1
|
Hu Y, Wang Y, Zhang L, Luo M, Wang Y. Neural Network Mechanisms Underlying General Anesthesia: Cortical and Subcortical Nuclei. Neurosci Bull 2024; 40:1995-2011. [PMID: 39168960 PMCID: PMC11625048 DOI: 10.1007/s12264-024-01286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/10/2024] [Indexed: 08/23/2024] Open
Abstract
General anesthesia plays a significant role in modern medicine. However, the precise mechanism of general anesthesia remains unclear, posing a key scientific challenge in anesthesiology. Advances in neuroscience techniques have enabled targeted manipulation of specific neural circuits and the capture of brain-wide neural activity at high resolution. These advances hold promise for elucidating the intricate mechanisms of action of general anesthetics. This review aims to summarize our current understanding of the role of cortical and subcortical nuclei in modulating general anesthesia, providing new evidence of cortico-cortical and thalamocortical networks in relation to anesthesia and consciousness. These insights contribute to a comprehensive understanding of the neural network mechanisms underlying general anesthesia.
Collapse
Affiliation(s)
- Yue Hu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yun Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lingjing Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Mengqiang Luo
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
2
|
Zhang XW, Chen L, Chen CF, Cheng J, Zhang PP, Wang LC. Dexmedetomidine modulates neuronal activity of horizontal limbs of diagonal band via α2 adrenergic receptor in mice. BMC Anesthesiol 2023; 23:327. [PMID: 37784079 PMCID: PMC10544551 DOI: 10.1186/s12871-023-02278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Dexmedetomidine (DEX) is widely used in clinical sedation which has little effect on cardiopulmonary inhibition, however the mechanism remains to be elucidated. The basal forebrain (BF) is a key nucleus that controls sleep-wake cycle. The horizontal limbs of diagonal bundle (HDB) is one subregions of the BF. The purpose of this study was to examine whether the possible mechanism of DEX is through the α2 adrenergic receptor of BF (HDB). METHODS In this study, we investigated the effects of DEX on the BF (HDB) by using whole cell patch clamp recordings. The threshold stimulus intensity, the inter-spike-intervals (ISIs) and the frequency of action potential firing in the BF (HDB) neurons were recorded by application of DEX (2 µM) and co-application of a α2 adrenergic receptor antagonist phentolamine (PHEN) (10 µM). RESULTS DEX (2 µM) increased the threshold stimulus intensity, inhibited the frequency of action potential firing and enlarged the inter-spike-interval (ISI) in the BF (HDB) neurons. These effects were reversed by co-application of PHEN (10 µM). CONCLUSION Taken together, our findings revealed DEX decreased the discharge activity of BF (HDB) neuron via α2 adrenergic receptors.
Collapse
Affiliation(s)
- Xia-Wei Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, China
| | - Lei Chen
- Departments of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230031, Hefei, China
| | - Chang-Feng Chen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, China
| | - Juan Cheng
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, China
| | - Ping-Ping Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, China
| | - Lie-Cheng Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, China.
| |
Collapse
|
3
|
Yan J, Hang BN, Ma LH, Lin JT, Zhou Y, Jiao XH, Yuan YX, Shao KJ, Zhang LM, Xue Q, Li ZY, Zhang HX, Cao JL, Li S, Zheng H, Wu YQ. GABAergic Neurons in the Nucleus Accumbens are Involved in the General Anesthesia Effect of Propofol. Mol Neurobiol 2023; 60:5789-5804. [PMID: 37349621 DOI: 10.1007/s12035-023-03445-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/03/2023] [Indexed: 06/24/2023]
Abstract
The mechanism underlying the hypnosis effect of propofol is still not fully understood. In essence, the nucleus accumbens (NAc) is crucial for regulating wakefulness and may be directly engaged in the principle of general anesthesia. However, the role of NAc in the process of propofol-induced anesthesia is still unknown. We used immunofluorescence, western blotting, and patch-clamp to access the activities of NAc GABAergic neurons during propofol anesthesia, and then we utilized chemogenetic and optogenetic methods to explore the role of NAc GABAergic neurons in regulating propofol-induced general anesthesia states. Moreover, we also conducted behavioral tests to analyze anesthetic induction and emergence. We found out that c-Fos expression was considerably dropped in NAc GABAergic neurons after propofol injection. Meanwhile, patch-clamp recording of brain slices showed that firing frequency induced by step currents in NAc GABAergic neurons significantly decreased after propofol perfusion. Notably, chemically selective stimulation of NAc GABAergic neurons during propofol anesthesia lowered propofol sensitivity, prolonged the induction of propofol anesthesia, and facilitated recovery; the inhibition of NAc GABAergic neurons exerted opposite effects. Furthermore, optogenetic activation of NAc GABAergic neurons promoted emergence whereas the result of optogenetic inhibition was the opposite. Our results demonstrate that NAc GABAergic neurons modulate propofol anesthesia induction and emergence.
Collapse
Affiliation(s)
- Jing Yan
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Bei-Ning Hang
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lin-Hui Ma
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jia-Tao Lin
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yue Zhou
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying-Xuan Yuan
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ke-Jie Shao
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Le-Meng Zhang
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qi Xue
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zi-Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hong-Xing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
4
|
Liu J, Liu X, Zhou WY, Gan J, Wang J, Zhang Q, Li JL, Shen ZS, Zhang YY, Tang QY, Zhang Z. The activation of GABAergic neurons in the hypothalamic tuberomammillary nucleus attenuates sevoflurane and propofol-induced anesthesia in mice. Front Pharmacol 2023; 14:1153735. [PMID: 37426823 PMCID: PMC10325722 DOI: 10.3389/fphar.2023.1153735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Background: The histaminergic neurons in the hypothalamic tuberomammillary nucleus (TMN) have been suggested to play a vital role in maintaining a rising state. But the neuronal types of the TMN are in debate and the role of GABAergic neurons remains unclear. Methods: In the present study, we examined the role of TMN GABAergic neurons in general anesthesia using chemogenetics and optogenetics strategies to regulate the activity of TMN GABAergic neurons. Results: The results indicated that either chemogenetic or optogenetic activation of TMN GABAergic neurons in mice decreased the effect of sevoflurane and propofol anesthesia. In contrast, inhibition of the TMN GABAergic neurons facilitates the sevoflurane anesthesia effect. Conclusion: Our results suggest that the activity of TMN GABAergic neurons produces an anti-anesthesia effect in loss of consciousness and analgesia.
Collapse
Affiliation(s)
- Jing Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Cell Biology and Neurobiology, Life Sciences College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wen-Yu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jun Gan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qi Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jun-Liang Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhong-Shan Shen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue-Ying Zhang
- Department of Anesthesia, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiong-Yao Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
5
|
Blednov YA, Da Costa A, Mason S, Mayfield J, Messing RO. Selective PDE4B and PDE4D inhibitors produce distinct behavioral responses to ethanol and GABAergic drugs in mice. Neuropharmacology 2023; 231:109508. [PMID: 36935006 PMCID: PMC10127528 DOI: 10.1016/j.neuropharm.2023.109508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Apremilast is a phosphodiesterase (PDE) type 4 inhibitor that is nonselective at subtypes PDE4A-D. It modulates ethanol and GABAergic responses via protein kinase A (PKA) phosphorylation of specific GABAA receptor subunits and has opposite effects on ethanol-induced ataxia in wild-type and GABAA β3-S408/409A knock-in mice. We hypothesized that these different effects are due to preferential actions at different PDE4 subtypes. To test this hypothesis, we compared effects of selective PDE4 inhibitors on responses to ethanol and GABAergic drugs in male and female C57BL/6J mice. The PDE4B inhibitor A33 accelerated recovery from ataxia induced by ethanol and diazepam but did not alter ataxia induced by propofol. The PDE4D inhibitor D159687 accelerated recovery from diazepam-induced ataxia but prolonged recovery from ethanol- and propofol-induced ataxia. A33 shortened, while D159687 prolonged, the sedative-hypnotic effects of ethanol. Both drugs shortened diazepam's sedative-hypnotic effects. The modulatory effects of A33 and D159687 were completely prevented by the PKA inhibitor H89. Only D159687 prevented development of acute functional tolerance to ethanol-induced ataxia. D159687 transiently reduced two-bottle choice drinking in male and female mice that had consumed ethanol for 3 weeks and transiently reduced two-bottle choice, every-other-day drinking in male mice. A33 did not alter ethanol drinking in either procedure. Neither drug altered binge-like ethanol consumption or blood ethanol clearance. Thus, D159687 produced behavioral effects similar to apremilast, although it produced a more transient and smaller reduction in drinking. These results indicate that PDE4D inhibition contributes to apremilast's ability to reduce ethanol drinking, whereas PDE4B inhibition is not involved.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Adriana Da Costa
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sonia Mason
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jody Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
6
|
Troup M, Tainton-Heap LAL, van Swinderen B. Neural Ensemble Fragmentation in the Anesthetized Drosophila Brain. J Neurosci 2023; 43:2537-2551. [PMID: 36868857 PMCID: PMC10082453 DOI: 10.1523/jneurosci.1657-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
General anesthetics cause a profound loss of behavioral responsiveness in all animals. In mammals, general anesthesia is induced in part by the potentiation of endogenous sleep-promoting circuits, although "deep" anesthesia is understood to be more similar to coma (Brown et al., 2011). Surgically relevant concentrations of anesthetics, such as isoflurane and propofol, have been shown to impair neural connectivity across the mammalian brain (Mashour and Hudetz, 2017; Yang et al., 2021), which presents one explanation why animals become largely unresponsive when exposed to these drugs. It remains unclear whether general anesthetics affect brain dynamics similarly in all animal brains, or whether simpler animals, such as insects, even display levels of neural connectivity that could be disrupted by these drugs. Here, we used whole-brain calcium imaging in behaving female Drosophila flies to investigate whether isoflurane anesthesia induction activates sleep-promoting neurons, and then inquired how all other neurons across the fly brain behave under sustained anesthesia. We were able to track the activity of hundreds of neurons simultaneously during waking and anesthetized states, for spontaneous conditions as well as in response to visual and mechanical stimuli. We compared whole-brain dynamics and connectivity under isoflurane exposure to optogenetically induced sleep. Neurons in the Drosophila brain remain active during general anesthesia as well as induced sleep, although flies become behaviorally inert under both treatments. We identified surprisingly dynamic neural correlation patterns in the waking fly brain, suggesting ensemble-like behavior. These become more fragmented and less diverse under anesthesia but remain wake-like during induced sleep.SIGNIFICANCE STATEMENT When humans are rendered immobile and unresponsive by sleep or general anesthetics, their brains do not shut off - they just change how they operate. We tracked the activity of hundreds of neurons simultaneously in the brains of fruit flies that were anesthetized by isoflurane or genetically put to sleep, to investigate whether these behaviorally inert states shared similar brain dynamics. We uncovered dynamic patterns of neural activity in the waking fly brain, with stimulus-responsive neurons constantly changing through time. Wake-like neural dynamics persisted during induced sleep but became more fragmented under isoflurane anesthesia. This suggests that, like larger brains, the fly brain might also display ensemble-like behavior, which becomes degraded rather than silenced under general anesthesia.
Collapse
Affiliation(s)
- Michael Troup
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lucy A L Tainton-Heap
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
7
|
Abdulzahir A, Klein S, Lor C, Perkins MG, Frelka A, Pearce RA. Changes in Memory, Sedation, and Receptor Kinetics Imparted by the β2-N265M and β3-N265M GABA A Receptor Point Mutations. Int J Mol Sci 2023; 24:5637. [PMID: 36982709 PMCID: PMC10053577 DOI: 10.3390/ijms24065637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Point mutations in the β2 (N265S) and β3 (N265M) subunits of γ-amino butyric acid type A receptors (GABAARs) that render them insensitive to the general anesthetics etomidate and propofol have been used to link modulation of β2-GABAARs to sedation and β3-GABAARs to surgical immobility. These mutations also alter GABA sensitivity, and mice carrying the β3-N265M mutation have been reported to have impaired baseline memory. Here, we tested the effects of the β2-N265M and β3-N265M mutations on memory, movement, hotplate sensitivity, anxiety, etomidate-induced sedation, and intrinsic kinetics. We found that both β2-N265M and β3-N265M mice exhibited baseline deficits in the Context Preexposure Facilitation Effect learning paradigm. Exploratory activity was slightly greater in β2-N265M mice, but there were no changes in either genotype in anxiety or hotplate sensitivity. β2-N265M mice were highly resistant to etomidate-induced sedation, and heterozygous mice were partially resistant. In rapid solution exchange experiments, both mutations accelerated deactivation two- to three-fold compared to wild type receptors and prevented modulation by etomidate. This degree of change in the receptor deactivation rate is comparable to that produced by an amnestic dose of etomidate but in the opposite direction, indicating that intrinsic characteristics of GABAARs are optimally tuned under baseline conditions to support mnemonic function.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert A. Pearce
- Department of Anesthesiology, University Wisconsin, Madison, WI 53705, USA; (A.A.)
| |
Collapse
|
8
|
Luo T, Li L, Li J, Cai S, Wang Y, Zhang L, Yu S, Yu T. Claustrum modulates behavioral sensitivity and EEG activity of propofol anesthesia. CNS Neurosci Ther 2022; 29:378-389. [PMID: 36353753 PMCID: PMC9804072 DOI: 10.1111/cns.14012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
AIMS The claustrum has long been regarded as a vital center for conscious control. Electrical stimulation or damage to the claustrum can result in decreased awareness or loss of consciousness, suggesting that the claustrum may be a target for the action of general anesthetics. This study aimed to determine the role of the claustrum in propofol anesthesia. METHODS We first applied a fiber photometry calcium signal recording system to record the claustral neuronal activity during the entire process of propofol anesthesia. Chemogenetic activation of claustral neurones was then performed to verify their role in anesthesia. Finally, muscimol (GABAa receptor agonist) and gabazine (GABAa receptor antagonist) were microinjected into the claustrum to determine whether their GABAa receptors were involved in modulating propofol anesthesia. EEG and behavioral indicators, such as anesthetic sensitivity and efficacy, were recorded and analyzed. RESULTS An evident anesthesia-related change in claustrum neuronal activity was suppressed during propofol-induced unconsciousness and restored following recovery from anesthesia. Chemogenetic activation of claustrum neurons results in attenuated propofol sensitivity, a shorter anesthesia duration, and an EEG shift toward wakefulness. Manipulation of GABAa receptors in the claustrum showed bidirectional control of propofol sensitivity, as activation decreases anesthesia efficiency while inactivation augments it. Additionally, inhibiting claustrum GABAa receptors increases cortical EEG slow waves. CONCLUSIONS Claustrum neurones and their GABAa receptors are implicated in the modulation of propofol anesthesia in both behavioral and EEG assessments. Our findings create scope to reveal the brain targets of anesthetic action further and add to the existing evidence on the consciousness-modulating role of the claustrum.
Collapse
Affiliation(s)
- Tian‐Yuan Luo
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina,Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyiChina
| | - Long‐Yu Li
- Department of AnesthesiologyChongqing City Hospital of Traditional Chinese MedicineChongqingChina
| | - Jia Li
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina,Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyiChina
| | - Shuang Cai
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina,Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
| | - Yuan Wang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Lin Zhang
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyiChina
| | - Shou‐Yang Yu
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
| | - Tian Yu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina,Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyiChina,Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
| |
Collapse
|
9
|
Hines DJ, Contreras A, Garcia B, Barker JS, Boren AJ, Moufawad El Achkar C, Moss SJ, Hines RM. Human ARHGEF9 intellectual disability syndrome is phenocopied by a mutation that disrupts collybistin binding to the GABA A receptor α2 subunit. Mol Psychiatry 2022; 27:1729-1741. [PMID: 35169261 PMCID: PMC9095487 DOI: 10.1038/s41380-022-01468-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 11/20/2022]
Abstract
Intellectual disability (ID) is a common neurodevelopmental disorder that can arise from genetic mutations ranging from trisomy to single nucleotide polymorphism. Mutations in a growing number of single genes have been identified as causative in ID, including ARHGEF9. Evaluation of 41 ARHGEF9 patient reports shows ubiquitous inclusion of ID, along with other frequently reported symptoms of epilepsy, abnormal baseline EEG activity, behavioral symptoms, and sleep disturbances. ARHGEF9 codes for the Cdc42 Guanine Nucleotide Exchange Factor 9 collybistin (Cb), a known regulator of inhibitory synapse function via direct interaction with the adhesion molecule neuroligin-2 and the α2 subunit of GABAA receptors. We mutate the Cb binding motif within the large intracellular loop of α2 replacing it with the binding motif for gephyrin from the α1 subunit (Gabra2-1). The Gabra2-1 mutation causes a strong downregulation of Cb expression, particularly at cholecystokinin basket cell inhibitory synapses. Gabra2-1 mice have deficits in working and recognition memory, as well as hyperactivity, anxiety, and reduced social preference, recapitulating the frequently reported features of ARHGEF9 patients. Gabra2-1 mice also have spontaneous seizures during postnatal development which can lead to mortality, and baseline abnormalities in low-frequency wavelengths of the EEG. EEG abnormalities are vigilance state-specific and manifest as sleep disturbance including increased time in wake and a loss of free-running rhythmicity in the absence of light as zeitgeber. Gabra2-1 mice phenocopy multiple features of human ARHGEF9 mutation, and reveal α2 subunit-containing GABAA receptors as a druggable target for treatment of this complex ID syndrome.
Collapse
Affiliation(s)
- Dustin J Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - April Contreras
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Betsua Garcia
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jeffrey S Barker
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Austin J Boren
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Rochelle M Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
10
|
Zhang D, Liu J, Zhu T, Zhou C. Identifying c-fos Expression as a Strategy to Investigate the Actions of General Anesthetics on the Central Nervous System. Curr Neuropharmacol 2021; 20:55-71. [PMID: 34503426 PMCID: PMC9199548 DOI: 10.2174/1570159x19666210909150200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Although general anesthetics have been used in the clinic for more than 170 years, the ways in which they induce amnesia, unconsciousness, analgesia, and immobility remain elusive. Modulations of various neural nuclei and circuits are involved in the actions of general anesthetics. The expression of the immediate-early gene c-fos and its nuclear product, c-fos protein, can be induced by neuronal depolarization; therefore, c-fos staining is commonly used to identify the activated neurons during sleep and/or wakefulness, as well as in various physiological conditions in the central nervous system. Identifying c-fos expression is also a direct and convenient method to explore the effects of general anesthetics on the activity of neural nuclei and circuits. Using c-fos staining, general anesthetics have been found to interact with sleep- and wakefulness-promoting systems throughout the brain, which may explain their ability to induce unconsciousness and emergence from general anesthesia. This review summarizes the actions of general anesthetics on neural nuclei and circuits based on a c-fos expression.
Collapse
Affiliation(s)
- Donghang Zhang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| |
Collapse
|
11
|
Progress in modelling of brain dynamics during anaesthesia and the role of sleep-wake circuitry. Biochem Pharmacol 2021; 191:114388. [DOI: 10.1016/j.bcp.2020.114388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/28/2022]
|
12
|
Chen Y, Ou M, Hao X, Liang P, Liang Y, Wang Y, Li Y, Zhou C. Sub-chronic exposure to morphine alters general anesthetic potency by differentially regulating the expression of neurotransmitter receptor subunits in mice. Brain Res Bull 2021; 169:136-144. [PMID: 33484757 DOI: 10.1016/j.brainresbull.2021.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Sub-chronic exposure to morphine can increase the potency of propofol but decrease the potency of ketamine by unknown mechanisms. The present study was designed to investigate the effects of sub-chronic exposure to morphine on the expression of neurotransmitter receptor subunits, which might contribute to the potency changes of ketamine and propofol in vivo. METHODS Sub-chronic exposure to morphine was established by administering subcutaneous injections of morphine for 5 consecutive days. The median effective dose (ED50) of ketamine and/or propofol was measured on day 1, day 3, day 7 and day 15, after the last morphine dosage. Mice in the sham group received an equal volume of normal saline. The expressions of N-methyl D-aspartate (NMDA) receptor and γ-aminobutyric acid A (GABAA) receptor subunits in the forebrain were measured. Knockdown or overexpression of a subunit was used to determine the causality between the change in anesthetic potency and the expression of an identified receptor subunit. RESULTS After sub-chronic exposure of mice to morphine, the expression of NMDA receptor 1 (NR1) was most elevated in the forebrain on day 1 (P < 0.0001 vs. sham). In contrast, the expression of GABAA receptor β3 (GABAARβ3) gradually decreased to its lowest level on day 7 (P = 0.005 vs. sham) in the forebrain. Regression analysis revealed that the expression of NR1 in the forebrain was relevant to the increased ED50 of ketamine (P = 0.0002), while the expression of GABAARβ3 in the forebrain was relevant to the decreased ED50 of propofol (P = 0.0051) after morphine exposure. Knockdown expression of NR1 in the forebrain reversed the elevated ED50 of ketamine after morphine treatment. Overexpression of GABAARβ3 in the forebrain increased the ED50 of propofol to the sham-level after morphine treatment. CONCLUSIONS Sub-chronic exposure to morphine can differentially modulate the expressions of NR1 and GABAARβ3 in mice, which may contribute to the changes in ED50 of ketamine and propofol in vivo.
Collapse
Affiliation(s)
- Yali Chen
- Departments of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Mengchan Ou
- Departments of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China; The Research Units of West China-Chinese Academy of Medical Sciences (2018RU012), West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xuechao Hao
- Departments of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Peng Liang
- Departments of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yan Liang
- Research Core Facility, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yangyang Wang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yu Li
- Departments of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Cai S, Tang AC, Luo TY, Yang SC, Yang H, Liu CX, Shu Y, Pan YC, Zhang Y, Zhou L, Yu T, Yu SY. Effect of basal forebrain somatostatin and parvalbumin neurons in propofol and isoflurane anesthesia. CNS Neurosci Ther 2021; 27:792-804. [PMID: 33764684 PMCID: PMC8193699 DOI: 10.1111/cns.13635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/02/2022] Open
Abstract
Aims The basal forebrain (BF) plays an essential role in wakefulness and cognition. Two subtypes of BF gamma‐aminobutyric acid (GABA) neurons, including somatostatin‐expressing (GABASOM) and parvalbumin‐positive (GABAParv) neurons, function differently in mediating the natural sleep–wake cycle. Since the loss of consciousness induced by general anesthesia and the natural sleep–wake cycle probably share similar mechanisms, it is important to clarify the accurate roles of these neurons in general anesthesia procedure. Methods Based on two transgenic mouse lines expressing SOM‐IRES‐Cre and PV‐IRES‐Cre, we used a combination of genetic activation, inactivation, and chronic ablation approaches to further explore the behavioral and electroencephalography (EEG) roles of BFSOM and BFParv neurons in general anesthesia. After a single intravenous injection of propofol and the induction and recovery times of isoflurane anesthesia, the anesthesia time was compared. The changes in cortical EEG under different conditions were also compared. Results Activation of BF GABASOM neurons facilitates both the propofol and isoflurane anesthesia, manifesting as a longer anesthesia duration time with propofol anesthesia and a fast induction time and longer recovery time with isoflurane anesthesia. Moreover, BF GABASOM‐activated mice displayed a greater suppression of cortical electrical activity during anesthesia, showing an increase in δ power bands or a simultaneous decrease in high‐frequency power bands. However, only a limited and nuanced effect on propofol and isoflurane anesthesia was observed with the manipulated BF GABAParv neurons. Conclusions Our results suggested that BF GABASOM neurons play a critical role in propofol and isoflurane general anesthesia, while BF GABAParv neurons appeared to have little effect.
Collapse
Affiliation(s)
- Shuang Cai
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Ai-Chen Tang
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Tian-Yuan Luo
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Shao-Cheng Yang
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Huanhuan Yang
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Cheng-Xi Liu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Yue Shu
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Yun-Chao Pan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Liang Zhou
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Tian Yu
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China.,Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Shou-Yang Yu
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| |
Collapse
|
14
|
Luppi AI, Spindler LRB, Menon DK, Stamatakis EA. The Inert Brain: Explaining Neural Inertia as Post-anaesthetic Sleep Inertia. Front Neurosci 2021; 15:643871. [PMID: 33737863 PMCID: PMC7960927 DOI: 10.3389/fnins.2021.643871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
"Neural inertia" is the brain's tendency to resist changes in its arousal state: it is manifested as emergence from anaesthesia occurring at lower drug doses than those required for anaesthetic induction, a phenomenon observed across very different species, from invertebrates to mammals. However, the brain is also subject to another form of inertia, familiar to most people: sleep inertia, the feeling of grogginess, confusion and impaired performance that typically follows awakening. Here, we propose a novel account of neural inertia, as the result of sleep inertia taking place after the artificial sleep induced by anaesthetics. We argue that the orexinergic and noradrenergic systems may be key mechanisms for the control of these transition states, with the orexinergic system exerting a stabilising effect through the noradrenergic system. This effect may be reflected at the macroscale in terms of altered functional anticorrelations between default mode and executive control networks of the human brain. The hypothesised link between neural inertia and sleep inertia could explain why different anaesthetic drugs induce different levels of neural inertia, and why elderly individuals and narcoleptic patients are more susceptible to neural inertia. This novel hypothesis also enables us to generate several empirically testable predictions at both the behavioural and neural levels, with potential implications for clinical practice.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Lennart R. B. Spindler
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - David K. Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Emmanuel A. Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Luppi AI, Spindler LRB, Menon DK, Stamatakis EA. The Inert Brain: Explaining Neural Inertia as Post-anaesthetic Sleep Inertia. Front Neurosci 2021; 15:643871. [PMID: 33737863 DOI: 10.3389/fnins.2021.64387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/05/2021] [Indexed: 05/20/2023] Open
Abstract
"Neural inertia" is the brain's tendency to resist changes in its arousal state: it is manifested as emergence from anaesthesia occurring at lower drug doses than those required for anaesthetic induction, a phenomenon observed across very different species, from invertebrates to mammals. However, the brain is also subject to another form of inertia, familiar to most people: sleep inertia, the feeling of grogginess, confusion and impaired performance that typically follows awakening. Here, we propose a novel account of neural inertia, as the result of sleep inertia taking place after the artificial sleep induced by anaesthetics. We argue that the orexinergic and noradrenergic systems may be key mechanisms for the control of these transition states, with the orexinergic system exerting a stabilising effect through the noradrenergic system. This effect may be reflected at the macroscale in terms of altered functional anticorrelations between default mode and executive control networks of the human brain. The hypothesised link between neural inertia and sleep inertia could explain why different anaesthetic drugs induce different levels of neural inertia, and why elderly individuals and narcoleptic patients are more susceptible to neural inertia. This novel hypothesis also enables us to generate several empirically testable predictions at both the behavioural and neural levels, with potential implications for clinical practice.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Lennart R B Spindler
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Gruenbaum BF. Comparison of anaesthetic- and seizure-induced states of unconsciousness: a narrative review. Br J Anaesth 2021; 126:219-229. [PMID: 32951841 PMCID: PMC7844374 DOI: 10.1016/j.bja.2020.07.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/23/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022] Open
Abstract
In order to understand general anaesthesia and certain seizures, a fundamental understanding of the neurobiology of unconsciousness is needed. This review article explores similarities in neuronal and network changes during general anaesthesia and seizure-induced unconsciousness. Both seizures and anaesthetics cause disruption in similar anatomical structures that presumably lead to impaired consciousness. Despite differences in behaviour and mechanisms, both of these conditions are associated with disruption of the functionality of subcortical structures that mediate neuronal activity in the frontoparietal cortex. These areas are all likely to be involved in maintaining normal consciousness. An assessment of the similarities in the brain network disruptions with certain seizures and general anaesthesia might provide fresh insights into the mechanisms of the alterations of consciousness seen in these particular unconscious states, allowing for innovative therapies for seizures and the development of anaesthetic approaches targeting specific networks.
Collapse
|
17
|
Zhang Y, Gui H, Hu L, Li C, Zhang J, Liang X. Dopamine D1 receptor in the NAc shell is involved in delayed emergence from isoflurane anesthesia in aged mice. Brain Behav 2021; 11:e01913. [PMID: 33094567 PMCID: PMC7821614 DOI: 10.1002/brb3.1913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/24/2020] [Accepted: 10/07/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Delayed emergence after general anesthesia tends to occur in the elderly population, but the mechanism remains unclear. Apart from age-related pharmacokinetic changes, the aging-induced structural and functional alterations in the arousal-promoting neural substrates should be considered. The nucleus accumbens (NAc) is a crucial arousal-related nucleus, in which activating medium spiny neurons (MSNs) expressing dopamine D1 receptor (D1R) could facilitate the arousal from natural sleep. Meanwhile, the dopaminergic systems decline with aging in multiple brain regions. However, whether the age-related decline in D1R in the NAc shell attenuates its arousal-promoting capacity from general anesthesia remains to be elucidated. METHODS We first verified the delayed emergence from isoflurane anesthesia and examined the corresponding changes of electroencephalogram (EEG) power in aged mice. In turn, the arousal-modulating capacity of D1R was characterized in the young and aged cohorts by microinjection of D1R agonist/antagonist into the NAc shell. Furthermore, to address the possible mechanism responsible for the attenuated arousal-modulating capacity of the aged NAc, the expression of D1R in the NAc shell was measured and compared between young and aged mice. RESULTS Our data indicated that compared with young mice, the emergence time in aged mice was notably longer, while EEG power in δ band (1-4Hz) was significantly higher and power in β band (12-25Hz) was lower. Activating or inhibiting D1R in the NAc shell by microinjection D1R agonist/antagonist promoted or delayed the emergence process in young mice. Nevertheless, this modulation capacity of D1R in the NAc shell declined in aged mice, respectively. Meanwhile, downregulation of D1R expression in the NAc shell was detected in the aged brain. CONCLUSION Together, these results suggest that aging attenuates the arousal-modulating capacity of D1R in the NAc shell probably through downregulation of D1R expression therein, which may provide a potential explanation and a therapeutic target for increased sensitivity to anesthetics in the elderly patients.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China.,School of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Huan Gui
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Lang Hu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Chengxi Li
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Jie Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Xiaoli Liang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China.,School of Anesthesiology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
18
|
Reitz SL, Wasilczuk AZ, Beh GH, Proekt A, Kelz MB. Activation of Preoptic Tachykinin 1 Neurons Promotes Wakefulness over Sleep and Volatile Anesthetic-Induced Unconsciousness. Curr Biol 2020; 31:394-405.e4. [PMID: 33188746 DOI: 10.1016/j.cub.2020.10.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022]
Abstract
Endogenous sleep and general anesthesia are distinct states that share similar traits. Of particular interest to neuroscience is the loss of consciousness that accompanies both states. Multiple lines of evidence demonstrate that general anesthetics can co-opt the neural circuits regulating arousal to produce unconsciousness. However, controversy remains as to whether the neural circuits and, more specifically, the same neurons shaping sleep and wakefulness actually do influence the anesthetic state in vivo. Hypothalamic preoptic area (POA) neurons are intimately involved in modulating spontaneous and anesthetic-induced changes in arousal. Nevertheless, recent work suggests that POA GABAergic or glutamatergic neurons capable of regulating endogenous sleep fail to influence the onset or dissipation of anesthesia. We hypothesized that the POA's broad neuronal diversity could mask convergent roles of a subset of neurons in regulating both arousal and anesthesia. Contrary to a previously published report, we show that chemogenetic activation of POA Tac1 neurons obliterates both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, strongly consolidating the waking state for hours, even during a period of elevated sleep drive. Moreover, chemogenetic activation of Tac1 POA neurons stabilizes the wake state against both isoflurane- and sevoflurane-induced unconsciousness. Tac1-activated mice display a partial resistance to entering isoflurane anesthesia and a more pronounced ability to exit both isoflurane- and sevoflurane-induced unconscious states. We conclude that POA Tac1 neurons can potently reinforce arousal both against endogenous and drug-induced unconscious states. POA Tac1 neurons thus add causal support for the involvement of arousal-regulating systems in the state of general anesthesia.
Collapse
Affiliation(s)
- Sarah L Reitz
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrzej Z Wasilczuk
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA; Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gretel H Beh
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA
| | - Alex Proekt
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Kim J, Lee HC, Byun SH, Lim H, Lee M, Choung Y, Kim E. Frontal electroencephalogram activity during emergence from general anaesthesia in children with and without emergence delirium. Br J Anaesth 2020; 126:293-303. [PMID: 33010926 DOI: 10.1016/j.bja.2020.07.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/22/2020] [Accepted: 07/31/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Emergence delirium (ED) in children after general anaesthesia causes significant distress in patients, their family members, and clinicians; however, electroencephalogram (EEG) markers predicting ED have not been fully investigated. METHODS This prospective, single-centre observational study enrolled children aged 2-10 yr old under sevoflurane anaesthesia. ED was assessed according to Diagnostic and Statistical Manual of Mental Disorders (DSM) IV or 5 criteria. The relative power of low-frequency (delta and theta) and high-frequency (alpha and beta) EEG waves during the emergence period was compared between the children with and without ED. The linear relationships between the relative power and peak Paediatric Assessment of Emergence Delirium (PAED) score were investigated. RESULTS Among the 60 patients, 22 developed ED (ED group), whereas the other 38 did not (non-ED group). The relative power of the delta wave was higher (mean [standard deviation], 0.579 [0.083] vs 0.453 [0.090], respectively, P<0.001) in the ED group, whereas that of the alpha and beta waves was lower in the ED group, than in the non-ED group (0.155 [0.063] vs 0.218 [0.088], P=0.005 and 0.114 [0.069] vs 0.186 [0.070], P<0.001, respectively). The areas under the receiver operating characteristic curves of the relative power of the delta wave, low-to-high frequency power ratio, and delta-to-alpha ratio were 0.837 (95% confidence interval, 0.737-0.938), 0.835 (0.735-0.934), and 0.768 (0.649-0.887), respectively. The relative power of the delta wave and the two ratios had a positive linear relationship with the peak PAED scores. CONCLUSIONS Paediatric patients developing ED have increased low-frequency (delta) frontal EEG activity with reduced high-frequency (alpha and beta) activity during emergence from general anaesthesia. CLINICAL TRIAL REGISTRATION NCT03797274.
Collapse
Affiliation(s)
- Jonghae Kim
- Department of Anaesthesiology and Pain Medicine, Daegu Catholic University Medical Centre, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Hyung-Chul Lee
- Department of Anaesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sung-Hye Byun
- Department of Anaesthesiology and Pain Medicine, Daegu Catholic University Medical Centre, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Hyunyoung Lim
- Department of Anaesthesiology and Pain Medicine, Hanyang University Medical Centre, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Minkyu Lee
- Department of Anaesthesiology and Pain Medicine, Hanyang University Medical Centre, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Yoojin Choung
- Department of Anaesthesiology and Pain Medicine, Hanyang University Medical Centre, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Eugene Kim
- Department of Anaesthesiology and Pain Medicine, Hanyang University Medical Centre, College of Medicine, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Wang S, Li Y, Qiu S, Zhang C, Wang G, Xian J, Li T, He H. Reorganization of rich-clubs in functional brain networks during propofol-induced unconsciousness and natural sleep. NEUROIMAGE-CLINICAL 2020; 25:102188. [PMID: 32018124 PMCID: PMC6997627 DOI: 10.1016/j.nicl.2020.102188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/31/2019] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND General anesthesia (GA) provides an invaluable experimental tool to understand the essential neural mechanisms underlying consciousness. Previous neuroimaging studies have shown the functional integration and segregation of brain functional networks during anesthetic-induced alteration of consciousness. However, the organization pattern of hubs in functional brain networks remains unclear. Moreover, comparisons with the well-characterized physiological unconsciousness can help us understand the neural mechanisms of anesthetic-induced unconsciousness. METHODS Resting-state functional magnetic resonance imaging was performed during wakefulness, mild propofol-induced sedation (m-PIS), and deep PIS (d-PIS) with clinical unconsciousness on 8 healthy volunteers and wakefulness and natural sleep on 9 age- and sex-matched healthy volunteers. Large-scale functional brain networks of each volunteer were constructed based on 160 regions of interest. Then, rich-club organizations in brain functional networks and nodal properties (nodal strength and efficiency) were assessed and analyzed among the different states and groups. RESULTS Rich-clubs in the functional brain networks were reorganized during alteration of consciousness induced by propofol. Firstly, rich-club nodes were switched from the posterior cingulate cortex (PCC), angular gyrus, and anterior and middle insula to the inferior parietal lobule (IPL), inferior parietal sulcus (IPS), and cerebellum. When sedation was deepened to unconsciousness, the rich-club nodes were switched to the occipital and angular gyrus. These results suggest that the rich-club nodes were switched among the high-order cognitive function networks (default mode network [DMN] and fronto-parietal network [FPN]), sensory networks (occipital network [ON]), and cerebellum network (CN) from consciousness (wakefulness) to propofol-induced unconsciousness. At the same time, compared with wakefulness, local connections were switched to rich-club connections during propofol-induced unconsciousness, suggesting a strengthening of the overall information commutation of networks. Nodal efficiency of the anterior and middle insula and ventral frontal cortex was significantly decreased. Additionally, from wakefulness to natural sleep, a similar pattern of rich-club reorganization with propofol-induced unconsciousness was observed: rich-club nodes were switched from the DMN (including precuneus and PCC) to the sensorimotor network (SMN, including part of the frontal and temporal gyrus). Compared with natural sleep, nodal efficiency of the insula, frontal gyrus, PCC, and cerebellum significantly decreased during propofol-induced unconsciousness. CONCLUSIONS Our study demonstrated that the rich-club reorganization in functional brain networks is characterized by switching of rich-club nodes between the high-order cognitive and sensory and motor networks during propofol-induced alteration of consciousness and natural sleep. These findings will help understand the common neurological mechanism of pharmacological and physiological unconsciousness.
Collapse
Affiliation(s)
- Shengpei Wang
- Research Center for Brain-inspired Intelligence and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yun Li
- Department of Anesthesia, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shuang Qiu
- Research Center for Brain-inspired Intelligence and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Chuncheng Zhang
- Research Center for Brain-inspired Intelligence and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Guyan Wang
- Department of Anesthesia, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Tianzuo Li
- Department of Anesthesia, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Huiguang He
- Research Center for Brain-inspired Intelligence and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Escape From Oblivion: Neural Mechanisms of Emergence From General Anesthesia. Anesth Analg 2019; 128:726-736. [PMID: 30883418 DOI: 10.1213/ane.0000000000004006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The question of how general anesthetics suppress consciousness has persisted since the mid-19th century, but it is only relatively recently that the field has turned its focus to a systematic understanding of emergence. Once assumed to be a purely passive process, spontaneously occurring as residual levels of anesthetics dwindle below a critical value, emergence from general anesthesia has been reconsidered as an active and controllable process. Emergence is driven by mechanisms that can be distinct from entry to the anesthetized state. In this narrative review, we focus on the burgeoning scientific understanding of anesthetic emergence, summarizing current knowledge of the neurotransmitter, neuromodulators, and neuronal groups that prime the brain as it prepares for its journey back from oblivion. We also review evidence for possible strategies that may actively bias the brain back toward the wakeful state.
Collapse
|
22
|
The Locus Coeruleus Modulates Intravenous General Anesthesia of Zebrafish via a Cooperative Mechanism. Cell Rep 2019; 24:3146-3155.e3. [PMID: 30231998 DOI: 10.1016/j.celrep.2018.08.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/17/2018] [Accepted: 08/16/2018] [Indexed: 01/03/2023] Open
Abstract
How general anesthesia causes loss of consciousness has been a mystery for decades. It is generally thought that arousal-related brain nuclei, including the locus coeruleus (LC), are involved. Here, by monitoring locomotion behaviors and neural activities, we developed a larval zebrafish model for studying general anesthesia induced by propofol and etomidate, two commonly used intravenous anesthetics. Local lesion of LC neurons via two-photon laser-based ablation or genetic depletion of norepinephrine (NE; a neuromodulator released by LC neurons) via CRISPR/Cas9-based mutation of dopamine-β-hydroxylase (dbh) accelerates induction into and retards emergence from general anesthesia. Mechanistically, in vivo whole-cell recording revealed that both anesthetics suppress LC neurons' activity through a cooperative mechanism, inhibiting presynaptic excitatory inputs and inducing GABAA receptor-mediated hyperpolarization of these neurons. Thus, our study indicates that the LC-NE system plays a modulatory role in both induction of and emergence from intravenous general anesthesia.
Collapse
|
23
|
Chen L, Yang ZL, Cheng J, Zhang PP, Zhang LS, Liu XS, Wang LC. Propofol decreases the excitability of cholinergic neurons in mouse basal forebrain via GABA A receptors. Acta Pharmacol Sin 2019; 40:755-761. [PMID: 30367153 PMCID: PMC6786414 DOI: 10.1038/s41401-018-0168-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/31/2018] [Indexed: 12/23/2022]
Abstract
Propofol is an intravenous anesthetic that can active γ-aminobutyric acid A (GABAA) receptors and generate sedative-hypnotic effects. Propofol has been widely applied clinically to achieve sedation comparable to sleep in humans. The basal forebrain (BF) is a brain region that plays an important role in sleep-wake regulation. Previous studies suggest that propofol affects the sleep-wake circuit via the BF; however, the mechanism remains elusive. In the current study we investigated the effects of propofol on the inherent properties of cholinergic neurons and their ability to convert excitatory inputs into spikes in mouse BF slices using whole-cell patch clamp recordings. Bath application of propofol (10 μM) significantly elevated the threshold potentials (Vts), decreased the number of spikes in response to a depolarizing current injection, and augmented the inter-spike intervals (ISIs), energy barrier (Vts-Vrs), and absolute refractory periods (ARPs). These effects were eliminated by co-application of a GABAA receptor antagonist picrotoxin (50 μM). Altogether, our results reveal that propofol decreases the excitability of cholinergic neurons in mouse BF via GABAA receptors.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacology and Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhi-Lai Yang
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Juan Cheng
- Department of Pharmacology and Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Ping-Ping Zhang
- Department of Pharmacology and Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Le-Sha Zhang
- Department of Pharmacology and Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xue-Sheng Liu
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Lie-Cheng Wang
- Department of Pharmacology and Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
24
|
Activation of Parabrachial Nucleus Glutamatergic Neurons Accelerates Reanimation from Sevoflurane Anesthesia in Mice. Anesthesiology 2019; 130:106-118. [DOI: 10.1097/aln.0000000000002475] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
EDITOR’S PERSPECTIVE
What We Already Know about This Topic
The parabrachial nucleus is a brainstem region involved in arousal.
Brain regions involved in arousal regulate anesthetic induction and emergence.
What This Article Tells Us That Is New
Using chemogenetic techniques, activation of parabrachial nucleus glutamatergic neurons prolonged anesthetic induction and hastened emergence in mice. Inhibition of these neurons provided opposite effects.
Modulating the activity of arousal centers may provide an approach to controlling the duration of general anesthesia.
Background
The parabrachial nucleus (PBN), which is a brainstem region containing glutamatergic neurons, is a key arousal nucleus. Injuries to the area often prevent patient reanimation. Some studies suggest that brain regions that control arousal and reanimation are a key part of the anesthesia recovery. Therefore, we hypothesize that the PBN may be involved in regulating emergence from anesthesia.
Methods
We investigated the effects of specific activation or inhibition of PBN glutamatergic neurons on sevoflurane general anesthesia using the chemogenetic “designer receptors exclusively activated by designer drugs” approach. Optogenetic methods combined with polysomnographic recordings were used to explore the effects of transient activation of PBN glutamatergic neuron on sevoflurane anesthesia. Immunohistochemical techniques are employed to reveal the mechanism by which PBN regulated sevoflurane anesthesia.
Results
Chemogenetic activation of PBN glutamatergic neurons by intraperitoneal injections of clozapine-N-oxide decreased emergence time (mean ± SD, control vs. clozapine-N-oxide, 55 ± 24 vs. 15 ± 9 s, P = 0.0002) caused by sevoflurane inhalation and prolonged induction time (70 ± 15 vs. 109 ± 38 s, n = 9, P = 0.012) as well as the ED50 of sevoflurane (1.48 vs. 1.60%, P = 0.0002), which was characterized by a rightward shift of the loss of righting reflex cumulative curve. In contrast, chemogenetic inhibition of PBN glutamatergic neurons slightly increased emergence time (56 ± 26 vs. 87 ± 26 s, n = 8, P = 0.034). Moreover, instantaneous activation of PBN glutamatergic neurons expressing channelrhodopsin-2 during steady-state general anesthesia with sevoflurane produced electroencephalogram evidence of cortical arousal. Immunohistochemical experiments showed that activation of PBN induced excitation of cortical and subcortical arousal nuclei during sevoflurane anesthesia.
Conclusions
Activation of PBN glutamatergic neurons is helpful to accelerate the transition from general anesthesia to an arousal state, which may provide a new strategy in shortening the recovery time after sevoflurane anesthesia.
Collapse
|
25
|
Luo T, Yu S, Cai S, Zhang Y, Jiao Y, Yu T, Yu W. Parabrachial Neurons Promote Behavior and Electroencephalographic Arousal From General Anesthesia. Front Mol Neurosci 2018; 11:420. [PMID: 30564094 PMCID: PMC6288364 DOI: 10.3389/fnmol.2018.00420] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
General anesthesia has been used clinically for more than 170 years, yet its underlying mechanisms are still not fully understood. The parabrachial nucleus (PBN) in the brainstem has been known to be crucial for regulating wakefulness and signs of arousal on the cortical electroencephalogram (EEG). Lesions of the parabrachial complex lead to unresponsiveness and a monotonous high-voltage, and a slow-wave EEG, which are the two main features of general anesthesia. However, it is unclear whether and how the PBN functions in the process of general anesthesia. By recording the levels of calcium in vivo in real-time, we found that the neural activity in PBN is suppressed during anesthesia, while it is robustly activated during recovery from propofol and isoflurane anesthesia. The activation of PBN neurons by “designer receptors exclusively activated by designer drugs” (DREADDs) shortened the recovery time but did not change the induction time. Cortical EEG recordings revealed that the neural activation of PBN specifically affected the recovery period, with a decrease of δ-band power or an increase in β-band power; no EEG changes were seen in the anesthesia period. Furthermore, the activation of PBN elicited neural activation in the prefrontal cortex, basal forebrain, lateral hypothalamus, thalamus, and supramammillary nucleus. Thus, PBN is critical for behavioral and electroencephalographic arousal without affecting the induction of general anesthesia.
Collapse
Affiliation(s)
- Tianyuan Luo
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Shouyang Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Shuang Cai
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Maldonado JR. Delirium pathophysiology: An updated hypothesis of the etiology of acute brain failure. Int J Geriatr Psychiatry 2018; 33:1428-1457. [PMID: 29278283 DOI: 10.1002/gps.4823] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Delirium is the most common neuropsychiatric syndrome encountered by clinicians dealing with older adults and the medically ill and is best characterized by 5 core domains: cognitive deficits, attentional deficits, circadian rhythm dysregulation, emotional dysregulation, and alteration in psychomotor functioning. DESIGN An extensive literature review and consolidation of published data into a novel interpretation of known pathophysiological causes of delirium. RESULTS Available data suggest that numerous pathological factors may serve as precipitants for delirium, each having differential effects depending on patient-specific patient physiological characteristics (substrate). On the basis of an extensive literature search, a newly proposed theory, the systems integration failure hypothesis, was developed to bring together the most salient previously described theories, by describing the various contributions from each into a complex web of pathways-highlighting areas of intersection and commonalities and explaining how the variable contribution of these may lead to the development of various cognitive and behavioral dysfunctions characteristic of delirium. The specific cognitive and behavioral manifestations of the specific delirium picture result from a combination of neurotransmitter function and availability, variability in integration and processing of sensory information, motor responses to both external and internal cues, and the degree of breakdown in neuronal network connectivity, hence the term acute brain failure. CONCLUSIONS The systems integration failure hypothesis attempts to explain how the various proposed delirium pathophysiologic theories interact with each other, causing various clinically observed delirium phenotypes. A better understanding of the underlying pathophysiology of delirium may eventually assist in designing better prevention and management approaches.
Collapse
|
27
|
Ko YH, Shim KY, Lee SY, Jang CG. Evodiamine Reduces Caffeine-Induced Sleep Disturbances and Excitation in Mice. Biomol Ther (Seoul) 2018; 26:432-438. [PMID: 29310424 PMCID: PMC6131020 DOI: 10.4062/biomolther.2017.146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 11/05/2022] Open
Abstract
Worldwide, caffeine is among the most commonly used stimulatory substances. Unfortunately, significant caffeine consumption is associated with several adverse effects, ranging from sleep disturbances (including insomnia) to cardiovascular problems. This study investigates whether treatment with the Evodia rutaecarpa aqueous extract (ERAE) from berries and its major molecular component, evodiamine, can reduce the adverse caffeine-induced sleep-related and excitation effects. We combined measurements from the pentobarbital-induced sleep test, the open field test, and the locomotor activity test in mice that had been dosed with caffeine. We found that ERAE and evodiamine administration reduced the degree of caffeine-induced sleep disruption during the sleep test. Additionally, we found that evodiamine significantly inhibits caffeine-induced excitation during the open field test, as well as decreasing hyperlocomotion in the locomotor activity test. Additional in vitro experiments showed that caffeine administration decreased the expression of γ-aminobutyric acid (GABA)A receptor subunits in the mouse hypothalamus. However, evodiamine treatment significantly reversed this expression reduction. Taken together, our results demonstrate that ERAE and its major compound, evodiamine, provide an excellent candidate for the treatment or prevention of caffeine-induced sleep disturbances and excitatory states, and that the mechanism of these beneficial effects acts, at least in part, through the GABAA-ergic system.
Collapse
Affiliation(s)
- Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyu-Yeon Shim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
28
|
Yang E, Granata D, Eckenhoff RG, Carnevale V, Covarrubias M. Propofol inhibits prokaryotic voltage-gated Na + channels by promoting activation-coupled inactivation. J Gen Physiol 2018; 150:1299-1316. [PMID: 30018038 PMCID: PMC6122921 DOI: 10.1085/jgp.201711924] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Propofol is widely used in the clinic for the induction and maintenance of general anesthesia. As with most general anesthetics, however, our understanding of its mechanism of action remains incomplete. Local and general anesthetics largely inhibit voltage-gated Na+ channels (Navs) by inducing an apparent stabilization of the inactivated state, associated in some instances with pore block. To determine the biophysical and molecular basis of propofol action in Navs, we investigated NaChBac and NavMs, two prokaryotic Navs with distinct voltage dependencies and gating kinetics, by whole-cell patch clamp electrophysiology in the absence and presence of propofol at clinically relevant concentrations (2-10 µM). In both Navs, propofol induced a hyperpolarizing shift of the pre-pulse inactivation curve without any significant effects on recovery from inactivation at strongly hyperpolarized voltages, demonstrating that propofol does not stabilize the inactivated state. Moreover, there was no evidence of fast or slow pore block by propofol in a non-inactivating NaChBac mutant (T220A). Propofol also induced hyperpolarizing shifts of the conductance-voltage relationships with negligible effects on the time constants of deactivation at hyperpolarized voltages, indicating that propofol does not stabilize the open state. Instead, propofol decreases the time constants of macroscopic activation and inactivation. Adopting a kinetic scheme of Nav gating that assumes preferential closed-state recovery from inactivation, a 1.7-fold acceleration of the rate constant of activation and a 1.4-fold acceleration of the rate constant of inactivation were sufficient to reproduce experimental observations with computer simulations. In addition, molecular dynamics simulations and molecular docking suggest that propofol binding involves interactions with gating machinery in the S4-S5 linker and external pore regions. Our findings show that propofol is primarily a positive gating modulator of prokaryotic Navs, which ultimately inhibits the channels by promoting activation-coupled inactivation.
Collapse
Affiliation(s)
- Elaine Yang
- Vickie and Jack Farber Institute for Neuroscience and Department of Neuroscience, Sidney Kimmel Medical College and Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
| | - Daniele Granata
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA
| | - Manuel Covarrubias
- Vickie and Jack Farber Institute for Neuroscience and Department of Neuroscience, Sidney Kimmel Medical College and Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
29
|
|
30
|
Proekt A, Hudson AE. A stochastic basis for neural inertia in emergence from general anaesthesia. Br J Anaesth 2018; 121:86-94. [PMID: 29935600 DOI: 10.1016/j.bja.2018.02.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/23/2018] [Accepted: 03/05/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Transitions into and out of the anaesthetised state exhibit resistance to state transitions known as neural inertia. As a consequence, emergence from anaesthesia occurs at a consistently lower anaesthetic concentration than induction. Motivated by stochastic switching between discrete activity patterns observed at constant anaesthetic concentration, we investigated the consequences of such switching for neural inertia. METHODS We simulated stochastic switching in MATLAB as Brownian motion on an energy landscape or equivalently as a discrete Markov process. Effects of anaesthetics were modelled as changing stability of the awake and the anaesthetised states. Simulation results were compared with re-analysed neural inertia data from mice and Drosophila. RESULTS Diffusion on a two-well energy landscape gives rise to hysteresis. With additive noise, hysteresis collapses. This collapse occurs over a mixing time that is independent from pharmacokinetics. The two-well potential gives rise to the leftward shift for the emergence dose-response curve. Yet, from in vivo data, ΔEC50 and Δ Hill slope are strongly negatively correlated (R2=0.45, P<1.7×10-15). This correlation is not explained by a two-well potential. The extension of the diffusion model to a Markov process with 10 states (three awake, seven unconscious) reproduces both the left shift and the shallower Hill slope for emergence. CONCLUSIONS Stochastic state switching accounts for all known features of neural inertia. More than two states are required to explain the consistent increase observed in variability of recovery from general anaesthesia. This model predicts that hysteresis should collapse with a time scale independent of anaesthetic drug pharmacokinetics.
Collapse
Affiliation(s)
- A Proekt
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA.
| | - A E Hudson
- Department of Anesthesiology and Perioperative Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
31
|
Gelegen C, Miracca G, Ran MZ, Harding EC, Ye Z, Yu X, Tossell K, Houston CM, Yustos R, Hawkins ED, Vyssotski AL, Dong HL, Wisden W, Franks NP. Excitatory Pathways from the Lateral Habenula Enable Propofol-Induced Sedation. Curr Biol 2018; 28:580-587.e5. [PMID: 29398217 PMCID: PMC5835141 DOI: 10.1016/j.cub.2017.12.050] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/12/2017] [Accepted: 12/21/2017] [Indexed: 12/30/2022]
Abstract
The lateral habenula has been widely studied for its contribution in generating reward-related behaviors [1, 2]. We have found that this nucleus plays an unexpected role in the sedative actions of the general anesthetic propofol. The lateral habenula is a glutamatergic, excitatory hub that projects to multiple targets throughout the brain, including GABAergic and aminergic nuclei that control arousal [3-5]. When glutamate release from the lateral habenula in mice was genetically blocked, the ability of propofol to induce sedation was greatly diminished. In addition to this reduced sensitivity to propofol, blocking output from the lateral habenula caused natural non-rapid eye movement (NREM) sleep to become highly fragmented, especially during the rest ("lights on") period. This fragmentation was largely reversed by the dual orexinergic antagonist almorexant. We conclude that the glutamatergic output from the lateral habenula is permissive for the sedative actions of propofol and is also necessary for the consolidation of natural sleep.
Collapse
Affiliation(s)
- Cigdem Gelegen
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Giulia Miracca
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Mingzi Z Ran
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi 710032, China
| | - Edward C Harding
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Zhiwen Ye
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Xiao Yu
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Kyoko Tossell
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Catriona M Houston
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Raquel Yustos
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Edwin D Hawkins
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich/ETH Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Hailong L Dong
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi 710032, China
| | - William Wisden
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK; Centre of Excellence in Neurotechnology and UK Dementia Research Institute, Imperial College London, South Kensington SW7 2AZ, UK.
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK; Centre of Excellence in Neurotechnology and UK Dementia Research Institute, Imperial College London, South Kensington SW7 2AZ, UK.
| |
Collapse
|
32
|
Abstract
The mechanisms regulating the control of consciousness in both spontaneous sleep–wake behaviour and general anaesthesia remain poorly understood and are a fundamental question in neuroscience. The last 30 years have identified numerous molecular substrates and more recently important monoaminergic neuronal substrates. Future work now needs to concentrate on elucidating the convergence of these neuronal circuits to build a unifying mechanism of consciousness control.
Collapse
Affiliation(s)
- Thomas Gent
- Inselspital Universitatsspital Bern, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Antoine Adamantidis
- Inselspital Universitatsspital Bern, Inselspital University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
33
|
Speigel I, Bichler EK, García PS. The Influence of Regional Distribution and Pharmacologic Specificity of GABA AR Subtype Expression on Anesthesia and Emergence. Front Syst Neurosci 2017; 11:58. [PMID: 28878632 PMCID: PMC5572268 DOI: 10.3389/fnsys.2017.00058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/19/2017] [Indexed: 01/31/2023] Open
Abstract
Anesthetics produce unconsciousness by modulating ion channels that control neuronal excitability. Research has shown that specific GABAA receptor (GABAAR) subtypes in particular regions of the central nervous system contribute to different hyperpolarizing conductances, and behaviorally to distinct components of the anesthetized state. The expression of these receptors on the neuron cell surface, and thus the strength of inhibitory neurotransmission, is dynamically regulated by intracellular trafficking mechanisms. Pharmacologic or activity-based perturbations to these regulatory systems have been implicated in pathology of several neurological conditions, and can alter the individual response to anesthesia. Furthermore, studies are beginning to uncover how anesthetic exposure itself elicits enduring changes in subcellular physiology, including the processes that regulate ion channel trafficking. Here, we review the mechanisms that determine GABAAR surface expression, and elaborate on influences germane to anesthesia and emergence. We address known trafficking differences between the intrasynaptic receptors that mediate phasic current and the extra-synaptic receptors mediating tonic current. We also describe neurophysiologic consequences and network-level abnormalities in brain function that result from receptor trafficking aberrations. We hypothesize that the relationship between commonly used anesthetic agents and GABAAR surface expression has direct consequences on mature functioning neural networks and by extension ultimately influence the outcome of patients that undergo general anesthesia. Rational design of new anesthetics, anesthetic techniques, EEG-based monitoring strategies, or emergence treatments will need to take these effects into consideration.
Collapse
Affiliation(s)
- Iris Speigel
- Department of Anesthesiology, Emory University School of Medicine, AtlantaGA, United States.,Research Division, Atlanta Veteran's Affairs Medical Center, AtlantaGA, United States
| | - Edyta K Bichler
- Department of Anesthesiology, Emory University School of Medicine, AtlantaGA, United States.,Research Division, Atlanta Veteran's Affairs Medical Center, AtlantaGA, United States
| | - Paul S García
- Department of Anesthesiology, Emory University School of Medicine, AtlantaGA, United States.,Research Division, Atlanta Veteran's Affairs Medical Center, AtlantaGA, United States
| |
Collapse
|
34
|
Bottom-Up versus Top-Down Induction of Sleep by Zolpidem Acting on Histaminergic and Neocortex Neurons. J Neurosci 2017; 36:11171-11184. [PMID: 27807161 DOI: 10.1523/jneurosci.3714-15.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 08/17/2016] [Indexed: 12/18/2022] Open
Abstract
Zolpidem, a GABAA receptor-positive modulator, is the gold-standard drug for treating insomnia. Zolpidem prolongs IPSCs to decrease sleep latency and increase sleep time, effects that depend on α2 and/or α3 subunit-containing receptors. Compared with natural NREM sleep, zolpidem also decreases the EEG power, an effect that depends on α1 subunit-containing receptors, and which may make zolpidem-induced sleep less optimal. In this paper, we investigate whether zolpidem needs to potentiate only particular GABAergic pathways to induce sleep without reducing EEG power. Mice with a knock-in F77I mutation in the GABAA receptor γ2 subunit gene are zolpidem-insensitive. Using these mice, GABAA receptors in the frontal motor neocortex and hypothalamic (tuberomammillary nucleus) histaminergic-neurons of γ2I77 mice were made selectively sensitive to zolpidem by genetically swapping the γ2I77 subunits with γ2F77 subunits. When histamine neurons were made selectively zolpidem-sensitive, systemic administration of zolpidem shortened sleep latency and increased sleep time. But in contrast to the effect of zolpidem on wild-type mice, the power in the EEG spectra of NREM sleep was not decreased, suggesting that these EEG power-reducing effects of zolpidem do not depend on reduced histamine release. Selective potentiation of GABAA receptors in the frontal cortex by systemic zolpidem administration also reduced sleep latency, but less so than for histamine neurons. These results could help with the design of new sedatives that induce a more natural sleep. SIGNIFICANCE STATEMENT Many people who find it hard to get to sleep take sedatives. Zolpidem (Ambien) is the most widely prescribed "sleeping pill." It makes the inhibitory neurotransmitter GABA work better at its receptors throughout the brain. The sleep induced by zolpidem does not resemble natural sleep because it produces a lower power in the brain waves that occur while we are sleeping. We show using mouse genetics that zolpidem only needs to work on specific parts and cell types of the brain, including histamine neurons in the hypothalamus, to induce sleep but without reducing the power of the sleep. This knowledge could help in the design of sleeping pills that induce a more natural sleep.
Collapse
|
35
|
Inactivation of the Tuberomammillary Nucleus by GABAA Receptor Agonist Promotes Slow Wave Sleep in Freely Moving Rats and Histamine-Treated Rats. Neurochem Res 2017; 42:2314-2325. [DOI: 10.1007/s11064-017-2247-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/18/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022]
|
36
|
Sukhotinsky I, Minert A, Soja P, Devor M. Mesopontine Switch for the Induction of General Anesthesia by Dedicated Neural Pathways. Anesth Analg 2016; 123:1274-1285. [DOI: 10.1213/ane.0000000000001489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Woll KA, Murlidaran S, Pinch BJ, Hénin J, Wang X, Salari R, Covarrubias M, Dailey WP, Brannigan G, Garcia BA, Eckenhoff RG. A Novel Bifunctional Alkylphenol Anesthetic Allows Characterization of γ-Aminobutyric Acid, Type A (GABAA), Receptor Subunit Binding Selectivity in Synaptosomes. J Biol Chem 2016; 291:20473-86. [PMID: 27462076 PMCID: PMC5034043 DOI: 10.1074/jbc.m116.736975] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/25/2016] [Indexed: 12/19/2022] Open
Abstract
Propofol, an intravenous anesthetic, is a positive modulator of the GABAA receptor, but the mechanistic details, including the relevant binding sites and alternative targets, remain disputed. Here we undertook an in-depth study of alkylphenol-based anesthetic binding to synaptic membranes. We designed, synthesized, and characterized a chemically active alkylphenol anesthetic (2-((prop-2-yn-1-yloxy)methyl)-5-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenol, AziPm-click (1)), for affinity-based protein profiling (ABPP) of propofol-binding proteins in their native state within mouse synaptosomes. The ABPP strategy captured ∼4% of the synaptosomal proteome, including the unbiased capture of five α or β GABAA receptor subunits. Lack of γ2 subunit capture was not due to low abundance. Consistent with this, independent molecular dynamics simulations with alchemical free energy perturbation calculations predicted selective propofol binding to interfacial sites, with higher affinities for α/β than γ-containing interfaces. The simulations indicated hydrogen bonding is a key component leading to propofol-selective binding within GABAA receptor subunit interfaces, with stable hydrogen bonds observed between propofol and α/β cavity residues but not γ cavity residues. We confirmed this by introducing a hydrogen bond-null propofol analogue as a protecting ligand for targeted-ABPP and observed a lack of GABAA receptor subunit protection. This investigation demonstrates striking interfacial GABAA receptor subunit selectivity in the native milieu, suggesting that asymmetric occupancy of heteropentameric ion channels by alkylphenol-based anesthetics is sufficient to induce modulation of activity.
Collapse
Affiliation(s)
- Kellie A Woll
- From the Departments of Anesthesiology and Critical Care and Pharmacology and
| | | | - Benika J Pinch
- the Department of Chemistry, University of Pennsylvania School of Arts and Sciences, Philadelphia, Pennsylvania 19104
| | - Jérôme Hénin
- the Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, CNRS UMR 8251 and Université Paris Diderot, 5013 Paris, France, and
| | - Xiaoshi Wang
- the Epigenetics Program, Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Reza Salari
- the Center for Computational and Integrative Biology and Department of Physics, Rutgers University, Camden, New Jersey 08102
| | - Manuel Covarrubias
- the Department of Neuroscience and Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - William P Dailey
- the Department of Chemistry, University of Pennsylvania School of Arts and Sciences, Philadelphia, Pennsylvania 19104
| | - Grace Brannigan
- the Center for Computational and Integrative Biology and Department of Physics, Rutgers University, Camden, New Jersey 08102
| | - Benjamin A Garcia
- the Epigenetics Program, Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
38
|
Shteamer JW, Dedhia RC. Sedative choice in drug-induced sleep endoscopy: A neuropharmacology-based review. Laryngoscope 2016; 127:273-279. [DOI: 10.1002/lary.26132] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Jack W. Shteamer
- Department of Otolaryngology; Emory University School of Medicine; Atlanta Georgia U.S.A
| | - Raj C. Dedhia
- Department of Otolaryngology; Emory University School of Medicine; Atlanta Georgia U.S.A
- Emory Sleep Center; Emory University School of Medicine; Atlanta Georgia U.S.A
| |
Collapse
|
39
|
23rd Annual Meeting of Chinese Society of Anesthesiology. Br J Anaesth 2016. [DOI: 10.1093/bja/aev308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Ketamine and propofol have opposite effects on postanesthetic sleep architecture in rats: relevance to the endogenous sleep-wakefulness substances orexin and melanin-concentrating hormone. J Anesth 2016; 30:437-43. [PMID: 26984688 DOI: 10.1007/s00540-016-2161-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 03/08/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Anesthesia and surgery disturb sleep. Disturbed sleep adversely affects postoperative complications involving the cardiovascular system, diabetes, and infection. General anesthetics share neuronal mechanisms involving endogenous sleep-wakefulness-related substances, such as orexin (OX) and melanin-concentrating hormone (MCH). We evaluated changes in sleep architecture and the concentration of OX and MCH during the peri-anesthetic period. METHODS To examine sleep architecture, male Sprague-Dawley rats weighing 350-450 g received ketamine 100 mg/kg (n = 9) or propofol 80 mg/kg (n = 6) by intraperitoneal injection. Electroencephalography was recorded from 2 days pre- to 5 days postanesthesia. To quantify levels of OX and MCH, 144 similar rats received the same doses of ketamine (n = 80) or propofol (n = 64). Brain concentrations of these substances were determined at 0, 20, 60, and 120 min after anesthetic administration. RESULTS Ketamine decreased OX content in the hypothalamus during the anesthesia period. OX content was restored to pre-anesthesia levels in the hypothalamus and pons. Both anesthetics increased brain MCH content in the postanesthetic period, with the degree of increase being greater with propofol. Ketamine enhanced wakefulness and inhibited non-rapid eye movement sleep (NREMS) immediately after anesthesia. Conversely, propofol inhibited wakefulness and enhanced NREMS in that period. Ketamine inhibited wakefulness and enhanced NREMS during the dark phase on the first postanesthesia day. CONCLUSIONS Anesthetics affect various endogenous sleep-wakefulness-related substances; however, the modulation pattern may depend on the type of anesthetic. The process of postanesthetic sleep disturbance was agent specific. Our results provide fundamental evidence to treat anesthetic-related sleep disturbance.
Collapse
|
41
|
Zhou X, Wang Y, Zhang C, Wang M, Zhang M, Yu L, Yan M. The Role of Dopaminergic VTA Neurons in General Anesthesia. PLoS One 2015; 10:e0138187. [PMID: 26398236 PMCID: PMC4580504 DOI: 10.1371/journal.pone.0138187] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/27/2015] [Indexed: 01/18/2023] Open
Abstract
Recent studies have demonstrated that the central dopaminergic system is implicated in the mechanism underlying general anesthesia. Here, we investigated whether dopaminergic ventral tegmental area (VTA) neurons participate in general anesthesia. Dopaminergic VTA neurons were selectively ablated from male Sprague Dawley rats via the bilateral infusion of 6-hydroxydopamine (6-OHDA) into the VTA. Two weeks after infusion, the number of dopaminergic neurons in the bilateral VTA was markedly reduced in the 6-OHDA-treated rats compared with the vehicle-treated rats. These bilateral VTA lesions significantly prolonged the recovery time for propofol but did not significantly alter its onset time or 50% effective dose (ED50) value. In addition, the anesthetic responses to isoflurane and ketamine were unaffected by the VTA lesions. Our findings suggested that dopaminergic VTA neurons might be involved in the emergence from propofol anesthesia.
Collapse
Affiliation(s)
- Xuelong Zhou
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yin Wang
- Department of Anesthesiology, The Tai Zhou People’s Hospital, Taizhou, 225300, China
| | - Chenjing Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Min Wang
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, 221000, China
| | - Mei Zhang
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, 221000, China
| | - LiNa Yu
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- * E-mail:
| |
Collapse
|
42
|
Dextroamphetamine (but Not Atomoxetine) Induces Reanimation from General Anesthesia: Implications for the Roles of Dopamine and Norepinephrine in Active Emergence. PLoS One 2015; 10:e0131914. [PMID: 26148114 PMCID: PMC4492624 DOI: 10.1371/journal.pone.0131914] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/08/2015] [Indexed: 11/23/2022] Open
Abstract
Methylphenidate induces reanimation (active emergence) from general anesthesia in rodents, and recent evidence suggests that dopaminergic neurotransmission is important in producing this effect. Dextroamphetamine causes the direct release of dopamine and norepinephrine, whereas atomoxetine is a selective reuptake inhibitor for norepinephrine. Like methylphenidate, both drugs are prescribed to treat Attention Deficit Hyperactivity Disorder. In this study, we tested the efficacy of dextroamphetamine and atomoxetine for inducing reanimation from general anesthesia in rats. Emergence from general anesthesia was defined by return of righting. During continuous sevoflurane anesthesia, dextroamphetamine dose-dependently induced behavioral arousal and restored righting, but atomoxetine did not (n = 6 each). When the D1 dopamine receptor antagonist SCH-23390 was administered prior to dextroamphetamine under the same conditions, righting was not restored (n = 6). After a single dose of propofol (8 mg/kg IV), the mean emergence times for rats that received normal saline (vehicle) and dextroamphetamine (1 mg/kg IV) were 641 sec and 404 sec, respectively (n = 8 each). The difference was statistically significant. Although atomoxetine reduced mean emergence time to 566 sec (n = 8), this decrease was not statistically significant. Spectral analysis of electroencephalogram recordings revealed that dextroamphetamine and atomoxetine both induced a shift in peak power from δ (0.1–4 Hz) to θ (4–8 Hz) during continuous sevoflurane general anesthesia, which was not observed when animals were pre-treated with SCH-23390. In summary, dextroamphetamine induces reanimation from general anesthesia in rodents, but atomoxetine does not induce an arousal response under the same experimental conditions. This supports the hypothesis that dopaminergic stimulation during general anesthesia produces a robust behavioral arousal response. In contrast, selective noradrenergic stimulation causes significant neurophysiological changes, but does not promote behavioral arousal during general anesthesia. We hypothesize that dextroamphetamine is more likely than atomoxetine to be clinically useful for restoring consciousness in anesthetized patients, mainly due to its stimulation of dopaminergic neurotransmission.
Collapse
|
43
|
The 9th International Symposium on Memory and Awareness in Anesthesia (MAA9). Br J Anaesth 2015. [DOI: 10.1093/bja/aev204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Liu Z, Liu Y, Zhao B, Du L, Xia Z, Chen X, Luo T. The gap junction blocker carbenoxolone enhances propofol and sevoflurane-induced loss of consciousness. Neural Regen Res 2015; 7:492-5. [PMID: 25745433 PMCID: PMC4348993 DOI: 10.3969/j.issn.1673-5374.2012.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 02/02/2012] [Indexed: 11/18/2022] Open
Abstract
General anesthetics induce loss of consciousness by inhibiting ascending arousal pathways, and they interfere with gap junction electrical coupling. The present study aimed to determine whether inhibition of gap junction-mediated signaling could influence general anesthetic-induced loss of consciousness. The general anesthetics sevoflurane and propofol were used. Intracerebroventricular administration of carbenoxolone, a gap junction blocker, significantly decreased the time to loss of the righting reflex (P < 0.05), but prolonged the time to recovery of the reflex (P < 0.05). Moreover, intracerebroventricular administration of carbenoxolone increased the sensitivity to sevoflurane, with a leftward shift of the loss of righting reflex dose-response curve, and decreased the 50% effective concentration of sevoflurane. These results suggest that the gap junction blocker carbenoxolone enhances propofol and sevoflurane-mediated general anesthesia.
Collapse
Affiliation(s)
- Zhigang Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yongfang Liu
- Department of Anesthesiology, Wuhan First Hospital, Wuhan 430022, Hubei Province, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Li Du
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Xiangdong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Tao Luo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
45
|
Zhang Z, Ferretti V, Güntan İ, Moro A, Steinberg EA, Ye Z, Zecharia AY, Yu X, Vyssotski AL, Brickley SG, Yustos R, Pillidge ZE, Harding EC, Wisden W, Franks NP. Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists. Nat Neurosci 2015; 18:553-561. [PMID: 25706476 PMCID: PMC4836567 DOI: 10.1038/nn.3957] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/21/2015] [Indexed: 12/31/2022]
Abstract
Do sedatives engage natural sleep pathways? It is usually assumed that anesthetic-induced sedation and loss-of-righting-reflex (LORR) arise by influencing the same circuitry to lesser or greater extents. For the α2 adrenergic receptor agonist dexmedetomidine, we find that sedation and LORR are in fact distinct states, requiring different brain areas, the preoptic hypothalamic area and locus coeruleus (LC) respectively. Selective knockdown of α2A adrenergic receptors from the LC abolished dexmedetomidine-induced LORR, but not sedation. Instead, we found that dexmedetomidine-induced sedation resembles the deep recovery sleep that follows sleep deprivation. We used TetTag-pharmacogenetics in mice to functionally mark neurons activated in the preoptic hypothalamus during dexmedetomidine-induced sedation or recovery sleep. The neuronal ensembles could then be selectively reactivated. In both cases NREM sleep, with the accompanying drop in body temperature, was recapitulated. Thus α2 adrenergic receptor-induced sedation and recovery sleep share hypothalamic circuitry sufficient for producing these behavioral states.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Life Sciences Imperial College London, South Kensington, SW7 2AZ, U.K
| | - Valentina Ferretti
- Department of Life Sciences Imperial College London, South Kensington, SW7 2AZ, U.K
| | - İlke Güntan
- Department of Life Sciences Imperial College London, South Kensington, SW7 2AZ, U.K
| | - Alessandro Moro
- Department of Life Sciences Imperial College London, South Kensington, SW7 2AZ, U.K
| | - Eleonora A Steinberg
- Department of Life Sciences Imperial College London, South Kensington, SW7 2AZ, U.K
| | - Zhiwen Ye
- Department of Life Sciences Imperial College London, South Kensington, SW7 2AZ, U.K
| | - Anna Y Zecharia
- Department of Life Sciences Imperial College London, South Kensington, SW7 2AZ, U.K
| | - Xiao Yu
- Department of Life Sciences Imperial College London, South Kensington, SW7 2AZ, U.K
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich/ETH Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Stephen G Brickley
- Department of Life Sciences Imperial College London, South Kensington, SW7 2AZ, U.K
| | - Raquel Yustos
- Department of Life Sciences Imperial College London, South Kensington, SW7 2AZ, U.K
| | - Zoe E Pillidge
- Department of Life Sciences Imperial College London, South Kensington, SW7 2AZ, U.K
| | - Edward C Harding
- Department of Life Sciences Imperial College London, South Kensington, SW7 2AZ, U.K
| | - William Wisden
- Department of Life Sciences Imperial College London, South Kensington, SW7 2AZ, U.K
| | - Nicholas P Franks
- Department of Life Sciences Imperial College London, South Kensington, SW7 2AZ, U.K
| |
Collapse
|
46
|
Chander D, García PS, MacColl JN, Illing S, Sleigh JW. Electroencephalographic variation during end maintenance and emergence from surgical anesthesia. PLoS One 2014; 9:e106291. [PMID: 25264892 PMCID: PMC4180055 DOI: 10.1371/journal.pone.0106291] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 07/29/2014] [Indexed: 12/16/2022] Open
Abstract
The re-establishment of conscious awareness after discontinuing general anesthesia has often been assumed to be the inverse of loss of consciousness. This is despite the obvious asymmetry in the initiation and termination of natural sleep. In order to characterize the restoration of consciousness after surgery, we recorded frontal electroencephalograph (EEG) from 100 patients in the operating room during maintenance and emergence from general anesthesia. We have defined, for the first time, 4 steady-state patterns of anesthetic maintenance based on the relative EEG power in the slow-wave (<14 Hz) frequency bands that dominate sleep and anesthesia. Unlike single-drug experiments performed in healthy volunteers, we found that surgical patients exhibited greater electroencephalographic heterogeneity while re-establishing conscious awareness after drug discontinuation. Moreover, these emergence patterns could be broadly grouped according to the duration and rapidity of transitions amongst these slow-wave dominated brain states that precede awakening. Most patients progressed gradually from a pattern characterized by strong peaks of delta (0.5-4 Hz) and alpha/spindle (8-14 Hz) power ('Slow-Wave Anesthesia') to a state marked by low delta-spindle power ('Non Slow-Wave Anesthesia') before awakening. However, 31% of patients transitioned abruptly from Slow-Wave Anesthesia to waking; they were also more likely to express pain in the post-operative period. Our results, based on sleep-staging classification, provide the first systematized nomenclature for tracking brain states under general anesthesia from maintenance to emergence, and suggest that these transitions may correlate with post-operative outcomes such as pain.
Collapse
Affiliation(s)
- Divya Chander
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Paul S. García
- Department of Anesthesiology, Atlanta VA Medical Center/Emory University, Atlanta, Georgia, United States of America
| | - Jono N. MacColl
- Department of Anaesthesia, Waikato Clinical School, University of Auckland, Hamilton, New Zealand
| | - Sam Illing
- Department of Anaesthesia, Waikato Clinical School, University of Auckland, Hamilton, New Zealand
| | - Jamie W. Sleigh
- Department of Anaesthesia, Waikato Clinical School, University of Auckland, Hamilton, New Zealand
| |
Collapse
|
47
|
Leung LS, Luo T, Ma J, Herrick I. Brain areas that influence general anesthesia. Prog Neurobiol 2014; 122:24-44. [PMID: 25172271 DOI: 10.1016/j.pneurobio.2014.08.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/03/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
This document reviews the literature on local brain manipulation of general anesthesia in animals, focusing on behavioral and electrographic effects related to hypnosis or loss of consciousness. Local inactivation or lesion of wake-active areas, such as locus coeruleus, dorsal raphe, pedunculopontine tegmental nucleus, perifornical area, tuberomammillary nucleus, ventral tegmental area and basal forebrain, enhanced general anesthesia. Anesthesia enhancement was shown as a delayed emergence (recovery of righting reflex) from anesthesia or a decrease in the minimal alveolar concentration that induced loss of righting. Local activation of various wake-active areas, including pontis oralis and centromedial thalamus, promoted behavioral or electrographic arousal during maintained anesthesia and facilitated emergence. Lesion of the sleep-active ventrolateral preoptic area resulted in increased wakefulness and decreased isoflurane sensitivity, but only for 6 days after lesion. Inactivation of any structure within limbic circuits involving the medial septum, hippocampus, nucleus accumbens, ventral pallidum, and ventral tegmental area, amygdala, entorhinal and piriform cortex delayed emergence from anesthesia, and often reduced anesthetic-induced behavioral excitation. In summary, the concept that anesthesia works on the sleep-wake system has received strong support from studies that inactivated/lesioned or activated wake-active areas, and weak support from studies that lesioned sleep-active areas. In addition to the conventional wake-sleep areas, limbic structures such as the medial septum, hippocampus and prefrontal cortex are also involved in the behavioral response to general anesthesia. We suggest that hypnosis during general anesthesia may result from disrupting the wake-active neuronal activities in multiple areas and suppressing an atropine-resistant cortical activation associated with movements.
Collapse
Affiliation(s)
- L Stan Leung
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada N6A 5C1.
| | - Tao Luo
- Department of Anesthesiology, Peking University, Shenzhen Hospital, China
| | - Jingyi Ma
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Ian Herrick
- Department of Anaesthesiology and Perioperative Medicine, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
48
|
Kinkead R, Tenorio L, Drolet G, Bretzner F, Gargaglioni L. Respiratory manifestations of panic disorder in animals and humans: a unique opportunity to understand how supramedullary structures regulate breathing. Respir Physiol Neurobiol 2014; 204:3-13. [PMID: 25038523 DOI: 10.1016/j.resp.2014.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/03/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
Abstract
The control of breathing is commonly viewed as being a "brainstem affair". As the topic of this special issue of Respiratory Physiology and Neurobiology indicates, we should consider broadening this notion since the act of breathing is also tightly linked to many functions other than close regulation of arterial blood gases. Accordingly, "non-brainstem" structures can exert a powerful influence on the core elements of the respiratory control network and as it is often the case, the importance of these structures is revealed when their dysfunction leads to disease. There is a clear link between respiration and anxiety and key theories of the psychopathology of anxiety (including panic disorders; PD) focus on respiratory control and related CO2 monitoring system. With that in mind, we briefly present the respiratory manifestations of panic disorder and discuss the role of the dorso-medial/perifornical hypothalamus, the amygdalar complex, and the periaqueductal gray in respiratory control. We then present recent advances in basic research indicating how adult rodent previously subjected to neonatal stress may provide a very good model to investigate the pathophysiology of PD.
Collapse
Affiliation(s)
- Richard Kinkead
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Canada; Université Laval, Québec, QC, Canada.
| | - Luana Tenorio
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP FCAV at Jaboticabal, SP, Brazil
| | - Guy Drolet
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Canada; Université Laval, Québec, QC, Canada
| | - Frédéric Bretzner
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Canada; Université Laval, Québec, QC, Canada
| | | |
Collapse
|
49
|
Optogenetic-mediated release of histamine reveals distal and autoregulatory mechanisms for controlling arousal. J Neurosci 2014; 34:6023-9. [PMID: 24760861 DOI: 10.1523/jneurosci.4838-13.2014] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Histaminergic neurons in the tuberomammillary nucleus (TMN) are an important component of the ascending arousal system and may form part of a "flip-flop switch" hypothesized to regulate sleep and wakefulness. Anatomical studies have shown that the wake-active TMN and sleep-active ventrolateral preoptic nucleus (VLPO) are reciprocally connected, suggesting that each region can inhibit its counterpart when active. In this study, we determined how histamine affects the two branches of this circuit. We selectively expressed channelrhodopsin-2 (ChR2) in TMN neurons and used patch-clamp recordings in mouse brain slices to examine the effects of photo-evoked histamine release in the ventrolateral TMN and VLPO. Photostimulation decreased inhibitory GABAergic inputs to the ventrolateral TMN neurons but produced a membrane hyperpolarization and increased inhibitory synaptic input to the VLPO neurons. We found that in VLPO the response to histamine was indirect, most likely via a GABAergic interneuron. Our experiments demonstrate that release of histamine from TMN neurons can disinhibit the TMN and suppresses the activity of sleep-active VLPO neurons to promote TMN neuronal firing. This further supports the sleep-wake "flip-flop switch" hypothesis and a role for histamine in stabilizing the switch to favor wake states.
Collapse
|
50
|
Sanders R, Absalom A, Sleigh J. V. ‘For now we see through a glass, darkly’: the anaesthesia syndrome. Br J Anaesth 2014; 112:790-3. [DOI: 10.1093/bja/aeu009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|