1
|
Chen C, Niehaus JK, Dinc F, Huang KL, Barnette AL, Tassou A, Shuster SA, Wang L, Lemire A, Menon V, Ritola K, Hantman AW, Zeng H, Schnitzer MJ, Scherrer G. Neural circuit basis of placebo pain relief. Nature 2024; 632:1092-1100. [PMID: 39048016 PMCID: PMC11358037 DOI: 10.1038/s41586-024-07816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
Placebo effects are notable demonstrations of mind-body interactions1,2. During pain perception, in the absence of any treatment, an expectation of pain relief can reduce the experience of pain-a phenomenon known as placebo analgesia3-6. However, despite the strength of placebo effects and their impact on everyday human experience and the failure of clinical trials for new therapeutics7, the neural circuit basis of placebo effects has remained unclear. Here we show that analgesia from the expectation of pain relief is mediated by rostral anterior cingulate cortex (rACC) neurons that project to the pontine nucleus (rACC→Pn)-a precerebellar nucleus with no established function in pain. We created a behavioural assay that generates placebo-like anticipatory pain relief in mice. In vivo calcium imaging of neural activity and electrophysiological recordings in brain slices showed that expectations of pain relief boost the activity of rACC→Pn neurons and potentiate neurotransmission in this pathway. Transcriptomic studies of Pn neurons revealed an abundance of opioid receptors, further suggesting a role in pain modulation. Inhibition of the rACC→Pn pathway disrupted placebo analgesia and decreased pain thresholds, whereas activation elicited analgesia in the absence of placebo conditioning. Finally, Purkinje cells exhibited activity patterns resembling those of rACC→Pn neurons during pain-relief expectation, providing cellular-level evidence for a role of the cerebellum in cognitive pain modulation. These findings open the possibility of targeting this prefrontal cortico-ponto-cerebellar pathway with drugs or neurostimulation to treat pain.
Collapse
Affiliation(s)
- Chong Chen
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse K Niehaus
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fatih Dinc
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- CNC Program, Stanford University, Stanford, CA, USA
| | - Karen L Huang
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander L Barnette
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S Andrew Shuster
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Lihua Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Andrew Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Vilas Menon
- Department of Neurology, Columbia University, New York, NY, USA
| | - Kimberly Ritola
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam W Hantman
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Mark J Schnitzer
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- CNC Program, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- James H. Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Yan Y, Murphy TH. Decoding state-dependent cortical-cerebellar cellular functional connectivity in the mouse brain. Cell Rep 2024; 43:114348. [PMID: 38865245 DOI: 10.1016/j.celrep.2024.114348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/16/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024] Open
Abstract
The cortex and cerebellum form multi-synaptic reciprocal connections. We investigate the functional connectivity between single spiking cerebellar neurons and the population activity of the mouse dorsal cortex using mesoscale imaging. Cortical representations of individual cerebellar neurons vary significantly across different brain states but are drawn from a common set of cortical networks. These cortical-cerebellar connectivity features are observed in mossy fibers and Purkinje cells as well as neurons in different cerebellar lobules, albeit with variations across cell types and regions. Complex spikes of Purkinje cells preferably associate with the sensorimotor cortex, whereas simple spikes display more diverse cortical connectivity patterns. The spontaneous functional connectivity patterns align with cerebellar neurons' functional responses to external stimuli in a modality-specific manner. The tuning properties of subsets of cerebellar neurons differ between anesthesia and awake states, mirrored by state-dependent changes in their long-range functional connectivity patterns with mesoscale cortical activity.
Collapse
Affiliation(s)
- Yuhao Yan
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Timothy H Murphy
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Zobeiri OA, Cullen KE. Cerebellar Purkinje cells in male macaques combine sensory and motor information to predict the sensory consequences of active self-motion. Nat Commun 2024; 15:4003. [PMID: 38734715 PMCID: PMC11088633 DOI: 10.1038/s41467-024-48376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Accurate perception and behavior rely on distinguishing sensory signals arising from unexpected events from those originating from our own voluntary actions. In the vestibular system, sensory input that is the consequence of active self-motion is canceled early at the first central stage of processing to ensure postural and perceptual stability. However, the source of the required cancellation signal was unknown. Here, we show that the cerebellum combines sensory and motor-related information to predict the sensory consequences of active self-motion. Recordings during attempted but unrealized head movements in two male rhesus monkeys, revealed that the motor-related signals encoded by anterior vermis Purkinje cells explain their altered sensitivity to active versus passive self-motion. Further, a model combining responses from ~40 Purkinje cells accounted for the cancellation observed in early vestibular pathways. These findings establish how cerebellar Purkinje cells predict sensory outcomes of self-movements, resolving a long-standing issue of sensory signal suppression during self-motion.
Collapse
Affiliation(s)
- Omid A Zobeiri
- Department of Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Tchuisseuh MR, Chamgoué AC, Kakmeni FMM. Effect of the electromagnetic induction in the electrical activity of the Kazantsev model of inferior Olive Neuron model. Biosystems 2024; 236:105114. [PMID: 38176519 DOI: 10.1016/j.biosystems.2023.105114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/01/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
In this paper, based on the four variables Kazantsev et al. inferior olive neuron (ION) dynamic equations, a five variables neuron model is designed to describe the effect of electromagnetic induction in ION activities. Within the new ION model, the effect of magnetic flow on membrane potential is described by imposing additive memristive current in the master block of the Kasantsev et al. neuron model. The impact of magnetic flux on the stability of equilibrium point is studied. Hopf bifurcation and bifurcation diagram indicated that, as the electromagnetic field strength parameter changes, the value of the critical point also changes. Furthermore, as the electromagnetic induction is increasing, there is appearance of bursting dynamic in the slave subsystem and an increase in the spike amplitude of the master subsystem. In addition, the analog circuit of the master block confirms the observed results from numerical simulation.
Collapse
Affiliation(s)
- M R Tchuisseuh
- Laboratory of Research on Advanced Materials and Nonlinear Science(LaRAMaNS), Department of Physics, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - A C Chamgoué
- School of Geology and Mining Engineering, University of Ngaoundere, P.O. Box 115, Meiganga, Cameroon
| | - F M Moukam Kakmeni
- Laboratory of Research on Advanced Materials and Nonlinear Science(LaRAMaNS), Department of Physics, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| |
Collapse
|
5
|
Zhai P, Romano V, Soggia G, Bauer S, van Wingerden N, Jacobs T, van der Horst A, White JJ, Mazza R, De Zeeuw CI. Whisker kinematics in the cerebellum. J Physiol 2024; 602:153-181. [PMID: 37987552 DOI: 10.1113/jp284064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
The whisker system is widely used as a model system for understanding sensorimotor integration. Purkinje cells in the crus regions of the cerebellum have been reported to linearly encode whisker midpoint, but it is unknown whether the paramedian and simplex lobules as well as their target neurons in the cerebellar nuclei also encode whisker kinematics and if so which ones. Elucidating how these kinematics are represented throughout the cerebellar hemisphere is essential for understanding how the cerebellum coordinates multiple sensorimotor modalities. Exploring the cerebellar hemisphere of mice using optogenetic stimulation, we found that whisker movements can be elicited by stimulation of Purkinje cells in not only crus1 and crus2, but also in the paramedian lobule and lobule simplex; activation of cells in the medial paramedian lobule had on average the shortest latency, whereas that of cells in lobule simplex elicited similar kinematics as those in crus1 and crus2. During spontaneous whisking behaviour, simple spike activity correlated in general better with velocity than position of the whiskers, but it varied between protraction and retraction as well as per lobule. The cerebellar nuclei neurons targeted by the Purkinje cells showed similar activity patterns characterized by a wide variety of kinematic signals, yet with a dominance for velocity. Taken together, our data indicate that whisker movements are much more prominently and diversely represented in the cerebellar cortex and nuclei than assumed, highlighting the rich repertoire of cerebellar control in the kinematics of movements that can be engaged during coordination. KEY POINTS: Excitation of Purkinje cells throughout the cerebellar hemispheres induces whisker movement, with the shortest latency and longest duration within the paramedian lobe. Purkinje cells have differential encoding for the fast and slow components of whisking. Purkinje cells encode not only the position but also the velocity of whiskers. Purkinje cells with high sensitivity for whisker velocity are preferentially located in the medial part of lobule simplex, crus1 and lateral paramedian. In the downstream cerebellar nuclei, neurons with high sensitivity for whisker velocity are located at the intersection between the medial and interposed nucleus.
Collapse
Affiliation(s)
- Peipei Zhai
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Vincenzo Romano
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Giulia Soggia
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Staf Bauer
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Thomas Jacobs
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Joshua J White
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Roberta Mazza
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Sciences, Amsterdam, Netherlands
| |
Collapse
|
6
|
Hoang H, Tsutsumi S, Matsuzaki M, Kano M, Kawato M, Kitamura K, Toyama K. Dynamic organization of cerebellar climbing fiber response and synchrony in multiple functional components reduces dimensions for reinforcement learning. eLife 2023; 12:e86340. [PMID: 37712651 PMCID: PMC10531405 DOI: 10.7554/elife.86340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023] Open
Abstract
Cerebellar climbing fibers convey diverse signals, but how they are organized in the compartmental structure of the cerebellar cortex during learning remains largely unclear. We analyzed a large amount of coordinate-localized two-photon imaging data from cerebellar Crus II in mice undergoing 'Go/No-go' reinforcement learning. Tensor component analysis revealed that a majority of climbing fiber inputs to Purkinje cells were reduced to only four functional components, corresponding to accurate timing control of motor initiation related to a Go cue, cognitive error-based learning, reward processing, and inhibition of erroneous behaviors after a No-go cue. Changes in neural activities during learning of the first two components were correlated with corresponding changes in timing control and error learning across animals, indirectly suggesting causal relationships. Spatial distribution of these components coincided well with boundaries of Aldolase-C/zebrin II expression in Purkinje cells, whereas several components are mixed in single neurons. Synchronization within individual components was bidirectionally regulated according to specific task contexts and learning stages. These findings suggest that, in close collaborations with other brain regions including the inferior olive nucleus, the cerebellum, based on anatomical compartments, reduces dimensions of the learning space by dynamically organizing multiple functional components, a feature that may inspire new-generation AI designs.
Collapse
Affiliation(s)
- Huu Hoang
- ATR Neural Information Analysis LaboratoriesKyotoJapan
| | | | | | - Masanobu Kano
- Department of Neurophysiology, The University of TokyoTokyoJapan
- International Research Center for Neurointelligence (WPI-IRCN), The University of TokyoTokyoJapan
| | - Mitsuo Kawato
- ATR Brain Information Communication Research Laboratory GroupKyotoJapan
| | - Kazuo Kitamura
- Department of Neurophysiology, University of YamanashiKofuJapan
| | | |
Collapse
|
7
|
Ikezoe K, Hidaka N, Manita S, Murakami M, Tsutsumi S, Isomura Y, Kano M, Kitamura K. Cerebellar climbing fibers multiplex movement and reward signals during a voluntary movement task in mice. Commun Biol 2023; 6:924. [PMID: 37689776 PMCID: PMC10492837 DOI: 10.1038/s42003-023-05309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
Cerebellar climbing fibers convey sensorimotor information and their errors, which are used for motor control and learning. Furthermore, they represent reward-related information. Despite such functional diversity of climbing fiber signals, it is still unclear whether each climbing fiber conveys the information of single or multiple modalities and how the climbing fibers conveying different information are distributed over the cerebellar cortex. Here we perform two-photon calcium imaging from cerebellar Purkinje cells in mice engaged in a voluntary forelimb lever-pull task and demonstrate that climbing fiber responses in 68% of Purkinje cells can be explained by the combination of multiple behavioral variables such as lever movement, licking, and reward delivery. Neighboring Purkinje cells exhibit similar climbing fiber response properties, form functional clusters, and share noise fluctuations of responses. Taken together, individual climbing fibers convey behavioral information on multiplex variables and are spatially organized into the functional modules of the cerebellar cortex.
Collapse
Affiliation(s)
- Koji Ikezoe
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan.
| | - Naoki Hidaka
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Satoshi Manita
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Masayoshi Murakami
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Shinichiro Tsutsumi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Yoshikazu Isomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Kazuo Kitamura
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan.
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
8
|
Time and tide of cerebellar synchrony. Proc Natl Acad Sci U S A 2022; 119:e2204155119. [PMID: 35452313 PMCID: PMC9170046 DOI: 10.1073/pnas.2204155119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Lang EJ, Handforth A. Is the inferior olive central to essential tremor? Yes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:133-165. [PMID: 35750361 PMCID: PMC11956747 DOI: 10.1016/bs.irn.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We consider the question whether the inferior olive (IO) is required for essential tremor (ET). Much evidence shows that the olivocerebellar system is the main system capable of generating the widespread synchronous oscillatory Purkinje cell (PC) complex spike (CS) activity across the cerebellar cortex that would be capable of generating the type of bursting cerebellar output from the deep cerebellar nuclei (DCN) that could underlie tremor. Normally, synchronous CS activity primarily reflects the effective electrical coupling of IO neurons by gap junctions, and traditionally, ET research has focused on the hypothesis of increased coupling of IO neurons as the cause of hypersynchronous CS activity underlying tremor. However, recent pathology studies of brains from humans with ET and evidence from mutant mice, particularly the hotfoot17 mouse, that largely replicate the pathology of ET, suggest that the abnormal innervation of multiple Purkinje cells (PCs) by climbing fibers (Cfs) is related to tremor. In addition, ET brains show partial PC loss and axon terminal sprouting by surviving PCs. This may provide another mechanism for tremor. It is proposed that in ET, these three mechanisms may promote tremor. They all involve hypersynchronous DCN activity and an intact IO, but the level at which excessive synchronization occurs may be at the IO level (from abnormal afferent activity to this nucleus), the PC level (via aberrant Cfs), or the DCN level (via terminal PC collateral innervation).
Collapse
Affiliation(s)
- Eric J Lang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY, United States.
| | - Adrian Handforth
- Neurology Service (W127), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
10
|
Romano V, Zhai P, van der Horst A, Mazza R, Jacobs T, Bauer S, Wang X, White JJ, De Zeeuw CI. Olivocerebellar control of movement symmetry. Curr Biol 2022; 32:654-670.e4. [PMID: 35016009 DOI: 10.1016/j.cub.2021.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/26/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023]
Abstract
Coordination of bilateral movements is essential for a large variety of animal behaviors. The olivocerebellar system is critical for the control of movement, but its role in bilateral coordination has yet to be elucidated. Here, we examined whether Purkinje cells encode and influence synchronicity of left-right whisker movements. We found that complex spike activity is correlated with a prominent left-right symmetry of spontaneous whisker movements within parts, but not all, of Crus1 and Crus2. Optogenetic stimulation of climbing fibers in the areas with high and low correlations resulted in symmetric and asymmetric whisker movements, respectively. Moreover, when simple spike frequency prior to the complex spike was higher, the complex spike-related symmetric whisker protractions were larger. This finding alludes to a role for rebound activity in the cerebellar nuclei, which indeed turned out to be enhanced during symmetric protractions. Tracer injections suggest that regions associated with symmetric whisker movements are anatomically connected to the contralateral cerebellar hemisphere. Together, these data point toward the existence of modules on both sides of the cerebellar cortex that can differentially promote or reduce the symmetry of left and right movements in a context-dependent fashion.
Collapse
Affiliation(s)
- Vincenzo Romano
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
| | - Peipei Zhai
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Roberta Mazza
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Thomas Jacobs
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Staf Bauer
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Joshua J White
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - C I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Bina L, Romano V, Hoogland TM, Bosman LWJ, De Zeeuw CI. Purkinje cells translate subjective salience into readiness to act and choice performance. Cell Rep 2021; 37:110116. [PMID: 34910904 DOI: 10.1016/j.celrep.2021.110116] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/06/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022] Open
Abstract
The brain selectively allocates attention from a continuous stream of sensory input. This process is typically attributed to computations in distinct regions of the forebrain and midbrain. Here, we explore whether cerebellar Purkinje cells encode information about the selection of sensory inputs and could thereby contribute to non-motor forms of learning. We show that complex spikes of individual Purkinje cells change the sensory modality they encode to reflect changes in the perceived salience of sensory input. Comparisons with mouse models deficient in cerebellar plasticity suggest that changes in complex spike activity instruct potentiation of Purkinje cells simple spike firing, which is required for efficient learning. Our findings suggest that during learning, climbing fibers do not directly guide motor output, but rather contribute to a general readiness to act via changes in simple spike activity, thereby bridging the sequence from non-motor to motor functions.
Collapse
Affiliation(s)
- Lorenzo Bina
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 CA, the Netherlands
| | - Vincenzo Romano
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 CA, the Netherlands
| | - Tycho M Hoogland
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 CA, the Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam 1105 BA, the Netherlands
| | - Laurens W J Bosman
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 CA, the Netherlands.
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 CA, the Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam 1105 BA, the Netherlands.
| |
Collapse
|
12
|
Beekhof GC, Gornati SV, Canto CB, Libster AM, Schonewille M, De Zeeuw CI, Hoebeek FE. Activity of Cerebellar Nuclei Neurons Correlates with ZebrinII Identity of Their Purkinje Cell Afferents. Cells 2021; 10:2686. [PMID: 34685666 PMCID: PMC8534335 DOI: 10.3390/cells10102686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Purkinje cells (PCs) in the cerebellar cortex can be divided into at least two main subpopulations: one subpopulation that prominently expresses ZebrinII (Z+), and shows a relatively low simple spike firing rate, and another that hardly expresses ZebrinII (Z-) and shows higher baseline firing rates. Likewise, the complex spike responses of PCs, which are evoked by climbing fiber inputs and thus reflect the activity of the inferior olive (IO), show the same dichotomy. However, it is not known whether the target neurons of PCs in the cerebellar nuclei (CN) maintain this bimodal distribution. Electrophysiological recordings in awake adult mice show that the rate of action potential firing of CN neurons that receive input from Z+ PCs was consistently lower than that of CN neurons innervated by Z- PCs. Similar in vivo recordings in juvenile and adolescent mice indicated that the firing frequency of CN neurons correlates to the ZebrinII identity of the PC afferents in adult, but not postnatal stages. Finally, the spontaneous action potential firing pattern of adult CN neurons recorded in vitro revealed no significant differences in intrinsic pacemaking activity between ZebrinII identities. Our findings indicate that all three main components of the olivocerebellar loop, i.e., PCs, IO neurons and CN neurons, operate at a higher rate in the Z- modules.
Collapse
Affiliation(s)
- Gerrit C. Beekhof
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands; (G.C.B.); (S.V.G.)
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
| | - Simona V. Gornati
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands; (G.C.B.); (S.V.G.)
| | - Cathrin B. Canto
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
| | - Avraham M. Libster
- Edmond & Lily Safra Center for Brain Sciences (ELSC), Department of Neurobiology, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel;
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands; (G.C.B.); (S.V.G.)
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands; (G.C.B.); (S.V.G.)
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
| | - Freek E. Hoebeek
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands; (G.C.B.); (S.V.G.)
- Department for Developmental Origins of Disease, Wilhelmina Children’s Hospital, Brain Center, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| |
Collapse
|
13
|
Wagner MJ, Savall J, Hernandez O, Mel G, Inan H, Rumyantsev O, Lecoq J, Kim TH, Li JZ, Ramakrishnan C, Deisseroth K, Luo L, Ganguli S, Schnitzer MJ. A neural circuit state change underlying skilled movements. Cell 2021; 184:3731-3747.e21. [PMID: 34214470 PMCID: PMC8844704 DOI: 10.1016/j.cell.2021.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/09/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022]
Abstract
In motor neuroscience, state changes are hypothesized to time-lock neural assemblies coordinating complex movements, but evidence for this remains slender. We tested whether a discrete change from more autonomous to coherent spiking underlies skilled movement by imaging cerebellar Purkinje neuron complex spikes in mice making targeted forelimb-reaches. As mice learned the task, millimeter-scale spatiotemporally coherent spiking emerged ipsilateral to the reaching forelimb, and consistent neural synchronization became predictive of kinematic stereotypy. Before reach onset, spiking switched from more disordered to internally time-locked concerted spiking and silence. Optogenetic manipulations of cerebellar feedback to the inferior olive bi-directionally modulated neural synchronization and reaching direction. A simple model explained the reorganization of spiking during reaching as reflecting a discrete bifurcation in olivary network dynamics. These findings argue that to prepare learned movements, olivo-cerebellar circuits enter a self-regulated, synchronized state promoting motor coordination. State changes facilitating behavioral transitions may generalize across neural systems.
Collapse
Affiliation(s)
- Mark J Wagner
- Neurosciences Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Joan Savall
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA
| | | | - Gabriel Mel
- Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Hakan Inan
- CNC Program, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Oleg Rumyantsev
- CNC Program, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Jérôme Lecoq
- CNC Program, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tony Hyun Kim
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jin Zhong Li
- CNC Program, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Charu Ramakrishnan
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Surya Ganguli
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Mark J Schnitzer
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Shadmehr R. Population coding in the cerebellum: a machine learning perspective. J Neurophysiol 2020; 124:2022-2051. [PMID: 33112717 DOI: 10.1152/jn.00449.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The cere resembles a feedforward, three-layer network of neurons in which the "hidden layer" consists of Purkinje cells (P-cells) and the output layer consists of deep cerebellar nucleus (DCN) neurons. In this analogy, the output of each DCN neuron is a prediction that is compared with the actual observation, resulting in an error signal that originates in the inferior olive. Efficient learning requires that the error signal reach the DCN neurons, as well as the P-cells that project onto them. However, this basic rule of learning is violated in the cerebellum: the olivary projections to the DCN are weak, particularly in adulthood. Instead, an extraordinarily strong signal is sent from the olive to the P-cells, producing complex spikes. Curiously, P-cells are grouped into small populations that converge onto single DCN neurons. Why are the P-cells organized in this way, and what is the membership criterion of each population? Here, I apply elementary mathematics from machine learning and consider the fact that P-cells that form a population exhibit a special property: they can synchronize their complex spikes, which in turn suppress activity of DCN neuron they project to. Thus complex spikes cannot only act as a teaching signal for a P-cell, but through complex spike synchrony, a P-cell population may act as a surrogate teacher for the DCN neuron that produced the erroneous output. It appears that grouping of P-cells into small populations that share a preference for error satisfies a critical requirement of efficient learning: providing error information to the output layer neuron (DCN) that was responsible for the error, as well as the hidden layer neurons (P-cells) that contributed to it. This population coding may account for several remarkable features of behavior during learning, including multiple timescales, protection from erasure, and spontaneous recovery of memory.
Collapse
Affiliation(s)
- Reza Shadmehr
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
15
|
Handforth A, Lang EJ. Increased Purkinje Cell Complex Spike and Deep Cerebellar Nucleus Synchrony as a Potential Basis for Syndromic Essential Tremor. A Review and Synthesis of the Literature. THE CEREBELLUM 2020; 20:266-281. [PMID: 33048308 DOI: 10.1007/s12311-020-01197-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
We review advances in understanding Purkinje cell (PC) complex spike (CS) physiology that suggest increased CS synchrony underlies syndromic essential tremor (ET). We searched PubMed for papers describing factors that affect CS synchrony or cerebellar circuits potentially related to tremor. Inferior olivary (IO) neurons are electrically coupled, with the degree of coupling controlled by excitatory and GABAergic inputs. Clusters of coupled IO neurons synchronize CSs within parasagittal bands via climbing fibers (Cfs). When motor cortex is stimulated in rats at varying frequencies, whisker movement occurs at ~10 Hz, correlated with synchronous CSs, indicating that the IO/CS oscillatory rhythm gates movement frequency. Intra-IO injection of the GABAA receptor antagonist picrotoxin increases CS synchrony, increases whisker movement amplitude, and induces tremor. Harmaline and 5-HT2a receptor activation also increase IO coupling and CS synchrony and induce tremor. The hotfoot17 mouse displays features found in ET brains, including cerebellar GluRδ2 deficiency and abnormal PC Cf innervation, with IO- and PC-dependent cerebellar oscillations and tremor likely due to enhanced CS synchrony. Heightened coupling within the IO oscillator leads, through its dynamic control of CS synchrony, to increased movement amplitude and, when sufficiently intense, action tremor. Increased CS synchrony secondary to aberrant Cf innervation of multiple PCs likely also underlies hotfoot17 tremor. Deep cerebellar nucleus (DCN) hypersynchrony may occur secondary to increased CS synchrony but might also occur from PC axonal terminal sprouting during partial PC loss. Through these combined mechanisms, increased CS/DCN synchrony may plausibly underlie syndromic ET.
Collapse
Affiliation(s)
- Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Blvd., Los Angeles, CA, 90073, USA.
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University, School of Medicine, New York, NY, USA
| |
Collapse
|
16
|
Why do we move to the beat? A multi-scale approach, from physical principles to brain dynamics. Neurosci Biobehav Rev 2020; 112:553-584. [DOI: 10.1016/j.neubiorev.2019.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/20/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023]
|
17
|
Rezaee Z, Dutta A. Lobule‐Specific Dosage Considerations for Cerebellar Transcranial Direct Current Stimulation During Healthy Aging: A Computational Modeling Study Using Age‐Specific Magnetic Resonance Imaging Templates. Neuromodulation 2020; 23:341-365. [DOI: 10.1111/ner.13098] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 12/02/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Zeynab Rezaee
- Department of Biomedical Engineering University at Buffalo Buffalo NY USA
| | - Anirban Dutta
- Department of Biomedical Engineering University at Buffalo Buffalo NY USA
| |
Collapse
|
18
|
Titley HK, Kislin M, Simmons DH, Wang SSH, Hansel C. Complex spike clusters and false-positive rejection in a cerebellar supervised learning rule. J Physiol 2019; 597:4387-4406. [PMID: 31297821 PMCID: PMC6697200 DOI: 10.1113/jp278502] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/11/2019] [Indexed: 01/21/2023] Open
Abstract
KEY POINTS Spike doublets comprise ∼10% of in vivo complex spike events under spontaneous conditions and ∼20% (up to 50%) under evoked conditions. Under near-physiological slice conditions, single complex spikes do not induce parallel fibre long-term depression. Doublet stimulation is required to induce long-term depression with an optimal parallel-fibre to first-complex-spike timing interval of 150 ms. ABSTRACT The classic example of biological supervised learning occurs at cerebellar parallel fibre (PF) to Purkinje cell synapses, comprising the most abundant synapse in the mammalian brain. Long-term depression (LTD) at these synapses is driven by climbing fibres (CFs), which fire continuously about once per second and therefore generate potential false-positive events. We show that pairs of complex spikes are required to induce LTD. In vivo, sensory stimuli evoked complex-spike doublets with intervals ≤150 ms in up to 50% of events. Using realistic [Ca2+ ]o and [Mg2+ ]o concentrations in slices, we determined that complex-spike doublets delivered 100-150 ms after PF stimulus onset were required to trigger PF-LTD, which is consistent with the requirements for eyeblink conditioning. Inter-complex spike intervals of 50-150 ms provided optimal decoding. This stimulus pattern prolonged evoked spine calcium signals and promoted CaMKII activation. Doublet activity may provide a means for CF instructive signals to stand out from background firing.
Collapse
Affiliation(s)
- Heather K Titley
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Mikhail Kislin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Dana H Simmons
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Samuel S-H Wang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
Negrello M, Warnaar P, Romano V, Owens CB, Lindeman S, Iavarone E, Spanke JK, Bosman LWJ, De Zeeuw CI. Quasiperiodic rhythms of the inferior olive. PLoS Comput Biol 2019; 15:e1006475. [PMID: 31059498 PMCID: PMC6538185 DOI: 10.1371/journal.pcbi.1006475] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 05/28/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Inferior olivary activity causes both short-term and long-term changes in cerebellar output underlying motor performance and motor learning. Many of its neurons engage in coherent subthreshold oscillations and are extensively coupled via gap junctions. Studies in reduced preparations suggest that these properties promote rhythmic, synchronized output. However, the interaction of these properties with torrential synaptic inputs in awake behaving animals is not well understood. Here we combine electrophysiological recordings in awake mice with a realistic tissue-scale computational model of the inferior olive to study the relative impact of intrinsic and extrinsic mechanisms governing its activity. Our data and model suggest that if subthreshold oscillations are present in the awake state, the period of these oscillations will be transient and variable. Accordingly, by using different temporal patterns of sensory stimulation, we found that complex spike rhythmicity was readily evoked but limited to short intervals of no more than a few hundred milliseconds and that the periodicity of this rhythmic activity was not fixed but dynamically related to the synaptic input to the inferior olive as well as to motor output. In contrast, in the long-term, the average olivary spiking activity was not affected by the strength and duration of the sensory stimulation, while the level of gap junctional coupling determined the stiffness of the rhythmic activity in the olivary network during its dynamic response to sensory modulation. Thus, interactions between intrinsic properties and extrinsic inputs can explain the variations of spiking activity of olivary neurons, providing a temporal framework for the creation of both the short-term and long-term changes in cerebellar output. Activity of the inferior olive, transmitted via climbing fibers to the cerebellum, regulates initiation and amplitude of movements, signals unexpected sensory feedback, and directs cerebellar learning. It is characterized by widespread subthreshold oscillations and synchronization promoted by strong electrotonic coupling. In brain slices, subthreshold oscillations gate which inputs can be transmitted by inferior olivary neurons and which will not—dependent on the phase of the oscillation. We tested whether the subthreshold oscillations had a measurable impact on temporal patterning of climbing fiber activity in intact, awake mice. We did so by recording neural activity of the postsynaptic Purkinje cells, in which complex spike firing faithfully represents climbing fiber activity. For short intervals (<300 ms) many Purkinje cells showed spontaneously rhythmic complex spike activity. However, our experiments designed to evoke conditional responses indicated that complex spikes are not predominantly predicated on stimulus history. Our realistic network model of the inferior olive explains the experimental observations via continuous phase modulations of the subthreshold oscillations under the influence of synaptic fluctuations. We conclude that complex spike activity emerges from a quasiperiodic rhythm that is stabilized by electrotonic coupling between its dendrites, yet dynamically influenced by the status of their synaptic inputs.
Collapse
Affiliation(s)
- Mario Negrello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
- * E-mail: (MN); (LWJB); (CIDZ)
| | - Pascal Warnaar
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Vincenzo Romano
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Cullen B. Owens
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Sander Lindeman
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Jochen K. Spanke
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Laurens W. J. Bosman
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
- * E-mail: (MN); (LWJB); (CIDZ)
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, the Netherlands
- * E-mail: (MN); (LWJB); (CIDZ)
| |
Collapse
|
20
|
Ju C, Bosman LW, Hoogland TM, Velauthapillai A, Murugesan P, Warnaar P, van Genderen RM, Negrello M, De Zeeuw CI. Neurons of the inferior olive respond to broad classes of sensory input while subject to homeostatic control. J Physiol 2019; 597:2483-2514. [PMID: 30908629 PMCID: PMC6487939 DOI: 10.1113/jp277413] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Purkinje cells in the cerebellum integrate input from sensory organs with that from premotor centres. Purkinje cells use a variety of sensory inputs relaying information from the environment to modify motor control. Here we investigated to what extent the climbing fibre inputs to Purkinje cells signal mono- or multi-sensory information, and to what extent this signalling is subject to recent history of activity. We show that individual climbing fibres convey multiple types of sensory information, together providing a rich mosaic projection pattern of sensory signals across the cerebellar cortex. Moreover, firing probability of climbing fibres following sensory stimulation depends strongly on the recent history of activity, showing a tendency to homeostatic dampening. ABSTRACT Cerebellar Purkinje cells integrate sensory information with motor efference copies to adapt movements to behavioural and environmental requirements. They produce complex spikes that are triggered by the activity of climbing fibres originating in neurons of the inferior olive. These complex spikes can shape the onset, amplitude and direction of movements and the adaptation of such movements to sensory feedback. Clusters of nearby inferior olive neurons project to parasagittally aligned stripes of Purkinje cells, referred to as 'microzones'. It is currently unclear to what extent individual Purkinje cells within a single microzone integrate climbing fibre inputs from multiple sources of different sensory origins, and to what extent sensory-evoked climbing fibre responses depend on the strength and recent history of activation. Here we imaged complex spike responses in cerebellar lobule crus 1 to various types of sensory stimulation in awake mice. We find that different sensory modalities and receptive fields have a mild, but consistent, tendency to converge on individual Purkinje cells, with climbing fibres showing some degree of input-specificity. Purkinje cells encoding the same stimulus show increased events with coherent complex spike firing and tend to lie close together. Moreover, whereas complex spike firing is only mildly affected by variations in stimulus strength, it depends strongly on the recent history of climbing fibre activity. Our data point towards a mechanism in the olivo-cerebellar system that regulates complex spike firing during mono- or multi-sensory stimulation around a relatively low set-point, highlighting an integrative coding scheme of complex spike firing under homeostatic control.
Collapse
Affiliation(s)
- Chiheng Ju
- Department of NeuroscienceErasmus MC3015 GDRotterdamThe Netherlands
| | | | - Tycho M. Hoogland
- Department of NeuroscienceErasmus MC3015 GDRotterdamThe Netherlands
- Netherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences1105 BEAmsterdamThe Netherlands
| | | | | | - Pascal Warnaar
- Department of NeuroscienceErasmus MC3015 GDRotterdamThe Netherlands
| | | | - Mario Negrello
- Department of NeuroscienceErasmus MC3015 GDRotterdamThe Netherlands
| | - Chris I. De Zeeuw
- Department of NeuroscienceErasmus MC3015 GDRotterdamThe Netherlands
- Netherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences1105 BEAmsterdamThe Netherlands
| |
Collapse
|
21
|
Kostadinov D, Beau M, Blanco-Pozo M, Häusser M. Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nat Neurosci 2019; 22:950-962. [DOI: 10.1038/s41593-019-0381-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/11/2019] [Indexed: 01/17/2023]
|
22
|
Miterko LN, White JJ, Lin T, Brown AM, O'Donovan KJ, Sillitoe RV. Persistent motor dysfunction despite homeostatic rescue of cerebellar morphogenesis in the Car8 waddles mutant mouse. Neural Dev 2019; 14:6. [PMID: 30867000 PMCID: PMC6417138 DOI: 10.1186/s13064-019-0130-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Background Purkinje cells play a central role in establishing the cerebellar circuit. Accordingly, disrupting Purkinje cell development impairs cerebellar morphogenesis and motor function. In the Car8wdl mouse model of hereditary ataxia, severe motor deficits arise despite the cerebellum overcoming initial defects in size and morphology. Methods To resolve how this compensation occurs, we asked how the loss of carbonic anhydrase 8 (CAR8), a regulator of IP3R1 Ca2+ signaling in Purkinje cells, alters cerebellar development in Car8wdl mice. Using a combination of histological, physiological, and behavioral analyses, we determined the extent to which the loss of CAR8 affects cerebellar anatomy, neuronal firing, and motor coordination during development. Results Our results reveal that granule cell proliferation is reduced in early postnatal mutants, although by the third postnatal week there is enhanced and prolonged proliferation, plus an upregulation of Sox2 expression in the inner EGL. Modified circuit patterning of Purkinje cells and Bergmann glia accompany these granule cell adjustments. We also find that although anatomy eventually normalizes, the abnormal activity of neurons and muscles persists. Conclusions Our data show that losing CAR8 only transiently restricts cerebellar growth, but permanently damages its function. These data support two current hypotheses about cerebellar development and disease: (1) Sox2 expression may be upregulated at sites of injury and contribute to the rescue of cerebellar structure and (2) transient delays to developmental processes may precede permanent motor dysfunction. Furthermore, we characterize waddles mutant mouse morphology and behavior during development and propose a Sox2-positive, cell-mediated role for rescue in a mouse model of human motor diseases. Electronic supplementary material The online version of this article (10.1186/s13064-019-0130-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauren N Miterko
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Joshua J White
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Department of Neuroscience, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Tao Lin
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Department of Neuroscience, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Kevin J O'Donovan
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York, 10996, USA.,Burke Neurological Institute, Weill Cornell Medicine, White Plains, 10605, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA. .,Department of Neuroscience, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA. .,Program in Developmental Biology, Baylor College of Medicine, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA. .,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Romano V, De Propris L, Bosman LW, Warnaar P, Ten Brinke MM, Lindeman S, Ju C, Velauthapillai A, Spanke JK, Middendorp Guerra E, Hoogland TM, Negrello M, D'Angelo E, De Zeeuw CI. Potentiation of cerebellar Purkinje cells facilitates whisker reflex adaptation through increased simple spike activity. eLife 2018; 7:38852. [PMID: 30561331 PMCID: PMC6326726 DOI: 10.7554/elife.38852] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022] Open
Abstract
Cerebellar plasticity underlies motor learning. However, how the cerebellum operates to enable learned changes in motor output is largely unknown. We developed a sensory-driven adaptation protocol for reflexive whisker protraction and recorded Purkinje cell activity from crus 1 and 2 of awake mice. Before training, simple spikes of individual Purkinje cells correlated during reflexive protraction with the whisker position without lead or lag. After training, simple spikes and whisker protractions were both enhanced with the spiking activity now leading behavioral responses. Neuronal and behavioral changes did not occur in two cell-specific mouse models with impaired long-term potentiation at their parallel fiber to Purkinje cell synapses. Consistent with cerebellar plasticity rules, increased simple spike activity was prominent in cells with low complex spike response probability. Thus, potentiation at parallel fiber to Purkinje cell synapses may contribute to reflex adaptation and enable expression of cerebellar learning through increases in simple spike activity. Rodents use their whiskers to explore the world around them. When the whiskers touch an object, it triggers involuntary movements of the whiskers called whisker reflexes. Experiencing the same sensory stimulus multiple times enables rodents to fine-tune these reflexes, e.g., by making their movements larger or smaller. This type of learning is often referred to as motor learning. A part of the brain called cerebellum controls motor learning. It contains some of the largest neurons in the nervous system, the Purkinje cells. Each Purkinje cell receives input from thousands of extensions of small neurons, known as parallel fibers. It is thought that decreasing the strength of the connections between parallel fibers and Purkinje cells can help mammals learn new movements. This is the case in a type of learning called Pavlovian conditioning. It takes its name from the Russian scientist, Pavlov, who showed that dogs can learn to salivate in response to a bell signaling food. Pavlovian conditioning enables animals to optimize their responses to sensory stimuli. But Romano et al. now show that increasing the strength of connections between parallel fibers and Purkinje cells can also support learning. To trigger reflexive whisker movements, a machine blew puffs of air onto the whiskers of awake mice. After repeated exposure to the air puffs, the mice increased the size of their whisker reflexes. At the same time, their Purkinje cells became more active and the connections between Purkinje cells and parallel fibers grew stronger. Artificially increasing Purkinje cell activity triggered the same changes in whisker reflexes as the air puffs themselves. Textbooks still report that only weakening of connections within the cerebellum enables animals to learn and modify movements. The data obtained by Romano al. thus paint a new picture of how the cerebellum works in the context of whisker learning. They show that strengthening these connections can also support movement-related learning.
Collapse
Affiliation(s)
- Vincenzo Romano
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Licia De Propris
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Pascal Warnaar
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Sander Lindeman
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Chiheng Ju
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Jochen K Spanke
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Tycho M Hoogland
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Mario Negrello
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, Instituto Fondazione C Mondino, Pavia, Italy
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Heffley W, Song EY, Xu Z, Taylor BN, Hughes MA, McKinney A, Joshua M, Hull C. Coordinated cerebellar climbing fiber activity signals learned sensorimotor predictions. Nat Neurosci 2018; 21:1431-1441. [PMID: 30224805 PMCID: PMC6362851 DOI: 10.1038/s41593-018-0228-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/06/2018] [Indexed: 11/09/2022]
Abstract
The prevailing model of cerebellar learning states that climbing fibers (CFs) are both driven by, and serve to correct, erroneous motor output. However, this model is grounded largely in studies of behaviors that utilize hardwired neural pathways to link sensory input to motor output. To test whether this model applies to more flexible learning regimes that require arbitrary sensorimotor associations, we developed a cerebellar-dependent motor learning task that is compatible with both mesoscale and single-dendrite-resolution calcium imaging in mice. We found that CFs were preferentially driven by and more time-locked to correctly executed movements and other task parameters that predict reward outcome, exhibiting widespread correlated activity in parasagittal processing zones that was governed by these predictions. Together, our data suggest that such CF activity patterns are well-suited to drive learning by providing predictive instructional input that is consistent with an unsigned reinforcement learning signal but does not rely exclusively on motor errors.
Collapse
Affiliation(s)
- William Heffley
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA
| | - Eun Young Song
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA
| | - Ziye Xu
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA
| | - Benjamin N Taylor
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA
| | - Mary Anne Hughes
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA
| | - Andrew McKinney
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Mati Joshua
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Court Hull
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA.
| |
Collapse
|
25
|
Gaffield MA, Rowan MJM, Amat SB, Hirai H, Christie JM. Inhibition gates supralinear Ca 2+ signaling in Purkinje cell dendrites during practiced movements. eLife 2018; 7:36246. [PMID: 30117806 PMCID: PMC6120752 DOI: 10.7554/elife.36246] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/16/2018] [Indexed: 11/25/2022] Open
Abstract
Motor learning involves neural circuit modifications in the cerebellar cortex, likely through re-weighting of parallel fiber inputs onto Purkinje cells (PCs). Climbing fibers instruct these synaptic modifications when they excite PCs in conjunction with parallel fiber activity, a pairing that enhances climbing fiber-evoked Ca2+ signaling in PC dendrites. In vivo, climbing fibers spike continuously, including during movements when parallel fibers are simultaneously conveying sensorimotor information to PCs. Whether parallel fiber activity enhances climbing fiber Ca2+ signaling during motor behaviors is unknown. In mice, we found that inhibitory molecular layer interneurons (MLIs), activated by parallel fibers during practiced movements, suppressed parallel fiber enhancement of climbing fiber Ca2+ signaling in PCs. Similar results were obtained in acute slices for brief parallel fiber stimuli. Interestingly, more prolonged parallel fiber excitation revealed latent supralinear Ca2+ signaling. Therefore, the balance of parallel fiber and MLI input onto PCs regulates concomitant climbing fiber Ca2+ signaling.
Collapse
Affiliation(s)
| | - Matthew J M Rowan
- Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - Samantha B Amat
- Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - Hirokazu Hirai
- Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, United States
| |
Collapse
|
26
|
Smaragdos G, Chatzikonstantis G, Kukreja R, Sidiropoulos H, Rodopoulos D, Sourdis I, Al-Ars Z, Kachris C, Soudris D, De Zeeuw CI, Strydis C. BrainFrame: a node-level heterogeneous accelerator platform for neuron simulations. J Neural Eng 2018; 14:066008. [PMID: 28707628 DOI: 10.1088/1741-2552/aa7fc5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The advent of high-performance computing (HPC) in recent years has led to its increasing use in brain studies through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a homogeneous acceleration platform to effectively address the complete array of modeling requirements. APPROACH In this paper we propose and build BrainFrame, a heterogeneous acceleration platform that incorporates three distinct acceleration technologies, an Intel Xeon-Phi CPU, a NVidia GP-GPU and a Maxeler Dataflow Engine. The PyNN software framework is also integrated into the platform. As a challenging proof of concept, we analyze the performance of BrainFrame on different experiment instances of a state-of-the-art neuron model, representing the inferior-olivary nucleus using a biophysically-meaningful, extended Hodgkin-Huxley representation. The model instances take into account not only the neuronal-network dimensions but also different network-connectivity densities, which can drastically affect the workload's performance characteristics. MAIN RESULTS The combined use of different HPC technologies demonstrates that BrainFrame is better able to cope with the modeling diversity encountered in realistic experiments while at the same time running on significantly lower energy budgets. Our performance analysis clearly shows that the model directly affects performance and all three technologies are required to cope with all the model use cases. SIGNIFICANCE The BrainFrame framework is designed to transparently configure and select the appropriate back-end accelerator technology for use per simulation run. The PyNN integration provides a familiar bridge to the vast number of models already available. Additionally, it gives a clear roadmap for extending the platform support beyond the proof of concept, with improved usability and directly useful features to the computational-neuroscience community, paving the way for wider adoption.
Collapse
Affiliation(s)
- Georgios Smaragdos
- Neuroscience department, Erasmus MC, Wytemaweg 80, 3015GE, Rotterdam, Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ten Brinke MM, Boele HJ, De Zeeuw CI. Conditioned climbing fiber responses in cerebellar cortex and nuclei. Neurosci Lett 2018; 688:26-36. [PMID: 29689340 DOI: 10.1016/j.neulet.2018.04.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/30/2022]
Abstract
The eyeblink conditioning paradigm captures an elementary form of associative learning in a neural circuitry that is understood to an extraordinary degree. Cerebellar cortical Purkinje cell simple spike suppression is widely regarded as the main process underlying conditioned responses (CRs), leading to disinhibition of neurons in the cerebellar nuclei that innervate eyelid muscles downstream. However, recent work highlights the addition of a conditioned Purkinje cell complex spike response, which at the level of the interposed nucleus seems to translate to a transient spike suppression that can be followed by a rapid spike facilitation. Here, we review the characteristics of these responses at the cerebellar cortical and nuclear level, and discuss possible origins and functions.
Collapse
Affiliation(s)
- M M Ten Brinke
- Department of Neuroscience, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands.
| | - H J Boele
- Department of Neuroscience, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands
| | - C I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Quaglio P, Rostami V, Torre E, Grün S. Methods for identification of spike patterns in massively parallel spike trains. BIOLOGICAL CYBERNETICS 2018; 112:57-80. [PMID: 29651582 PMCID: PMC5908877 DOI: 10.1007/s00422-018-0755-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Temporally, precise correlations between simultaneously recorded neurons have been interpreted as signatures of cell assemblies, i.e., groups of neurons that form processing units. Evidence for this hypothesis was found on the level of pairwise correlations in simultaneous recordings of few neurons. Increasing the number of simultaneously recorded neurons increases the chances to detect cell assembly activity due to the larger sample size. Recent technological advances have enabled the recording of 100 or more neurons in parallel. However, these massively parallel spike train data require novel statistical tools to be analyzed for correlations, because they raise considerable combinatorial and multiple testing issues. Recently, various of such methods have started to develop. First approaches were based on population or pairwise measures of synchronization, and later led to methods for the detection of various types of higher-order synchronization and of spatio-temporal patterns. The latest techniques combine data mining with analysis of statistical significance. Here, we give a comparative overview of these methods, of their assumptions and of the types of correlations they can detect.
Collapse
Affiliation(s)
- Pietro Quaglio
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany.
| | - Vahid Rostami
- Computational Systems Neuroscience, Institute for Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Emiliano Torre
- Chair of Risk, Safety and Uncertainty Quantification, ETH Zürich, Zurich, Switzerland
- Risk Center, ETH Zürich, Zurich, Switzerland
| | - Sonja Grün
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
29
|
Lawrenson C, Bares M, Kamondi A, Kovács A, Lumb B, Apps R, Filip P, Manto M. The mystery of the cerebellum: clues from experimental and clinical observations. CEREBELLUM & ATAXIAS 2018; 5:8. [PMID: 29610671 PMCID: PMC5877388 DOI: 10.1186/s40673-018-0087-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/15/2018] [Indexed: 11/22/2022]
Abstract
The cerebellum has a striking homogeneous cytoarchitecture and participates in both motor and non-motor domains. Indeed, a wealth of evidence from neuroanatomical, electrophysiological, neuroimaging and clinical studies has substantially modified our traditional view on the cerebellum as a sole calibrator of sensorimotor functions. Despite the major advances of the last four decades of cerebellar research, outstanding questions remain regarding the mechanisms and functions of the cerebellar circuitry. We discuss major clues from both experimental and clinical studies, with a focus on rodent models in fear behaviour, on the role of the cerebellum in motor control, on cerebellar contributions to timing and our appraisal of the pathogenesis of cerebellar tremor. The cerebellum occupies a central position to optimize behaviour, motor control, timing procedures and to prevent body oscillations. More than ever, the cerebellum is now considered as a major actor on the scene of disorders affecting the CNS, extending from motor disorders to cognitive and affective disorders. However, the respective roles of the mossy fibres, the climbing fibres, cerebellar cortex and cerebellar nuclei remains unknown or partially known at best in most cases. Research is now moving towards a better definition of the roles of cerebellar modules and microzones. This will impact on the management of cerebellar disorders.
Collapse
Affiliation(s)
- Charlotte Lawrenson
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Tankard’s Close, University Walk, Bristol, BS8 1TD UK
| | - Martin Bares
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne’s Teaching Hospital, Brno, Czech Republic
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA
| | - Anita Kamondi
- Department of Neurology, National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, 1145 Hungary
- Department of Neurology, Semmelweis University, Üllői út 26, Budapest, 1083 Hungary
| | - Andrea Kovács
- Department of Neurology, National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, 1145 Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Üllői út 26, Budapest, 1083 Hungary
| | - Bridget Lumb
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Tankard’s Close, University Walk, Bristol, BS8 1TD UK
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Tankard’s Close, University Walk, Bristol, BS8 1TD UK
| | - Pavel Filip
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne’s Teaching Hospital, Brno, Czech Republic
| | - Mario Manto
- FNRS ULB-Erasme, 808 Route de Lennik, 1070 Bruxelles, Belgium
- Service des Neurosciences, UMons, 7000 Mons, Belgium
- Department of Neurology, Centre Hospitalier Universitaire (CHU) de Charleroi, 6000 Charleroi, Belgium
- Laboratoire de Médecine Expérimentale, Site Vésale, ULB Unité 222, 6110 Montigny-le-Tilleul, Belgium
| |
Collapse
|
30
|
Cheron J, Cheron G. Beta-gamma burst stimulations of the inferior olive induce high-frequency oscillations in the deep cerebellar nuclei. Eur J Neurosci 2018; 48:2879-2889. [PMID: 29460990 DOI: 10.1111/ejn.13873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 11/30/2022]
Abstract
The cerebellum displays various sorts of rhythmic activities covering both low- and high-frequency oscillations. These cerebellar high-frequency oscillations were observed in the cerebellar cortex. Here, we hypothesised that not only is the cerebellar cortex a generator of high-frequency oscillations but also that the deep cerebellar nuclei may also play a similar role. Thus, we analysed local field potentials and single-unit activities in the deep cerebellar nuclei before, during and after electric stimulation in the inferior olive of awake mice. A high-frequency oscillation of 350 Hz triggered by the stimulation of the inferior olive, within the beta-gamma range, was observed in the deep cerebellar nuclei. The amplitude and frequency of the oscillation were independent of the frequency of stimulation. This oscillation emerged during the period of stimulation and persisted after the end of the stimulation. The oscillation coincided with the inhibition of deep cerebellar neurons. As the inhibition of the deep cerebellar nuclei is related to inhibitory inputs from Purkinje cells, we speculate that the oscillation represents the unmasking of the synchronous activation of another subtype of deep cerebellar neuronal subtype, devoid of GABA receptors and under the direct control of the climbing fibres from the inferior olive. Still, the mechanism sustaining this oscillation remains to be deciphered. Our study sheds new light on the role of the olivo-cerebellar loop as the final output control of the intercerebellar circuitry.
Collapse
Affiliation(s)
- Julian Cheron
- Laboratory of Electrophysiology, Université de Mons, Mons, Belgium.,Laboratory of Neurophysiology and Movement Biomechanics, Neuroscience Institute, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Guy Cheron
- Laboratory of Electrophysiology, Université de Mons, Mons, Belgium.,Laboratory of Neurophysiology and Movement Biomechanics, Neuroscience Institute, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| |
Collapse
|
31
|
Nagy JI, Pereda AE, Rash JE. Electrical synapses in mammalian CNS: Past eras, present focus and future directions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:102-123. [PMID: 28577972 PMCID: PMC5705454 DOI: 10.1016/j.bbamem.2017.05.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 12/19/2022]
Abstract
Gap junctions provide the basis for electrical synapses between neurons. Early studies in well-defined circuits in lower vertebrates laid the foundation for understanding various properties conferred by electrical synaptic transmission. Knowledge surrounding electrical synapses in mammalian systems unfolded first with evidence indicating the presence of gap junctions between neurons in various brain regions, but with little appreciation of their functional roles. Beginning at about the turn of this century, new approaches were applied to scrutinize electrical synapses, revealing the prevalence of neuronal gap junctions, the connexin protein composition of many of those junctions, and the myriad diverse neural systems in which they occur in the mammalian CNS. Subsequent progress indicated that electrical synapses constitute key elements in synaptic circuitry, govern the collective activity of ensembles of electrically coupled neurons, and in part orchestrate the synchronized neuronal network activity and rhythmic oscillations that underlie fundamental integrative processes. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- James I Nagy
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - John E Rash
- Department of Biomedical Sciences, and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
32
|
Abstract
More than a century after the description of its cardinal components, the cerebellar motor syndrome (CMS) remains a cornerstone of daily clinical ataxiology, in both children and adults. Anatomically, motor cerebellum involves lobules I-V, VI, and VIII. CMS is typically associated with errors in the metrics of voluntary movements and a lack of coordination. Symptoms and motor signs consist of speech deficits, impairments of limb movements, and abnormalities of posture/gait. Ataxic dysarthria has a typical scanning (explosive with staccato) feature, voice has a nasal character, and speech is slurred. Cerebellar mutism is most common in children and occurs after resection of a large midline cerebellar tumor. Ataxia of limbs includes at various degrees dysmetria (hypermetria: overshoot, hypometria: undershoot), dysdiadochokinesia, cerebellar tremor (action tremor, postural tremor, kinetic tremor, some forms of orthostatic tremor), isometrataxia, disorders of muscle tone (both hypotonia and cerebellar fits), and impaired check and rebound. Handwriting is irregular and some patients exhibit megalographia. Cerebellar patients show an increased body sway with a broad-based stance (ataxia of stance). Gait is irregular and staggering. Delayed learning of complex motor skills may be a prominent feature in children. CMS is currently explained by the inability of the cerebellum to handle feedback signals during slow movements and to create, store, select, and update internal models during fast movements. The cerebellum is embedded in large-scale brain networks and is essential to perform accurate motor predictions related to body dynamics and environmental stimuli. Overall, the observations in children and adults exhibiting a CMS fit with the hypothesis that the cerebellum contains neural representations reproducing the dynamic properties of body, and generates and calibrates sensorimotor predictions. Therapies aiming at a reinforcement or restoration of internal models should be implemented to cancel CMS in cerebellar ataxias. The developmental trajectory of the cerebellum, the immature motor behavior in children, and the networks implicated in CMS need to be taken into account.
Collapse
Affiliation(s)
- Mario Manto
- Neurology Service, CHU-Charleroi, Charleroi, Belgium; Neuroscience Service, Université de Mons, Mons, Belgium.
| |
Collapse
|
33
|
Bazzigaluppi P, Isenia SC, Haasdijk ED, Elgersma Y, De Zeeuw CI, van der Giessen RS, de Jeu MTG. Modulation of Murine Olivary Connexin 36 Gap Junctions by PKA and CaMKII. Front Cell Neurosci 2017; 11:397. [PMID: 29311830 PMCID: PMC5735106 DOI: 10.3389/fncel.2017.00397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/28/2017] [Indexed: 11/15/2022] Open
Abstract
The inferior olive (IO) is a nucleus located in the brainstem and it is part of the olivo-cerebellar loop. This circuit plays a fundamental role in generation and acquisition of coherent motor patterns and it relies on synchronous activation of groups of Purkinje cells (PC) in the cerebellar cortex. IO neurons integrate their intrinsic oscillatory activity with excitatory inputs coming from the somatosensory system and inhibitory feedback coming from the cerebellar nuclei. Alongside these chemical synaptic inputs, IO neurons are coupled to one another via connexin 36 (Cx36) containing gap junctions (GJs) that create a functional syncytium between neurons. Communication between olivary neurons is regulated by these GJs and their correct functioning contributes to coherent oscillations in the IO and proper motor learning. Here, we explore the cellular pathways that can regulate the coupling between olivary neurons. We combined in vitro electrophysiology and immunohistochemistry (IHC) on mouse acute brain slices to unravel the pathways that regulate olivary coupling. We found that enhancing the activity of the protein kinase A (PKA) pathway and blocking the Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathway can both down-regulate the size of the coupled network. However, these two kinases follow different mechanisms of action. Our results suggest that activation of the PKA pathway reduces the opening probability of the Cx36 GJs, whereas inhibition of the CaMKII pathway reduces the number of Cx36 GJs. The low densities of Cx36 proteins and electrical synapses in βCaMKII knock-out mice point towards an essential role for this protein kinase in regulating the density of GJs in the IO. Thus, the level of olivary coupling is a dynamic process and regulated by a variety of enzymes modulating GJs expression, docking and activity.
Collapse
Affiliation(s)
- Paolo Bazzigaluppi
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Sheena C Isenia
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Elize D Haasdijk
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Marcel T G de Jeu
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
34
|
Kros L, Lindeman S, Eelkman Rooda OHJ, Murugesan P, Bina L, Bosman LWJ, De Zeeuw CI, Hoebeek FE. Synchronicity and Rhythmicity of Purkinje Cell Firing during Generalized Spike-and-Wave Discharges in a Natural Mouse Model of Absence Epilepsy. Front Cell Neurosci 2017; 11:346. [PMID: 29163057 PMCID: PMC5671558 DOI: 10.3389/fncel.2017.00346] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/17/2017] [Indexed: 11/13/2022] Open
Abstract
Absence epilepsy is characterized by the occurrence of generalized spike and wave discharges (GSWDs) in electrocorticographical (ECoG) recordings representing oscillatory activity in thalamocortical networks. The oscillatory nature of GSWDs has been shown to be reflected in the simple spike activity of cerebellar Purkinje cells and in the activity of their target neurons in the cerebellar nuclei, but it is unclear to what extent complex spike activity is implicated in generalized epilepsy. Purkinje cell complex spike firing is elicited by climbing fiber activation and reflects action potential firing in the inferior olive. Here, we investigated to what extent modulation of complex spike firing is reflected in the temporal patterns of seizures. Extracellular single-unit recordings in awake, head-restrained homozygous tottering mice, which suffer from a mutation in the voltage-gated CaV2.1 calcium channel, revealed that a substantial proportion of Purkinje cells (26%) showed increased complex spike activity and rhythmicity during GSWDs. Moreover, Purkinje cells, recorded either electrophysiologically or by using Ca2+-imaging, showed a significant increase in complex spike synchronicity for both adjacent and remote Purkinje cells during ictal events. These seizure-related changes in firing frequency, rhythmicity and synchronicity were most prominent in the lateral cerebellum, a region known to receive cerebral input via the inferior olive. These data indicate profound and widespread changes in olivary firing that are most likely induced by seizure-related activity changes in the thalamocortical network, thereby highlighting the possibility that olivary neurons can compensate for pathological brain-state changes by dampening oscillations.
Collapse
Affiliation(s)
- Lieke Kros
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Sander Lindeman
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Oscar H J Eelkman Rooda
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Department of Neurosurgery, Erasmus MC, Rotterdam, Netherlands
| | | | - Lorenzo Bina
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, Netherlands
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
35
|
The Roles of the Olivocerebellar Pathway in Motor Learning and Motor Control. A Consensus Paper. THE CEREBELLUM 2017; 16:230-252. [PMID: 27193702 DOI: 10.1007/s12311-016-0787-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For many decades, the predominant view in the cerebellar field has been that the olivocerebellar system's primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here, we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum and might also play a role in development. We then consider the potential problems and benefits of it having multiple functions. Moreover, we discuss how its distinctive characteristics (e.g., low firing rates, synchronization, and variable complex spike waveforms) make it more or less suitable for one or the other of these functions, and why having multiple functions makes sense from an evolutionary perspective. We did not attempt to reach a consensus on the specific role(s) the olivocerebellar system plays in different types of movements, as that will ultimately be determined experimentally; however, collectively, the various contributions highlight the flexibility of the olivocerebellar system, and thereby suggest that it has the potential to act in both the motor learning and motor control functions of the cerebellum.
Collapse
|
36
|
New insights into olivo-cerebellar circuits for learning from a small training sample. Curr Opin Neurobiol 2017; 46:58-67. [PMID: 28841437 DOI: 10.1016/j.conb.2017.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 11/24/2022]
Abstract
Artificial intelligence such as deep neural networks exhibited remarkable performance in simulated video games and 'Go'. In contrast, most humanoid robots in the DARPA Robotics Challenge fell down to ground. The dramatic contrast in performance is mainly due to differences in the amount of training data, which is huge and small, respectively. Animals are not allowed with millions of the failed trials, which lead to injury and death. Humans fall only several thousand times before they balance and walk. We hypothesize that a unique closed-loop neural circuit formed by the Purkinje cells, the cerebellar deep nucleus and the inferior olive in and around the cerebellum and the highest density of gap junctions, which regulate synchronous activities of the inferior olive nucleus, are computational machinery for learning from a small sample. We discuss recent experimental and computational advances associated with this hypothesis.
Collapse
|
37
|
Electrical Coupling and Synchronized Subthreshold Oscillations in the Inferior Olive of the Rhesus Macaque. J Neurosci 2017; 36:6497-502. [PMID: 27307237 DOI: 10.1523/jneurosci.4495-15.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/05/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Inferior olive (IO) neurons are critical for motor coordination and exhibit oscillations in membrane potential that are subthreshold for spiking. The prevalence, coherence, and continuity of those subthreshold oscillations (STOs) depend upon resonant interactions between neighboring neurons supported by electrical coupling. Many studies of the olivocerebellar system in rodents, in which STOs were related to tremor, whisking, and licking, fueled a debate over whether IO STOs were relevant for primates whose repertoire of movement is generally less periodic. The debate was never well informed due to the lack of a direct examination of the physiological properties of primate IO neurons. Here, we obtained dual patch-clamp recordings of neighboring IO neurons from young adult macaques in brainstem slices and compared them to identical recordings from rats. Macaque IO neurons exhibited an equivalent prevalence of continuous STOs as rats (45 vs 54%, respectively). However, macaque STOs were slower (1-4 Hz) and did not overlap with the dominant 4-9 Hz frequency of rats. The slower STO frequency of macaques was at least partially due to a prolonged membrane time constant and increased membrane capacitance that could be attributed to stronger electrical coupling and greater total dendritic length. The presence of synchronized STOs in the IO of adult macaques, coincident with strong and prevalent electrical coupling, answers a fundamental outstanding question in cerebellar neuroscience and is consistent with a prominent role for synchronized oscillation in primate sensory-motor control. SIGNIFICANCE STATEMENT It was debated whether inferior olive (IO) neurons of primates behave as synchronized oscillators as was found for rodents using intracellular, optical, and multielectrode recordings. An inability to resolve this issue using single-Purkinje cell extracellular recordings in monkeys limited our understanding of timing mechanisms in the primate brain. Using dual whole-cell recordings from the IO of young adult rhesus macaques in acutely prepared brainstem slices, our work demonstrates that pairs of primate IO neurons show synchronized oscillations in membrane potential. The findings have strong mechanistic and translational relevance, as IO activation has been implicated in humans' perceptual timing of sensory events and motricity.
Collapse
|
38
|
Cheron G, Márquez-Ruiz J, Dan B. Oscillations, Timing, Plasticity, and Learning in the Cerebellum. THE CEREBELLUM 2016; 15:122-38. [PMID: 25808751 DOI: 10.1007/s12311-015-0665-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The highly stereotyped, crystal-like architecture of the cerebellum has long served as a basis for hypotheses with regard to the function(s) that it subserves. Historically, most clinical observations and experimental work have focused on the involvement of the cerebellum in motor control, with particular emphasis on coordination and learning. Two main models have been suggested to account for cerebellar functioning. According to Llinás's theory, the cerebellum acts as a control machine that uses the rhythmic activity of the inferior olive to synchronize Purkinje cell populations for fine-tuning of coordination. In contrast, the Ito-Marr-Albus theory views the cerebellum as a motor learning machine that heuristically refines synaptic weights of the Purkinje cell based on error signals coming from the inferior olive. Here, we review the role of timing of neuronal events, oscillatory behavior, and synaptic and non-synaptic influences in functional plasticity that can be recorded in awake animals in various physiological and pathological models in a perspective that also includes non-motor aspects of cerebellar function. We discuss organizational levels from genes through intracellular signaling, synaptic network to system and behavior, as well as processes from signal production and processing to memory, delegation, and actual learning. We suggest an integrative concept for control and learning based on articulated oscillation templates.
Collapse
Affiliation(s)
- G Cheron
- Laboratory of Electrophysiology, Université de Mons, 7000, Mons, Belgium. .,Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles, CP640, 1070, Brussels, Belgium.
| | - J Márquez-Ruiz
- División de Neurociencias, Universidad Pablo de Olavide, 41013, Seville, Spain
| | - B Dan
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles, CP640, 1070, Brussels, Belgium.,Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020, Brussels, Belgium
| |
Collapse
|
39
|
Correa Mesa JF, Álvarez Peña PA. Neurología de la anticipación y sus implicaciones en el deporte. REVISTA DE LA FACULTAD DE MEDICINA 2016. [DOI: 10.15446/revfacmed.v64n1.50473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
<p>El movimiento es una acción que involucra interconexiones complejas, por lo cual se requiere profundizar en los procesos de adaptación, predicción y anticipación que permiten entender la importancia de estos aspectos desde sus bases filogenéticas y ontogenéticas hasta su implicación en movimientos complejos. Parte de la optimización de los procesos descritos se haya en la calidad de información aferente, la cual permite la relación con el entorno —especialmente la entrada visual— que reconoce un flujo de imágenes y una proyección al contexto en el que se está inmerso. Las estructuras e interconexiones implicadas en la anticipación y predicción de movimientos son descritas de modo que se evidencia la congruencia y continuidad del flujo de información que caracteriza esta especialidad neuromecánica de movimiento. Por otro lado, se aborda la integración de centros puntuales del sistema nervioso central y redes neuronales que permiten el entramado de procesos de aprendizaje por observación, además de proveer equilibrio y eficiencia al sistema en la recepción de estímulos y su relación con la generación de eferencias motoras que cumplan con objetivos específicos. En el ámbito deportivo estos procesos favorecen la eficiencia del gesto optimizando el movimiento.</p>
Collapse
|
40
|
Su CK. Modulation of synchronous sympathetic firing behaviors by endogenous GABA(A) and glycine receptor-mediated activities in the neonatal rat spinal cord in vitro. Neuroscience 2016; 312:227-46. [PMID: 26598070 DOI: 10.1016/j.neuroscience.2015.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/05/2015] [Accepted: 11/12/2015] [Indexed: 11/28/2022]
Abstract
Delivering effective commands in the nervous systems require a temporal integration of neural activities such as synchronous firing. Although sympathetic nerve discharges are characterized by synchronous firing, its temporal structures and how it is modulated are largely unknown. This study used a collagenase-dissociated splanchnic sympathetic nerve-thoracic spinal cord preparation of neonatal rats in vitro as an experimental model. Several single-fiber activities were recorded simultaneously and verified by rigorous computational algorithms. Among 3763 fiber pairs that had spontaneous fiber activities, 382 fiber pairs had firing positively correlated. Their temporal relationship was quantitatively evaluated by cross-correlogram. On average, correlated firing in a fiber pair occurred in scales of ∼40ms lasting for ∼11ms. The relative frequency distribution curves of correlogram parametrical values pertinent to the temporal features were best described by trimodal Gaussians, suggesting a correlated firing originated from three or less sources. Applications of bicuculline or gabazine (noncompetitive or competitive GABA(A) receptor antagonist) and/or strychnine (noncompetitive glycine receptor antagonist) increased, decreased, or did not change individual fiber activities. Antagonist-induced enhancement and attenuation of correlated firing were demonstrated by a respective increase and decrease of the peak probability of the cross-correlograms. Heterogeneity in antagonistic responses suggests that the inhibitory neurotransmission mediated by GABA(A) and glycine receptors is not essential for but can serve as a neural substrate to modulate synchronous firing behaviors. Plausible neural mechanisms were proposed to explain the temporal structures of correlated firing between sympathetic fibers.
Collapse
Affiliation(s)
- C-K Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
41
|
Sauerbrei BA, Lubenov EV, Siapas AG. Structured Variability in Purkinje Cell Activity during Locomotion. Neuron 2015; 87:840-52. [PMID: 26291165 DOI: 10.1016/j.neuron.2015.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/19/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
The cerebellum is a prominent vertebrate brain structure that is critically involved in sensorimotor function. During locomotion, cerebellar Purkinje cells are rhythmically active, shaping descending signals and coordinating commands from higher brain areas with the step cycle. However, the variation in this activity across steps has not been studied, and its statistical structure, afferent mechanisms, and relationship to behavior remain unknown. Here, using multi-electrode recordings in freely moving rats, we show that behavioral variables systematically influence the shape of the step-locked firing rate. This effect depends strongly on the phase of the step cycle and reveals a functional clustering of Purkinje cells. Furthermore, we find a pronounced disassociation between patterns of variability driven by the parallel and climbing fibers. These results suggest that Purkinje cell activity not only represents step phase within each cycle but also is shaped by behavior across steps, facilitating control of movement under dynamic conditions.
Collapse
Affiliation(s)
- Britton A Sauerbrei
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA 91125, USA
| | - Evgueniy V Lubenov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Athanassios G Siapas
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA 91125, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
42
|
Gaffield MA, Amat SB, Bito H, Christie JM. Chronic imaging of movement-related Purkinje cell calcium activity in awake behaving mice. J Neurophysiol 2015; 115:413-22. [PMID: 26561609 DOI: 10.1152/jn.00834.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/05/2015] [Indexed: 01/28/2023] Open
Abstract
Purkinje cells (PCs) are a major site of information integration and plasticity in the cerebellum, a brain region involved in motor task refinement. Thus PCs provide an ideal location for studying the mechanisms necessary for cerebellum-dependent motor learning. Increasingly, sophisticated behavior tasks, used in combination with genetic reporters and effectors of activity, have opened up the possibility of studying cerebellar circuits during voluntary movement at an unprecedented level of quantitation. However, current methods used to monitor PC activity do not take full advantage of these advances. For example, single-unit or multiunit electrode recordings, which provide excellent temporal information regarding electrical activity, only monitor a small population of cells and can be quite invasive. Bolus loading of cell-permeant calcium (Ca(2+)) indicators is short-lived, requiring same-day imaging immediately after surgery and/or indicator injection. Genetically encoded Ca(2+) indicators (GECIs) overcome many of these limits and have garnered considerable use in many neuron types but only limited use in PCs. Here we employed these indicators to monitor Ca(2+) activity in PCs over several weeks. We could repeatedly image from the same cerebellar regions across multiple days and observed stable activity. We used chronic imaging to monitor PC activity in crus II, an area previously linked to licking behavior, and identified a region of increased activity at the onset of licking. We then monitored this same region after training tasks to initiate voluntary licking behavior in response to different sensory stimuli. In all cases, PC Ca(2+) activity increased at the onset of rhythmic licking.
Collapse
Affiliation(s)
| | - Samantha B Amat
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida; and
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida; and
| |
Collapse
|
43
|
De Zeeuw CI, Hoogland TM. Reappraisal of Bergmann glial cells as modulators of cerebellar circuit function. Front Cell Neurosci 2015; 9:246. [PMID: 26190972 PMCID: PMC4488625 DOI: 10.3389/fncel.2015.00246] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/17/2015] [Indexed: 11/13/2022] Open
Abstract
Just as there is a huge morphological and functional diversity of neuron types specialized for specific aspects of information processing in the brain, astrocytes have equally distinct morphologies and functions that aid optimal functioning of the circuits in which they are embedded. One type of astrocyte, the Bergmann glial cell (BG) of the cerebellum, is a prime example of a highly diversified astrocyte type, the architecture of which is adapted to the cerebellar circuit and facilitates an impressive range of functions that optimize information processing in the adult brain. In this review we expand on the function of the BG in the cerebellum to highlight the importance of astrocytes not only in housekeeping functions, but also in contributing to plasticity and information processing in the cerebellum.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Neuroscience, Erasmus MC Rotterdam, Netherlands
| | - Tycho M Hoogland
- Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Neuroscience, Erasmus MC Rotterdam, Netherlands
| |
Collapse
|
44
|
Watson TC. "And the little brain said to the big brain…" Editorial: Distributed networks: new outlooks on cerebellar function. Front Syst Neurosci 2015; 9:78. [PMID: 26029063 PMCID: PMC4432673 DOI: 10.3389/fnsys.2015.00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/01/2015] [Indexed: 11/17/2022] Open
Affiliation(s)
- Thomas C Watson
- School of Physiology and Pharmacology, University of Bristol Bristol, UK ; Sorbonne Universites, UPMC Univ Paris 06, Neuroscience Paris Seine, UMR CNRS 8246, INSERM 1130, Institut de Biologie Paris Seine, Cerebellum Navigation and Memory Team Paris, France
| |
Collapse
|
45
|
Hoogland TM, De Gruijl JR, Witter L, Canto CB, De Zeeuw CI. Role of Synchronous Activation of Cerebellar Purkinje Cell Ensembles in Multi-joint Movement Control. Curr Biol 2015; 25:1157-65. [PMID: 25843032 PMCID: PMC4425462 DOI: 10.1016/j.cub.2015.03.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/18/2015] [Accepted: 03/06/2015] [Indexed: 11/22/2022]
Abstract
It is a longstanding question in neuroscience how elaborate multi-joint movements are coordinated coherently. Microzones of cerebellar Purkinje cells (PCs) are thought to mediate this coordination by controlling the timing of particular motor domains. However, it remains to be elucidated to what extent motor coordination deficits can be correlated with abnormalities in coherent activity within these microzones and to what extent artificially evoked synchronous activity within PC ensembles can elicit multi-joint motor behavior. To study PC ensemble correlates of limb, trunk, and tail movements, we developed a transparent disk treadmill that allows quantitative readout of locomotion and posture parameters in head-fixed mice and simultaneous cellular-resolution imaging and/or optogenetic manipulation. We show that PC ensembles in the ataxic and dystonic mouse mutant tottering have a reduced level of complex spike co-activation, which is delayed relative to movement onset and co-occurs with prolonged swing duration and reduced phase coupling of limb movements as well as with enlarged deflections of body-axis and tail movements. Using optogenetics to increase simple spike rate in PC ensembles, we find that preferred locomotion and posture patterns can be elicited or perturbed depending on the behavioral state. At rest, preferred sequences of limb movements can be elicited, whereas during locomotion, preferred gait-inhibition patterns are evoked. Our findings indicate that synchronous activation of PC ensembles can facilitate initiation and coordination of limb and trunk movements, presumably by tuning downstream systems involved in the execution of behavioral patterns. tg/tg mice show affected swing duration and phase coupling of limb movements PCs in ataxic tg/tg mice show delayed and reduced complex spike (CS) co-activation At rest, simple spike (SS) co-activation can elicit preferred locomotion sequences During locomotion, SS co-activation can be correlated with gait-inhibition patterns
Collapse
Affiliation(s)
- Tycho M Hoogland
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| | - Jornt R De Gruijl
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Laurens Witter
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Cathrin B Canto
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Dr. Molewaterplein 50, Erasmus MC, 3015 GE Rotterdam, the Netherlands
| |
Collapse
|
46
|
Najafi F, Giovannucci A, Wang SSH, Medina JF. Coding of stimulus strength via analog calcium signals in Purkinje cell dendrites of awake mice. eLife 2014; 3:e03663. [PMID: 25205669 PMCID: PMC4158287 DOI: 10.7554/elife.03663] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The climbing fiber input to Purkinje cells acts as a teaching signal by triggering a massive influx of dendritic calcium that marks the occurrence of instructive stimuli during cerebellar learning. Here, we challenge the view that these calcium spikes are all-or-none and only signal whether the instructive stimulus has occurred, without providing parametric information about its features. We imaged ensembles of Purkinje cell dendrites in awake mice and measured their calcium responses to periocular airpuffs that serve as instructive stimuli during cerebellar-dependent eyeblink conditioning. Information about airpuff duration and pressure was encoded probabilistically across repeated trials, and in two additional signals in single trials: the synchrony of calcium spikes in the Purkinje cell population, and the amplitude of the calcium spikes, which was modulated by a non-climbing fiber pathway. These results indicate that calcium-based teaching signals in Purkinje cells contain analog information that encodes the strength of instructive stimuli trial-by-trial. DOI:http://dx.doi.org/10.7554/eLife.03663.001 A region of the brain known as the cerebellum plays a key role in learning how to anticipate an event. For example, if you know that a puff of air is going to be directed at your eye, it's a good idea to close it in advance. However, how much you need to close it depends on how strong that puff of air is. A very strong puff might require closing the eye completely to protect it. In contrast, it is probably better to only partially close the eye if you know a lighter puff of air is coming, so that you can still see. Extensive research has focused on how neurons in and around the cerebellum work together to achieve this goal. When an event—such as a puff of air—occurs, signals are sent to large neurons in the cerebellum, called Purkinje cells, by ‘climbing fibers’. However, climbing fibers were thought to be able to respond in only two ways: either they fire in a single burst to signal that an event has occurred, or they don't fire. It was therefore unclear how the finer details of the event (for example, the strength of the puff of air) are transmitted to the cerebellum. Najafi et al. imaged the level of calcium in the cerebellum of mice, as this indicates how active the neurons are. When a puff of air was directed at the eyes of the mice, Najafi et al. saw that the size of the response of the Purkinje cells corresponded with how big the puff of air was. Najafi et al. show that the size of this response, which is based mostly on input from the climbing fibers, is also influenced by input from an additional unknown source. These findings show that Purkinje cells of the cerebellum receive detailed information about the nature of an event, such as a puff of air. What remains to be seen is whether the cerebellum uses this information to learn the correct response, that is how hard to blink to avoid the expected puff. DOI:http://dx.doi.org/10.7554/eLife.03663.002
Collapse
Affiliation(s)
- Farzaneh Najafi
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Andrea Giovannucci
- Department of Molecular Biology, Princeton University, Princeton, United States Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Samuel S-H Wang
- Department of Molecular Biology, Princeton University, Princeton, United States Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Javier F Medina
- Department of Psychology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|