E 2024; 110:034404. [PMID: 39425424 PMCID: PMC11778249 DOI: 10.1103/physreve.110.034404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/19/2024] [Indexed: 10/21/2024]
Abstract
Localized persistent neural activity can encode delayed estimates of continuous variables. Common experiments require that subjects store and report the feature value (e.g., orientation) of a particular cue (e.g., oriented bar on a screen) after a delay. Visualizing recorded activity of neurons along their feature tuning reveals activity bumps whose centers wander stochastically, degrading the estimate over time. Bump position therefore represents the remembered estimate. Recent work suggests bump amplitude may represent estimate certainty reflecting a probabilistic population code for a Bayesian posterior. Idealized models of this type are fragile due to the fine tuning common to constructed continuum attractors in dynamical systems. Here we propose an alternative metastable model for robustly supporting multiple bump amplitudes by extending neural circuit models to include quantized nonlinearities. Asymptotic projections of circuit activity produce low-dimensional evolution equations for the amplitude and position of bump solutions in response to external stimuli and noise perturbations. Analysis of reduced equations accurately characterizes phase variance and the dynamics of amplitude transitions between stable discrete values. More salient cues generate bumps of higher amplitude which wander less, consistent with experiments showing certainty correlates with more accurate memories.
Collapse
Affiliation(s)
- Heather L. Cihak
- Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309, USA
| | - Zachary P. Kilpatrick
- Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
5
|
Pérez-Ortega J, Akrouh A, Yuste R. Stimulus encoding by specific inactivation of cortical neurons. Nat Commun 2024; 15:3192. [PMID: 38609354 PMCID: PMC11015011 DOI: 10.1038/s41467-024-47515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Neuronal ensembles are groups of neurons with correlated activity associated with sensory, motor, and behavioral functions. To explore how ensembles encode information, we investigated responses of visual cortical neurons in awake mice using volumetric two-photon calcium imaging during visual stimulation. We identified neuronal ensembles employing an unsupervised model-free algorithm and, besides neurons activated by the visual stimulus (termed "onsemble"), we also find neurons that are specifically inactivated (termed "offsemble"). Offsemble neurons showed faster calcium decay during stimuli, suggesting selective inhibition. In response to visual stimuli, each ensemble (onsemble+offsemble) exhibited small trial-to-trial variability, high orientation selectivity, and superior predictive accuracy for visual stimulus orientation, surpassing the sum of individual neuron activity. Thus, the combined selective activation and inactivation of cortical neurons enhances visual encoding as an emergent and distributed neural code.
Collapse
Affiliation(s)
- Jesús Pérez-Ortega
- Neurotechnology Center, Dept. Biological Sciences, Columbia University, New York, NY, 10027, USA.
| | - Alejandro Akrouh
- Neurotechnology Center, Dept. Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Rafael Yuste
- Neurotechnology Center, Dept. Biological Sciences, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
6
|
Thura D, Cabana JF, Feghaly A, Cisek P. Integrated neural dynamics of sensorimotor decisions and actions. PLoS Biol 2022; 20:e3001861. [PMID: 36520685 PMCID: PMC9754259 DOI: 10.1371/journal.pbio.3001861] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/29/2022] [Indexed: 12/23/2022] Open
Abstract
Recent theoretical models suggest that deciding about actions and executing them are not implemented by completely distinct neural mechanisms but are instead two modes of an integrated dynamical system. Here, we investigate this proposal by examining how neural activity unfolds during a dynamic decision-making task within the high-dimensional space defined by the activity of cells in monkey dorsal premotor (PMd), primary motor (M1), and dorsolateral prefrontal cortex (dlPFC) as well as the external and internal segments of the globus pallidus (GPe, GPi). Dimensionality reduction shows that the four strongest components of neural activity are functionally interpretable, reflecting a state transition between deliberation and commitment, the transformation of sensory evidence into a choice, and the baseline and slope of the rising urgency to decide. Analysis of the contribution of each population to these components shows meaningful differences between regions but no distinct clusters within each region, consistent with an integrated dynamical system. During deliberation, cortical activity unfolds on a two-dimensional "decision manifold" defined by sensory evidence and urgency and falls off this manifold at the moment of commitment into a choice-dependent trajectory leading to movement initiation. The structure of the manifold varies between regions: In PMd, it is curved; in M1, it is nearly perfectly flat; and in dlPFC, it is almost entirely confined to the sensory evidence dimension. In contrast, pallidal activity during deliberation is primarily defined by urgency. We suggest that these findings reveal the distinct functional contributions of different brain regions to an integrated dynamical system governing action selection and execution.
Collapse
Affiliation(s)
- David Thura
- Groupe de recherche sur la signalisation neurale et la circuiterie, Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Jean-François Cabana
- Groupe de recherche sur la signalisation neurale et la circuiterie, Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Albert Feghaly
- Groupe de recherche sur la signalisation neurale et la circuiterie, Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Paul Cisek
- Groupe de recherche sur la signalisation neurale et la circuiterie, Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
7
|
Carrillo-Reid L, Calderon V. Conceptual framework for neuronal ensemble identification and manipulation related to behavior using calcium imaging. NEUROPHOTONICS 2022; 9:041403. [PMID: 35898958 PMCID: PMC9309498 DOI: 10.1117/1.nph.9.4.041403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Significance: The identification and manipulation of spatially identified neuronal ensembles with optical methods have been recently used to prove the causal link between neuronal ensemble activity and learned behaviors. However, the standardization of a conceptual framework to identify and manipulate neuronal ensembles from calcium imaging recordings is still lacking. Aim: We propose a conceptual framework for the identification and manipulation of neuronal ensembles using simultaneous calcium imaging and two-photon optogenetics in behaving mice. Approach: We review the computational approaches that have been used to identify and manipulate neuronal ensembles with single cell resolution during behavior in different brain regions using all-optical methods. Results: We proposed three steps as a conceptual framework that could be applied to calcium imaging recordings to identify and manipulate neuronal ensembles in behaving mice: (1) transformation of calcium transients into binary arrays; (2) identification of neuronal ensembles as similar population vectors; and (3) targeting of neuronal ensemble members that significantly impact behavioral performance. Conclusions: The use of simultaneous two-photon calcium imaging and two-photon optogenetics allowed for the experimental demonstration of the causal relation of population activity and learned behaviors. The standardization of analytical tools to identify and manipulate neuronal ensembles could accelerate interventional experiments aiming to reprogram the brain in normal and pathological conditions.
Collapse
Affiliation(s)
- Luis Carrillo-Reid
- National Autonomous University of Mexico, Neurobiology Institute, Department of Developmental Neurobiology and Neurophysiology, Querétaro, Mexico
| | - Vladimir Calderon
- National Autonomous University of Mexico, Neurobiology Institute, Department of Developmental Neurobiology and Neurophysiology, Querétaro, Mexico
| |
Collapse
|
8
|
Alejandre-García T, Kim S, Pérez-Ortega J, Yuste R. Intrinsic excitability mechanisms of neuronal ensemble formation. eLife 2022; 11:77470. [PMID: 35506662 PMCID: PMC9197391 DOI: 10.7554/elife.77470] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal ensembles are coactive groups of cortical neurons, found in spontaneous and evoked activity, that can mediate perception and behavior. To understand the mechanisms that lead to the formation of ensembles, we co-activated layer 2/3 pyramidal neurons in brain slices from mouse visual cortex, in animals of both sexes, replicating in vitro an optogenetic protocol to generate ensembles in vivo. Using whole-cell and perforated patch-clamp pair recordings we found that, after optogenetic or electrical stimulation, coactivated neurons increased their correlated activity, a hallmark of ensemble formation. Coactivated neurons showed small biphasic changes in presynaptic plasticity, with an initial depression followed by a potentiation after a recovery period. Optogenetic and electrical stimulation also induced significant increases in frequency and amplitude of spontaneous EPSPs, even after single-cell stimulation. In addition, we observed unexpected strong and persistent increases in neuronal excitability after stimulation, with increases in membrane resistance and reductions in spike threshold. A pharmacological agent that blocks changes in membrane resistance reverted this effect. These significant increases in excitability can explain the observed biphasic synaptic plasticity. We conclude that cell-intrinsic changes in excitability are involved in the formation of neuronal ensembles. We propose an ‘iceberg’ model, by which increased neuronal excitability makes subthreshold connections suprathreshold, enhancing the effect of already existing synapses, and generating a new neuronal ensemble. In the brain, groups of neurons that are activated together – also known as neuronal ensembles – are the basic units that underpin perception and behavior. Yet, exactly how these coactive circuits are established remains under investigation. In 1949, Canadian psychologist Donald Hebb proposed that, when brains learn something new, the neurons which are activated together connect to form ensembles, and their connections become stronger each time this specific piece of knowledge is recalled. This idea that ‘neurons that fire together, wire together’ can explain how memories are acquired and recalled, by strengthening their wiring. However, recent studies have questioned whether strengthening connections is the only mechanism by which neural ensembles can be created. Changes in the excitability of neurons (how easily they are to fire and become activated) may also play a role. In other words, ensembles could emerge because certain neurons become more excitable and fire more readily. To solve this conundrum, Alejandre-García et al. examined both hypotheses in the same system. Neurons in slices of the mouse visual cortex were stimulated electrically or optically, via a technique that controls neural activity with light. The activity of individual neurons and their connections was then measured with electrodes. Spontaneous activity among connected neurons increased after stimulation, indicative of the formation of neuronal ensembles. Connected neurons also showed small changes in the strength of their connections, which first decreased and then rebounded after an initial recovery period. Intriguingly, cells also showed unexpected strong and persistent increases in neuronal excitability after stimulation, such that neurons fired more readily to the same stimulus. In other words, neurons maintained a cellular memory of having been stimulated. The authors conclude that ensembles form because connected neurons become more excitable, which in turn, may strengthen connections of the circuit at a later stage. These results provide fresh insights about the neural circuits underpinning learning and memory. In time, the findings could also help to understand disorders such as Alzheimer’s disease and schizophrenia, which are characterised by memory impairments and disordered thinking.
Collapse
Affiliation(s)
| | - Samuel Kim
- Department of Biological Sciences, Columbia University, New York, United States
| | - Jesús Pérez-Ortega
- Department of Biological Sciences, Columbia University, New York, United States
| | - Rafael Yuste
- Department of Biological Sciences, Columbia University, New York, United States
| |
Collapse
|
9
|
Identification of Pattern Completion Neurons in Neuronal Ensembles Using Probabilistic Graphical Models. J Neurosci 2021; 41:8577-8588. [PMID: 34413204 DOI: 10.1523/jneurosci.0051-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 01/21/2023] Open
Abstract
Neuronal ensembles are groups of neurons with coordinated activity that could represent sensory, motor, or cognitive states. The study of how neuronal ensembles are built, recalled, and involved in the guiding of complex behaviors has been limited by the lack of experimental and analytical tools to reliably identify and manipulate neurons that have the ability to activate entire ensembles. Such pattern completion neurons have also been proposed as key elements of artificial and biological neural networks. Indeed, the relevance of pattern completion neurons is highlighted by growing evidence that targeting them can activate neuronal ensembles and trigger behavior. As a method to reliably detect pattern completion neurons, we use conditional random fields (CRFs), a type of probabilistic graphical model. We apply CRFs to identify pattern completion neurons in ensembles in experiments using in vivo two-photon calcium imaging from primary visual cortex of male mice and confirm the CRFs predictions with two-photon optogenetics. To test the broader applicability of CRFs we also analyze publicly available calcium imaging data (Allen Institute Brain Observatory dataset) and demonstrate that CRFs can reliably identify neurons that predict specific features of visual stimuli. Finally, to explore the scalability of CRFs we apply them to in silico network simulations and show that CRFs-identified pattern completion neurons have increased functional connectivity. These results demonstrate the potential of CRFs to characterize and selectively manipulate neural circuits.SIGNIFICANCE STATEMENT We describe a graph theory method to identify and optically manipulate neurons with pattern completion capability in mouse cortical circuits. Using calcium imaging and two-photon optogenetics in vivo we confirm that key neurons identified by this method can recall entire neuronal ensembles. This method could be broadly applied to manipulate neuronal ensemble activity to trigger behavior or for therapeutic applications in brain prostheses.
Collapse
|
10
|
Pérez-Ortega J, Alejandre-García T, Yuste R. Long-term stability of cortical ensembles. eLife 2021; 10:e64449. [PMID: 34328414 PMCID: PMC8376248 DOI: 10.7554/elife.64449] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
Neuronal ensembles, coactive groups of neurons found in spontaneous and evoked cortical activity, are causally related to memories and perception, but it is still unknown how stable or flexible they are over time. We used two-photon multiplane calcium imaging to track over weeks the activity of the same pyramidal neurons in layer 2/3 of the visual cortex from awake mice and recorded their spontaneous and visually evoked responses. Less than half of the neurons remained active across any two imaging sessions. These stable neurons formed ensembles that lasted weeks, but some ensembles were also transient and appeared only in one single session. Stable ensembles preserved most of their neurons for up to 46 days, our longest imaged period, and these 'core' cells had stronger functional connectivity. Our results demonstrate that neuronal ensembles can last for weeks and could, in principle, serve as a substrate for long-lasting representation of perceptual states or memories.
Collapse
Affiliation(s)
- Jesús Pérez-Ortega
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | | | - Rafael Yuste
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| |
Collapse
|
11
|
Sase T, Kitajo K. The metastable brain associated with autistic-like traits of typically developing individuals. PLoS Comput Biol 2021; 17:e1008929. [PMID: 33861737 PMCID: PMC8081345 DOI: 10.1371/journal.pcbi.1008929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/28/2021] [Accepted: 03/31/2021] [Indexed: 12/03/2022] Open
Abstract
Metastability in the brain is thought to be a mechanism involved in the dynamic organization of cognitive and behavioral functions across multiple spatiotemporal scales. However, it is not clear how such organization is realized in underlying neural oscillations in a high-dimensional state space. It was shown that macroscopic oscillations often form phase-phase coupling (PPC) and phase-amplitude coupling (PAC), which result in synchronization and amplitude modulation, respectively, even without external stimuli. These oscillations can also make spontaneous transitions across synchronous states at rest. Using resting-state electroencephalographic signals and the autism-spectrum quotient scores acquired from healthy humans, we show experimental evidence that the PAC combined with PPC allows amplitude modulation to be transient, and that the metastable dynamics with this transient modulation is associated with autistic-like traits. In individuals with a longer attention span, such dynamics tended to show fewer transitions between states by forming delta-alpha PAC. We identified these states as two-dimensional metastable states that could share consistent patterns across individuals. Our findings suggest that the human brain dynamically organizes inter-individual differences in a hierarchy of macroscopic oscillations with multiple timescales by utilizing metastability. The human brain organizes cognitive and behavioral functions dynamically. For decades, the dynamic organization of underlying neural oscillations has been a fundamental topic in neuroscience research. Even without external stimuli, macroscopic oscillations often form phase-phase coupling and phase-amplitude coupling (PAC) that result in synchronization and amplitude modulation, respectively, and can make spontaneous transitions across synchronous states at rest. Using resting-state electroencephalography signals acquired from healthy humans, we show evidence that these two neural couplings enable amplitude modulation to be transient, and that this transient modulation can be viewed as the transition among oscillatory states with different PAC strengths. We also demonstrate that such transition dynamics are associated with the ability to maintain attention to detail and to switch attention, as measured by autism-spectrum quotient scores. These individual dynamics were visualized as a trajectory among states with attracting tendencies, and involved consistent brain states across individuals. Our findings have significant implications for unraveling the variability in the individual brains showing typical and atypical development.
Collapse
Affiliation(s)
- Takumi Sase
- Rhythm-based Brain Information Processing Unit, CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama, Japan
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (TS); (KK)
| | - Keiichi Kitajo
- Rhythm-based Brain Information Processing Unit, CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama, Japan
- Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
- * E-mail: (TS); (KK)
| |
Collapse
|
12
|
Neuronal ensembles in memory processes. Semin Cell Dev Biol 2021; 125:136-143. [PMID: 33858772 DOI: 10.1016/j.semcdb.2021.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
A neuronal ensemble represents the concomitant activity of a specific group of neurons that could encompass a broad repertoire of brain functions such as motor, perceptual, memory or cognitive states. On the other hand, a memory engram portrays the physical manifestation of memory or the changes that enable learning and retrieval. Engram studies focused for many years on finding where memories are stored as in, which cells or brain regions represent a memory trace, and disregarded the investigation of how neuronal activity patterns give rise to such memories. Recent experiments suggest that the association and reactivation of specific neuronal groups could be the main mechanism underlying the brain's ability to remember past experiences and envision future actions. Thus, the growing consensus is that the interaction between neuronal ensembles could allow sequential activity patterns to become memories and recurrent memories to compose complex behaviors. The goal of this review is to propose how the neuronal ensemble framework could be translated and useful to understand memory processes.
Collapse
|
13
|
Juárez-Vidales JDJ, Pérez-Ortega J, Lorea-Hernández JJ, Méndez-Salcido F, Peña-Ortega F. Configuration and dynamics of dominant inspiratory multineuronal activity patterns during eupnea and gasping generation in vitro. J Neurophysiol 2021; 125:1289-1306. [PMID: 33502956 DOI: 10.1152/jn.00563.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pre-Bötzinger complex (preBötC), located within the ventral respiratory column, produces inspiratory bursts in varying degrees of synchronization/amplitude. This wide range of population burst patterns reflects the flexibility of the preBötC neurons, which is expressed in variations in the onset/offset times of their activations and their activity during the population bursts, with respiratory neurons exhibiting a large cycle-to-cycle timing jitter both at the population activity onset and at the population activity peak, suggesting that respiratory neurons are stochastically activated before and during the inspiratory bursts. However, it is still unknown whether this stochasticity is maintained while evaluating the coactivity of respiratory neuronal ensembles. Moreover, the preBötC topology also remains unknown. In this study, by simultaneously recording tens of preBötC neurons and using coactivation analysis during the inspiratory periods, we found that the preBötC has a scale-free configuration (mixture of not many highly connected nodes, hubs, with abundant poorly connected elements) exhibiting the rich-club phenomenon (hubs more likely interconnected with each other). PreBötC neurons also produce multineuronal activity patterns (MAPs) that are highly stable and change during the hypoxia-induced reconfiguration. Moreover, preBötC contains a coactivating core network shared by all its MAPs. Finally, we found a distinctive pattern of sequential coactivation of core network neurons at the beginning of the inspiratory periods, indicating that, when evaluated at the multicellular level, the coactivation of respiratory neurons seems not to be stochastic.NEW & NOTEWORTHY By means of multielectrode recordings of preBötC neurons, we evaluated their configuration in normoxia and hypoxia, finding that the preBötC exhibits a scale-free configuration with a rich-club phenomenon. preBötC neurons produce multineuronal activity patterns that are highly stable but change during hypoxia. The preBötC contains a coactivating core network that exhibit a distinctive pattern of coactivation at the beginning of inspirations. These results reveal some network basis of inspiratory rhythm generation and its reconfiguration during hypoxia.
Collapse
Affiliation(s)
- Josué de Jesús Juárez-Vidales
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Jesús Pérez-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Jonathan Julio Lorea-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Felipe Méndez-Salcido
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| |
Collapse
|
14
|
Elzoheiry S, Lewen A, Schneider J, Both M, Hefter D, Boffi JC, Hollnagel JO, Kann O. Mild metabolic stress is sufficient to disturb the formation of pyramidal cell ensembles during gamma oscillations. J Cereb Blood Flow Metab 2020; 40:2401-2415. [PMID: 31842665 PMCID: PMC7820691 DOI: 10.1177/0271678x19892657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Disturbances of cognitive functions occur rapidly during acute metabolic stress. However, the underlying mechanisms are not fully understood. Cortical gamma oscillations (30-100 Hz) emerging from precise synaptic transmission between excitatory principal neurons and inhibitory interneurons, such as fast-spiking GABAergic basket cells, are associated with higher brain functions, like sensory perception, selective attention and memory formation. We investigated the alterations of cholinergic gamma oscillations at the level of neuronal ensembles in the CA3 region of rat hippocampal slice cultures. We combined electrophysiology, calcium imaging (CamKII.GCaMP6f) and mild metabolic stress that was induced by rotenone, a lipophilic and highly selective inhibitor of complex I in the respiratory chain of mitochondria. The detected pyramidal cell ensembles showing repetitive patterns of activity were highly sensitive to mild metabolic stress. Whereas such synchronised multicellular activity diminished, the overall activity of individual pyramidal cells was unaffected. Additionally, mild metabolic stress had no effect on the rate of action potential generation in fast-spiking neural units. However, the partial disinhibition of slow-spiking neural units suggests that disturbances of ensemble formation likely result from alterations in synaptic inhibition. Our study bridges disturbances on the (multi-)cellular and network level to putative cognitive impairment on the system level.
Collapse
Affiliation(s)
- Shehabeldin Elzoheiry
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Lewen
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Justus Schneider
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Martin Both
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Dimitri Hefter
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany.,RG Animal Models in Psychiatry, Clinic of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany
| | - Juan Carlos Boffi
- Institute for Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Jan-Oliver Hollnagel
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany.,Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Serrano-Reyes M, García-Vilchis B, Reyes-Chapero R, Cáceres-Chávez VA, Tapia D, Galarraga E, Bargas J. Spontaneous Activity of Neuronal Ensembles in Mouse Motor Cortex: Changes after GABAergic Blockade. Neuroscience 2020; 446:304-322. [PMID: 32860933 DOI: 10.1016/j.neuroscience.2020.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/02/2020] [Accepted: 08/18/2020] [Indexed: 01/12/2023]
Abstract
The mouse motor cortex exhibits spontaneous activity in the form of temporal sequences of neuronal ensembles in vitro without the need of tissue stimulation. These neuronal ensembles are defined as groups of neurons with a strong correlation between its firing patterns, generating what appears to be a predetermined neural conduction mode that needs study. Each ensemble is commonly accompanied by one or more parvalbumin expressing neurons (PV+) or fast spiking interneurons. Many of these interneurons have functional connections between them, helping to form a circuit configuration similar to a small-world network. However, rich club metrics show that most connected neurons are neurons not expressing parvalbumin, mainly pyramidal neurons (PV-) suggesting feed-forward propagation through pyramidal cells. Ensembles with PV+ neurons are connected to these hubs. When ligand-gated fast GABAergic transmission is blocked, temporal sequences of ensembles collapse into a unique synchronous and recurrent ensemble, showing the need of inhibition for coding cortical spontaneous activity. This new ensemble has a duration and electrophysiological characteristics of brief recurrent interictal epileptiform discharges (IEDs) composed by the coactivity of both PV- and PV+ neurons, demonstrating that GABA transmission impedes its occurrence. Synchronous ensembles are clearly divided into two clusters one of them lasting longer and mainly composed by PV+ neurons. Because an ictal-like event was not recorded after several minutes of IEDs recording, it is inferred that an external stimulus and/or fast GABA transmission are necessary for its appearance, making this preparation ideal to study both the neuronal machinery to encode cortical spontaneous activity and its transformation into brief non-ictal epileptiform discharges.
Collapse
Affiliation(s)
- Miguel Serrano-Reyes
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - Brisa García-Vilchis
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - Rosa Reyes-Chapero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | | | - Dagoberto Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico.
| |
Collapse
|
16
|
Matsuki T, Shibata K. Adaptive balancing of exploration and exploitation around the edge of chaos in internal-chaos-based learning. Neural Netw 2020; 132:19-29. [PMID: 32861145 DOI: 10.1016/j.neunet.2020.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/02/2020] [Accepted: 08/04/2020] [Indexed: 11/15/2022]
Abstract
This paper addresses learning with exploration driven by chaotic internal dynamics of a neural network. Hoerzer et al. showed that a chaotic reservoir network (RN) can learn with exploration driven by external random noise and a sequential reward. In this paper, we demonstrate that a chaotic RN can learn without external noise because the output fluctuation originated from its internal chaotic dynamics functions as exploration. As learning progresses, the chaoticity decreases and the network can automatically switch from exploration mode to exploitation mode. Furthermore, the network can resume exploration when presented with a new situation. In addition, we found that even when the two parameters that influence the chaoticity are varied, learning performance always improves around the edge of chaos. From these results, we think that exploration is generated from internal chaotic dynamics, and exploitation appears in the process of forming attractors on the chaotic dynamics through learning. Consequently, exploration and exploitation are well-balanced around the edge of chaos, which leads to good learning performance.
Collapse
|
17
|
Carrillo-Reid L, Han S, Yang W, Akrouh A, Yuste R. Controlling Visually Guided Behavior by Holographic Recalling of Cortical Ensembles. Cell 2019; 178:447-457.e5. [PMID: 31257030 DOI: 10.1016/j.cell.2019.05.045] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/05/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
Neurons in cortical circuits are often coactivated as ensembles, yet it is unclear whether ensembles play a functional role in behavior. Some ensemble neurons have pattern completion properties, triggering the entire ensemble when activated. Using two-photon holographic optogenetics in mouse primary visual cortex, we tested whether recalling ensembles by activating pattern completion neurons alters behavioral performance in a visual task. Disruption of behaviorally relevant ensembles by activation of non-selective neurons decreased performance, whereas activation of only two pattern completion neurons from behaviorally relevant ensembles improved performance, by reliably recalling the whole ensemble. Also, inappropriate behavioral choices were evoked by the mistaken activation of behaviorally relevant ensembles. Finally, in absence of visual stimuli, optogenetic activation of two pattern completion neurons could trigger behaviorally relevant ensembles and correct behavioral responses. Our results demonstrate a causal role of neuronal ensembles in a visually guided behavior and suggest that ensembles implement internal representations of perceptual states.
Collapse
Affiliation(s)
- Luis Carrillo-Reid
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| | - Shuting Han
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Weijian Yang
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Alejandro Akrouh
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
18
|
Watanabe K, Haga T, Tatsuno M, Euston DR, Fukai T. Unsupervised Detection of Cell-Assembly Sequences by Similarity-Based Clustering. Front Neuroinform 2019; 13:39. [PMID: 31214005 PMCID: PMC6554434 DOI: 10.3389/fninf.2019.00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/15/2019] [Indexed: 12/30/2022] Open
Abstract
Neurons which fire in a fixed temporal pattern (i.e., "cell assemblies") are hypothesized to be a fundamental unit of neural information processing. Several methods are available for the detection of cell assemblies without a time structure. However, the systematic detection of cell assemblies with time structure has been challenging, especially in large datasets, due to the lack of efficient methods for handling the time structure. Here, we show a method to detect a variety of cell-assembly activity patterns, recurring in noisy neural population activities at multiple timescales. The key innovation is the use of a computer science method to comparing strings ("edit similarity"), to group spikes into assemblies. We validated the method using artificial data and experimental data, which were previously recorded from the hippocampus of male Long-Evans rats and the prefrontal cortex of male Brown Norway/Fisher hybrid rats. From the hippocampus, we could simultaneously extract place-cell sequences occurring on different timescales during navigation and awake replay. From the prefrontal cortex, we could discover multiple spike sequences of neurons encoding different segments of a goal-directed task. Unlike conventional event-driven statistical approaches, our method detects cell assemblies without creating event-locked averages. Thus, the method offers a novel analytical tool for deciphering the neural code during arbitrary behavioral and mental processes.
Collapse
Affiliation(s)
- Keita Watanabe
- Department of Complexity Science and Engineering, University of Tokyo, Kashiwa, Japan.,RIKEN Center for Brain Science, Wako, Japan
| | | | - Masami Tatsuno
- Department of Neuroscience, Canadian Center for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - David R Euston
- Department of Neuroscience, Canadian Center for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Tomoki Fukai
- Department of Complexity Science and Engineering, University of Tokyo, Kashiwa, Japan.,RIKEN Center for Brain Science, Wako, Japan.,Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| |
Collapse
|
19
|
Assessing the Impacts of Correlated Variability with Dissociated Timescales. eNeuro 2019; 6:eN-MNT-0395-18. [PMID: 30906854 PMCID: PMC6428564 DOI: 10.1523/eneuro.0395-18.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 11/21/2022] Open
Abstract
Despite the profound influence on coding capacity of sensory neurons, the measurements of noise correlations have been inconsistent. This is, possibly, because nonstationarity, i.e., drifting baselines, engendered the spurious long-term correlations even if no actual short-term correlation existed. Although attempts to separate them have been made previously, they were ad hoc for specific cases or computationally too demanding. Here we proposed an information-geometric method to unbiasedly estimate pure short-term noise correlations irrespective of the background brain activities without demanding computational resources. First, the benchmark simulations demonstrated that the proposed estimator is more accurate and computationally efficient than the conventional correlograms and the residual correlations with Kalman filters or moving averages of length three or more, while the best moving average of length two coincided with the propose method regarding correlation estimates. Next, we analyzed the cat V1 neural responses to demonstrate that the statistical test accompanying the proposed method combined with the existing nonstationarity test enabled us to dissociate short-term and long-term noise correlations. When we excluded the spurious noise correlations of purely long-term nature, only a small fraction of neuron pairs showed significant short-term correlations, possibly reconciling the previous inconsistent observations on existence of significant noise correlations. The decoding accuracy was slightly improved by the short-term correlations. Although the long-term correlations deteriorated the generalizability, the generalizability was recovered by the decoder with trend removal, suggesting that brains could overcome nonstationarity. Thus, the proposed method enables us to elucidate the impacts of short-term and long-term noise correlations in a dissociated manner.
Collapse
|
20
|
Latorre R, Varona P, Rabinovich MI. Rhythmic control of oscillatory sequential dynamics in heteroclinic motifs. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.11.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Jáidar O, Carrillo-Reid L, Nakano Y, Lopez-Huerta VG, Hernandez-Cruz A, Bargas J, Garcia-Munoz M, Arbuthnott GW. Synchronized activation of striatal direct and indirect pathways underlies the behavior in unilateral dopamine-depleted mice. Eur J Neurosci 2019; 49:1512-1528. [PMID: 30633847 PMCID: PMC6767564 DOI: 10.1111/ejn.14344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/17/2018] [Accepted: 12/25/2018] [Indexed: 11/27/2022]
Abstract
For more than three decades it has been known, that striatal neurons become hyperactive after the loss of dopamine input, but the involvement of dopamine (DA) D1‐ or D2‐receptor‐expressing neurons has only been demonstrated indirectly. By recording neuronal activity using fluorescent calcium indicators in D1 or D2 eGFP‐expressing mice, we showed that following dopamine depletion, both types of striatal output neurons are involved in the large increase in neuronal activity generating a characteristic cell assembly of particular neurons that dominate the pattern. When we expressed channelrhodopsin in all the output neurons, light activation in freely moving animals, caused turning like that following dopamine loss. However, if the light stimulation was patterned in pulses the animals circled in the other direction. To explore the neuronal participation during this stimulation we infected normal mice with channelrhodopsin and calcium indicator in striatal output neurons. In slices made from these animals, continuous light stimulation for 15 s induced many cells to be active together and a particular dominant group of neurons, whereas light in patterned pulses activated fewer cells in more variable groups. These results suggest that the simultaneous activity of a large dominant group of striatal output neurons is intimately associated with parkinsonian symptoms.
Collapse
Affiliation(s)
- Omar Jáidar
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Luis Carrillo-Reid
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yoko Nakano
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | | | | | - José Bargas
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | | | | |
Collapse
|
22
|
Non-structured spike sequences of hippocampal neuronal ensembles in awake animals. Neurosci Res 2018; 142:1-6. [PMID: 29842894 DOI: 10.1016/j.neures.2018.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 11/21/2022]
Abstract
The hippocampal network generates synchronized spikes of a large population of pyramidal neurons associated with sharp-wave ripples in local field potential signals. Ample evidence demonstrates that the synchronized spikes are created by sequential activation of hippocampal place cells that correspond to the animal's past or future trajectories and are hypothesized to play instrumental roles in mnemonic functions. However, not all place-cell spike sequences are precisely organized, and some sequences are composed of spikes from non-spatial cells, implying that not all hippocampal synchronized events directly replicate learned behavioral episodes. While less attention has been given to such non-ordered spike sequences, variable and dynamic selection of active neuronal assemblies may be optimal mechanisms for rapidly reorganizing functional circuits and self-developing novel representations to enable flexible decision-making processes. We recently showed that specific neurons, including both spatial and non-spatial cells, are preferentially recruited in synchronous events for particular time periods, suggesting that there are temporally fluctuating background states of the hippocampal network that determine active neuronal ensembles. Based on recent reports, this review discusses potential roles of the low-fidelity, heterogeneous repertoire of synchronized spike sequences of hippocampal neurons.
Collapse
|
23
|
Peña-Ortega F. Neural Network Reconfigurations: Changes of the Respiratory Network by Hypoxia as an Example. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1015:217-237. [PMID: 29080029 DOI: 10.1007/978-3-319-62817-2_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neural networks, including the respiratory network, can undergo a reconfiguration process by just changing the number, the connectivity or the activity of their elements. Those elements can be either brain regions or neurons, which constitute the building blocks of macrocircuits and microcircuits, respectively. The reconfiguration processes can also involve changes in the number of connections and/or the strength between the elements of the network. These changes allow neural networks to acquire different topologies to perform a variety of functions or change their responses as a consequence of physiological or pathological conditions. Thus, neural networks are not hardwired entities, but they constitute flexible circuits that can be constantly reconfigured in response to a variety of stimuli. Here, we are going to review several examples of these processes with special emphasis on the reconfiguration of the respiratory rhythm generator in response to different patterns of hypoxia, which can lead to changes in respiratory patterns or lasting changes in frequency and/or amplitude.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM-Campus Juriquilla, Boulevard Juriquilla 3001, Querétaro, 76230, Mexico.
| |
Collapse
|
24
|
Sandler RA, Geng K, Song D, Hampson RE, Witcher MR, Deadwyler SA, Berger TW, Marmarelis VZ. Designing Patient-Specific Optimal Neurostimulation Patterns for Seizure Suppression. Neural Comput 2018; 30:1180-1208. [PMID: 29566356 DOI: 10.1162/neco_a_01075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neurostimulation is a promising therapy for abating epileptic seizures. However, it is extremely difficult to identify optimal stimulation patterns experimentally. In this study, human recordings are used to develop a functional 24 neuron network statistical model of hippocampal connectivity and dynamics. Spontaneous seizure-like activity is induced in silico in this reconstructed neuronal network. The network is then used as a testbed to design and validate a wide range of neurostimulation patterns. Commonly used periodic trains were not able to permanently abate seizures at any frequency. A simulated annealing global optimization algorithm was then used to identify an optimal stimulation pattern, which successfully abated 92% of seizures. Finally, in a fully responsive, or closed-loop, neurostimulation paradigm, the optimal stimulation successfully prevented the network from entering the seizure state. We propose that the framework presented here for algorithmically identifying patient-specific neurostimulation patterns can greatly increase the efficacy of neurostimulation devices for seizures.
Collapse
Affiliation(s)
- Roman A Sandler
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, U.S.A.
| | - Kunling Geng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, U.S.A.
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, U.S.A.
| | - Robert E Hampson
- Department of Physiology and Pharmacology, Wake Forest University, Winston-Salem, NC 27109, U.S.A.
| | - Mark R Witcher
- Department of Neurosurgery, Wake Forest University, Winston-Salem, NC 27109, U.S.A.
| | - Sam A Deadwyler
- Department of Physiology and Pharmacology, Wake Forest University, Winston-Salem, NC 27109, U.S.A.
| | - Theodore W Berger
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, U.S.A.
| | - Vasilis Z Marmarelis
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, U.S.A.
| |
Collapse
|
25
|
Ujita S, Sasaki T, Asada A, Funayama K, Gao M, Mikoshiba K, Matsuki N, Ikegaya Y. cAMP-Dependent Calcium Oscillations of Astrocytes: An Implication for Pathology. Cereb Cortex 2018; 27:1602-1614. [PMID: 26803165 DOI: 10.1093/cercor/bhv310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Astrocytes in various brain regions exhibit spontaneous intracellular calcium elevations both in vitro and in vivo; however, neither the temporal pattern underlying this activity nor its function has been fully evaluated. Here, we utilized a long-term optical imaging technique to analyze the calcium activity of more than 4000 astrocytes in acute hippocampal slices as well as in the neocortex and hippocampus of head-restrained mice. Although astrocytic calcium activity was largely sparse and irregular, we observed a subset of cells in which the fluctuating calcium oscillations repeated at a regular interval of ∼30 s. These intermittent oscillations i) depended on type 2 inositol 1,4,5-trisphosphate receptors; ii) consisted of a complex reverberatory interaction between the soma and processes of individual astrocytes; iii) did not synchronize with those of other astrocytes; iv) did not require neuronal firing; v) were modulated through cAMP-protein kinase A signaling; vi) were facilitated under pathological conditions, such as energy deprivation and epileptiform hyperexcitation; and vii) were associated with enhanced hypertrophy in astrocytic processes, an early hallmark of reactive gliosis, which is observed in ischemia and epilepsy. Therefore, calcium oscillations appear to be associated with a pathological state in astrocytes.
Collapse
Affiliation(s)
- Sakiko Ujita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Sasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Akiko Asada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenta Funayama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mengxuan Gao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Riken Brain Science Institute, Saitama, Japan
| | - Norio Matsuki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Center for Information and Neural Networks, Suita City, Osaka, Japan
| |
Collapse
|
26
|
Kayama T, Suzuki I, Odawara A, Sasaki T, Ikegaya Y. Temporally coordinated spiking activity of human induced pluripotent stem cell-derived neurons co-cultured with astrocytes. Biochem Biophys Res Commun 2017; 495:1028-1033. [PMID: 29170135 DOI: 10.1016/j.bbrc.2017.11.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/18/2017] [Indexed: 01/16/2023]
Abstract
In culture conditions, human induced-pluripotent stem cells (hiPSC)-derived neurons form synaptic connections with other cells and establish neuronal networks, which are expected to be an in vitro model system for drug discovery screening and toxicity testing. While early studies demonstrated effects of co-culture of hiPSC-derived neurons with astroglial cells on survival and maturation of hiPSC-derived neurons, the population spiking patterns of such hiPSC-derived neurons have not been fully characterized. In this study, we analyzed temporal spiking patterns of hiPSC-derived neurons recorded by a multi-electrode array system. We discovered that specific sets of hiPSC-derived neurons co-cultured with astrocytes showed more frequent and highly coherent non-random synchronized spike trains and more dynamic changes in overall spike patterns over time. These temporally coordinated spiking patterns are physiological signs of organized circuits of hiPSC-derived neurons and suggest benefits of co-culture of hiPSC-derived neurons with astrocytes.
Collapse
Affiliation(s)
- Tasuku Kayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan.
| | - Aoi Odawara
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan; Japan Society for the Promotion of Science, 5-3-1 Koujimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Center for Information and Neural Networks, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
27
|
Microstructural network alterations of olfactory dysfunction in newly diagnosed Parkinson's disease. Sci Rep 2017; 7:12559. [PMID: 28970540 PMCID: PMC5624890 DOI: 10.1038/s41598-017-12947-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/12/2017] [Indexed: 12/28/2022] Open
Abstract
Olfactory dysfunction is a robust and early sign for Parkinson's disease (PD). Previous studies have revealed its association with dementia and related neural changes in PD. Yet, how olfactory dysfunction affects white matter (WM) microstructure in newly diagnosed and untreated PD remains unclear. Here we comprehensively examined WM features using unbiased whole-brain analyses. 88 newly diagnosed PD patients without dementia (70 with hyposmia and 18 without hyposmia) and 33 healthy controls underwent clinical assessment and diffusion tensor imaging (DTI) scanning. Tract-based special statistics (TBSS), graph-theoretic methods and network-based statistics (NBS) were used to compare regional and network-related WM features between groups. TBSS analysis did not show any differences in fractional anisotropy and mean diffusivity between groups. Compared with controls, PD patients without hyposmia showed a significant decrease in global efficiency, whilst PD patients with hyposmia exhibited significantly reduced global and local efficiency and additionally a disrupted connection between the right medial orbitofrontal cortex and left rectus and had poorer frontal-related cognitive functioning. These results demonstrate that hyposmia-related WM changes in early PD only occur at the network level. The confined disconnectivity between the bilateral olfactory circuitry may serve as a biomarker for olfactory dysfunction in early PD.
Collapse
|
28
|
Abstract
One of the mysteries of memory is that it can last despite changes in the underlying synaptic architecture. How can we, for example, maintain an internal spatial map of an environment over months or years when the underlying network is full of transient connections? In the following, we propose a computational model for describing the emergence of the hippocampal cognitive map in a network of transient place cell assemblies and demonstrate, using methods of algebraic topology, how such a network can maintain spatial memory over time.
Collapse
|
29
|
Carrillo-Reid L, Yang W, Kang Miller JE, Peterka DS, Yuste R. Imaging and Optically Manipulating Neuronal Ensembles. Annu Rev Biophys 2017; 46:271-293. [PMID: 28301770 DOI: 10.1146/annurev-biophys-070816-033647] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neural code that relates the firing of neurons to the generation of behavior and mental states must be implemented by spatiotemporal patterns of activity across neuronal populations. These patterns engage selective groups of neurons, called neuronal ensembles, which are emergent building blocks of neural circuits. We review optical and computational methods, based on two-photon calcium imaging and two-photon optogenetics, to detect, characterize, and manipulate neuronal ensembles in three dimensions. We review data using these methods in the mammalian cortex that demonstrate the existence of neuronal ensembles in the spontaneous and evoked cortical activity in vitro and in vivo. Moreover, two-photon optogenetics enable the possibility of artificially imprinting neuronal ensembles into awake, behaving animals and of later recalling those ensembles selectively by stimulating individual cells. These methods could enable deciphering the neural code and also be used to understand the pathophysiology of and design novel therapies for neurological and mental diseases.
Collapse
Affiliation(s)
- Luis Carrillo-Reid
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Weijian Yang
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Jae-Eun Kang Miller
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Darcy S Peterka
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Rafael Yuste
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027.,Department of Neuroscience, Columbia University, New York, NY 10027;
| |
Collapse
|
30
|
Gao M, Igata H, Takeuchi A, Sato K, Ikegaya Y. Machine learning-based prediction of adverse drug effects: An example of seizure-inducing compounds. J Pharmacol Sci 2017; 133:70-78. [DOI: 10.1016/j.jphs.2017.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/08/2017] [Accepted: 01/13/2017] [Indexed: 11/29/2022] Open
|
31
|
Blaeser AS, Connors BW, Nurmikko AV. Spontaneous dynamics of neural networks in deep layers of prefrontal cortex. J Neurophysiol 2017; 117:1581-1594. [PMID: 28123005 DOI: 10.1152/jn.00295.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/15/2023] Open
Abstract
Cortical systems maintain and process information through the sustained activation of recurrent local networks of neurons. Layer 5 is known to have a major role in generating the recurrent activation associated with these functions, but relatively little is known about its intrinsic dynamics at the mesoscopic level of large numbers of neighboring neurons. Using calcium imaging, we measured the spontaneous activity of networks of deep-layer medial prefrontal cortical neurons in an acute slice model. Inferring the simultaneous activity of tens of neighboring neurons, we found that while the majority showed only sporadic activity, a subset of neurons engaged in sustained delta frequency rhythmic activity. Spontaneous activity under baseline conditions was weakly correlated between pairs of neurons, and rhythmic neurons showed little coherence in their oscillations. However, we consistently observed brief bouts of highly synchronous activity that must be attributed to network activity. NMDA-mediated stimulation enhanced rhythmicity, synchrony, and correlation within these local networks. These results characterize spontaneous prefrontal activity at a previously unexplored spatiotemporal scale and suggest that medial prefrontal cortex can act as an intrinsic generator of delta oscillations.NEW & NOTEWORTHY Using calcium imaging and a novel analytic framework, we characterized the spontaneous and NMDA-evoked activity of layer 5 prefrontal cortex at a largely unexplored spatiotemporal scale. Our results suggest that the mPFC microcircuitry is capable of intrinsically generating delta oscillations and sustaining synchronized network activity that is potentially relevant for understanding its contribution to cognitive processes.
Collapse
Affiliation(s)
- Andrew S Blaeser
- Department of Physics, Brown University, Providence, Rhode Island;
| | - Barry W Connors
- Department of Neuroscience, Brown University, Providence, Rhode Island; and
| | - Arto V Nurmikko
- Department of Physics, Brown University, Providence, Rhode Island.,Department of Neuroscience, Brown University, Providence, Rhode Island; and.,School of Engineering, Brown University, Providence, Rhode Island
| |
Collapse
|
32
|
Y Ho EC, Truccolo W. Interaction between synaptic inhibition and glial-potassium dynamics leads to diverse seizure transition modes in biophysical models of human focal seizures. J Comput Neurosci 2016; 41:225-44. [PMID: 27488433 PMCID: PMC5002283 DOI: 10.1007/s10827-016-0615-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 06/18/2016] [Accepted: 07/06/2016] [Indexed: 11/10/2022]
Abstract
How focal seizures initiate and evolve in human neocortex remains a fundamental problem in neuroscience. Here, we use biophysical neuronal network models of neocortical patches to study how the interaction between inhibition and extracellular potassium ([K (+)] o ) dynamics may contribute to different types of focal seizures. Three main types of propagated focal seizures observed in recent intracortical microelectrode recordings in humans were modelled: seizures characterized by sustained (∼30-60 Hz) gamma local field potential (LFP) oscillations; seizures where the onset in the propagated site consisted of LFP spikes that later evolved into rhythmic (∼2-3 Hz) spike-wave complexes (SWCs); and seizures where a brief stage of low-amplitude fast-oscillation (∼10-20 Hz) LFPs preceded the SWC activity. Our findings are fourfold: (1) The interaction between elevated [K (+)] o (due to abnormal potassium buffering by glial cells) and the strength of synaptic inhibition plays a predominant role in shaping these three types of seizures. (2) Strengthening of inhibition leads to the onset of sustained narrowband gamma seizures. (3) Transition into SWC seizures is obtained either by the weakening of inhibitory synapses, or by a transient strengthening followed by an inhibitory breakdown (e.g. GABA depletion). This reduction or breakdown of inhibition among fast-spiking (FS) inhibitory interneurons increases their spiking activity and leads them eventually into depolarization block. Ictal spike-wave discharges in the model are then sustained solely by pyramidal neurons. (4) FS cell dynamics are also critical for seizures where the evolution into SWC activity is preceded by low-amplitude fast oscillations. Different levels of elevated [K (+)] o were important for transitions into and maintenance of sustained gamma oscillations and SWC discharges. Overall, our modelling study predicts that the interaction between inhibitory interneurons and [K (+)] o glial buffering under abnormal conditions may explain different types of ictal transitions and dynamics during propagated seizures in human focal epilepsy.
Collapse
Affiliation(s)
- E C Y Ho
- Department of Neuroscience & Institute for Brain Science, Brown University, Providence, RI, USA.
- U.S. Department of Veterans Affairs, Center for Neurorestoration and Neurotechnology, Providence, RI, USA.
| | - Wilson Truccolo
- Department of Neuroscience & Institute for Brain Science, Brown University, Providence, RI, USA.
- U.S. Department of Veterans Affairs, Center for Neurorestoration and Neurotechnology, Providence, RI, USA.
| |
Collapse
|
33
|
Virkar YS, Shew WL, Restrepo JG, Ott E. Feedback control stabilization of critical dynamics via resource transport on multilayer networks: How glia enable learning dynamics in the brain. Phys Rev E 2016; 94:042310. [PMID: 27841512 DOI: 10.1103/physreve.94.042310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Learning and memory are acquired through long-lasting changes in synapses. In the simplest models, such synaptic potentiation typically leads to runaway excitation, but in reality there must exist processes that robustly preserve overall stability of the neural system dynamics. How is this accomplished? Various approaches to this basic question have been considered. Here we propose a particularly compelling and natural mechanism for preserving stability of learning neural systems. This mechanism is based on the global processes by which metabolic resources are distributed to the neurons by glial cells. Specifically, we introduce and study a model composed of two interacting networks: a model neural network interconnected by synapses that undergo spike-timing-dependent plasticity; and a model glial network interconnected by gap junctions that diffusively transport metabolic resources among the glia and, ultimately, to neural synapses where they are consumed. Our main result is that the biophysical constraints imposed by diffusive transport of metabolic resources through the glial network can prevent runaway growth of synaptic strength, both during ongoing activity and during learning. Our findings suggest a previously unappreciated role for glial transport of metabolites in the feedback control stabilization of neural network dynamics during learning.
Collapse
Affiliation(s)
- Yogesh S Virkar
- University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Woodrow L Shew
- University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Juan G Restrepo
- University of Colorado at Boulder, Boulder, Colorado 80309-0526, USA
| | - Edward Ott
- University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
34
|
Carrillo-Reid L, Yang W, Bando Y, Peterka DS, Yuste R. Imprinting and recalling cortical ensembles. Science 2016; 353:691-4. [PMID: 27516599 DOI: 10.1126/science.aaf7560] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/20/2016] [Indexed: 12/15/2022]
Abstract
Neuronal ensembles are coactive groups of neurons that may represent building blocks of cortical circuits. These ensembles could be formed by Hebbian plasticity, whereby synapses between coactive neurons are strengthened. Here we report that repetitive activation with two-photon optogenetics of neuronal populations from ensembles in the visual cortex of awake mice builds neuronal ensembles that recur spontaneously after being imprinted and do not disrupt preexisting ones. Moreover, imprinted ensembles can be recalled by single- cell stimulation and remain coactive on consecutive days. Our results demonstrate the persistent reconfiguration of cortical circuits by two-photon optogenetics into neuronal ensembles that can perform pattern completion.
Collapse
Affiliation(s)
- Luis Carrillo-Reid
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Weijian Yang
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Yuki Bando
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Darcy S Peterka
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
35
|
Abstract
Cortical learning via sensorimotor experiences evoked by bodily movements begins as early as the foetal period. However, the learning mechanisms by which sensorimotor experiences guide cortical learning remain unknown owing to technical and ethical difficulties. To bridge this gap, we present an embodied brain model of a human foetus as a coupled brain-body-environment system by integrating anatomical/physiological data. Using this model, we show how intrauterine sensorimotor experiences related to bodily movements induce specific statistical regularities in somatosensory feedback that facilitate cortical learning of body representations and subsequent visual-somatosensory integration. We also show how extrauterine sensorimotor experiences affect these processes. Our embodied brain model can provide a novel computational approach to the mechanistic understanding of cortical learning based on sensorimotor experiences mediated by complex interactions between the body, environment and nervous system.
Collapse
|
36
|
Yoshida S, Teshima T, Kuribayashi-Shigetomi K, Takeuchi S. Mobile Microplates for Morphological Control and Assembly of Individual Neural Cells. Adv Healthc Mater 2016; 5:415-20. [PMID: 26712104 DOI: 10.1002/adhm.201500782] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Indexed: 11/09/2022]
Abstract
A microfabricated device that enables morphological control and assembly of cultured single neural cells is described. Assembly of morphologically controlled single neural cells allows neuroengineers to design in vitro neural circuits with a single-cell resolution. Compared to conventional cell-patterning techniques, the device allows for the highly precise positioning of neural somas and neurites in a reproducible fashion.
Collapse
Affiliation(s)
- Shotaro Yoshida
- Center for International Research on Integrative Biomedical Systems; Institute of Industrial Science; The University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Tetsuhiko Teshima
- Center for International Research on Integrative Biomedical Systems; Institute of Industrial Science; The University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Kaori Kuribayashi-Shigetomi
- Center for International Research on Integrative Biomedical Systems; Institute of Industrial Science; The University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Shoji Takeuchi
- Center for International Research on Integrative Biomedical Systems; Institute of Industrial Science; The University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| |
Collapse
|
37
|
Accurate detection of low signal-to-noise ratio neuronal calcium transient waves using a matched filter. J Neurosci Methods 2015; 259:1-12. [PMID: 26561771 DOI: 10.1016/j.jneumeth.2015.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/06/2015] [Accepted: 10/27/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND Calcium imaging has become a fundamental modality for studying neuronal circuit dynamics both in vitro and in vivo. However, identifying calcium events (CEs) from spectral data remains laborious and difficult, especially since the signal-to-noise ratio (SNR) often falls below 2. Existing automated signal detection methods are generally applied at high SNRs, leaving a large need for an automated algorithm that can accurately extract CEs from fluorescence intensity data of SNR 2 and below. NEW METHOD In this work we develop a Matched filter for Multi-unit Calcium Event (MMiCE) detection to extract CEs from fluorescence intensity traces of simulated and experimentally recorded neuronal calcium imaging data. RESULTS MMiCE reached perfect performance on simulated data with SNR ≥ 2 and a true positive (TP) rate of 98.27% (± 1.38% with a 95% confidence interval), and a false positive(FP) rate of 6.59% (± 2.56%) on simulated data with SNR 0.2. On real data, verified by patch-clamp recording, MMiCE performed with a TP rate of 100.00% (± 0.00) and a FP rate of 2.04% (± 4.10). COMPARISON WITH EXISTING METHOD(S) This high level of performance exceeds existing methods at SNRs as low as 0.2, which are well below those used in previous studies (SNR ≃ 5-10). CONCLUSION Overall, the MMiCE detector performed exceptionally well on both simulated data, and experimentally recorded neuronal calcium imaging data. The MMiCE detector is accurate, reliable, well suited for wide-spread use, and freely available at sites.uci.edu/aggies or from the corresponding author.
Collapse
|
38
|
Abstract
Although the functional properties of individual neurons in primary visual cortex have been studied intensely, little is known about how neuronal groups could encode changing visual stimuli using temporal activity patterns. To explore this, we used in vivo two-photon calcium imaging to record the activity of neuronal populations in primary visual cortex of awake mice in the presence and absence of visual stimulation. Multidimensional analysis of the network activity allowed us to identify neuronal ensembles defined as groups of cells firing in synchrony. These synchronous groups of neurons were themselves activated in sequential temporal patterns, which repeated at much higher proportions than chance and were triggered by specific visual stimuli such as natural visual scenes. Interestingly, sequential patterns were also present in recordings of spontaneous activity without any sensory stimulation and were accompanied by precise firing sequences at the single-cell level. Moreover, intrinsic dynamics could be used to predict the occurrence of future neuronal ensembles. Our data demonstrate that visual stimuli recruit similar sequential patterns to the ones observed spontaneously, consistent with the hypothesis that already existing Hebbian cell assemblies firing in predefined temporal sequences could be the microcircuit substrate that encodes visual percepts changing in time.
Collapse
|
39
|
Schaub MT, Billeh YN, Anastassiou CA, Koch C, Barahona M. Emergence of Slow-Switching Assemblies in Structured Neuronal Networks. PLoS Comput Biol 2015; 11:e1004196. [PMID: 26176664 PMCID: PMC4503787 DOI: 10.1371/journal.pcbi.1004196] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/16/2015] [Indexed: 11/18/2022] Open
Abstract
Unraveling the interplay between connectivity and spatio-temporal dynamics in neuronal networks is a key step to advance our understanding of neuronal information processing. Here we investigate how particular features of network connectivity underpin the propensity of neural networks to generate slow-switching assembly (SSA) dynamics, i.e., sustained epochs of increased firing within assemblies of neurons which transition slowly between different assemblies throughout the network. We show that the emergence of SSA activity is linked to spectral properties of the asymmetric synaptic weight matrix. In particular, the leading eigenvalues that dictate the slow dynamics exhibit a gap with respect to the bulk of the spectrum, and the associated Schur vectors exhibit a measure of block-localization on groups of neurons, thus resulting in coherent dynamical activity on those groups. Through simple rate models, we gain analytical understanding of the origin and importance of the spectral gap, and use these insights to develop new network topologies with alternative connectivity paradigms which also display SSA activity. Specifically, SSA dynamics involving excitatory and inhibitory neurons can be achieved by modifying the connectivity patterns between both types of neurons. We also show that SSA activity can occur at multiple timescales reflecting a hierarchy in the connectivity, and demonstrate the emergence of SSA in small-world like networks. Our work provides a step towards understanding how network structure (uncovered through advancements in neuroanatomy and connectomics) can impact on spatio-temporal neural activity and constrain the resulting dynamics.
Collapse
Affiliation(s)
- Michael T. Schaub
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Yazan N. Billeh
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, California, United States of America
| | | | - Christof Koch
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, London, United Kingdom
| |
Collapse
|
40
|
Emergence of rich-club topology and coordinated dynamics in development of hippocampal functional networks in vitro. J Neurosci 2015; 35:5459-70. [PMID: 25855164 DOI: 10.1523/jneurosci.4259-14.2015] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recent studies demonstrated that the anatomical network of the human brain shows a "rich-club" organization. This complex topological feature implies that highly connected regions, hubs of the large-scale brain network, are more densely interconnected with each other than expected by chance. Rich-club nodes were traversed by a majority of short paths between peripheral regions, underlining their potential importance for efficient global exchange of information between functionally specialized areas of the brain. Network hubs have also been described at the microscale of brain connectivity (so-called "hub neurons"). Their role in shaping synchronous dynamics and forming microcircuit wiring during development, however, is not yet fully understood. The present study aimed to investigate the role of hubs during network development, using multi-electrode arrays and functional connectivity analysis during spontaneous multi-unit activity (MUA) of dissociated primary mouse hippocampal neurons. Over the first 4 weeks in vitro, functional connectivity significantly increased in strength, density, and size, with mature networks demonstrating a robust modular and small-world topology. As expected by a "rich-get-richer" growth rule of network evolution, MUA graphs were found to form rich-clubs at an early stage in development (14 DIV). Later on, rich-club nodes were a consistent topological feature of MUA graphs, demonstrating high nodal strength, efficiency, and centrality. Rich-club nodes were also found to be crucial for MUA dynamics. They often served as broker of spontaneous activity flow, confirming that hub nodes and rich-clubs may play an important role in coordinating functional dynamics at the microcircuit level.
Collapse
|
41
|
Hongo Y, Takasu K, Ikegaya Y, Hasegawa M, Sakaguchi G, Ogawa K. Heterogeneous effects of antiepileptic drugs in an in vitro epilepsy model--a functional multineuron calcium imaging study. Eur J Neurosci 2015; 42:1818-29. [PMID: 25967117 DOI: 10.1111/ejn.12945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/28/2015] [Accepted: 05/06/2015] [Indexed: 01/17/2023]
Abstract
Epilepsy is a chronic brain disease characterised by recurrent seizures. Many studies of this disease have focused on local neuronal activity, such as local field potentials in the brain. In addition, several recent studies have elucidated the collective behavior of individual neurons in a neuronal network that emits epileptic activity. However, little is known about the effects of antiepileptic drugs on neuronal networks during seizure-like events (SLEs) at single-cell resolution. Using functional multineuron Ca(2+) imaging (fMCI), we monitored the activities of multiple neurons in the rat hippocampal CA1 region on treatment with the proconvulsant bicuculline under Mg(2+) -free conditions. Bicuculline induced recurrent synchronous Ca(2+) influx, and the events were correlated with SLEs. Other proconvulsants, such as 4-aminopyridine, pentetrazol, and pilocarpine, also induced synchronous Ca(2+) influx. We found that the antiepileptic drugs phenytoin, flupirtine, and ethosuximide, which have different mechanisms of action, exerted heterogeneous effects on bicuculline-induced synchronous Ca(2+) influx. Phenytoin and flupirtine significantly decreased the peak, the amount of Ca(2+) influx and the duration of synchronous events in parallel with the duration of SLEs, whereas they did not abolish the synchronous events themselves. Ethosuximide increased the duration of synchronous Ca(2+) influx and SLEs. Furthermore, the magnitude of the inhibitory effect of phenytoin on the peak synchronous Ca(2+) influx level differed according to the peak amplitude of the synchronous event in each individual cell. Evaluation of the collective behavior of individual neurons by fMCI seems to be a powerful tool for elucidating the profiles of antiepileptic drugs.
Collapse
Affiliation(s)
- Yoshie Hongo
- Pain & Neuroscience, Discovery Research Laboratory for Core Therapeutic Areas, Shionogi Co. Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Keiko Takasu
- Pain & Neuroscience, Discovery Research Laboratory for Core Therapeutic Areas, Shionogi Co. Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Center for Information and Neural Networks, Suita City, Osaka, Japan
| | - Minoru Hasegawa
- Pain & Neuroscience, Discovery Research Laboratory for Core Therapeutic Areas, Shionogi Co. Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Gaku Sakaguchi
- Pain & Neuroscience, Discovery Research Laboratory for Core Therapeutic Areas, Shionogi Co. Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Koichi Ogawa
- Pain & Neuroscience, Discovery Research Laboratory for Core Therapeutic Areas, Shionogi Co. Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| |
Collapse
|
42
|
Carrillo-Reid L, Lopez-Huerta VG, Garcia-Munoz M, Theiss S, Arbuthnott GW. Cell Assembly Signatures Defined by Short-Term Synaptic Plasticity in Cortical Networks. Int J Neural Syst 2015; 25:1550026. [PMID: 26173906 DOI: 10.1142/s0129065715500264] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cell assembly (CA) hypothesis has been used as a conceptual framework to explain how groups of neurons form memories. CAs are defined as neuronal pools with synchronous, recurrent and sequential activity patterns. However, neuronal interactions and synaptic properties that define CAs signatures have been difficult to examine because identities and locations of assembly members are usually unknown. In order to study synaptic properties that define CAs, we used optical and electrophysiological approaches to record activity of identified neurons in mouse cortical cultures. Population analysis and graph theory techniques allowed us to find sequential patterns that represent repetitive transitions between network states. Whole cell pair recordings of neurons participating in repeated sequences demonstrated that synchrony is exhibited by groups of neurons with strong synaptic connectivity (concomitant firing) showing short-term synaptic depression (STD), whereas alternation (sequential firing) is seen in groups of neurons with weaker synaptic connections showing short-term synaptic facilitation (STF). Decreasing synaptic weights of a network promoted the generation of sequential activity patterns, whereas increasing synaptic weights restricted state transitions. Thus in simple cortical networks of real neurons, basic signatures of CAs, the properties that underlie perception and memory in Hebb's original description, are already present.
Collapse
Affiliation(s)
| | - Violeta G Lopez-Huerta
- Brain Mechanisms for Behavior Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| | - Marianela Garcia-Munoz
- Brain Mechanisms for Behavior Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| | | | - Gordon W Arbuthnott
- Brain Mechanisms for Behavior Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| |
Collapse
|
43
|
A neural network model of reliably optimized spike transmission. Cogn Neurodyn 2015; 9:265-77. [PMID: 25972976 DOI: 10.1007/s11571-015-9329-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/17/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022] Open
Abstract
We studied the detailed structure of a neuronal network model in which the spontaneous spike activity is correctly optimized to match the experimental data and discuss the reliability of the optimized spike transmission. Two stochastic properties of the spontaneous activity were calculated: the spike-count rate and synchrony size. The synchrony size, expected to be an important factor for optimization of spike transmission in the network, represents a percentage of observed coactive neurons within a time bin, whose probability approximately follows a power-law. We systematically investigated how these stochastic properties could matched to those calculated from the experimental data in terms of the log-normally distributed synaptic weights between excitatory and inhibitory neurons and synaptic background activity induced by the input current noise in the network model. To ensure reliably optimized spike transmission, the synchrony size as well as spike-count rate were simultaneously optimized. This required changeably balanced log-normal distributions of synaptic weights between excitatory and inhibitory neurons and appropriately amplified synaptic background activity. Our results suggested that the inhibitory neurons with a hub-like structure driven by intensive feedback from excitatory neurons were a key factor in the simultaneous optimization of the spike-count rate and synchrony size, regardless of different spiking types between excitatory and inhibitory neurons.
Collapse
|
44
|
Stochastic activation among inspiratory cells in the pre-Bötzinger complex of the rat medulla revealed by Ca2+ imaging. Neurosci Lett 2015; 595:12-7. [DOI: 10.1016/j.neulet.2015.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 11/17/2022]
|
45
|
Gao P, Ganguli S. On simplicity and complexity in the brave new world of large-scale neuroscience. Curr Opin Neurobiol 2015; 32:148-55. [PMID: 25932978 DOI: 10.1016/j.conb.2015.04.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/30/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Technological advances have dramatically expanded our ability to probe multi-neuronal dynamics and connectivity in the brain. However, our ability to extract a simple conceptual understanding from complex data is increasingly hampered by the lack of theoretically principled data analytic procedures, as well as theoretical frameworks for how circuit connectivity and dynamics can conspire to generate emergent behavioral and cognitive functions. We review and outline potential avenues for progress, including new theories of high dimensional data analysis, the need to analyze complex artificial networks, and methods for analyzing entire spaces of circuit models, rather than one model at a time. Such interplay between experiments, data analysis and theory will be indispensable in catalyzing conceptual advances in the age of large-scale neuroscience.
Collapse
Affiliation(s)
- Peiran Gao
- Department of Bioengineering, Stanford University, Stanford, CA 94305, United States.
| | - Surya Ganguli
- Department of Applied Physics, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
46
|
Simultaneous silence organizes structured higher-order interactions in neural populations. Sci Rep 2015; 5:9821. [PMID: 25919985 PMCID: PMC4412118 DOI: 10.1038/srep09821] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/18/2015] [Indexed: 11/18/2022] Open
Abstract
Activity patterns of neural population are constrained by underlying biological
mechanisms. These patterns are characterized not only by individual activity rates
and pairwise correlations but also by statistical dependencies among groups of
neurons larger than two, known as higher-order interactions (HOIs). While HOIs are
ubiquitous in neural activity, primary characteristics of HOIs remain unknown. Here,
we report that simultaneous silence (SS) of neurons concisely summarizes neural
HOIs. Spontaneously active neurons in cultured hippocampal slices express SS that is
more frequent than predicted by their individual activity rates and pairwise
correlations. The SS explains structured HOIs seen in the data, namely, alternating
signs at successive interaction orders. Inhibitory neurons are necessary to maintain
significant SS. The structured HOIs predicted by SS were observed in a simple neural
population model characterized by spiking nonlinearity and correlated input. These
results suggest that SS is a ubiquitous feature of HOIs that constrain neural
activity patterns and can influence information processing.
Collapse
|
47
|
Nakae K, Ikegaya Y, Ishikawa T, Oba S, Urakubo H, Koyama M, Ishii S. A statistical method of identifying interactions in neuron-glia systems based on functional multicell Ca2+ imaging. PLoS Comput Biol 2014; 10:e1003949. [PMID: 25393874 PMCID: PMC4230777 DOI: 10.1371/journal.pcbi.1003949] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 09/29/2014] [Indexed: 11/18/2022] Open
Abstract
Crosstalk between neurons and glia may constitute a significant part of information processing in the brain. We present a novel method of statistically identifying interactions in a neuron-glia network. We attempted to identify neuron-glia interactions from neuronal and glial activities via maximum-a-posteriori (MAP)-based parameter estimation by developing a generalized linear model (GLM) of a neuron-glia network. The interactions in our interest included functional connectivity and response functions. We evaluated the cross-validated likelihood of GLMs that resulted from the addition or removal of connections to confirm the existence of specific neuron-to-glia or glia-to-neuron connections. We only accepted addition or removal when the modification improved the cross-validated likelihood. We applied the method to a high-throughput, multicellular in vitro Ca2+ imaging dataset obtained from the CA3 region of a rat hippocampus, and then evaluated the reliability of connectivity estimates using a statistical test based on a surrogate method. Our findings based on the estimated connectivity were in good agreement with currently available physiological knowledge, suggesting our method can elucidate undiscovered functions of neuron-glia systems.
Collapse
Affiliation(s)
- Ken Nakae
- Integrated Systems Biology Laboratory, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Center for Information and Neural Networks, Suita City, Osaka, Japan
- * E-mail: (YI); (SI)
| | - Tomoe Ishikawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shigeyuki Oba
- Integrated Systems Biology Laboratory, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hidetoshi Urakubo
- Integrated Systems Biology Laboratory, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Masanori Koyama
- Integrated Systems Biology Laboratory, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Shin Ishii
- Integrated Systems Biology Laboratory, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan
- * E-mail: (YI); (SI)
| |
Collapse
|
48
|
Cunningham JP, Yu BM. Dimensionality reduction for large-scale neural recordings. Nat Neurosci 2014; 17:1500-9. [PMID: 25151264 PMCID: PMC4433019 DOI: 10.1038/nn.3776] [Citation(s) in RCA: 658] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/27/2014] [Indexed: 12/11/2022]
Abstract
Most sensory, cognitive and motor functions depend on the interactions of many neurons. In recent years, there has been rapid development and increasing use of technologies for recording from large numbers of neurons, either sequentially or simultaneously. A key question is what scientific insight can be gained by studying a population of recorded neurons beyond studying each neuron individually. Here, we examine three important motivations for population studies: single-trial hypotheses requiring statistical power, hypotheses of population response structure and exploratory analyses of large data sets. Many recent studies have adopted dimensionality reduction to analyze these populations and to find features that are not apparent at the level of individual neurons. We describe the dimensionality reduction methods commonly applied to population activity and offer practical advice about selecting methods and interpreting their outputs. This review is intended for experimental and computational researchers who seek to understand the role dimensionality reduction has had and can have in systems neuroscience, and who seek to apply these methods to their own data.
Collapse
Affiliation(s)
- John P Cunningham
- Department of Statistics, Columbia University, New York, New York, USA
| | - Byron M Yu
- 1] Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA. [2] Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA. [3] Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
49
|
Okamoto K, Ishikawa T, Abe R, Ishikawa D, Kobayashi C, Mizunuma M, Norimoto H, Matsuki N, Ikegaya Y. Ex vivo cultured neuronal networks emit in vivo-like spontaneous activity. J Physiol Sci 2014; 64:421-31. [PMID: 25208897 PMCID: PMC10717955 DOI: 10.1007/s12576-014-0337-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/27/2014] [Indexed: 11/30/2022]
Abstract
Spontaneous neuronal activity is present in virtually all brain regions, but neither its function nor spatiotemporal patterns are fully understood. Ex vivo organotypic slice cultures may offer an opportunity to investigate some aspects of spontaneous activity, because they self-restore their networks that collapsed during slicing procedures. In hippocampal networks, we compared the levels and patterns of in vivo spontaneous activity to those in acute and cultured slices. We found that the firing rates and excitatory synaptic activity in the in vivo hippocampus are more similar to those in slice cultures compared to acute slices. The soft confidence-weighted algorithm, a machine learning technique without human bias, also revealed that hippocampal slice cultures resemble the in vivo hippocampus in terms of the overall tendency of the parameters of spontaneous activity.
Collapse
Affiliation(s)
- Kazuki Okamoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Tomoe Ishikawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Reimi Abe
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Daisuke Ishikawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Chiaki Kobayashi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Mika Mizunuma
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Hiroaki Norimoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Norio Matsuki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
- Center for Information and Neural Networks, Suita City, Osaka 565-0871 Japan
| |
Collapse
|
50
|
Garcia-Munoz M, Lopez-Huerta VG, Carrillo-Reid L, Arbuthnott GW. Extrasynaptic glutamate NMDA receptors: key players in striatal function. Neuropharmacology 2014; 89:54-63. [PMID: 25239809 DOI: 10.1016/j.neuropharm.2014.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/26/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022]
Abstract
N-methyl-D-aspartate receptors (NMDAR) are crucial for the function of excitatory neurotransmission and are present at the synapse and on the extrasynaptic membrane. The major nucleus of the basal ganglia, striatum, receives a large glutamatergic excitatory input carrying information about movements and associated sensory stimulation for its proper function. Such bombardment of glutamate synaptic release results in a large extracellular concentration of glutamate that can overcome the neuronal and glial uptake homeostatic systems therefore allowing the stimulation of extrasynaptic glutamate receptors. Here we have studied the participation of their extrasynaptic type in cortically evoked responses or in the presence of NMDARs stimulation. We report that extrasynaptic NMDAR blocker memantine, reduced in a dose-dependent manner cortically induced NMDA excitatory currents in striatal neurons (recorded in zero-Mg(++) plus DNQX 10 μM). Moreover, memantine (2-4 μM) significantly reduced the NMDAR-dependent membrane potential oscillations called up and down states. Recordings of neuronal striatal networks with a fluorescent calcium indicator or with multielectrode arrays (MEA) also showed that memantine reduced in a dose-dependent manner, NMDA-induced excitatory currents and network behavior. We used multielectrode arrays (MEA) to grow segregated cortical and striatal neurons. Once synaptic contacts were developed (>21DIV) recordings of extracellular activity confirmed the cortical drive of spontaneous synchronous discharges in both compartments. After severing connections between compartments, active striatal neurons in the presence of memantine (1 μM) and CNQX (10 μM) were predominantly fast spiking interneurons (FSI). The significance of extrasynaptic receptors in the regulation of striatal function and neuronal network activity is evident.
Collapse
Affiliation(s)
- Marianela Garcia-Munoz
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Japan.
| | - Violeta G Lopez-Huerta
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Japan.
| | - Luis Carrillo-Reid
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Japan; Department of Biological Sciences, Columbia University, NY, USA.
| | - Gordon W Arbuthnott
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Japan.
| |
Collapse
|