1
|
Kuznetsov IA, Kuznetsov AV. Why slow axonal transport is bidirectional - can axonal transport of tau protein rely only on motor-driven anterograde transport? Comput Methods Biomech Biomed Engin 2024; 27:620-631. [PMID: 37068039 DOI: 10.1080/10255842.2023.2197541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/27/2023] [Indexed: 04/18/2023]
Abstract
Slow axonal transport (SAT) moves multiple proteins from the soma, where they are synthesized, to the axon terminal. Due to the great lengths of axons, SAT almost exclusively relies on active transport, which is driven by molecular motors. The puzzling feature of slow axonal transport is its bidirectionality. Although the net direction of SAT is anterograde, from the soma to the terminal, experiments show that it also contains a retrograde component. One of the proteins transported by SAT is the microtubule-associated protein tau. To better understand why the retrograde component in tau transport is needed, we used the perturbation technique to analyze how the full tau SAT model can be simplified for the specific case when retrograde motor-driven transport and diffusion-driven transport of tau are negligible and tau is driven only by anterograde (kinesin) motors. The solution of the simplified equations shows that without retrograde transport the tau concentration along the axon length stays almost uniform (decreases very slightly), which is inconsistent with the experimenal tau concentration at the outlet boundary (at the axon tip). Thus kinesin-driven transport alone is not enough to explain the empirically observed distribution of tau, and the retrograde motor-driven component in SAT is needed.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
Zhao Z, Liu X, Zong Y, Shi X, Sun Y. Cellular Processes Induced by HSV-1 Infections in Vestibular Neuritis. Viruses 2023; 16:12. [PMID: 38275947 PMCID: PMC10819745 DOI: 10.3390/v16010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Herpesvirus is a prevalent pathogen that primarily infects human epithelial cells and has the ability to reside in neurons. In the field of otolaryngology, herpesvirus infection primarily leads to hearing loss and vestibular neuritis and is considered the primary hypothesis regarding the pathogenesis of vestibular neuritis. In this review, we provide a summary of the effects of the herpes virus on cellular processes in both host cells and immune cells, with a focus on HSV-1 as illustrative examples.
Collapse
Affiliation(s)
- Zhengdong Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Xiaozhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Yanjun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Xinyu Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
3
|
Fenn JD, Li Y, Julien JP, Jung P, Brown A. The Mobility of Neurofilaments in Mature Myelinated Axons of Adult Mice. eNeuro 2023; 10:ENEURO.0029-23.2023. [PMID: 36882311 PMCID: PMC10035772 DOI: 10.1523/eneuro.0029-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023] Open
Abstract
Studies in cultured neurons have shown that neurofilaments are cargoes of axonal transport that move rapidly but intermittently along microtubule tracks. However, the extent to which axonal neurofilaments move in vivo has been controversial. Some researchers have proposed that most axonally transported neurofilaments are deposited into a persistently stationary network and that only a small proportion of axonal neurofilaments are transported in mature axons. Here we use the fluorescence photoactivation pulse-escape technique to test this hypothesis in intact peripheral nerves of adult male hThy1-paGFP-NFM mice, which express low levels of mouse neurofilament protein M tagged with photoactivatable GFP. Neurofilaments were photoactivated in short segments of large, myelinated axons, and the mobility of these fluorescently tagged polymers was determined by analyzing the kinetics of their departure. Our results show that >80% of the fluorescence departed the window within 3 h after activation, indicating a highly mobile neurofilament population. The movement was blocked by glycolytic inhibitors, confirming that it was an active transport process. Thus, we find no evidence for a substantial stationary neurofilament population. By extrapolation of the decay kinetics, we predict that 99% of the neurofilaments would have exited the activation window after 10 h. These data support a dynamic view of the neuronal cytoskeleton in which neurofilaments cycle repeatedly between moving and pausing states throughout their journey along the axon, even in mature myelinated axons. The filaments spend a large proportion of their time pausing, but on a timescale of hours, most of them move.
Collapse
Affiliation(s)
- J Daniel Fenn
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Medical Scientist Training Program, The Ohio State University, Columbus, Ohio 43210
| | - Yinyun Li
- Quantitative Biology Institute and Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701
| | - Jean-Pierre Julien
- CERVO Brain Research Centre, Department of Psychiatry and Neuroscience, Laval University, Quebec, Quebec G1J 2G3, Canada
| | - Peter Jung
- Quantitative Biology Institute and Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701
| | - Anthony Brown
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
4
|
Kuznetsov IA, Kuznetsov AV. Computational investigation of the effect of reduced dynein velocity and reduced cargo diffusivity on slow axonal transport. Proc Math Phys Eng Sci 2023. [DOI: 10.1098/rspa.2022.0672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Contributions of three components of slow axonal transport (SAT) were studied using a computational model: the anterograde motor (kinesin)-driven component, the retrograde motor (dynein)-driven component and the diffusion-driven component. The contribution of these three components of SAT was investigated in three different segments of the axon: the proximal portion, the central portion, and the distal portion of the axon. MAP1B protein was used as a model system to study SAT because there are published experimental data reporting MAP1B distribution along the axon length and average velocity of MAP1B transport in the axon. This allows the optimization approach to be used to find values of model kinetic constants that give the best fit with published experimental data. The effects of decreasing the value of cargo diffusivity on the diffusion-driven component of SAT and decreasing the value of dynein velocity on the retrograde motor-driven component of SAT were investigated. We found that for the case when protein diffusivity and dynein velocity are very small, it is possible to obtain an analytical solution to model equations. We found that, in this case, the protein concentration in the axon is uniform. This shows that anterograde motor-driven transport alone cannot simulate a variation of cargo concentration in the axon. Most proteins are non-uniformly distributed in axons. They may exhibit, for example, an increased concentration closer to the synapse. The need to reproduce a non-uniform distribution of protein concentration may explain why SAT is bidirectional (in addition to an anterograde component, it also contains a retrograde component).
Collapse
Affiliation(s)
- Ivan A. Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrey V. Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Paris A, Bora P, Parolo S, Monine M, Tong X, Eraly S, Masson E, Ferguson T, McCampbell A, Graham D, Domenici E, Nestorov I, Marchetti L. An age‐dependent mathematical model of neurofilament trafficking in healthy conditions. CPT Pharmacometrics Syst Pharmacol 2022; 11:447-457. [PMID: 35146969 PMCID: PMC9007607 DOI: 10.1002/psp4.12770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/12/2022] Open
Abstract
Neurofilaments (Nfs) are the major structural component of neurons. Their role as a potential biomarker of several neurodegenerative diseases has been investigated in past years with promising results. However, even under physiological conditions, little is known about the leaking of Nfs from the neuronal system and their detection in the cerebrospinal fluid (CSF) and blood. This study aimed at developing a mathematical model of Nf transport in healthy subjects in the 20–90 age range. The model was implemented as a set of ordinary differential equations describing the trafficking of Nfs from the nervous system to the periphery. Model parameters were calibrated on typical Nf levels obtained from the literature. An age‐dependent function modeled on CSF data was also included and validated on data measured in serum. We computed a global sensitivity analysis of model rates and volumes to identify the most sensitive parameters affecting the model’s steady state. Age, Nf synthesis, and degradation rates proved to be relevant for all model variables. Nf levels in the CSF and in blood were observed to be sensitive to the Nf leakage rates from neurons and to the blood clearance rate, and CSF levels were also sensitive to rates representing CSF turnover. An additional parameter perturbation analysis was also performed to investigate possible transient effects on the model variables not captured by the sensitivity analysis. The model provides useful insights into Nf transport and constitutes the basis for implementing quantitative system pharmacology extensions to investigate Nf trafficking in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessio Paris
- Fondazione The Microsoft Research – University of Trento Centre for Computational and Systems Biology Rovereto Italy
| | - Pranami Bora
- Fondazione The Microsoft Research – University of Trento Centre for Computational and Systems Biology Rovereto Italy
| | - Silvia Parolo
- Fondazione The Microsoft Research – University of Trento Centre for Computational and Systems Biology Rovereto Italy
| | | | - Xiao Tong
- Biogen, Inc. Cambridge Massachusetts USA
| | | | | | | | | | | | - Enrico Domenici
- Fondazione The Microsoft Research – University of Trento Centre for Computational and Systems Biology Rovereto Italy
- Department of Cellular, Computational and Integrative Biology University of Trento Trento Italy
| | | | - Luca Marchetti
- Fondazione The Microsoft Research – University of Trento Centre for Computational and Systems Biology Rovereto Italy
- Department of Cellular, Computational and Integrative Biology University of Trento Trento Italy
| |
Collapse
|
6
|
Moreno DG, Utagawa EC, Arva NC, Schafernak KT, Mufson EJ, Perez SE. Postnatal Cytoarchitecture and Neurochemical Hippocampal Dysfunction in Down Syndrome. J Clin Med 2021; 10:jcm10153414. [PMID: 34362198 PMCID: PMC8347520 DOI: 10.3390/jcm10153414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Although the prenatal hippocampus displays deficits in cellular proliferation/migration and volume, which are later associated with memory deficits, little is known about the effects of trisomy 21 on postnatal hippocampal cellular development in Down syndrome (DS). We examined postnatal hippocampal neuronal profiles from autopsies of DS and neurotypical (NTD) neonates born at 38-weeks’-gestation up to children 3 years of age using antibodies against non-phosphorylated (SMI-32) and phosphorylated (SMI-34) neurofilament, calbindin D-28k (Calb), calretinin (Calr), parvalbumin (Parv), doublecortin (DCX) and Ki-67, as well as amyloid precursor protein (APP), amyloid beta (Aβ) and phosphorylated tau (p-tau). Although the distribution of SMI-32-immunoreactive (-ir) hippocampal neurons was similar at all ages in both groups, pyramidal cell apical and basal dendrites were intensely stained in NTD cases. A greater reduction in the number of DCX-ir cells was observed in the hippocampal granule cell layer in DS. Although the distribution of Calb-ir neurons was similar between the youngest and oldest NTD and DS cases, Parv-ir was not detected. Conversely, Calr-ir cells and fibers were observed at all ages in DS, while NTD cases displayed mainly Calr-ir fibers. Hippocampal APP/Aβ-ir diffuse-like plaques were seen in DS and NTD. By contrast, no Aβ1–42 or p-tau profiles were observed. These findings suggest that deficits in hippocampal neurogenesis and pyramidal cell maturation and increased Calr immunoreactivity during early postnatal life contribute to cognitive impairment in DS.
Collapse
Affiliation(s)
- David G. Moreno
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (D.G.M.); (E.C.U.); (E.J.M.)
| | - Emma C. Utagawa
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (D.G.M.); (E.C.U.); (E.J.M.)
| | - Nicoleta C. Arva
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Kristian T. Schafernak
- Department of Pathology and Laboratory Medicine, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA;
| | - Elliott J. Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (D.G.M.); (E.C.U.); (E.J.M.)
| | - Sylvia E. Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (D.G.M.); (E.C.U.); (E.J.M.)
- Correspondence: ; Tel.: +6-02-406-3342
| |
Collapse
|
7
|
Jia Z, Li Y. A possible mechanism for neurofilament slowing down in myelinated axon: Phosphorylation-induced variation of NF kinetics. PLoS One 2021; 16:e0247656. [PMID: 33711034 PMCID: PMC7954336 DOI: 10.1371/journal.pone.0247656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/10/2021] [Indexed: 11/18/2022] Open
Abstract
Neurofilaments(NFs) are the most abundant intermediate filaments that make up the inner volume of axon, with possible phosphorylation on their side arms, and their slow axonal transport by molecular motors along microtubule tracks in a “stop-and-go” manner with rapid, intermittent and bidirectional motion. The kinetics of NFs and morphology of axon are dramatically different between myelinate internode and unmyelinated node of Ranvier. The NFs in the node transport as 7.6 times faster as in the internode, and the distribution of NFs population in the internode is 7.6 folds as much as in the node of Ranvier. We hypothesize that the phosphorylation of NFs could reduce the on-track rate and slow down their transport velocity in the internode. By modifying the ‘6-state’ model with (a) an extra phosphorylation kinetics to each six state and (b) construction a new ‘8-state’ model in which NFs at off-track can be phosphorylated and have smaller on-track rate, our model and simulation demonstrate that the phosphorylation-induced decrease of on-track rate could slow down the NFs average velocity and increase the axonal caliber. The degree of phosphorylation may indicate the extent of velocity reduction. The Continuity equation used in our paper predicts that the ratio of NFs population is inverse proportional to the ratios of average velocity of NFs between node of Ranvier and internode. We speculate that the myelination of axon could increase the level of phosphorylation of NF side arms, and decrease the possibility of NFs to get on-track of microtubules, therefore slow down their transport velocity. In summary, our work provides a potential mechanism for understanding the phosphorylation kinetics of NFs in regulating their transport and morphology of axon in myelinated axons, and the different kinetics of NFs between node and internode.
Collapse
Affiliation(s)
- Zelin Jia
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Yinyun Li
- School of Systems Science, Beijing Normal University, Beijing, China
- * E-mail:
| |
Collapse
|
8
|
|
9
|
Gafson AR, Barthélemy NR, Bomont P, Carare RO, Durham HD, Julien JP, Kuhle J, Leppert D, Nixon RA, Weller RO, Zetterberg H, Matthews PM. Neurofilaments: neurobiological foundations for biomarker applications. Brain 2020; 143:1975-1998. [PMID: 32408345 DOI: 10.1093/brain/awaa098] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/20/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Interest in neurofilaments has risen sharply in recent years with recognition of their potential as biomarkers of brain injury or neurodegeneration in CSF and blood. This is in the context of a growing appreciation for the complexity of the neurobiology of neurofilaments, new recognition of specialized roles for neurofilaments in synapses and a developing understanding of mechanisms responsible for their turnover. Here we will review the neurobiology of neurofilament proteins, describing current understanding of their structure and function, including recently discovered evidence for their roles in synapses. We will explore emerging understanding of the mechanisms of neurofilament degradation and clearance and review new methods for future elucidation of the kinetics of their turnover in humans. Primary roles of neurofilaments in the pathogenesis of human diseases will be described. With this background, we then will review critically evidence supporting use of neurofilament concentration measures as biomarkers of neuronal injury or degeneration. Finally, we will reflect on major challenges for studies of the neurobiology of intermediate filaments with specific attention to identifying what needs to be learned for more precise use and confident interpretation of neurofilament measures as biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Arie R Gafson
- Department of Brain Sciences, Imperial College, London, UK
| | - Nicolas R Barthélemy
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Pascale Bomont
- ATIP-Avenir team, INM, INSERM, Montpellier University, Montpellier, France
| | - Roxana O Carare
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Heather D Durham
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, Laval University, Quebec, Canada.,CERVO Brain Research Center, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Leppert
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.,Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA.,Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Roy O Weller
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Henrik Zetterberg
- University College London Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at University College London, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College, London, UK.,UK Dementia Research Institute at Imperial College, London
| |
Collapse
|
10
|
Kuznetsov IA, Kuznetsov AV. Modeling tau transport in the axon initial segment. Math Biosci 2020; 329:108468. [PMID: 32920097 DOI: 10.1016/j.mbs.2020.108468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022]
Abstract
By assuming that tau protein can be in seven kinetic states, we developed a model of tau protein transport in the axon and in the axon initial segment (AIS). Two separate sets of kinetic constants were determined, one in the axon and the other in the AIS. This was done by fitting the model predictions in the axon with experimental results and by fitting the model predictions in the AIS with the assumed linear increase of the total tau concentration in the AIS. The calibrated model was used to make predictions about tau transport in the axon and in the AIS. To the best of our knowledge, this is the first paper that presents a mathematical model of tau transport in the AIS. Our modeling results suggest that binding of free tau to microtubules creates a negative gradient of free tau in the AIS. This leads to diffusion-driven tau transport from the soma into the AIS. The model further suggests that slow axonal transport and diffusion-driven transport of tau work together in the AIS, moving tau anterogradely. Our numerical results predict an interplay between these two mechanisms: as the distance from the soma increases, the diffusion-driven transport decreases, while motor-driven transport becomes larger. Thus, the machinery in the AIS works as a pump, moving tau into the axon.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA.
| |
Collapse
|
11
|
Jia Z, Li Y. Local modulation of Neurofilament transport at Nodes of Ranvier. Biomed Phys Eng Express 2020; 6:055025. [PMID: 33444256 DOI: 10.1088/2057-1976/abb067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neurofilaments (NFs) are the most abundant cytoskeletal filaments undergoing 'slow axonal transport' in axons, and the population of NFs determines the axonal morphology. Both in vitro and ex-vivo experimental evidences show that the caliber of node is much thinner and the number of NFs in the node is much lower than the internode. Based on the Continuity equation, lower population of NFs indicates faster transport velocity. We propose that the local acceleration of NFs transport at node may result from the higher on-track rate [Formula: see text] or higher transition rate [Formula: see text] from pausing to running. We construct a segment of axon including both node and internode, and inject NFs by a fixed flux into it continuously. By upregulating transition rate of either [Formula: see text] or [Formula: see text] locally at the Node of Ranvier in the '6-state'model, we successfully accelerate NFs velocity and reproduce constriction of nodes. Our work demonstrates that local modulation of NF kinetics can change NFs distribution and shape the morphology of Node of Ranvier.
Collapse
Affiliation(s)
- Zelin Jia
- School of Systems Science, Beijing Normal University, Beijing, 100875, People's Republic of China
| | | |
Collapse
|
12
|
Ciocanel MV, Jung P, Brown A. A mechanism for neurofilament transport acceleration through nodes of Ranvier. Mol Biol Cell 2020; 31:640-654. [PMID: 32023144 PMCID: PMC7202067 DOI: 10.1091/mbc.e19-09-0509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neurofilaments are abundant space-filling cytoskeletal polymers in axons that are transported along microtubule tracks. Neurofilament transport is accelerated at nodes of Ranvier, where axons are locally constricted. Strikingly, these constrictions are accompanied by sharp decreases in neurofilament number, no decreases in microtubule number, and increases in the packing density of these polymers, which collectively bring nodal neurofilaments closer to their microtubule tracks. We hypothesize that this leads to an increase in the proportion of time that the filaments spend moving and that this can explain the local acceleration. To test this, we developed a stochastic model of neurofilament transport that tracks their number, kinetic state, and proximity to nearby microtubules in space and time. The model assumes that the probability of a neurofilament moving is dependent on its distance from the nearest available microtubule track. Taking into account experimentally reported numbers and densities for neurofilaments and microtubules in nodes and internodes, we show that the model is sufficient to explain the local acceleration of neurofilaments within nodes of Ranvier. This suggests that proximity to microtubule tracks may be a key regulator of neurofilament transport in axons, which has implications for the mechanism of neurofilament accumulation in development and disease.
Collapse
Affiliation(s)
| | - Peter Jung
- Quantitative Biology Institute and Department of Physics and Astronomy, Ohio University, Athens, OH 45701
| | - Anthony Brown
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
13
|
Melkikh AV, Sutormina M. Intra- and intercellular transport of substances: Models and mechanisms. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:184-202. [PMID: 31678255 DOI: 10.1016/j.pbiomolbio.2019.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022]
Abstract
Non-equilibrium-statistical models of intracellular transport are built. The most significant features of these models are microscopic reversibility and the explicit considerations of the driving forces of the process - the ATP-ADP chemical potential difference. In this paper, water transport using contractile vacuoles, the transport and assembly of microtubules and microfilaments, the protein distribution within a cell, the transport of neurotransmitters from the synaptic cleft and the transport of substances between cells using plasmodesmata are discussed. Endocytosis and phagocytosis models are considered, and transport tasks and information transfer mechanisms inside the cell are explored. Based on an analysis of chloroplast movement, it was concluded that they have a complicated method of influencing each other in the course of their movements. The role of quantum effects in sorting and control transport mechanisms is also discussed. It is likely that quantum effects play a large role in these processes, otherwise reliable molecular recognition would be impossible, which would lead to very low intracellular transport efficiency.
Collapse
|
14
|
Smith DW, Lee CJ, Morgan W, Gardiner BS. Estimating three-dimensional outflow and pressure gradients within the human eye. PLoS One 2019; 14:e0214961. [PMID: 30964894 PMCID: PMC6456205 DOI: 10.1371/journal.pone.0214961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/23/2019] [Indexed: 12/22/2022] Open
Abstract
In this paper we set the previously reported pressure-dependent, ordinary differential equation outflow model by Smith and Gardiner for the human eye, into a new three-dimensional (3D) porous media outflow model of the eye, and calibrate model parameters using data reported in the literature. Assuming normal outflow through anterior pathways, we test the ability of 3D flow model to predict the pressure elevation with a silicone oil tamponade. Then assuming outflow across the retinal pigment epithelium is normal, we test the ability of the 3D model to predict the pressure elevation in Schwartz-Matsuo syndrome. For the first time we find the flow model can successfully model both conditions, which helps to build confidence in the validity and accuracy of the 3D pressure-dependent outflow model proposed here. We employ this flow model to estimate the translaminar pressure gradient within the optic nerve head of a normal eye in both the upright and supine postures, and during the day and at night. Based on a ratio of estimated and measured pressure gradients, we define a factor of safety against acute interruption of axonal transport at the laminar cribrosa. Using a completely independent method, based on the behaviour of dynein molecular motors, we compute the factor of safety against stalling the dynein molecule motors, and so compromising retrograde axonal transport. We show these two independent methods for estimating factors of safety agree reasonably well and appear to be consistent. Taken together, the new 3D pressure-dependent outflow model proves itself to capable of providing a useful modeling platform for analyzing eye behaviour in a variety of physiological and clinically useful contexts, including IOP elevation in Schwartz-Matsuo syndrome and with silicone oil tamponade, and potentially for risk assessment for optic glaucomatous neuropathy.
Collapse
Affiliation(s)
- David W. Smith
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Australia
- * E-mail:
| | - Chang-Joon Lee
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Australia
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - William Morgan
- Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - Bruce S. Gardiner
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
15
|
Kuznetsov IA, Kuznetsov AV. Investigating sensitivity coefficients characterizing the response of a model of tau protein transport in an axon to model parameters. Comput Methods Biomech Biomed Engin 2018; 22:71-83. [PMID: 30580604 DOI: 10.1080/10255842.2018.1534233] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Evaluating the sensitivity of biological models to various model parameters is a critical step towards advancing our understanding of biological systems. In this paper, we investigated sensitivity coefficients for a model simulating transport of tau protein along the axon. This is an important problem due to the relevance of tau transport and agglomeration to Alzheimer's disease and other tauopathies, such as some forms of parkinsonism. The sensitivity coefficients that we obtained characterize how strongly three observables (the tau concentration, average tau velocity, and the percentage of tau bound to microtubules) depend on model parameters. The fact that the observables strongly depend on a parameter characterizing tau transition from the retrograde to the anterograde kinetic states suggests the importance of motor-driven transport of tau. The observables are sensitive to kinetic constants characterizing tau concentration in the free (cytosolic) state only at small distances from the soma. Cytosolic tau can only be transported by diffusion, suggesting that diffusion-driven transport of tau only plays a role in the proximal axon. Our analysis also shows the location in the axon in which an observable has the greatest sensitivity to a certain parameter. For most parameters, this location is in the proximal axon. This could be useful for designing an experiment aimed at determining the value of this parameter. We also analyzed sensitivity of the average tau velocity, the total tau concentration, and the percentage of microtubule-bound tau to cytosolic diffusivity of tau and diffusivity of bound tau along the MT lattice. The model predicts that at small distances from the soma the effect of these two diffusion processes is comparable.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- a Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA.,b Department of Bioengineering , University of Pennsylvania , Philadelphia , PA , USA
| | - Andrey V Kuznetsov
- c Department of Mechanical and Aerospace Engineering , North Carolina State University , Raleigh , NC , USA
| |
Collapse
|
16
|
Local Acceleration of Neurofilament Transport at Nodes of Ranvier. J Neurosci 2018; 39:663-677. [PMID: 30541916 DOI: 10.1523/jneurosci.2272-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/21/2022] Open
Abstract
Myelinated axons are constricted at nodes of Ranvier. These constrictions are important physiologically because they increase the speed of saltatory nerve conduction, but they also represent potential bottlenecks for the movement of axonally transported cargoes. One type of cargo are neurofilaments, which are abundant space-filling cytoskeletal polymers that function to increase axon caliber. Neurofilaments move bidirectionally along axons, alternating between rapid movements and prolonged pauses. Strikingly, axon constriction at nodes is accompanied by a reduction in neurofilament number that can be as much as 10-fold in the largest axons. To investigate how neurofilaments navigate these constrictions, we developed a transgenic mouse strain that expresses a photoactivatable fluorescent neurofilament protein in neurons. We used the pulse-escape fluorescence photoactivation technique to analyze neurofilament transport in mature myelinated axons of tibial nerves from male and female mice of this strain ex vivo Fluorescent neurofilaments departed the activated region more rapidly in nodes than in flanking internodes, indicating that neurofilament transport is faster in nodes. By computational modeling, we showed that this nodal acceleration can be explained largely by a local increase in the duty cycle of neurofilament transport (i.e., the proportion of the time that the neurofilaments spend moving). We propose that this transient acceleration functions to maintain a constant neurofilament flux across nodal constrictions, much as the current increases where a river narrows its banks. In this way, neurofilaments are prevented from piling up in the flanking internodes, ensuring a stable neurofilament distribution and uniform axonal morphology across these physiologically important axonal domains.SIGNIFICANCE STATEMENT Myelinated axons are constricted at nodes of Ranvier, resulting in a marked local decrease in neurofilament number. These constrictions are important physiologically because they increase the efficiency of saltatory nerve conduction, but they also represent potential bottlenecks for the axonal transport of neurofilaments, which move along axons in a rapid intermittent manner. Imaging of neurofilament transport in mature myelinated axons ex vivo reveals that neurofilament polymers navigate these nodal axonal constrictions by accelerating transiently, much as the current increases where a river narrows its banks. This local acceleration is necessary to ensure a stable axonal morphology across nodal constrictions, which may explain the vulnerability of nodes of Ranvier to neurofilament accumulations in animal models of neurotoxic neuropathies and neurodegenerative diseases.
Collapse
|
17
|
Bressloff PC, Maclaurin JN. Stochastic Hybrid Systems in Cellular Neuroscience. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2018; 8:12. [PMID: 30136005 PMCID: PMC6104574 DOI: 10.1186/s13408-018-0067-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
We review recent work on the theory and applications of stochastic hybrid systems in cellular neuroscience. A stochastic hybrid system or piecewise deterministic Markov process involves the coupling between a piecewise deterministic differential equation and a time-homogeneous Markov chain on some discrete space. The latter typically represents some random switching process. We begin by summarizing the basic theory of stochastic hybrid systems, including various approximation schemes in the fast switching (weak noise) limit. In subsequent sections, we consider various applications of stochastic hybrid systems, including stochastic ion channels and membrane voltage fluctuations, stochastic gap junctions and diffusion in randomly switching environments, and intracellular transport in axons and dendrites. Finally, we describe recent work on phase reduction methods for stochastic hybrid limit cycle oscillators.
Collapse
|
18
|
Kuznetsov IA, Kuznetsov AV. How the formation of amyloid plaques and neurofibrillary tangles may be related: a mathematical modelling study. Proc Math Phys Eng Sci 2018; 474:20170777. [PMID: 29507520 PMCID: PMC5832841 DOI: 10.1098/rspa.2017.0777] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022] Open
Abstract
We develop a mathematical model that enables us to investigate possible mechanisms by which two primary markers of Alzheimer's disease (AD), extracellular amyloid plaques and intracellular tangles, may be related. Our model investigates the possibility that the decay of anterograde axonal transport of amyloid precursor protein (APP), caused by toxic tau aggregates, leads to decreased APP transport towards the synapse and APP accumulation in the soma. The developed model thus couples three processes: (i) slow axonal transport of tau, (ii) tau misfolding and agglomeration, which we simulated by using the Finke-Watzky model and (iii) fast axonal transport of APP. Because the timescale for tau agglomeration is much larger than that for tau transport, we suggest using the quasi-steady-state approximation for formulating and solving the governing equations for these three processes. Our results suggest that misfolded tau most likely accumulates in the beginning of the axon. The analysis of APP transport suggests that APP will also likely accumulate in the beginning of the axon, causing an increased APP concentration in this region, which could be interpreted as a 'traffic jam'. The APP flux towards the synapse is significantly reduced by tau misfolding, but not due to the APP traffic jam, which can be viewed as a symptom, but rather due to the reduced affinity of kinesin-1 motors to APP-transporting vesicles.
Collapse
Affiliation(s)
- I. A. Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A. V. Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695–7910, USA
| |
Collapse
|
19
|
Fenn JD, Johnson CM, Peng J, Jung P, Brown A. Kymograph analysis with high temporal resolution reveals new features of neurofilament transport kinetics. Cytoskeleton (Hoboken) 2017; 75:22-41. [PMID: 28926211 DOI: 10.1002/cm.21411] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/08/2017] [Indexed: 12/30/2022]
Abstract
We have used kymograph analysis combined with edge detection and an automated computational algorithm to analyze the axonal transport kinetics of neurofilament polymers in cultured neurons at 30 ms temporal resolution. We generated 301 kymographs from 136 movies and analyzed 726 filaments ranging from 0.6 to 42 µm in length, representing ∼37,000 distinct moving and pausing events. We found that the movement is even more intermittent than previously reported and that the filaments undergo frequent, often transient, reversals which suggest that they can engage simultaneously with both anterograde and retrograde motors. Average anterograde and retrograde bout velocities (0.9 and 1.2 µm s-1 , respectively) were faster than previously reported, with maximum sustained bout velocities of up to 6.6 and 7.8 µm s-1 , respectively. Average run lengths (∼1.1 µm) and run times (∼1.4 s) were in the range reported for molecular motor processivity in vitro, suggesting that the runs could represent the individual processive bouts of the neurofilament motors. Notably, we found no decrease in run velocity, run length or run time with increasing filament length, which suggests that either the drag on the moving filaments is negligible or that longer filaments recruit more motors.
Collapse
Affiliation(s)
- J Daniel Fenn
- Department of Neuroscience and Medical Scientist Training Program, Ohio State University, Columbus, Ohio 43210
| | - Christopher M Johnson
- Quantitative Biology Institute and Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701
| | - Juan Peng
- Center for Biostatistics and Department of Biomedical Informatics, Ohio State University, Columbus, Ohio 43210
| | - Peter Jung
- Quantitative Biology Institute and Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701
| | - Anthony Brown
- Department of Neuroscience and Medical Scientist Training Program, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
20
|
Roudot P, Jaqaman K, Kervrann C, Danuser G. Piecewise-Stationary Motion Modeling and Iterative Smoothing to Track Heterogeneous Particle Motions in Dense Environments. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2017; 26:5395-5410. [PMID: 29388914 PMCID: PMC5796444 DOI: 10.1109/tip.2017.2707803] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
One of the major challenges in multiple particle tracking is the capture of extremely heterogeneous movements of objects in crowded scenes. The presence of numerous assignment candidates in the expected range of particle motion makes the tracking ambiguous and induces false positives. Lowering the ambiguity by reducing the search range, on the other hand, is not an option, as this would increase the rate of false negatives. We propose here a piecewise-stationary motion model (PMM) for the particle transport along an iterative smoother that exploits recursive tracking in multiple rounds in forward and backward temporal directions. By fusing past and future information, our method, termed PMMS, can recover fast transitions from freely or confined diffusive to directed motions with linear time complexity. To avoid false positives, we complemented recursive tracking with a robust inline estimator of the search radius for assignment (a.k.a. gating), where past and future information are exploited using only two frames at each optimization step. We demonstrate the improvement of our technique on simulated data especially the impact of density, variation in frame to frame displacements, and motion switching probability. We evaluated our technique on the 2D particle tracking challenge dataset published by Chenouard et al. in 2014. Using high SNR to focus on motion modeling challenges, we show superior performance at high particle density. On biological applications, our algorithm allows us to quantify the extremely small percentage of motor-driven movements of fluorescent particles along microtubules in a dense field of unbound, diffusing particles. We also show with virus imaging that our algorithm can cope with a strong reduction in recording frame rate while keeping the same performance relative to methods relying on fast sampling.
Collapse
|
21
|
Kuznetsov IA, Kuznetsov AV. What mechanisms of tau protein transport could be responsible for the inverted tau concentration gradient in degenerating axons? MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2017; 34:125-150. [PMID: 27034421 DOI: 10.1093/imammb/dqv041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 11/30/2015] [Indexed: 12/27/2022]
Abstract
In tauopathies, such as Alzheimer's disease (AD), microtubule (MT)-associated protein tau detaches from MTs and aggregates, eventually forming insoluble neurofibrillary tangles. In a healthy axon, the tau concentration increases toward the axon terminal, but in a degenerating axon, the tau concentration gradient is inverted and the highest tau concentration is in the soma. In this article, we developed a mathematical model of tau transport in axons. We calibrated and tested the model by using published distributions of tau concentration and tau average velocity in a healthy axon. According to published research, the inverted tau concentration gradient may be one of the reasons leading to AD. We therefore used the model to investigate what modifications in tau transport can lead to the inverted tau concentration gradient. We investigated whether tau detachment from MTs due to tau hyperphosphorylation can cause the inverted tau concentration gradient. We found that the assumption that most tau molecules are detached from MTs does not consistently predict the inverted tau concentration gradient; the predicted tau distribution becomes more uniform if the axon length is increased. We then hypothesized that in degenerating axons some tau remains bound to MTs and participates in the component 'a' of slow axonal transport but that the rate of tau reversals from anterograde to retrograde motion increases. We demonstrated that this hypothesis results in a tau distribution where the tau concentration has its maximum value at the axon hillock and its minimum value at the axon terminal, in agreement with what is observed in AD. Our results thus suggest that defects in active transport of tau may be a contributing factor to the onset of neural degeneration.
Collapse
|
22
|
Kuznetsov IA, Kuznetsov AV. Simulating tubulin-associated unit transport in an axon: using bootstrapping for estimating confidence intervals of best-fit parameter values obtained from indirect experimental data. Proc Math Phys Eng Sci 2017; 473:20170045. [PMID: 28588409 DOI: 10.1098/rspa.2017.0045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/03/2017] [Indexed: 02/06/2023] Open
Abstract
In this paper, we first develop a model of axonal transport of tubulin-associated unit (tau) protein. We determine the minimum number of parameters necessary to reproduce published experimental results, reducing the number of parameters from 18 in the full model to eight in the simplified model. We then address the following questions: Is it possible to estimate parameter values for this model using the very limited amount of published experimental data? Furthermore, is it possible to estimate confidence intervals for the determined parameters? The idea that is explored in this paper is based on using bootstrapping. Model parameters were estimated by minimizing the objective function that simulates the discrepancy between the model predictions and experimental data. Residuals were then identified by calculating the differences between the experimental data and model predictions. New, surrogate 'experimental' data were generated by randomly resampling residuals. By finding sets of best-fit parameters for a large number of surrogate data the histograms for the model parameters were produced. These histograms were then used to estimate confidence intervals for the model parameters, by using the percentile bootstrap. Once the model was calibrated, we applied it to analysing some features of tau transport that are not accessible to current experimental techniques.
Collapse
Affiliation(s)
- I A Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA
| |
Collapse
|
23
|
Kuznetsov IA, Kuznetsov AV. Utilization of the bootstrap method for determining confidence intervals of parameters for a model of MAP1B protein transport in axons. J Theor Biol 2017; 419:350-361. [PMID: 28216427 DOI: 10.1016/j.jtbi.2017.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/10/2017] [Accepted: 02/13/2017] [Indexed: 11/26/2022]
Abstract
This paper develops a model of axonal transport of MAP1B protein. The problem of determining parameter values for the proposed model utilizing limited available experimental data is addressed. We used a global minimum search algorithm to find parameter values that minimize the discrepancy between model predictions and published experimental results. By analyzing the best fit parameter values it was established that some processes can be dropped from the model without losing accuracy, thus a simplified version of the model was formulated. In particular, our analysis suggests that reversals in MAP1B transport are infrequent and can be neglected. The detachment of anterogradely-biased MAP1B from microtubules (MTs) and the attachment of retrogradely-biased MAP1B to MTs can also be neglected. An analytical solution for the simplified model was obtained. Confidence intervals for the determined parameters were found by bootstrapping model residuals. The resultant analysis heavily constrained the values of some parameters while showing that some could vary without significantly impacting model error. For example, our analysis suggests that, above a certain threshold value, the kinetic constant determining the rate of MAP1B transition from the retrograde pausing state to the off-track state has little impact on model error. On the contrary, the kinetic constant describing MAP1B transition from a pausing to a running state has great impact on model error.
Collapse
Affiliation(s)
- I A Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A V Kuznetsov
- Dept. of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA.
| |
Collapse
|
24
|
Yuan A, Rao MV, Veeranna, Nixon RA. Neurofilaments and Neurofilament Proteins in Health and Disease. Cold Spring Harb Perspect Biol 2017; 9:9/4/a018309. [PMID: 28373358 DOI: 10.1101/cshperspect.a018309] [Citation(s) in RCA: 493] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SUMMARYNeurofilaments (NFs) are unique among tissue-specific classes of intermediate filaments (IFs) in being heteropolymers composed of four subunits (NF-L [neurofilament light]; NF-M [neurofilament middle]; NF-H [neurofilament heavy]; and α-internexin or peripherin), each having different domain structures and functions. Here, we review how NFs provide structural support for the highly asymmetric geometries of neurons and, especially, for the marked radial expansion of myelinated axons crucial for effective nerve conduction velocity. NFs in axons extensively cross-bridge and interconnect with other non-IF components of the cytoskeleton, including microtubules, actin filaments, and other fibrous cytoskeletal elements, to establish a regionally specialized network that undergoes exceptionally slow local turnover and serves as a docking platform to organize other organelles and proteins. We also discuss how a small pool of oligomeric and short filamentous precursors in the slow phase of axonal transport maintains this network. A complex pattern of phosphorylation and dephosphorylation events on each subunit modulates filament assembly, turnover, and organization within the axonal cytoskeleton. Multiple factors, and especially turnover rate, determine the size of the network, which can vary substantially along the axon. NF gene mutations cause several neuroaxonal disorders characterized by disrupted subunit assembly and NF aggregation. Additional NF alterations are associated with varied neuropsychiatric disorders. New evidence that subunits of NFs exist within postsynaptic terminal boutons and influence neurotransmission suggests how NF proteins might contribute to normal synaptic function and neuropsychiatric disease states.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Mala V Rao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Veeranna
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016.,Cell Biology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
25
|
Hippocampal to basal forebrain transport of Mn 2+ is impaired by deletion of KLC1, a subunit of the conventional kinesin microtubule-based motor. Neuroimage 2016; 145:44-57. [PMID: 27751944 DOI: 10.1016/j.neuroimage.2016.09.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/23/2016] [Accepted: 09/15/2016] [Indexed: 11/23/2022] Open
Abstract
Microtubule-based motors carry cargo back and forth between the synaptic region and the cell body. Defects in axonal transport result in peripheral neuropathies, some of which are caused by mutations in KIF5A, a gene encoding one of the heavy chain isoforms of conventional kinesin-1. Some mutations in KIF5A also cause severe central nervous system defects in humans. While transport dynamics in the peripheral nervous system have been well characterized experimentally, transport in the central nervous system is less experimentally accessible and until now not well described. Here we apply manganese-enhanced magnetic resonance (MEMRI) to study transport dynamics within the central nervous system, focusing on the hippocampal-forebrain circuit, and comparing kinesin-1 light chain 1 knock-out (KLC-KO) mice with age-matched wild-type littermates. We injected Mn2+ into CA3 of the posterior hippocampus and imaged axonal transport in vivo by capturing whole-brain 3D magnetic resonance images (MRI) in living mice at discrete time-points after injection. Precise placement of the injection site was monitored in both MR images and in histologic sections. Mn2+-induced intensity progressed along fiber tracts (fimbria and fornix) in both genotypes to the medial septal nuclei (MSN), correlating in location with the traditional histologic tract tracer, rhodamine dextran. Pairwise statistical parametric mapping (SPM) comparing intensities at successive time-points within genotype revealed Mn2+-enhanced MR signal as it proceeded from the injection site into the forebrain, the expected projection from CA3. By region of interest (ROI) analysis of the MSN, wide variation between individuals in each genotype was found. Despite this statistically significant intensity increases in the MSN at 6h post-injection was found in both genotypes, albeit less so in the KLC-KO. While the average accumulation at 6h was less in the KLC-KO, the difference between genotypes did not reach significance. Projections of SPM T-maps for each genotype onto the same grayscale image revealed differences in the anatomical location of significant voxels. Although KLC-KO mice had smaller brains than wild-type, the gross anatomy was normal with no apparent loss of septal cholinergic neurons. Hence anatomy alone does not explain the differences in SPM maps. We conclude that kinesin-1 defects may have only a minor effect on the rate and distribution of transported Mn2+ within the living brain. This impairment is less than expected for this abundant microtubule-based motor, yet such defects could still be functionally significant, resulting in cognitive/emotional dysfunction due to decreased replenishments of synaptic vesicles or mitochondria during synaptic activity. This study demonstrates the power of MEMRI to observe and measure vesicular transport dynamics in the central nervous system that may result from or lead to brain pathology.
Collapse
|
26
|
|
27
|
Penazzi L, Bakota L, Brandt R. Microtubule Dynamics in Neuronal Development, Plasticity, and Neurodegeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:89-169. [PMID: 26811287 DOI: 10.1016/bs.ircmb.2015.09.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are the basic information-processing units of the nervous system. In fulfilling their task, they establish a structural polarity with an axon that can be over a meter long and dendrites with a complex arbor, which can harbor ten-thousands of spines. Microtubules and their associated proteins play important roles during the development of neuronal morphology, the plasticity of neurons, and neurodegenerative processes. They are dynamic structures, which can quickly adapt to changes in the environment and establish a structural scaffold with high local variations in composition and stability. This review presents a comprehensive overview about the role of microtubules and their dynamic behavior during the formation and maturation of processes and spines in the healthy brain, during aging and under neurodegenerative conditions. The review ends with a discussion of microtubule-targeted therapies as a perspective for the supportive treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorène Penazzi
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
28
|
A Stochastic Multiscale Model That Explains the Segregation of Axonal Microtubules and Neurofilaments in Neurological Diseases. PLoS Comput Biol 2015; 11:e1004406. [PMID: 26285012 PMCID: PMC4540448 DOI: 10.1371/journal.pcbi.1004406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/17/2015] [Indexed: 11/19/2022] Open
Abstract
The organization of the axonal cytoskeleton is a key determinant of the normal function of an axon, which is a long thin projection of a neuron. Under normal conditions two axonal cytoskeletal polymers, microtubules and neurofilaments, align longitudinally in axons and are interspersed in axonal cross-sections. However, in many neurotoxic and neurodegenerative disorders, microtubules and neurofilaments segregate apart from each other, with microtubules and membranous organelles clustered centrally and neurofilaments displaced to the periphery. This striking segregation precedes the abnormal and excessive neurofilament accumulation in these diseases, which in turn leads to focal axonal swellings. While neurofilament accumulation suggests an impairment of neurofilament transport along axons, the underlying mechanism of their segregation from microtubules remains poorly understood for over 30 years. To address this question, we developed a stochastic multiscale model for the cross-sectional distribution of microtubules and neurofilaments in axons. The model describes microtubules, neurofilaments and organelles as interacting particles in a 2D cross-section, and is built upon molecular processes that occur on a time scale of seconds or shorter. It incorporates the longitudinal transport of neurofilaments and organelles through this domain by allowing stochastic arrival and departure of these cargoes, and integrates the dynamic interactions of these cargoes with microtubules mediated by molecular motors. Simulations of the model demonstrate that organelles can pull nearby microtubules together, and in the absence of neurofilament transport, this mechanism gradually segregates microtubules from neurofilaments on a time scale of hours, similar to that observed in toxic neuropathies. This suggests that the microtubule-neurofilament segregation can be a consequence of the selective impairment of neurofilament transport. The model generates the experimentally testable prediction that the rate and extent of segregation will be dependent on the sizes of the moving organelles as well as the density of their traffic. The shape and function of axons is dependent on a dynamic system of microscopic intracellular protein polymers (microtubules, neurofilaments and microfilaments) that comprise the axonal cytoskeleton. Neurofilaments are cargoes of intracellular transport that move along microtubule tracks, and they accumulate abnormally in axons in many neurotoxic and neurodegenerative disorders. Intriguingly, it has been reported that neurofilaments and microtubules, which are normally interspersed in axonal cross-sections, often segregate apart from each other in these disorders, which is something that is never observed in healthy axons. Here we describe a stochastic multiscale computational model that explains the mechanism of this striking segregation and offers insights into the mechanism of neurofilament accumulation in disease.
Collapse
|
29
|
Abstract
To investigate possible effects of diffusion on α-synuclein (α-syn) transport in axons, we developed two models of α-syn transport, one that assumes that α-syn is transported only by active transport, as part of multiprotein complexes, and a second that assumes an interplay between motor-driven and diffusion-driven α-syn transport. By comparing predictions of the two models, we were able to investigate how diffusion could influence axonal transport of α-syn. The predictions obtained could be useful for future experimental work aimed at elucidating the mechanisms of axonal transport of α-syn. We also attempted to simulate possible defects in α-syn transport early in Parkinson's disease (PD). We assumed that in healthy axons α-syn localizes in the axon terminal while in diseased axons α-syn does not localize in the terminal (this was simulated by postulating a zero α-syn flux into the terminal). We found that our model of a diseased axon predicts the build-up of α-syn close to the axon terminal. This build-up could cause α-syn accumulation in Lewy bodies and the subsequent axonal death pattern observed in PD ('dying back' of axons).
Collapse
Affiliation(s)
- I A Kuznetsov
- a Department of Biomedical Engineering , Johns Hopkins University , Baltimore , MD 21218-2694 , USA
| | - A V Kuznetsov
- b Department of Mechanical and Aerospace Engineering , North Carolina State University , Raleigh , NC 27695-7910 , USA
| |
Collapse
|
30
|
Yuan A, Hassinger L, Rao MV, Julien JP, Miller CCJ, Nixon RA. Dissociation of Axonal Neurofilament Content from Its Transport Rate. PLoS One 2015. [PMID: 26208164 PMCID: PMC4514674 DOI: 10.1371/journal.pone.0133848] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The axonal cytoskeleton of neurofilament (NF) is a long-lived network of fibrous elements believed to be a stationary structure maintained by a small pool of transported cytoskeletal precursors. Accordingly, it may be predicted that NF content in axons can vary independently from the transport rate of NF. In the present report, we confirm this prediction by showing that human NFH transgenic mice and transgenic mice expressing human NFL Ser55 (Asp) develop nearly identical abnormal patterns of NF accumulation and distribution in association with opposite changes in NF slow transport rates. We also show that the rate of NF transport in wild-type mice remains constant along a length of the optic axon where NF content varies 3-fold. Moreover, knockout mice lacking NFH develop even more extreme (6-fold) proximal to distal variation in NF number, which is associated with a normal wild-type rate of NF transport. The independence of regional NF content and NF transport is consistent with previous evidence suggesting that the rate of incorporation of transported NF precursors into a metabolically stable stationary cytoskeletal network is the major determinant of axonal NF content, enabling the generation of the striking local variations in NF number seen along axons.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, United States of America
- Department of Psychiatry, New York University School of Medicine, New York, New York, United States of America
- * E-mail: (AY); (RAN)
| | - Linda Hassinger
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, United States of America
| | - Mala V. Rao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, United States of America
- Department of Psychiatry, New York University School of Medicine, New York, New York, United States of America
| | - Jean-Pierre Julien
- Centre de Recherche du Centre Hospitalier de l'Université Laval, Département d'anatomie et physiologie de l'Université Laval, Québec, Canada
| | - Christopher C. J. Miller
- Department of Neuroscience, Institute of Psychiatry, Kings College London, London, United Kingdom
- Clinical Neurosciences, Institute of Psychiatry, Kings College London, London, United Kingdom
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, United States of America
- Department of Psychiatry, New York University School of Medicine, New York, New York, United States of America
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- * E-mail: (AY); (RAN)
| |
Collapse
|
31
|
Laser-Azogui A, Kornreich M, Malka-Gibor E, Beck R. Neurofilament assembly and function during neuronal development. Curr Opin Cell Biol 2015; 32:92-101. [PMID: 25635910 DOI: 10.1016/j.ceb.2015.01.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 02/06/2023]
Abstract
Studies on the assembly of neuronal intermediate filaments (IFs) date back to the early work of Alzheimer. Developing neurons express a series of IF proteins, sequentially, at distinct stages of mammalian cell differentiation. This correlates with altered morphologies during the neuronal development, including axon outgrowth, guidance and conductivity. Importantly, neuronal IFs that fail to properly assemble into a filamentous network are a hallmark of neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease. Traditional structural methodologies fail to fully describe neuronal IF assembly, interactions and resulting function due to IFs structural plasticity, particularly in their C-terminal domains. We review here current progress in the field of neuronal-specific IFs, a dominant component affecting the cytoskeletal structure and function of neurons.
Collapse
Affiliation(s)
- Adi Laser-Azogui
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Micha Kornreich
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Eti Malka-Gibor
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Roy Beck
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel.
| |
Collapse
|
32
|
Lee RH, Mitchell CS. Axonal transport cargo motor count versus average transport velocity: is fast versus slow transport really single versus multiple motor transport? J Theor Biol 2015; 370:39-44. [PMID: 25615423 DOI: 10.1016/j.jtbi.2015.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/18/2014] [Accepted: 01/12/2015] [Indexed: 01/03/2023]
Abstract
Cargos have been observed exhibiting a "stop-and-go" behavior (i.e. cargo "pause"), and it has generally been assumed that these multi-second pauses can be attributed to equally long pauses of cargo-bound motors during motor procession. We contend that a careful examination of the isolated microtubule experimental record does not support motor pauses. Rather, we believe that the data suggests that motor cargo complexes encounter an obstruction that prevents procession, eventually detach and reattach, with this obstructed-detach-reattach sequence being observed in axon as a "pause." Based on this, along with our quantitative evidence-based contention that slow and fast axonal transport are actually single and multi-motor transport, we have developed a cargo level motor model capable of exhibiting the full range of slow to fast transport solely by changing the number of motors involved. This computational model derived using first-order kinetics is suitable for both kinesin and dynein and includes load-dependence as well as provision for motors encountering obstacles to procession. The model makes the following specific predictions: average distance from binding to obstruction is about 10 μm; average motor maximum velocity is at least 6 μm/s in axon; a minimum of 10 motors is required for the fastest fast transport while only one motor is required for slow transport; individual in-vivo cargo-attached motors may spend as little as 5% of their time processing along a microtubule with the remainder being spent either obstructed or unbound to a microtubule; and at least in the case of neurofilament transport, kinesin and dynein are largely not being in a "tug-of-war" competition.
Collapse
Affiliation(s)
- Robert H Lee
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Cassie S Mitchell
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
33
|
Kuznetsov IA, Kuznetsov AV. Can numerical modeling help understand the fate of tau protein in the axon terminal? Comput Methods Biomech Biomed Engin 2015; 19:115-25. [PMID: 25563412 DOI: 10.1080/10255842.2014.994119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this paper, we used mathematical modeling to investigate the fate of tau protein in the axon terminal. We developed a comprehensive model of tau transport that accounts for transport of cytosolic tau by diffusion, diffusion transport of microtubule (MT)-bound tau along the MT lattice, active motor-driven transport of MT-bound tau via slow axonal transport mechanism, and degradation of tau in the axon due to tau's finite half-life. We investigated the effect of different assumptions concerning the fate of tau in the terminal on steady-state transport of tau in the axon. In particular, we studied two possible scenarios: (i) tau is destroyed in the terminal and (ii) there is no tau destruction in the terminal, and to avoid tau accumulation we postulated zero flux of tau at the terminal. We found that the tau concentration and percentage of MT-bound tau are not very sensitive to the assumption concerning the fate of tau in the terminal, but the tau's flux and average velocity of tau transport are very sensitive to this assumption. This suggests that measuring the velocity of tau transport and comparing it with the results of mathematical modeling for different assumptions concerning tau's fate in the terminal can provide information concerning what happens to tau in the terminal.
Collapse
Affiliation(s)
- I A Kuznetsov
- a Department of Biomedical Engineering , Johns Hopkins University , Baltimore , MD 21218-2694 , USA
| | - A V Kuznetsov
- b Department of Mechanical and Aerospace Engineering , North Carolina State University , Raleigh , NC 27695-7910 , USA
| |
Collapse
|
34
|
Abstract
Axonal transport is essential for neuronal function, and many neurodevelopmental and neurodegenerative diseases result from mutations in the axonal transport machinery. Anterograde transport supplies distal axons with newly synthesized proteins and lipids, including synaptic components required to maintain presynaptic activity. Retrograde transport is required to maintain homeostasis by removing aging proteins and organelles from the distal axon for degradation and recycling of components. Retrograde axonal transport also plays a major role in neurotrophic and injury response signaling. This review provides an overview of axonal transport pathways and discusses their role in neuronal function.
Collapse
|
35
|
Song C, Yang Z, Zhong M, Chen Z. Sericin protects against diabetes-induced injuries in sciatic nerve and related nerve cells. Neural Regen Res 2014; 8:506-13. [PMID: 25206693 PMCID: PMC4146054 DOI: 10.3969/j.issn.1673-5374.2013.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/26/2013] [Indexed: 12/27/2022] Open
Abstract
Sericin from discarded silkworm cocoons of silk reeling has been used in different fields, such as cosmetology, skin care, nutrition, and oncology. The present study established a rat model of type 2 diabetes by consecutive intraperitoneal injections of low-dose (25 mg/kg) streptozotocin. After intragastrical perfusion of sericin for 35 days, blood glucose levels significantly declined, and the expression of neurofilament protein in the sciatic nerve and nerve growth factor in L4-6 spinal ganglion and anterior horn cells significantly increased. However, the expression of neuropeptide Y in spinal ganglion and anterior horn cells significantly decreased in model rats. These findings indicate that sericin protected the sciatic nerve and related nerve cells against injury in a rat type 2 diabetic model by upregulating the expression of neurofilament protein in the sciatic nerve and nerve growth factor in spinal ganglion and anterior horn cells, and downregulating the expression of neuropeptide Y in spinal ganglion and anterior horn cells.
Collapse
Affiliation(s)
- Chengjun Song
- Department of Human Anatomy, Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Zhenjun Yang
- Department of Human Anatomy, Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Meirong Zhong
- Department of Human Anatomy, Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Zhihong Chen
- Department of Human Anatomy, Chengde Medical University, Chengde 067000, Hebei Province, China
| |
Collapse
|
36
|
Kuznetsov IA, Kuznetsov AV. A coupled model of fast axonal transport of organelles and slow axonal transport of tau protein. Comput Methods Biomech Biomed Engin 2014; 18:1485-94. [PMID: 24867161 DOI: 10.1080/10255842.2014.920830] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have developed a model that accounts for the effect of a non-uniform distribution of tau protein along the axon length on fast axonal transport of intracellular organelles. The tau distribution is simulated by using a slow axonal transport model; the numerically predicted tau distributions along the axon length were validated by comparing them with experimentally measured tau distributions reported in the literature. We then developed a fast axonal transport model for organelles that accounts for the reduction of kinesin attachment rate to microtubules by tau. We investigated organelle transport for two situations: (1) a uniform tau distribution and (2) a non-uniform tau distribution predicted by the slow axonal transport model. We found that non-uniform tau distributions observed in healthy axons (an increase in tau concentration towards the axon tip) result in a significant enhancement of organelle transport towards the synapse compared with the uniform tau distribution with the same average amount of tau. This suggests that tau may play the role of being an enhancer of organelle transport.
Collapse
Affiliation(s)
- I A Kuznetsov
- a Department of Biomedical Engineering , Johns Hopkins University , Baltimore , MD 21218-2694 , USA
| | | |
Collapse
|
37
|
Kuznetsov IA, Kuznetsov AV. Modeling anterograde and retrograde transport of short mobile microtubules from the site of axonal branch formation. J Biol Phys 2013; 40:41-53. [PMID: 24271236 DOI: 10.1007/s10867-013-9334-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022] Open
Abstract
This theoretical research is motivated by a recent model of microtubule (MT) transport put forward by Baas and Mozgova (Cytoskeleton 69:416-425, 2012). According to their model, in an axon all plus-end-distal mobile MTs move anterogradely while all minus-end-distal mobile MTs move retrogradely. Retrograde MT transport thus represents a mechanism by which minus-end-distal MTs are removed from the axon. We suggested equations that implement Baas and Mozgova's model. We employed these equations to simulate transport of short mobile MTs from a region (such as the site of axonal branch formation) where MT severing activity results in generation of a large number of short MTs of both orientations. We obtained the exact and approximate transient solutions of these equations utilizing the Laplace transform technique. We applied the obtained solutions to calculate the average rates of anterograde and retrograde transport of short MTs.
Collapse
Affiliation(s)
- I A Kuznetsov
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218-2694, USA,
| | | |
Collapse
|
38
|
Kuznetsov IA, Kuznetsov AV. Analytical comparison between Nixon-Logvinenko's and Jung-Brown's theories of slow neurofilament transport in axons. Math Biosci 2013; 245:331-9. [PMID: 23958382 DOI: 10.1016/j.mbs.2013.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 07/08/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
Abstract
This paper develops analytical solutions describing slow neurofilament (NF) transport in axons. The obtained solutions are based on two theories of NF transport: Nixon-Logvinenko's theory that postulates that most NFs are incorporated into a stationary cross-linked network and only a small pool is slowly transported and Jung-Brown's theory that postulates a single dynamic pool of NFs that are transported according to the stop-and-go hypothesis. The simplest two-kinetic state version of the model developed by Jung and Brown was compared with the theory developed by Nixon and Logvinenko. The model for Nixon-Logvinenko's theory included stationary, pausing, and running NF populations while the model used for Jung-Brown's theory only included pausing and running NF populations. Distributions of NF concentrations resulting from Nixon-Logvinenko's and Jung-Brown's theories were compared. In previous publications, Brown and colleagues successfully incorporated slowing of NF transport into their model by assuming that some kinetic constants depend on the distance from the axon hillock. In this paper we defined the average rate of NF transport as the rate of motion of the center of mass of radiolabeled NFs. We have shown that for this definition, if all kinetic rates are assumed constant, Jung-Brown's theory predicts a constant average rate of NF transport. We also demonstrated that Nixon-Logvinenko's theory predicts slowing of NF transport even if all kinetic rates are assumed constant, and the obtained slowing agrees well with published experimental data.
Collapse
Affiliation(s)
- I A Kuznetsov
- Dept. of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218-2694, USA.
| | | |
Collapse
|
39
|
Abstract
Axonal transport is the lifeline of axons and synapses. After synthesis in neuronal cell bodies, proteins are conveyed into axons in two distinct rate classes-fast and slow axonal transport. Whereas fast transport delivers vesicular cargoes, slow transport carries cytoskeletal and cytosolic (or soluble) proteins that have critical roles in neuronal structure and function. Although significant progress has been made in dissecting the molecular mechanisms of fast vesicle transport, mechanisms of slow axonal transport are less clear. Why is this so? Historically, conceptual advances in the axonal transport field have paralleled innovations in imaging the movement, and slow-transport cargoes are not as readily seen as motile vesicles. However, new ways of visualizing slow transport have reenergized the field, leading to fundamental insights that have changed our views on axonal transport, motor regulation, and intracellular trafficking in general. This review first summarizes classic studies that characterized axonal transport, and then discusses recent technical and conceptual advances in slow axonal transport that have provided insights into some long-standing mysteries.
Collapse
Affiliation(s)
- Subhojit Roy
- 1Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
40
|
Abstract
We have shown previously that neurofilaments and vimentin filaments expressed in nonneuronal cell lines can lengthen by joining ends in a process known as "end-to-end annealing." To test if this also occurs for neurofilaments in neurons, we transfected cultured rat cortical neurons with fluorescent neurofilament fusion proteins and then used photoconversion or photoactivation strategies to create distinct populations of red and green fluorescent filaments. Within several hours we observed the appearance of chimeric filaments consisting of alternating red and green segments, which is indicative of end-to-end annealing of red and green filaments. However, the appearance of these chimeric filaments was accompanied by a gradual fragmentation of the red and green filament segments, which is indicative of severing. Over time we observed a progressive increase in the number of red-green junctions along the filaments accompanied by a progressive decrease in the average length of the alternating red and green fluorescent segments that comprised those filaments, suggesting a dynamic cycle of severing and end-to-end-annealing. Time-lapse imaging of the axonal transport of chimeric filaments demonstrated that the red and green segments moved together, confirming that they were indeed part of the same filament. Moreover, in several instances, we also were able to capture annealing and severing events live in time-lapse movies. We propose that the length of intermediate filaments in cells is regulated by the opposing actions of severing and end-to-end annealing, and we speculate that this regulatory mechanism may influence neurofilament transport within axons.
Collapse
|
41
|
Franker MAM, Hoogenraad CC. Microtubule-based transport - basic mechanisms, traffic rules and role in neurological pathogenesis. J Cell Sci 2013; 126:2319-29. [PMID: 23729742 DOI: 10.1242/jcs.115030] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microtubule-based transport is essential for neuronal function because of the large distances that must be traveled by various building blocks and cellular materials. Recent studies in various model systems have unraveled several regulatory mechanisms and traffic rules that control the specificity, directionality and delivery of neuronal cargos. Local microtubule cues, opposing motor activity and cargo-adaptors that regulate motor activity control microtubule-based transport in neurons. Impairment of intracellular transport is detrimental to neurons and has emerged as a common factor in several neurological disorders. Genetic approaches have revealed strong links between intracellular transport processes and the pathogenesis of neurological diseases in both the central and peripheral nervous system. This Commentary highlights recent advances in these areas and discusses the transport defects that are associated with the development of neurological diseases.
Collapse
Affiliation(s)
- Mariella A M Franker
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
42
|
Llorens J. Toxic neurofilamentous axonopathies -- accumulation of neurofilaments and axonal degeneration. J Intern Med 2013; 273:478-89. [PMID: 23331301 DOI: 10.1111/joim.12030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A number of neurotoxic chemicals induce accumulation of neurofilaments in axonal swellings that appear at varying distances from the cell body. This pathology is associated with axonal degeneration of different degrees. The clinical manifestation is most commonly that of a mixed motor-sensory peripheral axonopathy with a disto-proximal pattern of progression, as in cases of chronic exposure to n-hexane and carbon disulphide. It has been demonstrated that protein adduct formation is a primary molecular mechanism of toxicity in these axonopathies, but how this mechanism leads to neurofilament accumulation and axonal degeneration remains unclear. Furthermore, little is known regarding the mechanisms of neurofilamentous axonopathy caused by 3,3'-iminodipropionitrile, an experimental toxin that induces proximal axon swelling that is strikingly similar to that found in early amyotrophic lateral sclerosis. Here, we review the available data and main hypotheses regarding the toxic axonopathies and compare them with the current knowledge of the biological basis of neurofilament transport. We also review recent studies addressing the question of how these axonopathies may cause axonal degeneration. Understanding the mechanisms underlying the toxic axonopathies may provide insight into the relationship between neurofilament behaviour and axonal degeneration, hopefully enabling the identification of new targets for therapeutic intervention. Because neurofilament abnormalities are a common feature of many neurodegenerative diseases, advances in this area may have a wider impact beyond toxicological significance.
Collapse
Affiliation(s)
- J Llorens
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain.
| |
Collapse
|
43
|
Brown A, Jung P. A critical reevaluation of the stationary axonal cytoskeleton hypothesis. Cytoskeleton (Hoboken) 2012; 70:1-11. [PMID: 23027591 DOI: 10.1002/cm.21083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/13/2012] [Accepted: 09/24/2012] [Indexed: 01/05/2023]
Abstract
Neurofilaments are transported along axons in a rapid intermittent and bidirectional manner but there is a long-standing controversy about whether this applies to all axonal neurofilaments. Some have proposed that only a small proportion of axonal neurofilaments are mobile and that most are deposited into a persistently stationary and extensively cross-linked cytoskeleton that remains fixed in place for many months without movement, turning over very slowly. In contrast, others have proposed that this hypothesis is based on a misinterpretation of the experimental data and that, in fact, all axonal neurofilaments move. These contrary perspectives have distinct implications for our understanding of how neurofilaments are organized and reorganized in axons both in health and disease. Here, we discuss the history and substance of this controversy. We show that the published data on the kinetics and distribution of neurofilaments along axons favor a simple "stop and go" transport model in which axons contain a single population of neurofilaments that all move in a stochastic, bidirectional and intermittent manner. Based on these considerations, we propose a dynamic view of the neuronal cytoskeleton in which all neurofilaments cycle repeatedly between moving and pausing states throughout their journey along the axon. The filaments move infrequently, but the average pause duration is on the order of hours rather than weeks or months. Against this fluid backdrop, the action of molecular motors on neurofilaments can have dramatic effects on neurofilament organization that would not be possible if the neurofilaments were extensively cross-linked into a truly stationary network.
Collapse
Affiliation(s)
- Anthony Brown
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
44
|
Seamster PE, Loewenberg M, Pascal J, Chauviere A, Gonzales A, Cristini V, Bearer EL. Quantitative measurements and modeling of cargo-motor interactions during fast transport in the living axon. Phys Biol 2012; 9:055005. [PMID: 23011729 DOI: 10.1088/1478-3975/9/5/055005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of these-phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane protein-have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargo-motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic terminal. The significance of this data and accompanying model pertains to the role transport plays in neuronal function, connectivity, and survival, and has implications in the pathogenesis of neurological disorders, such as Alzheimer's, Huntington and Parkinson's diseases.
Collapse
Affiliation(s)
- Pamela E Seamster
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Calkins DJ. Critical pathogenic events underlying progression of neurodegeneration in glaucoma. Prog Retin Eye Res 2012; 31:702-19. [PMID: 22871543 DOI: 10.1016/j.preteyeres.2012.07.001] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/16/2012] [Accepted: 07/18/2012] [Indexed: 01/03/2023]
Abstract
Glaucoma is a common optic neuropathy with a complex etiology often linked to sensitivity to intraocular pressure. Though the precise mechanisms that mediate or transduce this sensitivity are not clear, the axon of the retinal ganglion cell appears to be vulnerable to disease-relevant stressors early in progression. One reason may be because the axon is generally thin for both its unmyelinated and myelinated segment and much longer than the thicker unmyelinated axons of other excitatory retinal neurons. This difference may predispose the axon to metabolic and oxidative injury, especially at distal sites where pre-synaptic terminals form connections in the brain. This idea is consistent with observations of early loss of anterograde transport at central targets and other signs of distal axonopathy that accompany physiological indicators of progression. Outright degeneration of the optic projection ensues after a critical period and, at least in animal models, is highly sensitive to cumulative exposure to elevated pressure in the eye. Stress emanating from the optic nerve head can induce not only distal axonopathy with aspects of dying back neuropathy, but also Wallerian degeneration of the optic nerve and tract and a proximal program involving synaptic and dendritic pruning in the retina. Balance between progressive and acute mechanisms likely varies with the level of stress placed on the unmyelinated axon as it traverses the nerve head, with more acute insult pushing the system toward quicker disassembly. A constellation of signaling factors likely contribute to the transduction of stress to the axon, so that degenerative events along the length of the optic projection progress in retinotopic fashion. This pattern leads to well-defined sectors of functional depletion, even at distal-most sites in the pathway. While ganglion cell somatic drop-out is later in progression, some evidence suggests that synaptic and dendritic pruning in the retina may be a more dynamic process. Structural persistence both in the retina and in central projection sites offers the possibility that intrinsic self-repair pathways counter pathogenic mechanisms to delay as long as possible outright loss of tissue.
Collapse
Affiliation(s)
- David J Calkins
- Department of Ophthalmology and Visual Sciences, The Vanderbilt Eye Institute, Vanderbilt University School of Medicine, 11435 MRB IV, 2215B Garland Avenue, Nashville, TN 37232, USA.
| |
Collapse
|