1
|
Matchynski JI, Cilley TS, Sadik N, Makki KM, Wu M, Manwar R, Woznicki AR, Kallakuri S, Arfken CL, Hope BT, Avanaki K, Conti AC, Perrine SA. Quantification of prefrontal cortical neuronal ensembles following conditioned fear learning in a Fos-LacZ transgenic rat with photoacoustic imaging in Vivo. PHOTOACOUSTICS 2023; 33:100551. [PMID: 38021296 PMCID: PMC10658601 DOI: 10.1016/j.pacs.2023.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 05/19/2023] [Accepted: 08/26/2023] [Indexed: 12/01/2023]
Abstract
Understanding the neurobiology of complex behaviors requires measurement of activity in the discrete population of active neurons, neuronal ensembles, which control the behavior. Conventional neuroimaging techniques ineffectively measure neuronal ensemble activity in the brain in vivo because they assess the average regional neuronal activity instead of the specific activity of the neuronal ensemble that mediates the behavior. Our functional molecular photoacoustic tomography (FM-PAT) system allows direct imaging of Fos-dependent neuronal ensemble activation in Fos-LacZ transgenic rats in vivo. We tested four experimental conditions and found increased FM-PAT signal in prefrontal cortical areas in rats undergoing conditioned fear or novel context exposure. A parallel immunofluorescence ex vivo study of Fos expression found similar findings. These findings demonstrate the ability of FM-PAT to measure Fos-expressing neuronal ensembles directly in vivo and support a mechanistic role for the prefrontal cortex in higher-order processing of response to specific stimuli or environmental cues.
Collapse
Affiliation(s)
- James I Matchynski
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Wayne State MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Timothy S Cilley
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nareen Sadik
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kassem M Makki
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Min Wu
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Rayyan Manwar
- University of Illinois at Chicago, Department of Bioengineering, Chicago, IL, USA
| | | | - Srinivasu Kallakuri
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Cynthia L Arfken
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bruce T Hope
- The National Institute on Drug Abuse (NIDA), Intramural Research Program, Baltimore, MD, USA
| | - Kamran Avanaki
- University of Illinois at Chicago, Department of Bioengineering, Chicago, IL, USA
| | - Alana C Conti
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
2
|
Matchynski JI, Manwar R, Kratkiewicz KJ, Madangopal R, Lennon VA, Makki KM, Reppen AL, Woznicki AR, Hope BT, Perrine SA, Conti AC, Avanaki K. Direct measurement of neuronal ensemble activity using photoacoustic imaging in the stimulated Fos-LacZ transgenic rat brain: A proof-of-principle study. PHOTOACOUSTICS 2021; 24:100297. [PMID: 34522608 PMCID: PMC8426561 DOI: 10.1016/j.pacs.2021.100297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/28/2021] [Accepted: 08/28/2021] [Indexed: 05/16/2023]
Abstract
Measuring neuroactivity underlying complex behaviors facilitates understanding the microcircuitry that supports these behaviors. We have developed a functional and molecular photoacoustic tomography (F/M-PAT) system which allows direct imaging of Fos-expressing neuronal ensembles in Fos-LacZ transgenic rats with a large field-of-view and high spatial resolution. F/M-PAT measures the beta-galactosidase catalyzed enzymatic product of exogenous chromophore X-gal within ensemble neurons. We used an ex vivo imaging method in the Wistar Fos-LacZ transgenic rat, to detect neuronal ensembles in medial prefrontal cortex (mPFC) following cocaine administration or a shock-tone paired stimulus. Robust and selective F/M-PAT signal was detected in mPFC neurons after both conditions (compare to naive controls) demonstrating successful and direct detection of Fos-expressing neuronal ensembles using this approach. The results of this study indicate that F/M-PAT can be used in conjunction with Fos-LacZ rats to monitor neuronal ensembles that underlie a range of behavioral processes, such as fear learning or addiction.
Collapse
Key Words
- ANSI, American national standards institute
- AP, anterior-posterior
- Brain
- CNR, contrast-to-noise ratio
- Cocaine
- DMSO, dimethyl sulfoxide
- DV, dorsal-ventral
- F/M-PAT, functional molecular photoacoustic tomography
- FOV, field-of-view
- Fear conditioning
- Fos
- GRIN, gradient-index
- IL, infralimbic cortex
- ML, medial-lateral
- Neuronal ensemble
- OCT, optical coherence tomography
- OPO, optical parametric oscillator
- PA, photoacoustic
- PBS, phosphate buffer saline
- PL, prelimbic cortex
- Photoacoustic imaging
- SNR, signal-to-noise ratio
- US, ultrasound
- X-gal
- X-gal, beta-D-galactosidase
- fMRI, functional magnetic resonance imaging
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- James I. Matchynski
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rayyan Manwar
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, USA
| | - Karl J. Kratkiewicz
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Rajtarun Madangopal
- The National Institute on Drug Abuse (NIDA) Intramural Research Program, Baltimore, MD, USA
| | - Veronica A. Lennon
- The National Institute on Drug Abuse (NIDA) Intramural Research Program, Baltimore, MD, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kassem M. Makki
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Abbey L. Reppen
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | | | - Bruce T. Hope
- The National Institute on Drug Abuse (NIDA) Intramural Research Program, Baltimore, MD, USA
| | - Shane A. Perrine
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alana C. Conti
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kamran Avanaki
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, USA
| |
Collapse
|
3
|
Huynh KH, Lee KY, Chang H, Lee SH, Kim J, Pham XH, Lee YS, Rho WY, Jun BH. Bioapplications of Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1309:235-255. [PMID: 33782875 DOI: 10.1007/978-981-33-6158-4_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanobiotechnology is known as the application of nanoscaled techniques in biology which bridges natural science to living organism for improving the quality of life of humans. Nanotechnology was first issued in 1959 and has been rapidly developed, supplying numerous benefits to basic scientific academy and to clinical application including human healthcare, specifically in cancer therapy. This chapter discusses recent advances and potentials of nanotechnology in pharmaceutics, therapeutics, biosensing, bioimaging, and gene delivery that demonstrate the multifunctionality of nanotechnology.
Collapse
Affiliation(s)
- Kim-Hung Huynh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Kwee-Yum Lee
- Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon, Republic of Korea
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon, Republic of Korea
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju, Republic of Korea.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea.
| |
Collapse
|
4
|
Barton SM, Janve VA, McClure R, Anderson A, Matsubara JA, Gore JC, Pham W. Lipopolysaccharide Induced Opening of the Blood Brain Barrier on Aging 5XFAD Mouse Model. J Alzheimers Dis 2020; 67:503-513. [PMID: 30584141 DOI: 10.3233/jad-180755] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of neurotherapeutics for many neurodegenerative diseases has largely been hindered by limited pharmacologic penetration across the blood-brain barrier (BBB). Previous attempts to target and clear amyloid-β (Aβ) plaques, a key mediator of neurodegenerative changes in Alzheimer's disease (AD), have had limited clinical success due to low bioavailability in the brain because of the BBB. Here we test the effects of inducing an inflammatory response to disrupt the BBB in the 5XFAD transgenic mouse model of AD. Lipopolysaccharide (LPS), a bacterial endotoxin recognized by the innate immune system, was injected at varying doses. 24 hours later, mice were injected with either thioflavin S, a fluorescent Aβ-binding small molecule or 30 nm superparamagnetic iron oxide (SPIO) nanoparticles, both of which are unable to penetrate the BBB under normal physiologic conditions. Our results showed that when pretreated with 3.0 mg/kg LPS, thioflavin S can be found in the brain bound to Aβ plaques in aged 5XFAD transgenic mice. Following the same LPS pretreatment, SPIO nanoparticles could also be found in the brain. However, when done on wild type or young 5XFAD mice, limited SPIO was detected. Our results suggest that the BBB in aged 5XFAD mouse model is susceptible to increased permeability mediated by LPS, allowing for improved delivery of the small molecule thioflavin S to target Aβ plaques and SPIO nanoparticles, which are significantly larger than antibodies used in clinical trials for immunotherapy of AD. Although this approach demonstrated efficacy for improved delivery to the brain, LPS treatment resulted in significant weight loss even at low doses, resulting from the induced inflammatory response. These findings suggest inducing inflammation can improve delivery of small and large materials to the brain for improved therapeutic or diagnostic efficacy. However, this approach must be balanced with the risks of systemic inflammation.
Collapse
Affiliation(s)
- Shawn M Barton
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Vaibhav A Janve
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Richard McClure
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Adam Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Ingram Cancer Center, Nashville, TN, USA.,Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
| | - Wellington Pham
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Ingram Cancer Center, Nashville, TN, USA.,Vanderbilt Institute of Chemical Biology, Nashville, TN, USA.,Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, TN, USA
| |
Collapse
|
5
|
Peacock ZS, Krishnan DG. Advances in Imaging Over 100 Years: The Impact on Oral and Maxillofacial Surgery. J Oral Maxillofac Surg 2018; 76:1387-1399. [DOI: 10.1016/j.joms.2018.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 01/08/2023]
|
6
|
Liu PK, Liu CH. Epigenetics of amphetamine-induced sensitization: HDAC5 expression and microRNA in neural remodeling. J Biomed Sci 2016; 23:90. [PMID: 27931227 PMCID: PMC5146867 DOI: 10.1186/s12929-016-0294-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/26/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Histone deacetylase (HDAC) activities modify chromatin structure and play a role in learning and memory during developmental processes. Studies of adult mice suggest HDACs are involved in neural network remodeling in brain repair, but its function in drug addiction is less understood. We aimed to examine in vivo HDAC5 expression in a preclinical model of amphetamine-induced sensitization (AIS) of behavior. We generated specific contrast agents to measure HDAC5 levels by in vivo molecular contrast-enhanced (MCE) magnetic resonance imaging (MRI) in amphetamine-naïve mice as well as in mice with AIS. To validate the MRI results we used ex vivo methods including in situ hybridization, RT-PCR, immunohistochemistry, and transmision electron microscopy. METHODS We compared the expression of HDAC5 mRNA in an acute exposure paradigm (in which animals experienced a single drug exposure [A1]) and in a chronic-abstinence-challenge paradigm (in which animals were exposed to the drug once every other day for seven doses, then underwent 2 weeks of abstinence followed by a challenge dose [A7WA]). Control groups for each of these exposure paradigms were given saline. To delineate how HDAC5 expression was related to AIS, we compared the expression of HDAC5 mRNA at sequences where no known microRNA (miR) binds (hdac5AS2) and at sequences where miR-2861 is known to bind (miD2861). We synthesized and labeled phosphorothioated oligonucleic acids (sODN) of hdac5AS2 or miD2861 linked to superparamagentic iron oxide nanoparticles (SPION), and generated HDAC5-specific contrast agents (30 ± 20 nm, diameter) for MCE MRI; the same sequences were used for primers for TaqMan® analysis (RT-qPCR) in ex vivo validation. In addition, we used subtraction R2* maps to identify regional HDAC5 expression. RESULTS Naïve C57black6 mice that experience acute exposure to amphetamine (4 mg/kg, by injection intraperitoneally) show expression of both total and phosphorylated (S259) HDAC5 antigens in GFAP+ and GFAP- cells, but the appearance of these cells was attenuated in the chronic paradigm. We found that MCE MRI reports HDAC5 mRNA with precision in physiological conditions because the HDAC5 mRNA copy number reported by TaqMan analysis was positively correlated (with a linear coefficient of 1.0) to the ΔR2* values (the frequency of signal reduction above background, 1/s) measured by MRI. We observed SPION-mid2861 as electron dense nanoparticles (EDNs) of less than 30 nm in the nucleus of the neurons, macrophages, and microglia, but not in glia and endothelia. We found no preferential distribution in any particular type of neural cells, but observed scattered EDNs of 60-150 nm (dia) in lysosomes. In the acute paradigm, mice pretreated with miD2861 (1.2 mmol/kg, i.p./icv) exhibited AIS similar to that exibited by mice in the chronic exposure group, which exhibited null response to mid2861 pretreatment. Moreover, SPION-miD2861 identified enhanced HDAC5 expression in the lateral septum and the striatum after amphetamine, where we found neurprogenitor cells coexpressing NeuN and GFAP. CONCLUSIONS We conclude that miD2681 targets HDAC5 mRNA with precision similar to that of RT-PCR. Our MCE MRI detects RNA-bound nanoparticles (NPs) in vivo, and ex vivo validation methods confirm that EDNs do not accumulate in any particular cell type. As HDAC5 expression may help nullify AIS and identify progenitor cells, the precise delivery of miD2861 may serve as a vehicle for monitoring network remodeling with target specificity and signal sensitivity after drug exposure that identifies brain repair processes in adult animals.
Collapse
Affiliation(s)
- Philip K Liu
- Department of Radiology, Molecular Contrast-Enhanced MRI Laboratory at the Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and the Harvard Medical School, CNY149 (2301) Thirteenth Street, Charlestown, MA, 02129, USA.
| | - Christina H Liu
- Department of Radiology, Molecular Contrast-Enhanced MRI Laboratory at the Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and the Harvard Medical School, CNY149 (2301) Thirteenth Street, Charlestown, MA, 02129, USA
| |
Collapse
|
7
|
Garg T, Bhandari S, Rath G, Goyal AK. Current strategies for targeted delivery of bio-active drug molecules in the treatment of brain tumor. J Drug Target 2015; 23:865-87. [PMID: 25835469 DOI: 10.3109/1061186x.2015.1029930] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain tumor is one of the most challenging diseases to treat. The major obstacle in the specific drug delivery to brain is blood-brain barrier (BBB). Mostly available anti-cancer drugs are large hydrophobic molecules which have limited permeability via BBB. Therefore, it is clear that the protective barriers confining the passage of the foreign particles into the brain are the main impediment for the brain drug delivery. Hence, the major challenge in drug development and delivery for the neurological diseases is to design non-invasive nanocarrier systems that can assist controlled and targeted drug delivery to the specific regions of the brain. In this review article, our major focus to treat brain tumor by study numerous strategies includes intracerebral implants, BBB disruption, intraventricular infusion, convection-enhanced delivery, intra-arterial drug delivery, intrathecal drug delivery, injection, catheters, pumps, microdialysis, RNA interference, antisense therapy, gene therapy, monoclonal/cationic antibodies conjugate, endogenous transporters, lipophilic analogues, prodrugs, efflux transporters, direct conjugation of antitumor drugs, direct targeting of liposomes, nanoparticles, solid-lipid nanoparticles, polymeric micelles, dendrimers and albumin-based drug carriers.
Collapse
Affiliation(s)
| | - Saurav Bhandari
- b Department of Quality Assurance , ISF College of Pharmacy , Moga , Punjab , India
| | | | | |
Collapse
|
8
|
Liu CH. Anatomical, functional and molecular biomarker applications of magnetic resonance neuroimaging. FUTURE NEUROLOGY 2015; 10:49-65. [DOI: 10.2217/fnl.14.60] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT MRI and magnetic resonance spectroscopy (MRS) along with computed tomography and PET are the most common imaging modalities used in the clinics to detect structural abnormalities and pathological conditions in the brain. MRI generates superb image resolution/contrast without radiation exposure that is associated with computed tomography and PET; MRS and spectroscopic imaging technologies allow us to measure changes in brain biochemistry. Increasingly, neurobiologists and MRI scientists are collaborating to solve neuroscience problems across sub-cellular through anatomical levels. To achieve successful cross-disciplinary collaborations, neurobiologists must have sufficient knowledge of magnetic resonance principles and applications in order to effectively communicate with their MRI colleagues. This review provides an overview of magnetic resonance techniques and how they can be used to gain insight into the active brain at the anatomical, functional and molecular levels with the goal of encouraging neurobiologists to include MRI/MRS as a research tool in their endeavors.
Collapse
|
9
|
Liu CH, Sastre A, Conroy R, Seto B, Pettigrew RI. NIH workshop on clinical translation of molecular imaging probes and technology--meeting report. Mol Imaging Biol 2014; 16:595-604. [PMID: 24833042 PMCID: PMC4161932 DOI: 10.1007/s11307-014-0746-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A workshop on "Clinical Translation of Molecular Imaging Probes and Technology" was held August 2, 2013 in Bethesda, Maryland, organized and supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB). This workshop brought together researchers, clinicians, representatives from pharmaceutical companies, molecular probe developers, and regulatory science experts. Attendees met to talk over current challenges in the discovery, validation, and translation of molecular imaging (MI) probes for key clinical applications. Participants also discussed potential strategies to address these challenges. The workshop consisted of 4 sessions, with 14 presentations and 2 panel discussions. Topics of discussion included (1) challenges and opportunities for clinical research and patient care, (2) advances in molecular probe design, (3) current approaches used by industry and pharmaceutical companies, and (4) clinical translation of MI probes. In the presentations and discussions, there were general agreement that while the barriers for validation and translation of MI probes remain high, there are pressing clinical needs and development opportunities for targets in cardiovascular, cancer, endocrine, neurological, and inflammatory diseases. The strengths of different imaging modalities, and the synergy of multimodality imaging, were highlighted. Participants also underscored the continuing need for close interactions and collaborations between academic and industrial partners, and federal agencies in the imaging probe development process.
Collapse
Affiliation(s)
- Christina H Liu
- National Institute of Biomedical Imaging and Bioengineering, 6707 Democracy Blvd., Suite 200, Bethesda, MD, 20892, USA,
| | | | | | | | | |
Collapse
|
10
|
Molecular neuroimaging of post-injury plasticity. J Mol Neurosci 2014; 54:630-8. [PMID: 24909382 DOI: 10.1007/s12031-014-0347-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/29/2014] [Indexed: 12/28/2022]
Abstract
Nerve injury induces long-term changes in neuronal activity in the primary somatosensory cortex (S1), which has often been implicated as the origin of sensory dysfunction. However, the cellular mechanisms underlying this phenomenon remain unclear. C-fos is an immediate early gene, which has been shown to play an instrumental role in plasticity. By developing a new platform to image real-time changes in gene expression in vivo, we investigated whether injury modulates the levels of c-fos in layer V of S1, since previous studies have suggested that these neurons are particularly susceptible to injury. The yellow fluorescent protein, ZsYellow1, under the regulation of the c-fos promoter, was expressed throughout the rat brain. A fiber-based confocal microscope that enabled deep brain imaging was utilized, and local field potentials were collected simultaneously. In the weeks following limb denervation in adult rats (n=10), sensory stimulation of the intact limb induced significant increases in c-fos gene expression in cells located in S1, both contralateral (affected, 27.6±3 cells) and ipsilateral (8.6±3 cells) to the injury, compared to controls (n=10, 13.4±3 and 1.0±1, respectively, p value<0.05). Thus, we demonstrated that injury activates cellular mechanisms that are involved in reshaping neuronal connections, and this may translate to neurorehabilitative potential.
Collapse
|
11
|
Liu CH, Ren J, Liu CM, Liu PK. Intracellular gene transcription factor protein-guided MRI by DNA aptamers in vivo. FASEB J 2013; 28:464-73. [PMID: 24115049 DOI: 10.1096/fj.13-234229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanisms by which transcription factor (TF) protein AP-1 modulates amphetamine's effects on gene transcription in living brains are unclear. We describe here the first part of our studies to investigate these mechanisms, specifically, our efforts to develop and validate aptamers containing the binding sequence of TF AP-1 (5ECdsAP1), in order to elucidate its mechanism of action in living brains. This AP-1-targeting aptamer, as well as a random sequence aptamer with no target (5ECdsRan) as a control, was partially phosphorothioate modified and tagged with superparamagnetic iron oxide nanoparticles (SPIONs), gold, or fluorescein isothiothianate contrast agent for imaging. Optical and transmission electron microscopy studies revealed that 5ECdsAP1 is taken up by endocytosis and is localized in the neuronal endoplasmic reticulum. The results of magnetic resonance imaging (MRI) with SPION-5ECdsAP1 revealed that neuronal AP-1 TF protein levels were elevated in neurons of live male C57black6 mice after amphetamine exposure; however, pretreatment with SCH23390, a dopaminergic receptor antagonist, suppressed this elevation. As studies in transgenic mice with neuronal dominant-negative A-FOS mutant protein, which has no binding affinity for the AP-1 sequence, showed a completely null MRI signal in the striatum, we can conclude that the MR signal reflects specific binding between the 5ECdsAP1 aptamer and endogenous AP-1 protein. Together, these data lend support to the application of 5ECdsAP1 aptamer for intracellular protein-guided imaging and modulation of gene transcription, which will thus allow investigation of the mechanisms of signal transduction in living brains.
Collapse
Affiliation(s)
- Christina H Liu
- 3Massachusetts General Hospital, CNY149 (2301) Thirteenth St., Charlestown, MA 02129, USA.
| | | | | | | |
Collapse
|
12
|
Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M. Effects of magnetite nanoparticles on soybean chlorophyll. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10645-52. [PMID: 23951999 DOI: 10.1021/es402249b] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanoparticles (NPs) have emerged as one of the most innovative and promising application in agriculture. Since plants are recognized as essential component of all ecosystems, the effects of NPs on plants may pave a new insight to the ecosystems. Here, uptake and translocation of superparamagnetic iron oxide NPs (SPIONs), with various surface charges, on soybean has been probed; in addition, the effects of SPIONs on variations of chlorophyll, in hydroponic condition, together with their ability for reduction of iron deficiency chlorosis were explored. We find that SPIONs, which were entered and translocated in the soybean, increased chlorophyll levels, with no trace of toxicity. Furthermore, it was found that physicochemical characteristics of the SPIONs had a crucial role on the enhancement of chlorophyll content in subapical leaves of soybean. The equivalent ratio of chlorophyll a to b, in all treatments with conventional growth medium iron chelate and SPIONs (as iron source), indicated no significant difference on the photosynthesis efficiency. Finally, it was observed that the effect of SPIONs on the soybean chlorophyll content may have influence on both biochemical and enzymatic efficiency in different stages of the photosynthesis reactions.
Collapse
Affiliation(s)
- Mohammad H Ghafariyan
- Soil Science Department, Faculty of Agriculture, Tarbiat Modares University , Tehran 14117-13116, Iran
| | | | | | | | | |
Collapse
|
13
|
Liu CH, Yang J, Ren JQ, Liu CM, You Z, Liu PK. MRI reveals differential effects of amphetamine exposure on neuroglia in vivo. FASEB J 2012; 27:712-24. [PMID: 23150521 DOI: 10.1096/fj.12-220061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
How amphetamine affects the neuroglia in living brains is not well understood. In an effort to elucidate this effect, we investigated neuroglia in response to amphetamine exposure using antisense (AS) or sense (S) phosphorothioate-modified oligodeoxynucleotide (sODN) sequences that correspond to glial fibrillary acidic protein (GFAP) mRNA (AS-gfap or S-gfap, respectively) expression. The control is a random-sequence sODN (Ran). Using cyanine 5.5-superparamagnetic iron oxide nanoparticle (Cy5.5-SPION) labeling and fluorescent microscopy, we demonstrated that living neural progenitor cells (PC-12.1), as well as the cells in fresh brain slices and intact brains of male C57BL6 mice, exhibited universal uptake of all of the sODNs but rapidly excluded all sODN-Ran and most S-gfap. Moreover, transmission electron microscopy revealed electron-dense nanoparticles only in the neuroglia of normal or transgenic mice [B6;DBA-Tg(Fos-tTA, Fos-EGFP*)1MmayTg(tetO-lacZ,tTA*)1Mmay/J] that had been administered AS-gfap or Cy5.5-SPION-gfap. Subtraction R2* maps from mice with acute and chronic amphetamine exposure demonstrated, validated by postmortem immunohistochemistry, a reduction in striatal neuroglia, with gliogenesis in the subventricular zone and the somatosensory cortex in vivo. The sensitivity of our unique gene transcript targeted MRI was illustrated by a positive linear correlation (r(2)=1.0) between in vivo MRI signal changes and GFAP mRNA copy numbers determined by ex vivo quantitative RT-PCR. The study provides direct evidence for targeting neuroglia by antisense DNA-based SPION-gfap that enables in vivo MRI of inaccessible tissue with PCR sensitivity. The results enable us to conclude that amphetamine induces toxicity to neuroglia in vivo, which may cause remodeling or reconnectivity of neuroglia.
Collapse
Affiliation(s)
- Christina H Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
14
|
Papagiannaros A, Righi V, Day GG, Rahme LG, Liu PK, Fischman AJ, Tompkins RG, Tzika AA. Imaging C-Fos Gene Expression in Burns Using Lipid Coated Spion Nanoparticles. ADVANCES IN MOLECULAR IMAGING 2012; 2:31-37. [PMID: 24995147 DOI: 10.4236/ami.2012.24005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
MR imaging of gene transcription is important as it should enable the non-invasive detection of mRNA alterations in disease. A range of MRI methods have been proposed for in vivo molecular imaging of cells based on the use of ultra-small super-paramagnetic iron oxide (USPIO) nanoparticles and related susceptibility weighted imaging methods. Although immunohistochemistry can robustly differentiate the expression of protein variants, there is currently no direct gene assay technique that is capable of differentiating established to differentiate the induction profiles of c-Fos mRNA in vivo. To visualize the differential FosB gene expression profile in vivo after burn trauma, we developed MR probes that link the T2* contrast agent [superparamagnetic iron oxide nanoparticles (SPION)] with an oligodeoxynucleotide (ODN) sequence complementary to FosB mRNA to visualize endogenous mRNA targets via in vivo hybridization. The presence of this SPION-ODN probe in cells results in localized signal reduction in T2*-weighted MR images, in which the rate of signal reduction (R2*) reflects the regional iron concentration at different stages of amphetamine (AMPH) exposure in living mouse tissue. Our aim was to produce a superior contrast agent that can be administered using systemic as opposed to local administration and which will target and accumulate at sites of burn injury. Specifically, we developed and evaluated a PEGylated lipid coated MR probe with ultra-small super-paramagnetic iron oxide nanoparticles (USPION, a T2 susceptibility agent) coated with cationic fusogenic lipids, used for cell transfection and gene delivery and covalently linked to a phosphorothioate modified oligodeoxynucleotide (sODN) complementary to c-Fos mRNA (SPION-cFos) and used the agent to image mice with leg burns. Our study demonstrated the feasibility of monitoring burn injury using MR imaging of c-Fos transcription in vivo, in a clinically relevant mouse model of burn injury for the first time.
Collapse
Affiliation(s)
- Aristarchos Papagiannaros
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, USA
| | - Valeria Righi
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, USA ; Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, USA ; Department of Biochemistry "G. Moruzzi", University of Bologna, Bologna, Italy
| | - George G Day
- Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Laurence G Rahme
- Molecular Surgery Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School and Massachusetts General Hospital, Boston, USA ; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Philip K Liu
- Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Alan J Fischman
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Ronald G Tompkins
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - A Aria Tzika
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, USA ; Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, USA ; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
15
|
Abstract
In the post-genomic era, epigenetic factors-literally those that are "over" or "above" genetic ones and responsible for controlling the expression and function of genes-have emerged as important mediators of development and aging; gene-gene and gene-environmental interactions; and the pathophysiology of complex disease states. Here, we provide a brief overview of the major epigenetic mechanisms (ie, DNA methylation, histone modifications and chromatin remodeling, and non-coding RNA regulation). We highlight the nearly ubiquitous profiles of epigenetic dysregulation that have been found in Alzheimer's and other neurodegenerative diseases. We also review innovative methods and technologies that enable the characterization of individual epigenetic modifications and more widespread epigenomic states at high resolution. We conclude that, together with complementary genetic, genomic, and related approaches, interrogating epigenetic and epigenomic profiles in neurodegenerative diseases represent important and increasingly practical strategies for advancing our understanding of and the diagnosis and treatment of these disorders.
Collapse
|
16
|
Liu CH, Ren JQ, You Z, Yang J, Liu CM, Uppal R, Liu PK. Noninvasive detection of neural progenitor cells in living brains by MRI. FASEB J 2011; 26:1652-62. [PMID: 22198388 DOI: 10.1096/fj.11-199547] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The presence of pericytes in brain regions undergoing repair is evident of the recruitment of bone marrow-derived multipotent regenerative cells to the neurovascular unit during angiogenesis. At present, post mortem sampling is the only way to identify them. Therefore, such cell typing is inadequate for preserving neural progenitor cells for any meaningful stem cell therapy. We aimed to target cerebral pericytes in vivo using dual gene transcript-targeted MRI (GT-tMRI) in male C57black6 mice after a 60-min bilateral carotid artery occlusion (BCAO). We attached superparamagnetic iron oxide nanoparticles (SPIONs) to phosphorothioate-modified micro-DNA that targets actin or nestin mRNA. Because BCAO compromises the blood-brain barrier (BBB) and induces expression of α-smooth muscle (αSM)-actin and nestin antigens by pericytes in new vessels, we delivered pericyte-specific magnetic resonance contrast agents (SPION-actin or SPION-nestin at 4 mg Fe/kg) by i.p. injection to C57black6 mice that had experienced BCAO. We demonstrated that the surge in cerebral iron content by inductively coupled plasma-mass spectrometry matched the increase in the frequency of relaxivity. We also found that SPION-nestin was colocalized in αSM- actin- and nestin-expressing pericytes in BCAO-treated C57black6 or transgenic mice [B6.Cg-Tg(CAG-mRFP1) 1F1Hadj/J, expressing red fluorescent protein by actin promoter]. We identified pericytes in the repair patch in living brains after BCAO with a voxel size of 0.03 mm(3). The presence of electron-dense nanoparticles in vascular pericytes in the region of BBB injury led us to draw the conclusion that GT-tMRI can noninvasively reveal neural progenitor cells during vascularization.
Collapse
Affiliation(s)
- Christina H Liu
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Lee DE, Kim AY, Saravanakumar G, Koo H, Kwon IC, Choi K, Park JH, Kim K. Hyaluronidase-sensitive SPIONs for MR/optical dual imaging nanoprobes. Macromol Res 2011. [DOI: 10.1007/s13233-011-0804-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Pan H, Epstein J, Silbersweig DA, Stern E. New and emerging imaging techniques for mapping brain circuitry. ACTA ACUST UNITED AC 2011; 67:226-51. [DOI: 10.1016/j.brainresrev.2011.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 12/20/2022]
|
19
|
Abstract
Gene action plays a role in neural cell migration, learning processes, stress response, drug addiction, cancer, mental health, psychiatric and neurological disorders, as well as neurodegenerative diseases. Studies also show that upregulation of certain gene activities in neurons may contribute to the development of Alzheimer's disease and other progressive cognitive disorders many decades after the alteration itself occurs. Endogenous, environmental stress-related, or drug-induced chemical imbalances in the brain affect the homeostasis of gene activities in neurons in specific brain regions and contribute to the comorbidity of mental illness and substance dependence. On the other hand, altered gene activities are also a necessary part of repair processes after brain injury. Our general well-being is governed by the highly regulated gene activities in our brains. A better understanding of gene activities and their relationship to the progression of neurological disease can help the research and medical communities develop necessary measures for early intervention, as well as plan more appropriate interventions or new therapeutic approaches that can benefit a broad spectrum of patients who will be or have been affected by brain diseases. We developed a non-invasive imaging technique that allows real-time assessment of gene transcription profiles in live brains. This imaging method has the potential to provide first-hand information about the progression of neurological disorders by gene targeting and cell typing, and it could elucidate a surrogate marker for therapeutic efficacy for future planning of treatments for human diseases. We have established a workable and reproducible MRI technique in live rodent brains.
Collapse
Affiliation(s)
- Philip K Liu
- Department of Radiology, AA Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| | | |
Collapse
|
20
|
Zou J, Zhang W, Poe D, Qin J, Fornara A, Zhang Y, Ramadan UA, Muhammed M, Pyykkö I. MRI manifestation of novel superparamagnetic iron oxide nanoparticles in the rat inner ear. Nanomedicine (Lond) 2010; 5:739-54. [PMID: 20662645 DOI: 10.2217/nnm.10.45] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM Superparamagnetic iron oxide nanoparticles hierarchically coated with oleic acid and Pluronic F127 copolymers (POA@SPION) have shown exceptional T2 contrast enhancement. The aim of the present work was to investigate the MRI manifestation of POA@SPION in the inner ear. MATERIALS & METHODS A total of 26 male Wister rats were selected for testing POA@SPION administered through intracochlear, intratympanic and intravenous routes. MRI was performed with a 4.7 T MR scanner. RESULTS & CONCLUSION POA@SPION can be introduced into the perilymph space, after which it becomes widely distributed and can demonstrate the integrity of the perilymph-endolymph barrier. Positive highlighting of the endolymph compartment against the darkened perilymph was visualized for the first time. POA@SPION passed through the middle-inner ear barriers in only small amounts, but stayed in the perilymph for 3 days. They did not traverse the blood-perilymph barrier or blood-endolymph barrier. The inner ear distribution of POA@SPION was confirmed by histology. POA@SPION is a promising T2 negative contrast agent.
Collapse
Affiliation(s)
- Jing Zou
- Department of Otolaryngology, University of Tampere, FM1, 3rd Floor, Biokatu 6, 33520 Tampere, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bannas P, Graumann O, Balcerak P, Peldschus K, Kaul MG, Hohenberg H, Haag F, Adam G, Ittrich H, Koch-Nolte F. Quantitative Magnetic Resonance Imaging of Enzyme Activity on the Cell Surface: In Vitro and In Vivo Monitoring of ADP-Ribosyltransferase 2 on T Cells. Mol Imaging 2010. [DOI: 10.2310/7290.2010.00017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Peter Bannas
- From the Department of Diagnostic and Interventional Radiology and Institute of Immunology, University Medical Center, Hamburg-Eppendorf, Germany; Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg, Hamburg, Germany
| | - Oliver Graumann
- From the Department of Diagnostic and Interventional Radiology and Institute of Immunology, University Medical Center, Hamburg-Eppendorf, Germany; Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg, Hamburg, Germany
| | - Philipp Balcerak
- From the Department of Diagnostic and Interventional Radiology and Institute of Immunology, University Medical Center, Hamburg-Eppendorf, Germany; Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg, Hamburg, Germany
| | - Kersten Peldschus
- From the Department of Diagnostic and Interventional Radiology and Institute of Immunology, University Medical Center, Hamburg-Eppendorf, Germany; Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg, Hamburg, Germany
| | - Michael Gerhard Kaul
- From the Department of Diagnostic and Interventional Radiology and Institute of Immunology, University Medical Center, Hamburg-Eppendorf, Germany; Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg, Hamburg, Germany
| | - Heinrich Hohenberg
- From the Department of Diagnostic and Interventional Radiology and Institute of Immunology, University Medical Center, Hamburg-Eppendorf, Germany; Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg, Hamburg, Germany
| | - Friedrich Haag
- From the Department of Diagnostic and Interventional Radiology and Institute of Immunology, University Medical Center, Hamburg-Eppendorf, Germany; Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg, Hamburg, Germany
| | - Gerhard Adam
- From the Department of Diagnostic and Interventional Radiology and Institute of Immunology, University Medical Center, Hamburg-Eppendorf, Germany; Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg, Hamburg, Germany
| | - Harald Ittrich
- From the Department of Diagnostic and Interventional Radiology and Institute of Immunology, University Medical Center, Hamburg-Eppendorf, Germany; Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg, Hamburg, Germany
| | - Friedrich Koch-Nolte
- From the Department of Diagnostic and Interventional Radiology and Institute of Immunology, University Medical Center, Hamburg-Eppendorf, Germany; Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
22
|
Lelyveld VS, Atanasijevic T, Jasanoff A. Challenges for Molecular Neuroimaging with MRI. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2010; 20:71-79. [PMID: 20808721 PMCID: PMC2929832 DOI: 10.1002/ima.20221] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Magnetic resonance (MRI)-based molecular imaging methods are beginning to have impact in neuroscience. A growing number of molecular imaging agents have been synthesized and tested in vitro, but so far relatively few have been validated in the brains of live animals. Here, we discuss key challenges associated with expanding the repertoire of successful molecular neuroimaging approaches. The difficulty of delivering agents past the blood-brain barrier (BBB) is a particular obstacle to molecular imaging in the central nervous system. We review established and emerging techniques for trans-BBB delivery, including intracranial infusion, BBB disruption, and transporter-related methods. Improving the sensitivity with which MRI-based molecular agents can be detected is a second major challenge. Better sensitivity would in turn reduce the requirements for delivery and alleviate potential side effects. We discuss recent efforts to enhance relaxivity of conventional longitudinal relaxation time (T(1)) and transverse relaxation time (T(2)) MRI contrast agents, as well as strategies that involve amplifying molecular signals or reducing endogenous background influences. With ongoing refinement of imaging approaches and brain delivery methods, MRI-based techniques for molecular-level neuroscientific investigation will fall increasingly within reach.
Collapse
Affiliation(s)
- Victor S Lelyveld
- Department of Biological Engineering, Massachusetts Institute of Technology, NW14-2213, Cambridge, MA 02139
| | | | | |
Collapse
|
23
|
Joshi R, Mishra R, Pohmann R, Engelmann J. MR contrast agent composed of cholesterol and peptide nucleic acids: design, synthesis and cellular uptake. Bioorg Med Chem Lett 2010; 20:2238-41. [PMID: 20189384 DOI: 10.1016/j.bmcl.2010.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/02/2010] [Accepted: 02/03/2010] [Indexed: 11/16/2022]
Abstract
A new mRNA targeting contrast agent consisting of three main functional domains, (i) gadolinium based magnetic resonance reporter part, (ii) antisense peptide nucleic acids targeted to mRNA, and (iii) cholesterol as the delivery vector, was developed and synthesized. The new contrast agent showed efficient cellular uptake and significant contrast enhancement at very low labeling concentrations (0.5 microM). However, after uptake into cells the agent was located predominantly in endosomes like a similar cell penetrating peptide conjugated probe. Our results indicate that this newly developed contrast agent could be used for the labeling of cells for optical as well as magnetic resonance imaging.
Collapse
Affiliation(s)
- Rajendra Joshi
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | | | | | | |
Collapse
|
24
|
Zon G. Automated synthesis of phosphorus–sulfur analogs of nucleic acids—25 years on: potential therapeutic agents and proven utility in biotechnology. NEW J CHEM 2010. [DOI: 10.1039/b9nj00577c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Bruzzone MG, Eoli M, Cuccarini V, Grisoli M, Valletta L, Finocchiaro G. Genetic signature of adult gliomas and correlation with MRI features. Expert Rev Mol Diagn 2009; 9:709-20. [PMID: 19817555 DOI: 10.1586/erm.09.44] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years the amount of information concerning the genetics and the biology of gliomas, and particularly of glioblastoma multiforme, increased steadily. Such an increase has been paralleled by the technological progress of MRI. The merging of these scientific areas, as summarized in this review, is helping the stratification of glioma patients for clinical trials and their clinical follow-up. Although available therapeutic options appear limited in number, it is likely that in the next 5 years, both as a consequence of the increased knowledge due to genomic sequencing of hundreds of glioblastoma specimens and to continuous improvements of MRI, new perspectives will be available for these patients, with a sizable impact on their prognosis.
Collapse
Affiliation(s)
- Maria Grazia Bruzzone
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Besta, via Celoria 11, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
DNA-based MRI probes for specific detection of chronic exposure to amphetamine in living brains. J Neurosci 2009; 29:10663-70. [PMID: 19710318 DOI: 10.1523/jneurosci.2167-09.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We designed phosphorothioate-modified DNA probes linked to superparamagnetic iron oxide nanoparticles (SPION) for in vivo magnetic resonance imaging (MRI) of fosB and Delta fosB mRNA after amphetamine (AMPH) exposure in mice. Specificity of both the fosB and Delta fosB probes was verified by in vitro reverse transcriptase-PCR amplification to a single fragment of total cDNA obtained from acutely AMPH-exposed mouse brains. We confirmed time-dependent uptake and retention profiles of both probes in neurons of GAD67-green fluorescent protein knock-in mice. MRI signal of SPION-labeled fosB probe delivered via intracerebroventricular route was elevated in both acutely and chronically AMPH-exposed mice; the signal was suppressed by dopaminergic receptor antagonist pretreatment. SPION-labeled Delta fosB probe signal elevation occurred only in chronically AMPH-exposed mice. The in vivo target specificity of these probes permits reliable MRI visualization of AMPH-induced differential elevations of fosB and Delta fosB mRNA in living brains.
Collapse
|
27
|
Vilpoux C, Warnault V, Pierrefiche O, Daoust M, Naassila M. Ethanol-Sensitive Brain Regions in Rat and Mouse: A Cartographic Review, Using Immediate Early Gene Expression. Alcohol Clin Exp Res 2009; 33:945-69. [DOI: 10.1111/j.1530-0277.2009.00916.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Diffusion-weighted magnetic resonance imaging reversal by gene knockdown of matrix metalloproteinase-9 activities in live animal brains. J Neurosci 2009; 29:3508-17. [PMID: 19295156 DOI: 10.1523/jneurosci.5332-08.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The involvement of matrix metalloproteinase-9 (MMP-9) activities in the development of abnormal water diffusion in the brain after cardiac arrest is not fully understood. We used magnetic resonance imaging to determine the correlation between MMP-9 activity and the mechanism of abnormal water diffusion after global cerebral ischemia (GCI)-induced brain damage in C57black6 mice. We induced GCI in mice by occluding both carotid arteries for 60 min, then allowing reperfusion. We labeled a short DNA that targets mmp-9 mRNA activity [phosphorothioate-modified oligodeoxynucleotide (sODN)-mmp9] or a control probe without intracellular target (sODN-Ran) with iron-based MR contrast agent [superparamagnetic iron oxide nanoparticle (SPION)-mmp9 or SPION-Ran] or fluorescein isothiocyanate (FITC)-sODN-mmp9 or FITC-sODN-Ran; we then delivered these probes by intracerebroventricular infusion or intraperitoneal injection within 3 h of reperfusion. At low dose (120 pmol/kg) the SPION-mmp9 probe was retained at significant levels in the striatum and cortex of living brains 10 h after GCI. Probe retention was validated by similar elevation of mmp-9 mRNA and antigens in postmortem samples taken from regions that exhibited GCI-induced hyperintensity in diffusion-weighted imaging, and a significant reduction in apparent diffusion coefficient (rADC, p = 0.0006, n = 12). At a higher dose (120 nmol/kg), the FITC-sODN-mmp9 probe revealed significant knockdown of MMP-9 activity, per zymography, and a reversal of striatal rADC (p = 0.004, n = 6). These observations were not duplicated in the control group. We conclude that expression of mmp-9 mRNA is associated with abnormal ADC after GCI.
Collapse
|
29
|
Manipulation of tissue contrast using contrast agents for enhanced MR microscopy in ex vivo mouse brain. Neuroimage 2009; 46:589-99. [PMID: 19264139 DOI: 10.1016/j.neuroimage.2009.02.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/22/2008] [Accepted: 02/16/2009] [Indexed: 11/20/2022] Open
Abstract
Detailed 3D mouse brain images may promote better understanding of phenotypical differences between normal and transgenic/mutant mouse models. Previously, a number of magnetic resonance microscopy (MRM) studies have successfully established brain atlases, revealing genotypic traits of several commonly used mouse strains. In such studies, MR contrast agents, mainly gadolinium (Gd) based, were often used to reduce acquisition time and improve signal-to-noise ratio (SNR). In this paper, we intended to extend the utility of contrast agents for MRM applications. Using Gd-DTPA and MnCl(2), we exploited the potential use of MR contrast agents to manipulate image contrast by drawing upon the multiple relaxation mechanisms and tissue-dependent staining properties characteristic of each contrast agent. We quantified r(1) and r(2) of Gd-DTPA and MnCl(2) in both aqueous solution and brain tissue and demonstrated the presence of divergent relaxation mechanisms between solution and tissue for each contrast agent. Further analyses using nuclear magnetic resonance dispersion (NMRD) of Mn(2+) in ex vivo tissue strongly suggested macromolecule binding of Mn(2+), leading to increased T(1) relaxation. Moreover, inductively coupled plasma (ICP) mass spectroscopy revealed that MnCl(2) had higher tissue affinity than Gd-DTPA. As a result, multiple regions of the brain stained by the two agents exhibited different image contrasts. Our results show that differential MRM staining can be achieved using multiple MR contrast agents, revealing detailed cytoarchitecture, and may ultimately offer a window for investigating new techniques by which to understand biophysical MR relaxation mechanisms and perhaps to visualize tissue anomalies even at the molecular level.
Collapse
|
30
|
Vlasenko OV, Pilyavskii AI, Maiskii VA, Maznichenko AV. Fos Immunoreactivity and NADPH-d Reactivity in the Brain Cortex of Rats Realizing Motivated Stereotyped Movements by the Forelimb. NEUROPHYSIOLOGY+ 2009. [DOI: 10.1007/s11062-009-9055-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 2008; 87:133-70. [PMID: 18926873 DOI: 10.1016/j.pneurobio.2008.09.009] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 07/02/2008] [Accepted: 09/18/2008] [Indexed: 12/19/2022]
Abstract
Nanotechnology, which deals with features as small as a 1 billionth of a meter, began to enter into mainstream physical sciences and engineering some 20 years ago. Recent applications of nanoscience include the use of nanoscale materials in electronics, catalysis, and biomedical research. Among these applications, strong interest has been shown to biological processes such as blood coagulation control and multimodal bioimaging, which has brought about a new and exciting research field called nanobiotechnology. Biotechnology, which itself also dates back approximately 30 years, involves the manipulation of macroscopic biological systems such as cells and mice in order to understand why and how molecular level mechanisms affect specific biological functions, e.g., the role of APP (amyloid precursor protein) in Alzheimer's disease (AD). This review aims (1) to introduce key concepts and materials from nanotechnology to a non-physical sciences community; (2) to introduce several state-of-the-art examples of current nanotechnology that were either constructed for use in biological systems or that can, in time, be utilized for biomedical research; (3) to provide recent excerpts in nanotoxicology and multifunctional nanoparticle systems (MFNPSs); and (4) to propose areas in neuroscience that may benefit from research at the interface of neurobiologically important systems and nanostructured materials.
Collapse
|
32
|
Tanaka K, Kitamura N, Morita M, Inubushi T, Chujo Y. Assembly system of direct modified superparamagnetic iron oxide nanoparticles for target-specific MRI contrast agents. Bioorg Med Chem Lett 2008; 18:5463-5. [PMID: 18829309 DOI: 10.1016/j.bmcl.2008.09.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 08/12/2008] [Accepted: 09/06/2008] [Indexed: 10/21/2022]
Abstract
We report the direct modification of SPIOs with a biomolecule and the target-specific assembly system of these modified SPIOs for using MRI contrast agents. The transverse relaxation rate of the aqueous solutions containing the modified SPIOs was altered by the dispersion state.
Collapse
Affiliation(s)
- Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | | | |
Collapse
|
33
|
Abstract
Immediate-early genes (IEG) are powerful tools for identifying activated neurosecretory neurones and extended circuits that affect neuroendocrine functions. The generally acknowledged scenario is when cells became activated, IEGs expressed and IEG-encoded transcription factors affect target gene expression. However, there are several examples in which: (i) neuronal activation occurs without induction of IEGs; (ii) IEG induction is not related to challenge-induced neuropeptide expression; and (iii) markers of neuronal activation are not expressed in chronically activated neurones. In spite of these limitations, the use of c-Fos and other regulatory- or effector transcription factors as markers of neuronal activation will continue to be an extremely powerful technique. Recently-developed models, including transgenic mice expressing different marker genes under the regulation of IEG promoters, will help to monitor neuronal activity in vivo or ex vivo and to reveal connection between activated neurones. Furthermore, combinations between novel imaging techniques, such as magnetic resonance and IEG-based mapping strategies, will open new means with which to study functional activity in the neurosecretory systems.
Collapse
Affiliation(s)
- K J Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
34
|
Jasanoff A. MRI contrast agents for functional molecular imaging of brain activity. Curr Opin Neurobiol 2008; 17:593-600. [PMID: 18093824 DOI: 10.1016/j.conb.2007.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 08/02/2007] [Accepted: 11/03/2007] [Indexed: 10/22/2022]
Abstract
Functional imaging with MRI contrast agents is an emerging experimental approach that can combine the specificity of cellular neural recording techniques with noninvasive whole-brain coverage. A variety of contrast agents sensitive to aspects of brain activity have recently been introduced. These include new probes for calcium and other metal ions that offer high sensitivity and membrane permeability, as well as imaging agents for high-resolution pH and metabolic mapping in living animals. Genetically encoded MRI contrast agents have also been described. Several of the new probes have been validated in the brain; in vivo use of other agents remains a challenge. This review outlines advantages and disadvantages of specific molecular imaging approaches and discusses current or potential applications in neurobiology.
Collapse
Affiliation(s)
- Alan Jasanoff
- Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 150 Albany Street, NW14-2213, Cambridge, MA 02139, United States.
| |
Collapse
|
35
|
Noebels JL. 2006 Merritt Putnam Symposium: Mapping Epileptic Circuitry. Epilepsia 2008; 49 Suppl 3:1-2. [DOI: 10.1111/j.1528-1167.2008.01504.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Fisher ME, Clelland AK, Bain A, Baldock RA, Murphy P, Downie H, Tickle C, Davidson DR, Buckland RA. Integrating technologies for comparing 3D gene expression domains in the developing chick limb. Dev Biol 2008; 317:13-23. [PMID: 18355805 PMCID: PMC2529376 DOI: 10.1016/j.ydbio.2008.01.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 01/18/2008] [Accepted: 01/19/2008] [Indexed: 11/06/2022]
Abstract
Chick embryos are good models for vertebrate development due to their accessibility and manipulability. Recent large increases in available genomic data from both whole genome sequencing and EST projects provide opportunities for identifying many new developmentally important chicken genes. Traditional methods of documenting when and where specific genes are expressed in embryos using wholemount and section in-situ hybridisation do not readily allow appreciation of 3-dimensional (3D) patterns of expression, but this can be accomplished by the recently developed microscopy technique, Optical Projection Tomography (OPT). Here we show that OPT data on the developing chick wing from different labs can be reliably integrated into a common database, that OPT is efficient in capturing 3D gene expression domains and that such domains can be meaningfully compared. Novel protocols are used to compare 3D expression domains of 7 genes known to be involved in chick wing development. This reveals previously unappreciated relationships and demonstrates the potential, using modern genomic resources, for building a large scale 3D atlas of gene expression. Such an atlas could be extended to include other types of data, such as fate maps, and the approach is also more generally applicable to embryos, organs and tissues.
Collapse
Affiliation(s)
- Malcolm E Fisher
- Department of Cell and Developmental Biology, University of Dundee, Dow Street, Dundee, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu CH, You Z, Ren J, Kim YR, Eikermann-Haerter K, Liu PK. Noninvasive delivery of gene targeting probes to live brains for transcription MRI. FASEB J 2007; 22:1193-203. [PMID: 18029447 DOI: 10.1096/fj.07-9557com] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We aimed to test the feasibility of detecting gliosis in living brains when the blood-brain barrier (BBB) is disrupted. We designed a novel magnetic resonance (MR) probe that contains superparamagnetic iron oxide nanoparticles (SPION, a T2 susceptibility contrast agent) linked to a short DNA sequence complementary to the cerebral mRNA of glial fibrillary acidic protein (GFAP) found in glia and astrocytes. As a control, we also used a sequence complementary to the mRNA of beta-actin. Our objectives are to demonstrate that this new probe, SPION-gfap, could be delivered to the brain when administered by eyedrop solution to the conjunctival sac. We induced BBB leakage by puncture wound, global cerebral ischemia, and cortical spreading depression in C57BL6 mice; 1 day after probe delivery we acquired T2* MR images and R2* (R2* = 1/T2*) maps using a transcription MRI technique in live mice. We found that the SPION-gfap probe reported foci with elevated signal in subtraction R2* maps and that these foci matched areas identified as having extensive glial network (gliosis) in postmortem immunohistochemistry. Similarly, animals administered the control probe exhibited foci of R2* elevation that matched beta-actin-expressing endothelia in the vascular wall. We conclude that our modular MR probe, delivered in an eyedrop solution, effectively reports gliosis associated with acute neurological disorders in living animals. As BBB leakage is often observed in acute neurological disorders, this study also served to validate noninvasive delivery of MR probes to the brains of live animals after acute neurological disorders.
Collapse
Affiliation(s)
- Christina H Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
38
|
Liu PK, Mandeville JB, Guangping Dai, Jenkins BG, Kim YR, Liu CH. Transcription MRI: a new view of the living brain. Neuroscientist 2007; 14:503-20. [PMID: 18024855 DOI: 10.1177/1073858407309746] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Altered gene activities are underlying causes of many neurological disorders. The ability to detect, image, and report endogenous gene transcription using magnetic resonance (MR) holds great potential for providing significant clinical benefits. In this review, we present the development of conjugates consisting of gene-targeting short nucleic acids (oligodeoxynucleotides, or sODN) and superparamagnetic iron oxide nanoparticles (SPION, an MR susceptibility T(2) agent) for reporting gene activity using transcription MRI (tMRI). We will discuss 1) the target specificity of sODN, 2) selection of contrast agents for tMRI, 3) the distribution and uptake, 4) sequence specificity, 5) histology of SPION and sODN, 6) data acquisition and quantitative analysis for tMRI, and 7) application of gene transcript-targeting nanoparticles in biology and medicine. We will also discuss methods of validating the correlation between results from conventional assays (in situ hybridization, PCR, histology Prussian blue stain and immunohistochemistry) in postmortem samples and retention of SPION-sODN using tMRI. The application of our novel contrast probe to report and target gene transcripts in the mesolimbic pathways of living mouse brains after amphetamine exposure will be discussed. Because of the targeting ability in the nucleic acid sequence, the concept of tMRI probes with complementary nucleic acid (antisense DNA or short interfering RNA) allows not only tracking, targeting, binding to intracellular mRNA, and manipulating gene action but also tracing cells with specific gene action in living brains. Transcription MRI will lend itself to myriad applications in living organs.
Collapse
Affiliation(s)
- Philip K Liu
- Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Räty JK, Liimatainen T, Unelma Kaikkonen M, Gröhn O, Airenne KJ, Jumani Airenne K, Ylä-Herttuala S. Non-invasive Imaging in Gene Therapy. Mol Ther 2007; 15:1579-86. [PMID: 17579578 DOI: 10.1038/sj.mt.6300233] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Several methods are available for non-invasive imaging of gene delivery and transgene expression, including magnetic resonance imaging (MRI), single photon emission tomography (SPECT)/positron emission tomography (PET), and fluorescence and bioluminescence imaging. However, these imaging modalities differ greatly in terms of their sensitivity, cost, and ability to measure the signal. Whereas MRI can produce a resolution of approximately 50 mum, optical imaging achieves only 3-5 mm but outperforms MRI in terms of the cost of the imaging device. Similarly, SPECT and PET give a resolution of only 1-2 mm but provide for relatively easy quantitation of the signal and need only nanograms of probe, compared with the microgram or milligram levels required for MRI and optical imaging. To develop safer and more efficient gene delivery vectors, it is essential to perform rigorous in vivo experiments, to image particle biodistribution and transduction patterns, and to quantify the transgene expression profile. Differences between modalities have a significant effect on the resultant imaging resolution for gene therapy. This review describes the methodologies in use and highlights recent key approaches using the latest imaging modalities in gene therapy. Future trends in gene therapy imaging are also discussed.
Collapse
Affiliation(s)
- Jani Kristian Räty
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
40
|
Liu CH, Huang S, Cui J, Kim YR, Farrar CT, Moskowitz MA, Rosen BR, Liu PK. MR contrast probes that trace gene transcripts for cerebral ischemia in live animals. FASEB J 2007; 21:3004-15. [PMID: 17478745 PMCID: PMC2657320 DOI: 10.1096/fj.07-8203com] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this research was to validate transcription magnetic resonance (MR) imaging (MRI) for gene transcript targeting in acute neurological disorders in live subjects. We delivered three MR probe variants with superparamagnetic iron oxide nanoparticles (SPION, a T2 susceptibility agent) linked to a phosphorothioate-modified oligodeoxynucleotide (sODN) complementary to c-fos mRNA (SPION-cfos) or beta-actin mRNA (SPION-beta-actin) and to sODN with random sequence (SPION-Ran). Each probe (1 microg Fe in 2 microl) was delivered via intracerebroventricular infusion to the left cerebral ventricle of male C57Black6 mice. We demonstrated SPION retention, measured as decreased T2* signal or increased R2* value (R2* = 1/T2*). Animals that received the SPION-beta-actin probe exhibited the highest R2* values, followed (in descending order) by SPION-cfos and SPION-Ran. SPION-cfos retention was localized in brain regions where SPION-cfos was present and where hybrids of SPION-cfos and its target c-fos mRNA were detected by in situ reverse transcription PCR. In animals that experienced cerebral ischemia, SPION-cfos retention was significantly increased in locations where c-fos mRNA increased in response to the ischemic insult; these elevations were not observed for SPION-beta-actin and SPION-Ran. This study should enable MR detection of mRNA alteration in disease models of the central nervous system.
Collapse
Affiliation(s)
- Christina H. Liu
- AA Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- NeuroRepair Laboratory/NeuroRadiology Division, Charlestown, Massachusetts, USA
- Department of Radiology Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Correspondence: Massachusetts General Hospital, 149 13 St., Rm. 2410, Charlestown, MA 02129, USA. E-mail:
| | - Shuning Huang
- AA Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Techonology Cambridge, Massachusetts, USA
| | - Jiankun Cui
- NeuroRepair Laboratory/NeuroRadiology Division, Charlestown, Massachusetts, USA
| | - Young R. Kim
- AA Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Christian T. Farrar
- AA Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Michael A. Moskowitz
- Department of Radiology Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Bruce R. Rosen
- AA Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Philip K. Liu
- NeuroRepair Laboratory/NeuroRadiology Division, Charlestown, Massachusetts, USA
- Department of Radiology Massachusetts General Hospital, Charlestown, Massachusetts, USA
| |
Collapse
|
41
|
Liu CH, Huang S, Kim YR, Rosen BR, Liu PK. Forebrain ischemia-reperfusion simulating cardiac arrest in mice induces edema and DNA fragmentation in the brain. Mol Imaging 2007; 6:156-70. [PMID: 17532882 PMCID: PMC2644455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Brain injury affects one-third of persons who survive after heart attack, even with restoration of spontaneous circulation by cardiopulmonary resuscitation. We studied brain injury resulting from transient bilateral carotid artery occlusion (BCAO) and reperfusion by simulating heart attack and restoration of circulation, respectively, in live C57Black6 mice. This model is known to induce neuronal death in the hippocampus, striatum, and cortex. We report the appearance of edema after transient BCAO of 60 minutes and 1 day of reperfusion. Hyperintensity in diffusion-weighted magnetic resonance imaging (MRI) was detectable in the striatum, thalamus, and cortex but not in the hippocampus. To determine whether damage to the hippocampus can be detected in live animals, we infused a T(2) susceptibility magnetic resonance contrast agent (superparamagnetic iron oxide nanoparticles [SPIONs]) that was linked to single-stranded deoxyribonucleic acid (DNA) complementary in sequence to c-fos messenger ribonucleic acid (SPION-cfos); we acquired in vivo T(2)*-weighted MRI 3 days later. SPION retention was measured as T(2)* (milliseconds) signal reduction or R(2)* value (s(-1)) elevation. We found that animals treated with 60-minute BCAO and 7-day reperfusion exhibited significantly less SPION retention in the hippocampus and cortex than sham-operated animals. These findings suggest that brain injury induced by cardiac arrest can be detected in live animals.
Collapse
Affiliation(s)
- Christina H Liu
- A.A. Martinos Center for Biomedical Imaging Charlestown, MA, USA
| | | | | | | | | |
Collapse
|
42
|
Liu CH, Huang S, Kim YR, Rosen BR, Liu PK. Forebrain Ischemia-Reperfusion Simulating Cardiac Arrest in Mice Induces Edema and DNA Fragmentation in the Brain. Mol Imaging 2007. [DOI: 10.2310/7290.2007.00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Christina H. Liu
- From the A.A. Martinos Center for Biomedical Imaging Charlestown, MA; the Transcript Imaging and NeuroRepair Laboratory, Department of Radiology, Massachusetts General Hospital Charlestown, MA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | - Shuning Huang
- From the A.A. Martinos Center for Biomedical Imaging Charlestown, MA; the Transcript Imaging and NeuroRepair Laboratory, Department of Radiology, Massachusetts General Hospital Charlestown, MA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | - Young R. Kim
- From the A.A. Martinos Center for Biomedical Imaging Charlestown, MA; the Transcript Imaging and NeuroRepair Laboratory, Department of Radiology, Massachusetts General Hospital Charlestown, MA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | - Bruce R. Rosen
- From the A.A. Martinos Center for Biomedical Imaging Charlestown, MA; the Transcript Imaging and NeuroRepair Laboratory, Department of Radiology, Massachusetts General Hospital Charlestown, MA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | - Philip K. Liu
- From the A.A. Martinos Center for Biomedical Imaging Charlestown, MA; the Transcript Imaging and NeuroRepair Laboratory, Department of Radiology, Massachusetts General Hospital Charlestown, MA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
43
|
Welberg L. Gene expression live on view. Nat Rev Neurosci 2007. [DOI: 10.1038/nrn2095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|