1
|
Schlungbaum M, Barayeu A, Grewe J, Benda J, Lindner B. Effect of burst spikes on linear and nonlinear signal transmission in spiking neurons. J Comput Neurosci 2025; 53:37-60. [PMID: 39560916 PMCID: PMC11868171 DOI: 10.1007/s10827-024-00883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/29/2024] [Accepted: 10/04/2024] [Indexed: 11/20/2024]
Abstract
We study the impact of bursts on spike statistics and neural signal transmission. We propose a stochastic burst algorithm that is applied to a burst-free spike train and adds a random number of temporally-jittered burst spikes to each spike. This simple algorithm ignores any possible stimulus-dependence of bursting but allows to relate spectra and signal-transmission characteristics of burst-free and burst-endowed spike trains. By averaging over the various statistical ensembles, we find a frequency-dependent factor connecting the linear and also the second-order susceptibility of the spike trains with and without bursts. The relation between spectra is more complicated: besides a frequency-dependent multiplicative factor it also involves an additional frequency-dependent offset. We confirm these relations for the (burst-free) spike trains of a stochastic integrate-and-fire neuron and identify frequency ranges in which the transmission is boosted or diminished by bursting. We then consider bursty spike trains of electroreceptor afferents of weakly electric fish and approach the role of burst spikes as follows. We compare the spectral statistics of the bursty spike train to (i) that of a spike train with burst spikes removed and to (ii) that of the spike train in (i) endowed by bursts according to our algorithm. Significant spectral features are explained by our signal-independent burst algorithm, e.g. the burst-induced boosting of the nonlinear response. A difference is seen in the information transfer for the original bursty spike train and our burst-endowed spike train. Our algorithm is thus helpful to identify different effects of bursting.
Collapse
Affiliation(s)
- Maria Schlungbaum
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115, Berlin, Germany.
- Physics Department of Humboldt University Berlin, Newtonstr. 15, 12489, Berlin, Germany.
| | - Alexandra Barayeu
- Neuroethology, Institute for Neurobiology of Eberhard Karls University Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Jan Grewe
- Neuroethology, Institute for Neurobiology of Eberhard Karls University Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, Maria-von-Linden-Straße 6, 72076, Tübingen, Germany
| | - Jan Benda
- Neuroethology, Institute for Neurobiology of Eberhard Karls University Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, Maria-von-Linden-Straße 6, 72076, Tübingen, Germany
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115, Berlin, Germany
- Physics Department of Humboldt University Berlin, Newtonstr. 15, 12489, Berlin, Germany
| |
Collapse
|
2
|
Chong B, Kumar V, Nguyen D, Hopkins M, Ferry F, Spera L, Paul E, Hutson A, Tabuchi M. Neuropeptide-Dependent Spike Time Precision and Plasticity in Circadian Output Neurons. Eur J Neurosci 2025; 61:e70037. [PMID: 40080910 PMCID: PMC11906214 DOI: 10.1111/ejn.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 01/30/2025] [Accepted: 02/16/2025] [Indexed: 03/15/2025]
Abstract
Circadian rhythms influence various physiological and behavioral processes such as sleep-wake cycles, hormone secretion, and metabolism. In Drosophila, an important set of circadian output neurons is called pars intercerebralis (PI) neurons, which receive input from specific clock neurons called DN1. These DN1 neurons can further be subdivided into functionally and anatomically distinctive anterior (DN1a) and posterior (DN1p) clusters. The neuropeptide diuretic hormones 31 (Dh31) and 44 (Dh44) are the insect neuropeptides known to activate PI neurons to control activity rhythms. However, the neurophysiological basis of how Dh31 and Dh44 affect circadian clock neural coding mechanisms underlying sleep in Drosophila is not well understood. Here, we identify Dh31/Dh44-dependent spike time precision and plasticity in PI neurons. We first find that a mixture of Dh31 and Dh44 enhanced the firing of PI neurons, compared to the application of Dh31 alone and Dh44 alone. We next find that the application of synthesized Dh31 and Dh44 affects membrane potential dynamics of PI neurons in the precise timing of the neuronal firing through their synergistic interaction, possibly mediated by calcium-activated potassium channel conductance. Further, we characterize that Dh31/Dh44 enhances postsynaptic potentials in PI neurons. Together, these results suggest multiplexed neuropeptide-dependent spike time precision and plasticity as circadian clock neural coding mechanisms underlying sleep in Drosophila.
Collapse
Affiliation(s)
- Bryan Chong
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Vipin Kumar
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Dieu Linh Nguyen
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Makenzie A. Hopkins
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Faith S. Ferry
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Lucia K. Spera
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Elizabeth M. Paul
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Anelise N. Hutson
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Masashi Tabuchi
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| |
Collapse
|
3
|
Koch NA, Corrigan BW, Feyerabend M, Gulli RA, Jimenez-Sosa MS, Abbass M, Sunstrum JK, Matovic S, Roussy M, Luna R, Mestern SA, Mahmoudian B, Vijayraghavan S, Igarashi H, Pradeepan KS, Assis WJ, Pruszynski JA, Tripathy S, Staiger JF, Gonzalez-Burgos G, Neef A, Treue S, Everling S, Inoue W, Khadra A, Martinez-Trujillo JC. Spike frequency adaptation in primate lateral prefrontal cortex neurons results from interplay between intrinsic properties and circuit dynamics. Cell Rep 2025; 44:115159. [PMID: 39772396 DOI: 10.1016/j.celrep.2024.115159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cortical neurons in brain slices display intrinsic spike frequency adaptation (I-SFA) to constant current inputs, while extracellular recordings show extrinsic SFA (E-SFA) during sustained visual stimulation. Inferring how I-SFA contributes to E-SFA during behavior is challenging due to the isolated nature of slice recordings. To address this, we recorded macaque lateral prefrontal cortex (LPFC) neurons in vivo during a visually guided saccade task and in vitro in brain slices. Broad-spiking (BS) putative pyramidal cells and narrow-spiking (NS) putative inhibitory interneurons exhibit both E-SFA and I-SFA. Developing a data-driven hybrid circuit model comprising NS model neurons receiving BS input reveals that NS model neurons exhibit longer SFA than observed in vivo; however, adding feedforward inhibition corrects this in a manner dependent on I-SFA. Identification of this circuit motif shaping E-SFA in LPFC highlights the roles of both intrinsic and network mechanisms in neural activity underlying behavior.
Collapse
Affiliation(s)
- Nils A Koch
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Benjamin W Corrigan
- Department of Biology, York University, Toronto, ON, Canada; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael Feyerabend
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| | - Roberto A Gulli
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | | | - Mohamad Abbass
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Julia K Sunstrum
- Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada; Neuroscience Graduate Program, Western University, London, ON, Canada
| | - Sara Matovic
- Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Megan Roussy
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Rogelio Luna
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Samuel A Mestern
- Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Borna Mahmoudian
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Susheel Vijayraghavan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Hiroyuki Igarashi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada; Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kartik S Pradeepan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| | - William J Assis
- Western Institute for Neuroscience, Western University, London, ON, Canada
| | - J Andrew Pruszynski
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| | - Shreejoy Tripathy
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Jochen F Staiger
- Department of Neuroanatomy, University Medical Center, Georg-August-University, Göttingen, Germany
| | | | - Andreas Neef
- Campus Institute for Dynamics of Biological Networks, Göttingen, Germany; Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany; Leibniz ScienceCampus, Primate Cognition, Göttingen, Germany
| | - Stefan Everling
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| | - Wataru Inoue
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Anmar Khadra
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Physiology, McGill University, Montreal, QC, Canada.
| | - Julio C Martinez-Trujillo
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| |
Collapse
|
4
|
Chong B, Kumar V, Nguyen DL, Hopkins MA, Ferry FS, Spera LK, Paul EM, Hutson AN, Tabuchi M. Neuropeptide-dependent spike time precision and plasticity in circadian output neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616871. [PMID: 39411164 PMCID: PMC11476009 DOI: 10.1101/2024.10.06.616871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Circadian rhythms influence various physiological and behavioral processes such as sleep-wake cycles, hormone secretion, and metabolism. In Drosophila, an important set of circadian output neurons are called pars intercerebralis (PI) neurons, which receive input from specific clock neurons called DN1. These DN1 neurons can further be subdivided into functionally and anatomically distinctive anterior (DN1a) and posterior (DN1p) clusters. The neuropeptide diuretic hormones 31 (Dh31) and 44 (Dh44) are the insect neuropeptides known to activate PI neurons to control activity rhythms. However, the neurophysiological basis of how Dh31 and Dh44 affect circadian clock neural coding mechanisms underlying sleep in Drosophila is not well understood. Here, we identify Dh31/Dh44-dependent spike time precision and plasticity in PI neurons. We first find that a mixture of Dh31 and Dh44 enhanced the firing of PI neurons, compared to the application of Dh31 alone and Dh44 alone. We next find that the application of synthesized Dh31 and Dh44 affects membrane potential dynamics of PI neurons in the precise timing of the neuronal firing through their synergistic interaction, possibly mediated by calcium-activated potassium channel conductance. Further, we characterize that Dh31/Dh44 enhances postsynaptic potentials in PI neurons. Together, these results suggest multiplexed neuropeptide-dependent spike time precision and plasticity as circadian clock neural coding mechanisms underlying sleep in Drosophila.
Collapse
Affiliation(s)
- Bryan Chong
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Vipin Kumar
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Dieu Linh Nguyen
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Makenzie A. Hopkins
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Faith S. Ferry
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Lucia K. Spera
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Elizabeth M. Paul
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Anelise N. Hutson
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
5
|
Monk T, Dennler N, Ralph N, Rastogi S, Afshar S, Urbizagastegui P, Jarvis R, van Schaik A, Adamatzky A. Electrical Signaling Beyond Neurons. Neural Comput 2024; 36:1939-2029. [PMID: 39141803 DOI: 10.1162/neco_a_01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 08/16/2024]
Abstract
Neural action potentials (APs) are difficult to interpret as signal encoders and/or computational primitives. Their relationships with stimuli and behaviors are obscured by the staggering complexity of nervous systems themselves. We can reduce this complexity by observing that "simpler" neuron-less organisms also transduce stimuli into transient electrical pulses that affect their behaviors. Without a complicated nervous system, APs are often easier to understand as signal/response mechanisms. We review examples of nonneural stimulus transductions in domains of life largely neglected by theoretical neuroscience: bacteria, protozoans, plants, fungi, and neuron-less animals. We report properties of those electrical signals-for example, amplitudes, durations, ionic bases, refractory periods, and particularly their ecological purposes. We compare those properties with those of neurons to infer the tasks and selection pressures that neurons satisfy. Throughout the tree of life, nonneural stimulus transductions time behavioral responses to environmental changes. Nonneural organisms represent the presence or absence of a stimulus with the presence or absence of an electrical signal. Their transductions usually exhibit high sensitivity and specificity to a stimulus, but are often slow compared to neurons. Neurons appear to be sacrificing the specificity of their stimulus transductions for sensitivity and speed. We interpret cellular stimulus transductions as a cell's assertion that it detected something important at that moment in time. In particular, we consider neural APs as fast but noisy detection assertions. We infer that a principal goal of nervous systems is to detect extremely weak signals from noisy sensory spikes under enormous time pressure. We discuss neural computation proposals that address this goal by casting neurons as devices that implement online, analog, probabilistic computations with their membrane potentials. Those proposals imply a measurable relationship between afferent neural spiking statistics and efferent neural membrane electrophysiology.
Collapse
Affiliation(s)
- Travis Monk
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Nik Dennler
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Nicholas Ralph
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Shavika Rastogi
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Saeed Afshar
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Pablo Urbizagastegui
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Russell Jarvis
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
| |
Collapse
|
6
|
Abstract
The electric organ discharges (EODs) produced by weakly electric fish have long been a source of scientific intrigue and inspiration. The study of these species has contributed to our understanding of the organization of fixed action patterns, as well as enriching general imaging theory by unveiling the dual impact of an agent's actions on the environment and its own sensory system during the imaging process. This Centenary Review firstly compares how weakly electric fish generate species- and sex-specific stereotyped electric fields by considering: (1) peripheral mechanisms, including the geometry, channel repertoire and innervation of the electrogenic units; (2) the organization of the electric organs (EOs); and (3) neural coordination mechanisms. Secondly, the Review discusses the threefold function of the fish-centered electric fields: (1) to generate electric signals that encode the material, geometry and distance of nearby objects, serving as a short-range sensory modality or 'electric touch'; (2) to mark emitter identity and location; and (3) to convey social messages encoded in stereotypical modulations of the electric field that might be considered as species-specific communication symbols. Finally, this Review considers a range of potential research directions that are likely to be productive in the future.
Collapse
Affiliation(s)
- Angel Ariel Caputi
- Sistema Nacional de Investigadores - Uruguay, Av. Wilson Ferreira Aldunate 1219, Pando, PC 15600, Uruguay
| |
Collapse
|
7
|
Schlungbaum M, Lindner B. Detecting a periodic signal by a population of spiking neurons in the weakly nonlinear response regime. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:108. [PMID: 37930460 PMCID: PMC10627932 DOI: 10.1140/epje/s10189-023-00371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Motivated by experimental observations, we investigate a variant of the cocktail party problem: the detection of a weak periodic stimulus in the presence of fluctuations and another periodic stimulus which is stronger than the periodic signal to be detected. Specifically, we study the response of a population of stochastic leaky integrate-and-fire (LIF) neurons to two periodic signals and focus in particular on the question, whether the presence of one of the stimuli can be detected from the population activity. As a detection criterion, we use a simple threshold-crossing of the population activity over a certain time window. We show by means of the receiver operating characteristics (ROC) that the detectability depends only weakly on the time window of observation but rather strongly on the stimulus amplitude. Counterintuitively, the detection of the weak periodic signal can be facilitated by the presence of a strong periodic input current depending on the frequencies of the two signals and on the dynamical regime in which the neurons operate. Beside numerical simulations of the model, we present an analytical approximation for the ROC curve that is based on the weakly nonlinear response theory for a stochastic LIF neuron.
Collapse
Affiliation(s)
- Maria Schlungbaum
- Physics Department, Humboldt University Berlin, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
| | - Benjamin Lindner
- Physics Department, Humboldt University Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
8
|
Barayeu A, Schäfer R, Grewe J, Benda J. Beat encoding at mistuned octaves within single electrosensory neurons. iScience 2023; 26:106840. [PMID: 37434697 PMCID: PMC10331418 DOI: 10.1016/j.isci.2023.106840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/28/2022] [Accepted: 05/04/2023] [Indexed: 07/13/2023] Open
Abstract
Beats are slow periodic amplitude modulations resulting from the superposition of two spectrally close periodic signals. The difference frequency between the signals sets the frequency of the beat. A field study in the electric fish Apteronotus rostratus showed the behavioral relevance of very high difference frequencies. Contrary to expectations from previous studies, our electrophysiological data show strong responses of p-type electroreceptor afferents whenever the difference frequency approaches integer multiples (mistuned octaves) of the fish's own electric field frequency (carrier). Mathematical reasoning and simulations show that common approaches to extract amplitude modulations, such as Hilbert transform or half-wave rectification, are not sufficient to explain the responses at carrier octaves. Instead, half-wave rectification needs to be smoothed out, for example by a cubic function. Because electroreceptive afferents share many properties with auditory nerve fibers, these mechanisms may underly the human perception of beats at mistuned octaves as described by Ohm and Helmholtz.
Collapse
Affiliation(s)
- Alexandra Barayeu
- Neuroethology, Institute for Neurobiology, Eberhard Karls University, 72076 Tübingen, Germany
| | - Ramona Schäfer
- Neuroethology, Institute for Neurobiology, Eberhard Karls University, 72076 Tübingen, Germany
| | - Jan Grewe
- Neuroethology, Institute for Neurobiology, Eberhard Karls University, 72076 Tübingen, Germany
| | - Jan Benda
- Neuroethology, Institute for Neurobiology, Eberhard Karls University, 72076 Tübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, 72076 Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, 72076 Tübingen, Germany
| |
Collapse
|
9
|
Wang J, Deng B, Gao T, Wang J, Tan H. Spike-frequency adaptation inhibits the pairwise spike correlation. Front Neurosci 2023; 17:1193930. [PMID: 37378017 PMCID: PMC10291049 DOI: 10.3389/fnins.2023.1193930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction The spike train output correlation with pairwise neurons determines the neural population coding, which depends on the average firing rate of individual neurons. Spike frequency adaptation (SFA), which serves as an essential cellular encoding strategy, modulates the firing rates of individual neurons. However, the mechanism by which the SFA modulates the output correlation of the spike trains remains unclear. Methods We introduce a pairwise neuron model that receives correlated inputs to generate spike trains, and the output correlation is qualified using Pearson correlation coefficient. The SFA is modeled using adaptation currents to examine its effect on the output correlation. Moreover, we use dynamic thresholds to explore the effect of SFA on output correlation. Furthermore, a simple phenomenological neuron model with a threshold-linear transfer function is utilized to confirm the effect of SFA on decreasing the output correlation. Results The results show that the adaptation currents decreased the output correlation by reducing the firing rate of a single neuron. At the onset of a correlated input, a transient process shows a decrease in interspike intervals (ISIs), resulting in a temporary increase in the correlation. When the adaptation current is sufficiently activated, the correlation reached a steady state, and the ISIs are maintained at higher values. The enhanced adaptation current achieved by increasing the adaptation conductance further reduces the pairwise correlation. While the time and slide windows influence the correlation, they make no difference in the effect of SFA on decreasing the output correlation. Moreover, SFA simulated by dynamic thresholds also decreases the output correlation. Furthermore, the simple phenomenological neuron model with a threshold-linear transfer function confirms the effect of SFA on decreasing the output correlation. The strength of the signal input and the slope of the linear component of the transfer function, the latter of which can be decreased by SFA, could together modulate the strength of the output correlation. Stronger SFA will decrease the slope and hence decrease the output correlation. Conclusions The results reveal that the SFA reduces the output correlation with pairwise neurons in the network by reducing the firing rate of individual neurons. This study provides a link between cellular non-linear mechanisms and network coding strategies.
Collapse
Affiliation(s)
- Jixuan Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Bin Deng
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Tianshi Gao
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Hong Tan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Nanami T, Kohno T. Piecewise quadratic neuron model: A tool for close-to-biology spiking neuronal network simulation on dedicated hardware. Front Neurosci 2023; 16:1069133. [PMID: 36699524 PMCID: PMC9870328 DOI: 10.3389/fnins.2022.1069133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/17/2022] [Indexed: 01/12/2023] Open
Abstract
Spiking neuron models simulate neuronal activities and allow us to analyze and reproduce the information processing of the nervous system. However, ionic-conductance models, which can faithfully reproduce neuronal activities, require a huge computational cost, while integral-firing models, which are computationally inexpensive, have some difficulties in reproducing neuronal activities. Here we propose a Piecewise Quadratic Neuron (PQN) model based on a qualitative modeling approach that aims to reproduce only the key dynamics behind neuronal activities. We demonstrate that PQN models can accurately reproduce the responses of ionic-conductance models of major neuronal classes to stimulus inputs of various magnitudes. In addition, the PQN model is designed to support the efficient implementation on digital arithmetic circuits for use as silicon neurons, and we confirm that the PQN model consumes much fewer circuit resources than the ionic-conductance models. This model intends to serve as a tool for building a large-scale closer-to-biology spiking neural network.
Collapse
Affiliation(s)
- Takuya Nanami
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Kohno
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Rue MC, Alonso LM, Marder E. Repeated applications of high potassium elicit long-term changes in a motor circuit from the crab, Cancer borealis. iScience 2022; 25:104919. [PMID: 36060056 PMCID: PMC9436765 DOI: 10.1016/j.isci.2022.104919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
We examined the effects of altered extracellular potassium concentration on the output of the well-studied pyloric circuit in the crab, Cancer borealis. Pyloric neurons initially become quiescent, then recover spiking and bursting activity in high potassium saline (2.5x[K+]). These changes in circuit robustness are maintained after the perturbation is removed; pyloric neurons are more robust to subsequent potassium perturbations even after several hours of wash in control saline. Despite this long-term "memory" of the stimulus history, we found no differences in neuronal activity in control saline. The circuit's adaptation is erased by both low potassium saline (0.4x[K+]) and direct hyperpolarizing current. Initial sensitivity of PD neurons to high potassium saline also varies seasonally, indicating that changes in robustness may reflect natural changes in circuit states. Thus, perturbation, followed by recovery of normal activity, can hide cryptic changes in neuronal properties that are only revealed by subsequent challenges.
Collapse
Affiliation(s)
- Mara C.P. Rue
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA
| | - Leandro M. Alonso
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA
| | - Eve Marder
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA,Corresponding author
| |
Collapse
|
12
|
Hajizadeh A, Matysiak A, Wolfrum M, May PJC, König R. Auditory cortex modelled as a dynamical network of oscillators: understanding event-related fields and their adaptation. BIOLOGICAL CYBERNETICS 2022; 116:475-499. [PMID: 35718809 PMCID: PMC9287241 DOI: 10.1007/s00422-022-00936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Adaptation, the reduction of neuronal responses by repetitive stimulation, is a ubiquitous feature of auditory cortex (AC). It is not clear what causes adaptation, but short-term synaptic depression (STSD) is a potential candidate for the underlying mechanism. In such a case, adaptation can be directly linked with the way AC produces context-sensitive responses such as mismatch negativity and stimulus-specific adaptation observed on the single-unit level. We examined this hypothesis via a computational model based on AC anatomy, which includes serially connected core, belt, and parabelt areas. The model replicates the event-related field (ERF) of the magnetoencephalogram as well as ERF adaptation. The model dynamics are described by excitatory and inhibitory state variables of cell populations, with the excitatory connections modulated by STSD. We analysed the system dynamics by linearising the firing rates and solving the STSD equation using time-scale separation. This allows for characterisation of AC dynamics as a superposition of damped harmonic oscillators, so-called normal modes. We show that repetition suppression of the N1m is due to a mixture of causes, with stimulus repetition modifying both the amplitudes and the frequencies of the normal modes. In this view, adaptation results from a complete reorganisation of AC dynamics rather than a reduction of activity in discrete sources. Further, both the network structure and the balance between excitation and inhibition contribute significantly to the rate with which AC recovers from adaptation. This lifetime of adaptation is longer in the belt and parabelt than in the core area, despite the time constants of STSD being spatially homogeneous. Finally, we critically evaluate the use of a single exponential function to describe recovery from adaptation.
Collapse
Affiliation(s)
- Aida Hajizadeh
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Artur Matysiak
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Matthias Wolfrum
- Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117 Berlin, Germany
| | - Patrick J. C. May
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF UK
| | - Reinhard König
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
| |
Collapse
|
13
|
Zhao S, Liu D, Liu M, Luo X, Yuan Y. Theoretical analysis of effects of transcranial magneto-acoustical stimulation on neuronal spike-frequency adaptation. BMC Neurosci 2022; 23:26. [PMID: 35501687 PMCID: PMC9063290 DOI: 10.1186/s12868-022-00709-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Transcranial magneto-acoustical stimulation (TMAS) is a noninvasive technique that has advantages in spatial resolution and penetration depth. It changes the firing properties of neurons through the current generated by focused ultrasound and a static magnetic field. Spike-frequency adaptation is an important dynamic characteristic of neural information processing. METHODS To address the effects of TMAS on neural spike-frequency adaptation, this study employs some ultrasound and magnetic field parameters, such as magnetic flux density, ultrasonic intensity, fundamental ultrasonic frequency, modulation frequency, and duty cycle. Using these different ultrasound and magnetic field parameters, membrane potential curves, spike-frequency curves, and adapted onset spike-frequency curves are exhibited and analyzed. RESULTS The results show that spike-frequency adaptation is strongly dependent on ultrasonic intensity and magnetic flux density and is rarely affected by other parameters. However, modulation frequency and duty cycle influence membrane potentials and spike frequencies to some degree. CONCLUSIONS This study reveals the mechanism of the effects of TMAS on neural spike-frequency adaptation and serves as theoretical guidance for TMAS experiments.
Collapse
Affiliation(s)
- Song Zhao
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan Liu
- Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Minzhuang Liu
- Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaoyuan Luo
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Yi Yuan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| |
Collapse
|
14
|
Pena RFO, Rotstein HG. The voltage and spiking responses of subthreshold resonant neurons to structured and fluctuating inputs: persistence and loss of resonance and variability. BIOLOGICAL CYBERNETICS 2022; 116:163-190. [PMID: 35038010 DOI: 10.1007/s00422-021-00919-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
We systematically investigate the response of neurons to oscillatory currents and synaptic-like inputs and we extend our investigation to non-structured synaptic-like spiking inputs with more realistic distributions of presynaptic spike times. We use two types of chirp-like inputs consisting of (i) a sequence of cycles with discretely increasing frequencies over time, and (ii) a sequence having the same cycles arranged in an arbitrary order. We develop and use a number of frequency-dependent voltage response metrics to capture the different aspects of the voltage response, including the standard impedance (Z) and the peak-to-trough amplitude envelope ([Formula: see text]) profiles. We show that Z-resonant cells (cells that exhibit subthreshold resonance in response to sinusoidal inputs) also show [Formula: see text]-resonance in response to sinusoidal inputs, but generally do not (or do it very mildly) in response to square-wave and synaptic-like inputs. In the latter cases the resonant response using Z is not predictive of the preferred frequencies at which the neurons spike when the input amplitude is increased above subthreshold levels. We also show that responses to conductance-based synaptic-like inputs are attenuated as compared to the response to current-based synaptic-like inputs, thus providing an explanation to previous experimental results. These response patterns were strongly dependent on the intrinsic properties of the participating neurons, in particular whether the unperturbed Z-resonant cells had a stable node or a focus. In addition, we show that variability emerges in response to chirp-like inputs with arbitrarily ordered patterns where all signals (trials) in a given protocol have the same frequency content and the only source of uncertainty is the subset of all possible permutations of cycles chosen for a given protocol. This variability is the result of the multiple different ways in which the autonomous transient dynamics is activated across cycles in each signal (different cycle orderings) and across trials. We extend our results to include high-rate Poisson distributed current- and conductance-based synaptic inputs and compare them with similar results using additive Gaussian white noise. We show that the responses to both Poisson-distributed synaptic inputs are attenuated with respect to the responses to Gaussian white noise. For cells that exhibit oscillatory responses to Gaussian white noise (band-pass filters), the response to conductance-based synaptic inputs are low-pass filters, while the response to current-based synaptic inputs may remain band-pass filters, consistent with experimental findings. Our results shed light on the mechanisms of communication of oscillatory activity among neurons in a network via subthreshold oscillations and resonance and the generation of network resonance.
Collapse
Affiliation(s)
- Rodrigo F O Pena
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, USA
| | - Horacio G Rotstein
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, USA.
- Corresponding Investigator, CONICET, Buenos Aires, Argentina.
- Graduate Faculty, Behavioral Neurosciences Program, Rutgers University, Newark, USA.
| |
Collapse
|
15
|
Wallach A, Melanson A, Longtin A, Maler L. Mixed selectivity coding of sensory and motor social signals in the thalamus of a weakly electric fish. Curr Biol 2021; 32:51-63.e3. [PMID: 34741807 DOI: 10.1016/j.cub.2021.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
High-level neural activity often exhibits mixed selectivity to multivariate signals. How such representations arise and modulate natural behavior is poorly understood. We addressed this question in weakly electric fish, whose social behavior is relatively low dimensional and can be easily reproduced in the laboratory. We report that the preglomerular complex, a thalamic region exclusively connecting midbrain with pallium, implements a mixed selectivity strategy to encode interactions related to courtship and rivalry. We discuss how this code enables the pallial recurrent networks to control social behavior, including dominance in male-male competition and female mate selection. Notably, response latency analysis and computational modeling suggest that corollary discharge from premotor regions is implicated in flagging outgoing communications and thereby disambiguating self- versus non-self-generated signals. These findings provide new insights into the neural substrates of social behavior, multi-dimensional neural representation, and its role in perception and decision making.
Collapse
Affiliation(s)
- Avner Wallach
- Zuckerman Institute of Mind, Brain and Behavior, Columbia University, 3227 Broadway, NY 10027, USA.
| | - Alexandre Melanson
- Département de Physique et d'Astronomie, Université de Moncton, 18 Av. Antonine-Maillet, Moncton, NB E1A 3E9, Canada; Department of Physics, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON K1N 6N5, Canada
| | - André Longtin
- Department of Physics, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON K1N 6N5, Canada; Center for Neural Dynamics, Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Leonard Maler
- Center for Neural Dynamics, Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
16
|
Wong W. Consilience in the Peripheral Sensory Adaptation Response. Front Hum Neurosci 2021; 15:727551. [PMID: 34744660 PMCID: PMC8569822 DOI: 10.3389/fnhum.2021.727551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Measurements of the peripheral sensory adaptation response were compared to a simple mathematical relationship involving the spontaneous, peak, and steady-state activities. This relationship is based on the geometric mean and is found to be obeyed to good approximation in peripheral sensory units showing a sustained response to prolonged stimulation. From an extensive review of past studies, the geometric mean relationship is shown to be independent of modality and is satisfied in a wide range of animal species. The consilience of evidence, from nearly 100 years of experiments beginning with the work of Edgar Adrian, suggests that this is a fundamental result of neurophysiology.
Collapse
Affiliation(s)
- Willy Wong
- Department of Electrical and Computer Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Ramlow L, Lindner B. Interspike interval correlations in neuron models with adaptation and correlated noise. PLoS Comput Biol 2021; 17:e1009261. [PMID: 34449771 PMCID: PMC8428727 DOI: 10.1371/journal.pcbi.1009261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022] Open
Abstract
The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular, contrary to the popular renewal assumption of theoreticians, the intervals between adjacent spikes are often correlated. Experimentally, different patterns of interspike-interval correlations have been observed and computational studies have identified spike-frequency adaptation and correlated noise as the two main mechanisms that can lead to such correlations. Analytical studies have focused on the single cases of either correlated (colored) noise or adaptation currents in combination with uncorrelated (white) noise. For low-pass filtered noise or adaptation, the serial correlation coefficient can be approximated as a single geometric sequence of the lag between the intervals, providing an explanation for some of the experimentally observed patterns. Here we address the problem of interval correlations for a widely used class of models, multidimensional integrate-and-fire neurons subject to a combination of colored and white noise sources and a spike-triggered adaptation current. Assuming weak noise, we derive a simple formula for the serial correlation coefficient, a sum of two geometric sequences, which accounts for a large class of correlation patterns. The theory is confirmed by means of numerical simulations in a number of special cases including the leaky, quadratic, and generalized integrate-and-fire models with colored noise and spike-frequency adaptation. Furthermore we study the case in which the adaptation current and the colored noise share the same time scale, corresponding to a slow stochastic population of adaptation channels; we demonstrate that our theory can account for a nonmonotonic dependence of the correlation coefficient on the channel's time scale. Another application of the theory is a neuron driven by network-noise-like fluctuations (green noise). We also discuss the range of validity of our weak-noise theory and show that by changing the relative strength of white and colored noise sources, we can change the sign of the correlation coefficient. Finally, we apply our theory to a conductance-based model which demonstrates its broad applicability.
Collapse
Affiliation(s)
- Lukas Ramlow
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Physics Department, Humboldt University zu Berlin, Berlin, Germany
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Physics Department, Humboldt University zu Berlin, Berlin, Germany
| |
Collapse
|
18
|
Metzen MG, Chacron MJ. Population Coding of Natural Electrosensory Stimuli by Midbrain Neurons. J Neurosci 2021; 41:3822-3841. [PMID: 33687962 PMCID: PMC8084312 DOI: 10.1523/jneurosci.2232-20.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
Natural stimuli display spatiotemporal characteristics that typically vary over orders of magnitude, and their encoding by sensory neurons remains poorly understood. We investigated population coding of highly heterogeneous natural electrocommunication stimuli in Apteronotus leptorhynchus of either sex. Neuronal activities were positively correlated with one another in the absence of stimulation, and correlation magnitude decayed with increasing distance between recording sites. Under stimulation, we found that correlations between trial-averaged neuronal responses (i.e., signal correlations) were positive and higher in magnitude for neurons located close to another, but that correlations between the trial-to-trial variability (i.e., noise correlations) were independent of physical distance. Overall, signal and noise correlations were independent of stimulus waveform as well as of one another. To investigate how neuronal populations encoded natural electrocommunication stimuli, we considered a nonlinear decoder for which the activities were combined. Decoding performance was best for a timescale of 6 ms, indicating that midbrain neurons transmit information via precise spike timing. A simple summation of neuronal activities (equally weighted sum) revealed that noise correlations limited decoding performance by introducing redundancy. Using an evolution algorithm to optimize performance when considering instead unequally weighted sums of neuronal activities revealed much greater performance values, indicating that midbrain neuron populations transmit information that reliably enable discrimination between different stimulus waveforms. Interestingly, we found that different weight combinations gave rise to similar discriminability, suggesting robustness. Our results have important implications for understanding how natural stimuli are integrated by downstream brain areas to give rise to behavioral responses.SIGNIFICANCE STATEMENT We show that midbrain electrosensory neurons display correlations between their activities and that these can significantly impact performance of decoders. While noise correlations limited discrimination performance by introducing redundancy, considering unequally weighted sums of neuronal activities gave rise to much improved performance and mitigated the deleterious effects of noise correlations. Further analysis revealed that increased discriminability was achieved by making trial-averaged responses more separable, as well as by reducing trial-to-trial variability by eliminating noise correlations. We further found that multiple combinations of weights could give rise to similar discrimination performances, which suggests that such combinatorial codes could be achieved in the brain. We conclude that the activities of midbrain neuronal populations can be used to reliably discriminate between highly heterogeneous stimulus waveforms.
Collapse
Affiliation(s)
- Michael G Metzen
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Maurice J Chacron
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
19
|
Wong W. On the rate coding response of peripheral sensory neurons. BIOLOGICAL CYBERNETICS 2020; 114:609-619. [PMID: 33289878 DOI: 10.1007/s00422-020-00848-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The rate coding response of a single peripheral sensory neuron in the asymptotic, near-equilibrium limit can be derived using information theory, asymptotic Bayesian statistics and a theory of complex systems. Almost no biological knowledge is required. The theoretical expression shows good agreement with spike-frequency adaptation data across different sensory modalities and animal species. The approach permits the discovery of a new neurophysiological equation and shares similarities with statistical physics.
Collapse
Affiliation(s)
- Willy Wong
- Department of Electrical and Computer Engineering and Institute of Biomedical Engineering, University of Toronto, Toronto, M5S3G4, Canada.
| |
Collapse
|
20
|
Popescu IR, Le KQ, Ducote AL, Li JE, Leland AE, Mostany R. Increased intrinsic excitability and decreased synaptic inhibition in aged somatosensory cortex pyramidal neurons. Neurobiol Aging 2020; 98:88-98. [PMID: 33249377 DOI: 10.1016/j.neurobiolaging.2020.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/02/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
Sensorimotor performance declines during advanced age, partially due to deficits in somatosensory acuity. Cortical receptive field expansion contributes to somatosensory deficits, suggesting increased excitability or decreased inhibition in primary somatosensory cortex (S1) pyramidal neurons. To ascertain changes in excitability and inhibition, we measured both properties in neurons from vibrissal S1 in brain slices from young and aged mice. Because adapting and non-adapting neurons-the principal pyramidal types in layer 5 (L5)-differ in intrinsic properties and inhibitory inputs, we determined age-dependent changes according to neuron type. We found an age-dependent increase in intrinsic excitability in adapting neurons, caused by a decrease in action potential threshold. Surprisingly, in non-adapting neurons we found both an increase in excitability caused by increased input resistance, and a decrease in synaptic inhibition. Spike frequency adaptation, already small in non-adapting neurons, was further reduced by aging, whereas sag, a manifestation of Ih, was increased. Therefore, aging caused both decreased inhibition and increased intrinsic excitability, but these effects were specific to pyramidal neuron type.
Collapse
Affiliation(s)
- Ion R Popescu
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Kathy Q Le
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Alexis L Ducote
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA; Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Jennifer E Li
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | | | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA; Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| |
Collapse
|
21
|
Sinha N, Heckman CJ, Yang Y. Slowly activating outward membrane currents generate input-output sub-harmonic cross frequency coupling in neurons. J Theor Biol 2020; 509:110509. [PMID: 33022285 DOI: 10.1016/j.jtbi.2020.110509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/16/2020] [Accepted: 09/27/2020] [Indexed: 02/01/2023]
Abstract
A major challenge in understanding spike-time dependent information encoding in the neural system is the non-linear firing response to inputs of the individual neurons. Hence, quantitative exploration of the putative mechanisms of this non-linear behavior is fundamental to formulating the theory of information transfer in the neural system. The objective of this simulation study was to evaluate and quantify the effect of slowly activating outward membrane current, on the non-linearity in the output of a one-compartment Hodgkin-Huxley styled neuron. To evaluate this effect, the peak conductance of the slow potassium channel (gK-slow) was varied from 0% to 200% of its normal value in steps of 33%. Both cross- and iso-frequency coupling between the input and the output of the simulated neuron was computed using a generalized coherence measure, i.e., n:m coherence. With increasing gK-slow, the amount of sub-harmonic cross-frequency coupling, where the output frequencies (1-8 Hz) are lower than the input frequencies (15-35 Hz), increased progressively whereas no change in iso-frequency coupling was observed. Power spectral and phase-space analysis of the neuronal membrane voltage vs. slow potassium channel activation variable showed that the interaction of the slow channel dynamics with the fast membrane voltage dynamics generates the observed sub-harmonic coupling. This study provides quantitative insights into the role of an important membrane mechanism i.e. the slowly activating outward current in generating non-linearities in the output of a neuron.
Collapse
Affiliation(s)
- Nirvik Sinha
- Northwestern Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, 320 E Superior Street, Morton 1-645, Chicago, IL 60611-3010, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave., Suite 1100, Chicago, IL 60611, USA
| | - C J Heckman
- Northwestern Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, 320 E Superior Street, Morton 1-645, Chicago, IL 60611-3010, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave., Suite 1100, Chicago, IL 60611, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, 310 E. Superior Street Morton 5-660, Chicago, IL 60611, USA
| | - Yuan Yang
- Northwestern Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, 320 E Superior Street, Morton 1-645, Chicago, IL 60611-3010, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave., Suite 1100, Chicago, IL 60611, USA; Stephenson School of Biomedical Engineering, University of Oklahoma, 4502 E. 41st St, Tulsa, OK 74135, USA; Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK 74136, USA.
| |
Collapse
|
22
|
Pousinha PA, Mouska X, Bianchi D, Temido-Ferreira M, Rajão-Saraiva J, Gomes R, Fernandez SP, Salgueiro-Pereira AR, Gandin C, Raymond EF, Barik J, Goutagny R, Bethus I, Lopes LV, Migliore M, Marie H. The Amyloid Precursor Protein C-Terminal Domain Alters CA1 Neuron Firing, Modifying Hippocampus Oscillations and Impairing Spatial Memory Encoding. Cell Rep 2020; 29:317-331.e5. [PMID: 31597094 DOI: 10.1016/j.celrep.2019.08.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/09/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
There is a growing consensus that Alzheimer's disease (AD) involves failure of the homeostatic machinery, which underlies the firing stability of neural circuits. What are the culprits leading to neuron firing instability? The amyloid precursor protein (APP) is central to AD pathogenesis, and we recently showed that its intracellular domain (AICD) could modify synaptic signal integration. We now hypothesize that AICD modifies neuron firing activity, thus contributing to the disruption of memory processes. Using cellular, electrophysiological, and behavioral techniques, we show that pathological AICD levels weaken CA1 neuron firing activity through a gene-transcription-dependent mechanism. Furthermore, increased AICD production in hippocampal neurons modifies oscillatory activity, specifically in the γ-frequency range, and disrupts spatial memory task. Collectively, our data suggest that AICD pathological levels, observed in AD mouse models and in human patients, might contribute to progressive neuron homeostatic failure, driving the shift from normal aging to AD.
Collapse
Affiliation(s)
| | - Xavier Mouska
- Université Côte d'Azur, CNRS UMR 7275, IPMC, Valbonne, France
| | - Daniela Bianchi
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Mariana Temido-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Rajão-Saraiva
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Rui Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Carine Gandin
- Université Côte d'Azur, CNRS UMR 7275, IPMC, Valbonne, France
| | | | - Jacques Barik
- Université Côte d'Azur, CNRS UMR 7275, IPMC, Valbonne, France
| | - Romain Goutagny
- Université de Strasbourg, CNRS UMR 7364, LNCA, Strasbourg, France
| | - Ingrid Bethus
- Université Côte d'Azur, CNRS UMR 7275, IPMC, Valbonne, France
| | - Luisa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Hélène Marie
- Université Côte d'Azur, CNRS UMR 7275, IPMC, Valbonne, France
| |
Collapse
|
23
|
Waddell JC, Caputi AA. Electrocommunication in pulse Gymnotiformes: the role of electric organ discharge (EOD) time course in species identification. ACTA ACUST UNITED AC 2020; 223:jeb.226340. [PMID: 32748795 DOI: 10.1242/jeb.226340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 11/20/2022]
Abstract
Understanding how individuals detect and recognize signals emitted by conspecifics is fundamental to discussions of animal communication. The species pair Gymnotus omarorum and Brachyhypopomus gauderio, found in syntopy in Uruguay, emit species-specific electric organ discharge (EOD) that can be sensed by both species. The aim of this study was to unveil whether either of these species is able to identify a conspecific EOD, and to investigate distinctive recognition signal features. We designed a forced-choice experiment using a natural behavior (i.e. tracking electric field lines towards their source) in which each fish had to choose between a conspecific and a heterospecific electric field. We found a clear pattern of preference for a conspecific waveform even when pulses were played within 1 Hz of the same rate. By manipulating the time course of the explored signals, we found that the signal features for preference between conspecific and heterospecific waveforms were embedded in the time course of the signals. This study provides evidence that pulse Gymnotiformes can recognize a conspecific exclusively through species-specific electrosensory signals. It also suggests that the key signal features for species differentiation are probably encoded by burst coder electroreceptors. Given these results, and because receptors are sharply tuned to amplitude spectra and also tuned to phase spectra, we extend the electric color hypothesis used in the evaluation of objects to apply to communication signals.
Collapse
Affiliation(s)
- Joseph C Waddell
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| | - Angel A Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| |
Collapse
|
24
|
Sinz FH, Sachgau C, Henninger J, Benda J, Grewe J. Simultaneous spike-time locking to multiple frequencies. J Neurophysiol 2020; 123:2355-2372. [PMID: 32374223 DOI: 10.1152/jn.00615.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Locking of neural firing is ubiquitously observed in the brain and occurs when neurons fire at a particular phase or in synchronization with an external signal. Here we study in detail the locking of single neurons to multiple distinct frequencies at the example of p-type electroreceptor afferents in the electrosensory system of the weakly electric fish Apteronotus leptorhynchus (brown ghost knifefish). We find that electrosensory afferents and pyramidal cells in the electrosensory lateral line lobe (ELL) lock to multiple frequencies, including the electric organ discharge (EOD) frequency, beat, and stimulus itself. We identify key elements necessary for locking to multiple frequencies, study its limits, and provide concise mathematical models reproducing our main findings. Our findings provide another example of how rate and temporal codes can coexist and complement each other in single neurons and demonstrate that sensory coding in p-type electroreceptor afferents provides a much richer representation of the sensory environment than commonly assumed. Since the underlying mechanisms are not specific to the electrosensory system, our results could provide the basis for studying multiple frequency locking in other systems.NEW & NOTEWORTHY Locking of neuronal spikes to external and internal signals is a ubiquitous neurophysiological mechanism that has been extensively studied in several brain areas and species. Using experimental data from the electrosensory system and concise mathematical models, we analyze how a single neuron can simultaneously lock to multiple frequencies. Our findings demonstrate how temporal and rate codes can complement each other and lead to rich neuronal representations of sensory signals.
Collapse
Affiliation(s)
- Fabian H Sinz
- Institute for Bioinformatics and Medical Informatics, University Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, Tübingen, Germany.,Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas
| | - Carolin Sachgau
- Department of Neuroethology, Institute for Neuroscience, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jörg Henninger
- Charité, Medical School of Humboldt University, Berlin, Germany
| | - Jan Benda
- Department of Neuroethology, Institute for Neuroscience, Eberhard Karls University Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, Tübingen, Germany
| | - Jan Grewe
- Department of Neuroethology, Institute for Neuroscience, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Zhang Y, Garcia E, Sack AS, Snutch TP. L-type calcium channel contributions to intrinsic excitability and synaptic activity during basolateral amygdala postnatal development. J Neurophysiol 2020; 123:1216-1235. [PMID: 31967931 DOI: 10.1152/jn.00606.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amygdala contributes toward emotional processes such as fear, anxiety, and social cognition. Furthermore, evidence suggests that increased excitability of basolateral amygdala (BLA) principal neurons underlie certain neuropsychiatric disorders. Gain-of-function mutations in neuronal L-type calcium channels (LTCCs) are linked to neurodevelopmental diseases, including autism spectrum disorders (ASDs). While LTCCs are expressed throughout the BLA, direct evidence for increased LTCC activity affecting BLA excitability and potentially contributing to disease pathophysiology is lacking. In this study, we utilized a pharmacological approach to examine the contributions of LTCCs to BLA principal cell excitability and synaptic activity at immature (postnatal day 7, P7) and juvenile (P21) developmental stages. Acute upregulation of LTCC activity in brain slices by application of the agonist (S)-Bay K 8644 resulted in increased intrinsic excitability properties including firing frequency response, plateau potential, and spike-frequency adaptation selectively in P7 neurons. Contrastingly, for P21 neurons, the main effect of (S)-Bay K 8644 was to enhance burst firing. (S)-Bay K 8644 increased spontaneous inhibitory synaptic currents at both P7 and P21 but did not affect evoked synaptic currents at either stage. (S)-Bay K 8644 did not alter P7 spontaneous excitatory synaptic currents, although it increased current amplitude in P21 neurons. Overall, the results provide support for the notion that alteration of LTCC activity at specific periods of early brain development may lead to functional alterations to neuronal network activity and subsequently contribute to underlying mechanisms of amygdala-related neurological disorders.NEW & NOTEWORTHY The role of L-type calcium channels (LTCCs) in regulating neuronal electrophysiological properties during development remains unclear. We show that in basolateral amygdala principal neurons, an increase of LTCC activity alters both neuronal excitability and synaptic activity. The results also provide evidence for the distinct contributions of LTCCs at different stages of neurodevelopment and shed insight into our understanding of LTCC dysfunction in amygdala-related neurological disorders.
Collapse
Affiliation(s)
- Yiming Zhang
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Esperanza Garcia
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anne-Sophie Sack
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Metzen MG, Hofmann V, Chacron MJ. Neural Synchrony Gives Rise to Amplitude- and Duration-Invariant Encoding Consistent With Perception of Natural Communication Stimuli. Front Neurosci 2020; 14:79. [PMID: 32116522 PMCID: PMC7025533 DOI: 10.3389/fnins.2020.00079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/20/2020] [Indexed: 11/13/2022] Open
Abstract
When confronted with a highly variable environment, it remains poorly understood how neural populations encode and classify natural stimuli to give rise to appropriate and consistent behavioral responses. Here we investigated population coding of natural communication signals with different attributes (i.e., amplitude and duration) in the electrosensory system of the weakly electric fish Apteronotus leptorhynchus. Our results show that, while single peripheral neurons encode the detailed timecourse of different stimulus waveforms, measures of population synchrony are effectively unchanged because of coordinated increases and decreases in activity. A phenomenological mathematical model reproduced this invariance and shows that this can be explained by considering homogeneous populations whose responses are solely determined by single neuron firing properties. Moreover, recordings from downstream central neurons reveal that synchronous afferent activity is actually decoded and thus most likely transmitted to higher brain areas. Finally, we demonstrate that the associated behavioral responses at the organism level are invariant. Our results provide a mechanism by which amplitude- and duration-invariant coding of behaviorally relevant sensory input emerges across successive brain areas thereby presumably giving rise to invariant behavioral responses. Such mechanisms are likely to be found in other systems that share anatomical and functional features with the electrosensory system (e.g., auditory, visual, vestibular).
Collapse
Affiliation(s)
- Michael G Metzen
- Computational Systems Neuroscience Laboratory, Department of Physiology, McGill University, Montreal, QC, Canada
| | - Volker Hofmann
- Computational Systems Neuroscience Laboratory, Department of Physiology, McGill University, Montreal, QC, Canada
| | - Maurice J Chacron
- Computational Systems Neuroscience Laboratory, Department of Physiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
27
|
Metzen MG. Encoding and Perception of Electro-communication Signals in Apteronotus leptorhynchus. Front Integr Neurosci 2019; 13:39. [PMID: 31481882 PMCID: PMC6710435 DOI: 10.3389/fnint.2019.00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
Animal communication plays an essential role in triggering diverse behaviors. It is believed in this regard that signal production by a sender and its perception by a receiver is co-evolving in order to have beneficial effects such as to ensure that conspecifics remain sensitive to these signals. However, in order to give appropriate responses to a communication signal, the receiver has to first detect and interpret it in a meaningful way. The detection of communication signals can be limited under some circumstances, for example when the signal is masked by the background noise in which it occurs (e.g., the cocktail-party problem). Moreover, some signals are very alike despite having different meanings making it hard to discriminate between them. How the central nervous system copes with these tasks and problems is a central question in systems neuroscience. Gymnotiform weakly electric fish pose an interesting system to answer these questions for various reasons: (1) they use a variety of communication signals called “chirps” during different behavioral encounters; (2) the central physiology of the electrosensory system is well known; and (3) most importantly, these fish give reliable behavioral responses to artificial stimuli that resemble natural communication signals, making it possible to uncover the neural mechanisms that lead to the observed behaviors.
Collapse
Affiliation(s)
- Michael G Metzen
- Department of Physiology, McGill University Montreal, Montreal, QC, Canada
| |
Collapse
|
28
|
Allen KM, Marsat G. Neural Processing of Communication Signals: The Extent of Sender-Receiver Matching Varies across Species of Apteronotus. eNeuro 2019; 6:ENEURO.0392-18.2019. [PMID: 30899777 PMCID: PMC6426436 DOI: 10.1523/eneuro.0392-18.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 02/02/2023] Open
Abstract
As communication signal properties change, through genetic drift or selective pressure, the sensory systems that receive these signals must also adapt to maintain sensitivity and adaptability in an array of contexts. Shedding light on this process helps us to understand how sensory codes are tailored to specific tasks. In a species of weakly electric fish, Apteronotus albifrons, we examined the unique neurophysiological properties that support the encoding of electrosensory communication signals that the animal encounters in social exchanges. We compare our findings to the known coding properties of the closely related species Apteronotus leptorhynchus to establish how these animals differ in their ability to encode their distinctive communication signals. While there are many similarities between these two species, we found notable differences leading to relatively poor coding of the details of chirp structure occurring on high-frequency background beats. As a result, small differences in chirp properties are poorly resolved by the nervous system. We performed behavioral tests to relate A. albifrons chirp coding strategies to its use of chirps during social encounters. Our results suggest that A. albifrons does not exchange frequent chirps in a nonbreeding condition, particularly when the beat frequency is high. These findings parallel the mediocre chirp coding accuracy in that they both point to a reduced reliance on frequent and rich exchange of information through chirps during these social interactions. Therefore, our study suggests that neural coding strategies in the CNS vary across species in a way that parallels the behavioral use of the sensory signals.
Collapse
Affiliation(s)
- Kathryne M Allen
- Department of Biology, West Virginia University, Morgantown, West Virginia 26505
| | - Gary Marsat
- Department of Biology, West Virginia University, Morgantown, West Virginia 26505
| |
Collapse
|
29
|
Hofmann V, Chacron MJ. Population Coding and Correlated Variability in Electrosensory Pathways. Front Integr Neurosci 2018; 12:56. [PMID: 30542271 PMCID: PMC6277784 DOI: 10.3389/fnint.2018.00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/30/2018] [Indexed: 11/29/2022] Open
Abstract
The fact that perception and behavior depend on the simultaneous and coordinated activity of neural populations is well established. Understanding encoding through neuronal population activity is however complicated by the statistical dependencies between the activities of neurons, which can be present in terms of both their mean (signal correlations) and their response variability (noise correlations). Here, we review the state of knowledge regarding population coding and the influence of correlated variability in the electrosensory pathways of the weakly electric fish Apteronotus leptorhynchus. We summarize known population coding strategies at the peripheral level, which are largely unaffected by noise correlations. We then move on to the hindbrain, where existing data from the electrosensory lateral line lobe (ELL) shows the presence of noise correlations. We summarize the current knowledge regarding the mechanistic origins of noise correlations and known mechanisms of stimulus dependent correlation shaping in ELL. We finish by considering future directions for understanding population coding in the electrosensory pathways of weakly electric fish, highlighting the benefits of this model system for understanding the origins and impact of noise correlations on population coding.
Collapse
Affiliation(s)
- Volker Hofmann
- Department of Physiology, McGill University, Montréal, QC, Canada
| | | |
Collapse
|
30
|
Bakay WMH, Anderson LA, Garcia-Lazaro JA, McAlpine D, Schaette R. Hidden hearing loss selectively impairs neural adaptation to loud sound environments. Nat Commun 2018; 9:4298. [PMID: 30327471 PMCID: PMC6191434 DOI: 10.1038/s41467-018-06777-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/25/2018] [Indexed: 11/09/2022] Open
Abstract
Exposure to even a single episode of loud noise can damage synapses between cochlear hair cells and auditory nerve fibres, causing hidden hearing loss (HHL) that is not detected by audiometry. Here we investigate the effects of noise-induced HHL on functional hearing by measuring the ability of neurons in the auditory midbrain of mice to adapt to sound environments containing quiet and loud periods. Neurons from noise-exposed mice show less capacity for adaptation to loud environments, convey less information about sound intensity in those environments, and adaptation to the longer-term statistical structure of fluctuating sound environments is impaired. Adaptation comprises a cascade of both threshold and gain adaptation. Although noise exposure only impairs threshold adaptation directly, the preserved function of gain adaptation surprisingly aggravates coding deficits for loud environments. These deficits might help to understand why many individuals with seemingly normal hearing struggle to follow a conversation in background noise. Hidden hearing loss (HHL) arises through subtle damage to the synapses of hair cells in the inner ear before audiograms reveal hearing threshold shifts. Here, the authors report that HHL in a mouse model disrupts the neural encoding of loud sound environments in the central auditory system.
Collapse
Affiliation(s)
- Warren Michael Henry Bakay
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.,Manchester Centre for Audiology and Deafness (ManCAD), A3.16, University of Manchester, Ellen Wilkinson Building, Manchester, M13 9PL, UK
| | | | | | - David McAlpine
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.,Department of Linguistics, The Australian Hearing Hub, Macquarie University, 16 University Avenue, Sydney, NSW, 2109, Australia
| | - Roland Schaette
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.
| |
Collapse
|
31
|
The impact of spike-frequency adaptation on balanced network dynamics. Cogn Neurodyn 2018; 13:105-120. [PMID: 30728874 DOI: 10.1007/s11571-018-9504-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/20/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022] Open
Abstract
A dynamic balance between strong excitatory and inhibitory neuronal inputs is hypothesized to play a pivotal role in information processing in the brain. While there is evidence of the existence of a balanced operating regime in several cortical areas and idealized neuronal network models, it is important for the theory of balanced networks to be reconciled with more physiological neuronal modeling assumptions. In this work, we examine the impact of spike-frequency adaptation, observed widely across neurons in the brain, on balanced dynamics. We incorporate adaptation into binary and integrate-and-fire neuronal network models, analyzing the theoretical effect of adaptation in the large network limit and performing an extensive numerical investigation of the model adaptation parameter space. Our analysis demonstrates that balance is well preserved for moderate adaptation strength even if the entire network exhibits adaptation. In the common physiological case in which only excitatory neurons undergo adaptation, we show that the balanced operating regime in fact widens relative to the non-adaptive case. We hypothesize that spike-frequency adaptation may have been selected through evolution to robustly facilitate balanced dynamics across diverse cognitive operating states.
Collapse
|
32
|
Bird AD, Richardson MJE. Transmission of temporally correlated spike trains through synapses with short-term depression. PLoS Comput Biol 2018; 14:e1006232. [PMID: 29933363 PMCID: PMC6039054 DOI: 10.1371/journal.pcbi.1006232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 07/10/2018] [Accepted: 05/24/2018] [Indexed: 11/18/2022] Open
Abstract
Short-term synaptic depression, caused by depletion of releasable neurotransmitter, modulates the strength of neuronal connections in a history-dependent manner. Quantifying the statistics of synaptic transmission requires stochastic models that link probabilistic neurotransmitter release with presynaptic spike-train statistics. Common approaches are to model the presynaptic spike train as either regular or a memory-less Poisson process: few analytical results are available that describe depressing synapses when the afferent spike train has more complex, temporally correlated statistics such as bursts. Here we present a series of analytical results—from vesicle release-site occupancy statistics, via neurotransmitter release, to the post-synaptic voltage mean and variance—for depressing synapses driven by correlated presynaptic spike trains. The class of presynaptic drive considered is that fully characterised by the inter-spike-interval distribution and encompasses a broad range of models used for neuronal circuit and network analyses, such as integrate-and-fire models with a complete post-spike reset and receiving sufficiently short-time correlated drive. We further demonstrate that the derived post-synaptic voltage mean and variance allow for a simple and accurate approximation of the firing rate of the post-synaptic neuron, using the exponential integrate-and-fire model as an example. These results extend the level of biological detail included in models of synaptic transmission and will allow for the incorporation of more complex and physiologically relevant firing patterns into future studies of neuronal networks. Synapses between neurons transmit signals with strengths that vary with the history of their activity, over scales from milliseconds to decades. Short-term changes in synaptic strength modulate and sculpt ongoing neuronal activity, whereas long-term changes underpin memory formation. Here we focus on changes of strength over timescales of less than a second caused by transitory depletion of the neurotransmitters that carry signals across the synapse. Neurotransmitters are stored in small vesicles that release their contents, with a certain probability, when the presynaptic neuron is active. Once a vesicle has been used it is replenished after a variable delay. There is therefore a complex interaction between the pattern of incoming signals to the synapse and the probablistic release and restock of packaged neurotransmitter. Here we extend existing models to examine how correlated synaptic activity is transmitted through synapses and affects the voltage fluctuations and firing rate of the target neuron. Our results provide a framework that will allow for the inclusion of biophysically realistic synaptic behaviour in studies of neuronal circuits.
Collapse
Affiliation(s)
- Alex D. Bird
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
- Ernst Strüngmann Institute for Neuroscience, Max Planck Society, Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
- * E-mail: (ADB); (MJER)
| | - Magnus J. E. Richardson
- Warwick Mathematics Institute, University of Warwick, Coventry, United Kingdom
- * E-mail: (ADB); (MJER)
| |
Collapse
|
33
|
Statistics of Natural Communication Signals Observed in the Wild Identify Important Yet Neglected Stimulus Regimes in Weakly Electric Fish. J Neurosci 2018; 38:5456-5465. [PMID: 29735558 DOI: 10.1523/jneurosci.0350-18.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/12/2018] [Accepted: 04/08/2018] [Indexed: 12/16/2022] Open
Abstract
Sensory systems evolve in the ecological niches that each species is occupying. Accordingly, encoding of natural stimuli by sensory neurons is expected to be adapted to the statistics of these stimuli. For a direct quantification of sensory scenes, we tracked natural communication behavior of male and female weakly electric fish, Apteronotus rostratus, in their Neotropical rainforest habitat with high spatiotemporal resolution over several days. In the context of courtship, we observed large quantities of electrocommunication signals. Echo responses, acknowledgment signals, and their synchronizing role in spawning demonstrated the behavioral relevance of these signals. In both courtship and aggressive contexts, we observed robust behavioral responses in stimulus regimes that have so far been neglected in electrophysiological studies of this well characterized sensory system and that are well beyond the range of known best frequency and amplitude tuning of the electroreceptor afferents' firing rate modulation. Our results emphasize the importance of quantifying sensory scenes derived from freely behaving animals in their natural habitats for understanding the function and evolution of neural systems.SIGNIFICANCE STATEMENT The processing mechanisms of sensory systems have evolved in the context of the natural lives of organisms. To understand the functioning of sensory systems therefore requires probing them in the stimulus regimes in which they evolved. We took advantage of the continuously generated electric fields of weakly electric fish to explore electrosensory stimulus statistics in their natural Neotropical habitat. Unexpectedly, many of the electrocommunication signals recorded during courtship, spawning, and aggression had much smaller amplitudes or higher frequencies than stimuli used so far in neurophysiological characterizations of the electrosensory system. Our results demonstrate that quantifying sensory scenes derived from freely behaving animals in their natural habitats is essential to avoid biases in the choice of stimuli used to probe brain function.
Collapse
|
34
|
Parrilla-Carrero J, Buchta WC, Goswamee P, Culver O, McKendrick G, Harlan B, Moutal A, Penrod R, Lauer A, Ramakrishnan V, Khanna R, Kalivas P, Riegel AC. Restoration of Kv7 Channel-Mediated Inhibition Reduces Cued-Reinstatement of Cocaine Seeking. J Neurosci 2018; 38:4212-4229. [PMID: 29636392 PMCID: PMC5963852 DOI: 10.1523/jneurosci.2767-17.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022] Open
Abstract
Cocaine addicts display increased sensitivity to drug-associated cues, due in part to changes in the prelimbic prefrontal cortex (PL-PFC). The cellular mechanisms underlying cue-induced reinstatement of cocaine seeking remain unknown. Reinforcement learning for addictive drugs may produce persistent maladaptations in intrinsic excitability within sparse subsets of PFC pyramidal neurons. Using a model of relapse in male rats, we sampled >600 neurons to examine spike frequency adaptation (SFA) and afterhyperpolarizations (AHPs), two systems that attenuate low-frequency inputs to regulate neuronal synchronization. We observed that training to self-administer cocaine or nondrug (sucrose) reinforcers decreased SFA and AHPs in a subpopulation of PL-PFC neurons. Only with cocaine did the resulting hyperexcitability persist through extinction training and increase during reinstatement. In neurons with intact SFA, dopamine enhanced excitability by inhibiting Kv7 potassium channels that mediate SFA. However, dopamine effects were occluded in neurons from cocaine-experienced rats, where SFA and AHPs were reduced. Pharmacological stabilization of Kv7 channels with retigabine restored SFA and Kv7 channel function in neuroadapted cells. When microinjected bilaterally into the PL-PFC 10 min before reinstatement testing, retigabine reduced cue-induced reinstatement of cocaine seeking. Last, using cFos-GFP transgenic rats, we found that the loss of SFA correlated with the expression of cFos-GFP following both extinction and re-exposure to drug-associated cues. Together, these data suggest that cocaine self-administration desensitizes inhibitory Kv7 channels in a subpopulation of PL-PFC neurons. This subpopulation of neurons may represent a persistent neural ensemble responsible for driving drug seeking in response to cues.SIGNIFICANCE STATEMENT Long after the cessation of drug use, cues associated with cocaine still elicit drug-seeking behavior, in part by activation of the prelimbic prefrontal cortex (PL-PFC). The underlying cellular mechanisms governing these activated neurons remain unclear. Using a rat model of relapse to cocaine seeking, we identified a population of PL-PFC neurons that become hyperexcitable following chronic cocaine self-administration. These neurons show persistent loss of spike frequency adaptation, reduced afterhyperpolarizations, decreased sensitivity to dopamine, and reduced Kv7 channel-mediated inhibition. Stabilization of Kv7 channel function with retigabine normalized neuronal excitability, restored Kv7 channel currents, and reduced drug-seeking behavior when administered into the PL-PFC before reinstatement. These data highlight a persistent adaptation in a subset of PL-PFC neurons that may contribute to relapse vulnerability.
Collapse
Affiliation(s)
- Jeffrey Parrilla-Carrero
- Department of Neuroscience
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - William C Buchta
- Department of Neuroscience
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Priyodarshan Goswamee
- Department of Neuroscience
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Oliver Culver
- Department of Neuroscience
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Greer McKendrick
- Department of Neuroscience
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Benjamin Harlan
- Department of Neuroscience
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona, Tucson, Arizona 85724, and
| | - Rachel Penrod
- Department of Neuroscience
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Abigail Lauer
- Department of Public Health Sciences., Medical University of South Carolina, Charleston, SC 29425
| | - Viswanathan Ramakrishnan
- Department of Public Health Sciences., Medical University of South Carolina, Charleston, SC 29425
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, Arizona 85724, and
| | - Peter Kalivas
- Department of Neuroscience
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Arthur C Riegel
- Department of Neuroscience,
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
35
|
Allen KM, Marsat G. Task-specific sensory coding strategies are matched to detection and discrimination performance. ACTA ACUST UNITED AC 2018; 221:jeb.170563. [PMID: 29444842 DOI: 10.1242/jeb.170563] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/04/2018] [Indexed: 01/17/2023]
Abstract
The acquisition of sensory information is limited by the neural encoding method used, constraining perceptual abilities. The most relevant aspects of stimuli may change as behavioral context changes, making efficient encoding of information more challenging. Sensory systems must balance rapid detection of a stimulus with perception of fine details that enable discrimination between similar stimuli. Here, we show that in a species of weakly electric fish, Apteronotus leptorhynchus, two coding strategies are employed for these separate behavioral tasks. Using communication signals, we demonstrate a strong correlation between neural coding strategies and behavioral performance on a discrimination task. Extracellular recordings of pyramidal cells within the electrosensory lateral line lobe of alert fish show two distinct response patterns, either burst discharges with little variation between different signals of the same category, or a graded, heterogeneous response that contains sufficient information to discriminate between signals with slight variations. When faced with a discrimination-based task, the behavioral performance of the fish closely matches predictions based on coding strategy. Comparisons of these results with neural and behavioral responses observed in other model systems suggest that our study highlights a general principle in the way sensory systems utilize different neural codes.
Collapse
Affiliation(s)
- Kathryne M Allen
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Gary Marsat
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA .,Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
36
|
Buchta WC, Mahler SV, Harlan B, Aston-Jones GS, Riegel AC. Dopamine terminals from the ventral tegmental area gate intrinsic inhibition in the prefrontal cortex. Physiol Rep 2017; 5:5/6/e13198. [PMID: 28325790 PMCID: PMC5371565 DOI: 10.14814/phy2.13198] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 01/11/2023] Open
Abstract
Spike frequency adaptation (SFA or accommodation) and calcium‐activated potassium channels that underlie after‐hyperpolarization potentials (AHP) regulate repetitive firing of neurons. Precisely how neuromodulators such as dopamine from the ventral tegmental area (VTA) regulate SFA and AHP (together referred to as intrinsic inhibition) in the prefrontal cortex (PFC) remains unclear. Using whole cell electrophysiology, we measured intrinsic inhibition in prelimbic (PL) layer 5 pyramidal cells of male adult rats. Results demonstrate that bath application of dopamine reduced intrinsic inhibition (EC50: 25.0 μmol/L). This dopamine action was facilitated by coapplication of cocaine (1 μmol/L), a blocker of dopamine reuptake. To evaluate VTA dopamine terminals in PFC slices, we transfected VTA dopamine cells of TH::Cre rats in vivo with Cre‐dependent AAVs to express channelrhodopsin‐2 (ChR2) or designer receptors exclusively activated by designer drugs (DREADDS). In PFC slices from these animals, stimulation of VTA terminals with either blue light to activate ChR2 or bath application of clozapine‐N‐oxide (CNO) to activate Gq‐DREADDs produced a similar reduction in intrinsic inhibition in PL neurons. Electrophysiological recordings from cells expressing retrograde fluorescent tracers showed that this plasticity occurs in PL neurons projecting to the accumbens core. Collectively, these data highlight an ability of VTA terminals to gate intrinsic inhibition in the PFC, and under appropriate circumstances, enhance PL neuronal firing. These cellular actions of dopamine may be important for dopamine‐dependent behaviors involving cocaine and cue‐reward associations within cortical–striatal circuits.
Collapse
Affiliation(s)
- William C Buchta
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.,Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina
| | - Stephen V Mahler
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.,Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina
| | - Benjamin Harlan
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.,Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina
| | - Gary S Aston-Jones
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.,Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina
| | - Arthur C Riegel
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina .,Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
37
|
Allitt BJ, Alwis DS, Rajan R. Laminar-specific encoding of texture elements in rat barrel cortex. J Physiol 2017; 595:7223-7247. [PMID: 28929510 PMCID: PMC5709323 DOI: 10.1113/jp274865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/06/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS For rats texture discrimination is signalled by the large face whiskers by stick-slip events. Neural encoding of repetitive stick-slip events will be influenced by intrinsic properties of adaptation. We show that texture coding in the barrel cortex is laminar specific and follows a power function. Our results also show layer 2 codes for novel feature elements via robust firing rates and temporal fidelity. We conclude that texture coding relies on a subtle neural ensemble to provide important object information. ABSTRACT Texture discrimination by rats is exquisitely guided by fine-grain mechanical stick-slip motions of the face whiskers as they encounter, stick to and slip past successive texture-defining surface features such as bumps and grooves. Neural encoding of successive stick-slip texture events will be shaped by adaptation, common to all sensory systems, whereby receptor and neural responses to a stimulus are affected by responses to preceding stimuli, allowing resetting to signal novel information. Additionally, when a whisker is actively moved to contact and brush over surfaces, that motion itself generates neural responses that could cause adaptation of responses to subsequent stick-slip events. Nothing is known about encoding in the rat whisker system of stick-slip events defining textures of different grain or the influence of adaptation from whisker protraction or successive texture-defining stick-slip events. Here we recorded responses from halothane-anaesthetized rats in response to texture-defining stimuli applied to passive whiskers. We demonstrate that: across the columnar network of the whisker-recipient barrel cortex, adaptation in response to repetitive stick-slip events is strongest in uppermost layers and equally lower thereafter; neither whisker protraction speed nor stick-slip frequency impede encoding of stick-slip events at rates up to 34.08 Hz; and layer 2 normalizes responses to whisker protraction to resist effects on texture signalling. Thus, within laminar-specific response patterns, barrel cortex reliably encodes texture-defining elements even to high frequencies.
Collapse
Affiliation(s)
| | - Dasuni S. Alwis
- Department of PhysiologyMonash UniversityClaytonVIC3800Australia
| | - Ramesh Rajan
- Department of PhysiologyMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
38
|
Delayed Maturation of Fast-Spiking Interneurons Is Rectified by Activation of the TrkB Receptor in the Mouse Model of Fragile X Syndrome. J Neurosci 2017; 37:11298-11310. [PMID: 29038238 DOI: 10.1523/jneurosci.2893-16.2017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder that is a leading cause of inherited intellectual disability, and the most common known cause of autism spectrum disorder. FXS is broadly characterized by sensory hypersensitivity and several developmental alterations in synaptic and circuit function have been uncovered in the sensory cortex of the mouse model of FXS (Fmr1 KO). GABA-mediated neurotransmission and fast-spiking (FS) GABAergic interneurons are central to cortical circuit development in the neonate. Here we demonstrate that there is a delay in the maturation of the intrinsic properties of FS interneurons in the sensory cortex, and a deficit in the formation of excitatory synaptic inputs on to these neurons in neonatal Fmr1 KO mice. Both these delays in neuronal and synaptic maturation were rectified by chronic administration of a TrkB receptor agonist. These results demonstrate that the maturation of the GABAergic circuit in the sensory cortex is altered during a critical developmental period due in part to a perturbation in BDNF-TrkB signaling, and could contribute to the alterations in cortical development underlying the sensory pathophysiology of FXS.SIGNIFICANCE STATEMENT Fragile X (FXS) individuals have a range of sensory related phenotypes, and there is growing evidence of alterations in neuronal circuits in the sensory cortex of the mouse model of FXS (Fmr1 KO). GABAergic interneurons are central to the correct formation of circuits during cortical critical periods. Here we demonstrate a delay in the maturation of the properties and synaptic connectivity of interneurons in Fmr1 KO mice during a critical period of cortical development. The delays both in cellular and synaptic maturation were rectified by administration of a TrkB receptor agonist, suggesting reduced BDNF-TrkB signaling as a contributing factor. These results provide evidence that the function of fast-spiking interneurons is disrupted due to a deficiency in neurotrophin signaling during early development in FXS.
Collapse
|
39
|
Hofmann V, Chacron MJ. Differential receptive field organizations give rise to nearly identical neural correlations across three parallel sensory maps in weakly electric fish. PLoS Comput Biol 2017; 13:e1005716. [PMID: 28863136 PMCID: PMC5599069 DOI: 10.1371/journal.pcbi.1005716] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/14/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022] Open
Abstract
Understanding how neural populations encode sensory information thereby leading to perception and behavior (i.e., the neural code) remains an important problem in neuroscience. When investigating the neural code, one must take into account the fact that neural activities are not independent but are actually correlated with one another. Such correlations are seen ubiquitously and have a strong impact on neural coding. Here we investigated how differences in the antagonistic center-surround receptive field (RF) organization across three parallel sensory maps influence correlations between the activities of electrosensory pyramidal neurons. Using a model based on known anatomical differences in receptive field center size and overlap, we initially predicted large differences in correlated activity across the maps. However, in vivo electrophysiological recordings showed that, contrary to modeling predictions, electrosensory pyramidal neurons across all three segments displayed nearly identical correlations. To explain this surprising result, we incorporated the effects of RF surround in our model. By systematically varying both the RF surround gain and size relative to that of the RF center, we found that multiple RF structures gave rise to similar levels of correlation. In particular, incorporating known physiological differences in RF structure between the three maps in our model gave rise to similar levels of correlation. Our results show that RF center overlap alone does not determine correlations which has important implications for understanding how RF structure influences correlated neural activity. Growing evidence across nervous systems and species shows that the activities of neighboring neurons are not independent but are correlated with one another, which has important implications for neural coding. Such correlations are generally thought to be due to shared input. However, how this shared input is integrated by neurons in order to give rise to correlated activity is not well understood in general. Here we investigated how receptive field structure determines correlations between the activities of electrosensory pyramidal neurons in weakly electric fish. To do so, we used a combination of mathematical modeling of the known antagonistic center-surround RF structure as well as in vivo electrophysiological recordings. Our results show that the amount of receptive field center overlap alone is not sufficient to explain experimentally observed neural correlations in general. This is because our experimental data shows that pyramidal neurons with very different amounts of receptive field center overlap display almost identical correlations between their activities. Further, our modeling shows that both receptive field center and surround play important roles in determining correlated activity, such that very different combinations of relative RF surround strength and size can generate nearly identical correlations between neural activities. We discuss the implications of our results for sensory processing.
Collapse
Affiliation(s)
- Volker Hofmann
- Department of Physiology, McGill University, McIntyre Medical Building, Montreal, Québec, Canada
| | - Maurice J. Chacron
- Department of Physiology, McGill University, McIntyre Medical Building, Montreal, Québec, Canada
- * E-mail:
| |
Collapse
|
40
|
Yi G, Wang J, Wei X, Deng B. Dendritic Properties Control Energy Efficiency of Action Potentials in Cortical Pyramidal Cells. Front Cell Neurosci 2017; 11:265. [PMID: 28919852 PMCID: PMC5585200 DOI: 10.3389/fncel.2017.00265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/18/2017] [Indexed: 12/31/2022] Open
Abstract
Neural computation is performed by transforming input signals into sequences of action potentials (APs), which is metabolically expensive and limited by the energy available to the brain. The metabolic efficiency of single AP has important consequences for the computational power of the cell, which is determined by its biophysical properties and morphologies. Here we adopt biophysically-based two-compartment models to investigate how dendrites affect energy efficiency of APs in cortical pyramidal neurons. We measure the Na+ entry during the spike and examine how it is efficiently used for generating AP depolarization. We show that increasing the proportion of dendritic area or coupling conductance between two chambers decreases Na+ entry efficiency of somatic AP. Activating inward Ca2+ current in dendrites results in dendritic spike, which increases AP efficiency. Activating Ca2+-activated outward K+ current in dendrites, however, decreases Na+ entry efficiency. We demonstrate that the active and passive dendrites take effects by altering the overlap between Na+ influx and internal current flowing from soma to dendrite. We explain a fundamental link between dendritic properties and AP efficiency, which is essential to interpret how neural computation consumes metabolic energy and how biophysics and morphologies contribute to such consumption.
Collapse
Affiliation(s)
- Guosheng Yi
- School of Electrical and Information Engineering, Tianjin UniversityTianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin UniversityTianjin, China
| | - Xile Wei
- School of Electrical and Information Engineering, Tianjin UniversityTianjin, China
| | - Bin Deng
- School of Electrical and Information Engineering, Tianjin UniversityTianjin, China
| |
Collapse
|
41
|
Optimized Parallel Coding of Second-Order Stimulus Features by Heterogeneous Neural Populations. J Neurosci 2017; 36:9859-72. [PMID: 27656024 DOI: 10.1523/jneurosci.1433-16.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/09/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Efficient processing of sensory input is essential to ensure an organism's survival in its natural environment. Growing evidence suggests that sensory neurons can optimally encode natural stimuli by ensuring that their tuning opposes stimulus statistics, such that the resulting neuronal response contains equal power at all frequencies (i.e., is "white"). Such temporal decorrelation or whitening has been observed across modalities, but the effects of neural heterogeneities on determining tuning and thus responses to natural stimuli have not been investigated. Here, we investigate how heterogeneities in sensory pyramidal neurons organized in three parallel maps representing the body surface determine responses to second-order electrosensory stimulus features in the weakly electric fish Apteronotus leptorhynchus While some sources of heterogeneities such as ON- and OFF-type responses to first-order did not affect responses to second-order electrosensory stimulus features, other sources of heterogeneity within and across the maps strongly determined responses. We found that these cells effectively performed a fractional differentiation operation on their input with exponents ranging from zero (no differentiation) to 0.4 (strong differentiation). Varying adaptation in a simple model explained these heterogeneities and predicted a strong correlation between fractional differentiation and adaptation. Using natural stimuli, we found that only a small fraction of neurons implemented temporal whitening. Rather, a large fraction of neurons did not perform any significant whitening and thus preserved natural input statistics in their responses. We propose that this information is needed to properly decode optimized information sent in parallel through temporally whitened responses based on context. SIGNIFICANCE STATEMENT We demonstrate that heterogeneities in the same sensory neuron type can either have no or significant influence on their responses to second-order stimulus features. While an ON- or OFF-type response to first-order stimulus attributes has no significant influence on responses to second-order stimulus features, we found that only a small fraction of sensory neurons optimally encoded natural stimuli through high-pass filtering, thereby implementing temporal whitening. Surprisingly, a large fraction of sensory neurons performed little if no filtering of stimuli, thereby preserving natural stimulus statistics. We hypothesize that this pathway is necessary to properly decode optimized information contained in temporally whitened responses based on context.
Collapse
|
42
|
Santos FP, Maciel CD, Newland PL. Pre-processing and transfer entropy measures in motor neurons controlling limb movements. J Comput Neurosci 2017; 43:159-171. [PMID: 28791522 DOI: 10.1007/s10827-017-0656-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
Directed information transfer measures are increasingly being employed in modeling neural system behavior due to their model-free approach, applicability to nonlinear and stochastic signals, and the potential to integrate repetitions of an experiment. Intracellular physiological recordings of graded synaptic potentials provide a number of additional challenges compared to spike signals due to non-stationary behaviour generated through extrinsic processes. We therefore propose a method to overcome this difficulty by using a preprocessing step based on Singular Spectrum Analysis (SSA) to remove nonlinear trends and discontinuities. We apply the method to intracellular recordings of synaptic responses of identified motor neurons evoked by stimulation of a proprioceptor that monitors limb position in leg of the desert locust. We then apply normalized delayed transfer entropy measures to neural responses evoked by displacements of the proprioceptor, the femoral chordotonal organ, that contains sensory neurones that monitor movements about the femoral-tibial joint. We then determine the consistency of responses within an individual recording of an identified motor neuron in a single animal, between repetitions of the same experiment in an identified motor neurons in the same animal and in repetitions of the same experiment from the same identified motor neuron in different animals. We found that delayed transfer entropy measures were consistent for a given identified neuron within and between animals and that they predict neural connectivity for the fast extensor tibiae motor neuron.
Collapse
Affiliation(s)
- Fernando P Santos
- Faculty of Electrical Engineering, Federal University of Uberlândia, Av. João Naves de Ávila, 2160, Bloco 3N, Uberlândia, 38408-100, MG, Brazil. .,Signal Processing Laboratory, Department of Electrical Engineering, University of São Paulo, Av. Trabalhador Sãocarlense, 400, São Carlos, 13566-590, SP, Brazil.
| | - Carlos D Maciel
- Faculty of Electrical Engineering, Federal University of Uberlândia, Av. João Naves de Ávila, 2160, Bloco 3N, Uberlândia, 38408-100, MG, Brazil
| | - Philip L Newland
- Biological Sciences, University of Southampton, Highfield Campus, Southampton, S017 1BJ, UK
| |
Collapse
|
43
|
Wang L, Wang Y, Fu WL, Cao LH. Modulation of neuronal dynamic range using two different adaptation mechanisms. Neural Regen Res 2017; 12:447-451. [PMID: 28469660 PMCID: PMC5399723 DOI: 10.4103/1673-5374.202931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The capability of neurons to discriminate between intensity of external stimulus is measured by its dynamic range. A larger dynamic range indicates a greater probability of neuronal survival. In this study, the potential roles of adaptation mechanisms (ion currents) in modulating neuronal dynamic range were numerically investigated. Based on the adaptive exponential integrate-and-fire model, which includes two different adaptation mechanisms, i.e. subthreshold and suprathreshold (spike-triggered) adaptation, our results reveal that the two adaptation mechanisms exhibit rather different roles in regulating neuronal dynamic range. Specifically, subthreshold adaptation acts as a negative factor that observably decreases the neuronal dynamic range, while suprathreshold adaptation has little influence on the neuronal dynamic range. Moreover, when stochastic noise was introduced into the adaptation mechanisms, the dynamic range was apparently enhanced, regardless of what state the neuron was in, e.g. adaptive or non-adaptive. Our model results suggested that the neuronal dynamic range can be differentially modulated by different adaptation mechanisms. Additionally, noise was a non-ignorable factor, which could effectively modulate the neuronal dynamic range.
Collapse
Affiliation(s)
- Lei Wang
- Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, China
| | - Ye Wang
- Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, China
| | - Wen-Long Fu
- Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, China
| | - Li-Hong Cao
- Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, China
| |
Collapse
|
44
|
Mogdans J, Müller C, Frings M, Raap F. Adaptive responses of peripheral lateral line nerve fibres to sinusoidal wave stimuli. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:329-342. [PMID: 28405761 DOI: 10.1007/s00359-017-1172-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
Sensory adaptation is characterized by a reduction in the firing frequency of neurons to prolonged stimulation, also called spike frequency adaptation. This has been documented for sensory neurons of the visual, olfactory, electrosensory, and auditory system both in response to constant-amplitude and to sinusoidal stimuli, but has thus far not been described systematically for the lateral line system. We recorded neuronal activity from primary afferent nerve fibres in the lateral line in goldfish in response to sinusoidal wave stimuli. Depending on stimulus characteristics, afferent fibre responses exhibited a distinct onset followed by a decline in firing rate to an apparent steady-state level, i.e., they exhibited adaptation. The degree of adaptation, measured as the percent decrease in firing rate between onset and steady-state, increased with stimulus amplitude and frequency and with increasing steepness of the rising flank of the stimulus. This may in part be due to the velocity and/or acceleration sensitivity of the lateral line receptors. The time course of the response decline, i.e., the time course of adaptation was best-fit by a power function. This is consistent with the previous studies on spike frequency adaptation in sensory afferents of weakly electric fish.
Collapse
Affiliation(s)
- Joachim Mogdans
- Institut für Zoologie, Universität Bonn, Poppelsdorfer Schloß, 53115, Bonn, Germany.
| | - Christina Müller
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (BMZ1), Sigmund-Freud Str. 25, 53127, Bonn, Germany
| | - Maren Frings
- Institut für Zoologie, Universität Bonn, Poppelsdorfer Schloß, 53115, Bonn, Germany
| | - Ferdinand Raap
- Institut für Zoologie, Universität Bonn, Poppelsdorfer Schloß, 53115, Bonn, Germany
| |
Collapse
|
45
|
Metzen MG, Chacron MJ. Stimulus background influences phase invariant coding by correlated neural activity. eLife 2017; 6:e24482. [PMID: 28315519 PMCID: PMC5389862 DOI: 10.7554/elife.24482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/17/2017] [Indexed: 11/13/2022] Open
Abstract
Previously we reported that correlations between the activities of peripheral afferents mediate a phase invariant representation of natural communication stimuli that is refined across successive processing stages thereby leading to perception and behavior in the weakly electric fish Apteronotus leptorhynchus (Metzen et al., 2016). Here, we explore how phase invariant coding and perception of natural communication stimuli are affected by changes in the sinusoidal background over which they occur. We found that increasing background frequency led to phase locking, which decreased both detectability and phase invariant coding. Correlated afferent activity was a much better predictor of behavior as assessed from both invariance and detectability than single neuron activity. Thus, our results provide not only further evidence that correlated activity likely determines perception of natural communication signals, but also a novel explanation as to why these preferentially occur on top of low frequency as well as low-intensity sinusoidal backgrounds.
Collapse
|
46
|
Huang CG, Chacron MJ. SK channel subtypes enable parallel optimized coding of behaviorally relevant stimulus attributes: A review. Channels (Austin) 2017; 11:281-304. [PMID: 28277938 DOI: 10.1080/19336950.2017.1299835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Ion channels play essential roles toward determining how neurons respond to sensory input to mediate perception and behavior. Small conductance calcium-activated potassium (SK) channels are found ubiquitously throughout the brain and have been extensively characterized both molecularly and physiologically in terms of structure and function. It is clear that SK channels are key determinants of neural excitability as they mediate important neuronal response properties such as spike frequency adaptation. However, the functional roles of the different known SK channel subtypes are not well understood. Here we review recent evidence from the electrosensory system of weakly electric fish suggesting that the function of different SK channel subtypes is to optimize the processing of independent but behaviorally relevant stimulus attributes. Indeed, natural sensory stimuli frequently consist of a fast time-varying waveform (i.e., the carrier) whose amplitude (i.e., the envelope) varies slowly and independently. We first review evidence showing how somatic SK2 channels mediate tuning and responses to carrier waveforms. We then review evidence showing how dendritic SK1 channels instead determine tuning and optimize responses to envelope waveforms based on their statistics as found in the organism's natural environment in an independent fashion. The high degree of functional homology between SK channels in electric fish and their mammalian orthologs, as well as the many important parallels between the electrosensory system and the mammalian visual, auditory, and vestibular systems, suggest that these functional roles are conserved across systems and species.
Collapse
Affiliation(s)
- Chengjie G Huang
- a Department of Physiology , McGill University , Montreal , QC , Canada
| | - Maurice J Chacron
- a Department of Physiology , McGill University , Montreal , QC , Canada
| |
Collapse
|
47
|
Rodríguez-Cattaneo A, Aguilera PA, Caputi AA. Waveform sensitivity of electroreceptors in the pulse-type weakly electric fish Gymnotus omarorum. ACTA ACUST UNITED AC 2017; 220:1663-1673. [PMID: 28202586 DOI: 10.1242/jeb.153379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/13/2017] [Indexed: 11/20/2022]
Abstract
As in most sensory systems, electrosensory images in weakly electric fish are encoded in two parallel pathways, fast and slow. From work on wave-type electric fish, these fast and slow pathways are thought to encode the time and amplitude of electrosensory signals, respectively. The present study focuses on the primary afferents giving origin to the slow path of the pulse-type weakly electric fish Gymnotus omarorum We found that burst duration coders respond with a high-frequency train of spikes to each electric organ discharge. They also show high sensitivity to phase-frequency distortions of the self-generated local electric field. We explored this sensitivity by manipulating the longitudinal impedance of a probe cylinder to modulate the stimulus waveform, while extracellularly recording isolated primary afferents. Resistive loads only affect the amplitude of the re-afferent signals without distorting the waveform. Capacitive loads cause large waveform distortions aside from amplitude changes. Stepping from a resistive to a capacitive load in such a way that the stimulus waveform was distorted, without changing its total energy, caused strong changes in latency, inter-spike interval and number of spikes of primary afferent responses. These burst parameters are well correlated suggesting that they may contribute synergistically in driving downstream neurons. This correlation also suggests that each receptor encodes a single parameter in the stimulus waveform. The finding of waveform distortion sensitivity is relevant because it may contribute to: (a) enhance electroreceptive range in the peripheral 'electrosensory field', (b) a better identification of living prey at the 'foveal electrosensory field' and (c) detect the presence and orientation of conspecifics. Our results also suggest a revision of the classical view of amplitude and time encoding by fast and slow pathways in pulse-type electric fish.
Collapse
Affiliation(s)
- Alejo Rodríguez-Cattaneo
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, C.P 11600, Montevideo, Uruguay
| | - Pedro A Aguilera
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, C.P 11600, Montevideo, Uruguay
| | - Angel A Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, C.P 11600, Montevideo, Uruguay
| |
Collapse
|
48
|
Synchronous spikes are necessary but not sufficient for a synchrony code in populations of spiking neurons. Proc Natl Acad Sci U S A 2017; 114:E1977-E1985. [PMID: 28202729 DOI: 10.1073/pnas.1615561114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synchronous activity in populations of neurons potentially encodes special stimulus features. Selective readout of either synchronous or asynchronous activity allows formation of two streams of information processing. Theoretical work predicts that such a synchrony code is a fundamental feature of populations of spiking neurons if they operate in specific noise and stimulus regimes. Here we experimentally test the theoretical predictions by quantifying and comparing neuronal response properties in tuberous and ampullary electroreceptor afferents of the weakly electric fish Apteronotus leptorhynchus These related systems show similar levels of synchronous activity, but only in the more irregularly firing tuberous afferents a synchrony code is established, whereas in the more regularly firing ampullary afferents it is not. The mere existence of synchronous activity is thus not sufficient for a synchrony code. Single-cell features such as the irregularity of spiking and the frequency dependence of the neuron's transfer function determine whether synchronous spikes possess a distinct meaning for the encoding of time-dependent signals.
Collapse
|
49
|
Abstract
Electric fish are privileged animals for bio-inspiring man-built autonomous systems since they have a multimodal sense that allows underwater navigation, object classification and intraspecific communication. Although there are taxon dependent variations adapted to different environments, this multimodal system can be schematically described as having four main components: active electroreception, passive electroreception, lateral line sense and, proprioception. Amongst these sensory modalities, proprioception and electroreception show 'active' systems that extrct information carried by self generated forms of energy. This ensemble of four sensory modalities is present in African mormyriformes and American gymnotiformes. The convergent evolution of similar imaging, peripheral encoding, and central processing mechanisms suggests that these mechanisms may be the most suitable for dealing with electric images in the context of the other and self generated actions. This review deals with the way in which biological organisms address three of the problems that are faced when designing a bioinspired electroreceptive agent: (a) body shape, material and mobility, (b) peripheral encoding of electric images, and (c) early processing of electrosensory signals. Taking into account biological solutions I propose that the new generation of underwater agents should have electroreceptive arms, use complex peripheral sensors for encoding the images and cerebellum like architecture for image feature extraction and implementing sensory-motor transformations.
Collapse
Affiliation(s)
- Angel Ariel Caputi
- Departamento de Neurociencias Integrativas y Computacionales Instituto de Investigaciones Biológicas Clemente Estable. Av. Italia 3318 Montevideo, Uruguay
| |
Collapse
|
50
|
Shaffer A, Harris AL, Follmann R, Rosa E. Bifurcation transitions in gap-junction-coupled neurons. Phys Rev E 2016; 94:042301. [PMID: 27841500 DOI: 10.1103/physreve.94.042301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Indexed: 11/07/2022]
Abstract
Here we investigate transitions occurring in the dynamical states of pairs of distinct neurons electrically coupled, with one neuron tonic and the other bursting. Depending on the dynamics of the individual neurons, and for strong enough coupling, they synchronize either in a tonic or a bursting regime, or initially tonic transitioning to bursting via a period doubling cascade. Certain intrinsic properties of the individual neurons such as minimum firing rates are carried over into the dynamics of the coupled neurons affecting their ultimate synchronous state.
Collapse
Affiliation(s)
- Annabelle Shaffer
- Department of Physics, Illinois State University, Normal, Illinois 61790, USA
| | - Allison L Harris
- Department of Physics, Illinois State University, Normal, Illinois 61790, USA
| | - Rosangela Follmann
- Department of Physics, Illinois State University, Normal, Illinois 61790, USA.,School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA
| | - Epaminondas Rosa
- Department of Physics, Illinois State University, Normal, Illinois 61790, USA.,School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA
| |
Collapse
|