1
|
Jafri H, Thomas SJ, Yang SH, Cain RE, Dalva MB. Nano-organization of synapses defines synaptic release properties at cortical neuron dendritic spines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.637710. [PMID: 39990496 PMCID: PMC11844459 DOI: 10.1101/2025.02.13.637710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Visualization of the submicron organization of excitatory synapses has revealed an unexpectedly ordered architecture consisting of nanocolumns of synaptic proteins that group into nanomodules which scale in number as spine size increases. How these features are related to synaptic function has remained unclear. Here, using super-resolution followed by live-cell line-scan imaging, we find that the size of the smallest miniature calcium and glutamate events are the same, regardless of whether spines have one or two nanopuncta of PSD-95, and that miniature synaptic response in all spines are best fit by a three term Poisson. Two nanomodule spines exhibit more large events without a significant change in event frequency, with the number of the largest events increasing disproportionately. These data support a model where nanomodules define sites of synaptic release and where the nanoarchitecture of synaptic proteins specifies subtypes of excitatory synapses, with increasing numbers of nanomodules increasing coordinated multivesicular release.
Collapse
Affiliation(s)
- Haani Jafri
- Department of Neuroscience and Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10 Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Samantha J Thomas
- Department of Neuroscience and Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10 Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Sung Hoon Yang
- Department of Neuroscience and Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10 Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Rachel E Cain
- Department of Neuroscience and Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10 Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Matthew B Dalva
- Department of Neuroscience and Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10 Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
- Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, 202 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA 70124, USA
| |
Collapse
|
2
|
Yousefian-Jazi A, Kim S, Chu J, Choi SH, Nguyen PTT, Park U, Kim MG, Hwang H, Lee K, Kim Y, Hyeon SJ, Rhim H, Ryu HL, Lim G, Stein TD, Lim K, Ryu H, Lee J. Loss of MEF2C function by enhancer mutation leads to neuronal mitochondria dysfunction and motor deficits in mice. Mol Neurodegener 2025; 20:16. [PMID: 39920775 PMCID: PMC11806887 DOI: 10.1186/s13024-024-00792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/20/2024] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the loss of both upper and lower motor neurons, leading to progressive paralysis. Both genetic alterations and epigenetic modifications contribute to neuronal dysfunction in the pathogenesis of ALS. However, the mechanism behind genetic mutations in the non-coding region of genes that affect epigenetic modifications remains unclear. METHODS Convolutional neural network was used to identify an ALS-associated SNP located in the intronic region of MEF2C (rs304152), residing in a putative enhancer element. To examine the alteration of MEF2C transcription by the SNP, we generated HEK293T cells carrying the major or minor allele by CRISPR-Cas9. To verify the role of MEF2C-knockdown (MEF2C-KD) in mice, we developed AAV expressing shRNA for MEF2C based on AAV-U6 promoter vector. Neuropathological alterations of MEF2C-KD mice with mitochondrial dysfunction and motor neuronal damage were observed by confocal microscopy and transmission electron microscope (TEM). Behavioral changes of mice were examined through longitudinal study by tail suspension, inverted grid test and automated gait analysis. RESULTS Here, we show that enhancer mutation of MEF2C reduces own gene expression and consequently impairs mitochondrial function in motor neurons. MEF2C localizes and binds to the mitochondria DNA, and directly modulates mitochondria-encoded gene expression. CRISPR/Cas-9-induced mutation of the MEF2C enhancer decreases expression of mitochondria-encoded genes. Moreover, MEF2C mutant cells show reduction of mitochondrial membrane potential, ATP level but elevation of oxidative stress. MEF2C deficiency in the upper and lower motor neurons of mice impairs mitochondria-encoded genes, and leads to mitochondrial metabolic disruption and progressive motor behavioral deficits. CONCLUSIONS Together, MEF2C dysregulation by the enhancer mutation leads to mitochondrial dysfunction and oxidative stress, which are prevalent features in motor neuronal damage and ALS pathogenesis. This genetic and epigenetic crosstalk mechanism provides insights for advancing our understanding of motor neuron disease and developing effective treatments.
Collapse
Affiliation(s)
- Ali Yousefian-Jazi
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Suhyun Kim
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jiyeon Chu
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Seung-Hye Choi
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Phuong Thi Thanh Nguyen
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Uiyeol Park
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea
| | - Min-Gyeong Kim
- KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hongik Hwang
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kyungeun Lee
- Advanced Analysis Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yeyun Kim
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Seung Jae Hyeon
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyewhon Rhim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hannah L Ryu
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Grewo Lim
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Kayeong Lim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hoon Ryu
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Junghee Lee
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
- VA Boston Healthcare System, Boston, MA, 02130, USA.
| |
Collapse
|
3
|
Anderson MC, Dharmasri PA, Damenti M, Metzbower SR, Laghaei R, Blanpied TA, Levy AD. Trans-synaptic molecular context of NMDA receptor nanodomains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.22.573055. [PMID: 38187545 PMCID: PMC10769418 DOI: 10.1101/2023.12.22.573055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tight coordination of the spatial relationships between protein complexes is required for cellular function. In neuronal synapses, many proteins responsible for neurotransmission organize into subsynaptic nanoclusters whose trans-cellular alignment modulates synaptic signal propagation. However, the spatial relationships between these proteins and NMDA receptors (NMDARs), which are required for learning and memory, remain undefined. Here, we mapped the relationship of key NMDAR subunits to reference proteins in the active zone and postsynaptic density using multiplexed super-resolution DNA-PAINT microscopy. GluN2A and GluN2B subunits formed nanoclusters with diverse configurations that, surprisingly, were not localized near presynaptic vesicle release sites marked by Munc13-1. Despite this, we found a subset of release sites was enriched with NMDARs, and modeling of glutamate release and receptor activation in measured synapses indicated this nanotopography promotes NMDAR activation. This subset of release sites was internally denser with Munc13-1, aligned with abundant PSD-95, and associated closely with specific NMDAR nanodomains. Further, NMDAR activation drove rapid reorganization of this release site/receptor relationship, suggesting a structural mechanism for tuning NMDAR-mediated synaptic transmission. This work reveals a new principle regulating NMDAR signaling and suggests that synaptic functional architecture depends on the assembly of and trans-cellular spatial relationships between multiprotein nanodomains.
Collapse
Affiliation(s)
- Michael C Anderson
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Poorna A Dharmasri
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Current address: Nikon Instruments Inc, Melville, NY, USA
| | - Martina Damenti
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah R Metzbower
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Current address: Nikon Instruments Inc, Melville, NY, USA
| | - Rozita Laghaei
- Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Thomas A Blanpied
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aaron D Levy
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Micheva KD, Simhal AK, Schardt J, Smith SJ, Weinberg RJ, Owen SF. Data-driven synapse classification reveals a logic of glutamate receptor diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.11.628056. [PMID: 39713368 PMCID: PMC11661198 DOI: 10.1101/2024.12.11.628056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The rich diversity of synapses facilitates the capacity of neural circuits to transmit, process and store information. We used multiplex super-resolution proteometric imaging through array tomography to define features of single synapses in mouse neocortex. We find that glutamatergic synapses cluster into subclasses that parallel the distinct biochemical and functional categories of receptor subunits: GluA1/4, GluA2/3 and GluN1/GluN2B. Two of these subclasses align with physiological expectations based on synaptic plasticity: large AMPAR-rich synapses may represent potentiated synapses, whereas small NMDAR-rich synapses suggest "silent" synapses. The NMDA receptor content of large synapses correlates with spine neck diameter, and thus the potential for coupling to the parent dendrite. Overall, ultrastructural features predict receptor content of synapses better than parent neuron identity does, suggesting synapse subclasses act as fundamental elements of neuronal circuits. No barriers prevent future generalization of this approach to other species, or to study of human disorders and therapeutics.
Collapse
Affiliation(s)
- Kristina D. Micheva
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Anish K. Simhal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jenna Schardt
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Stephen J Smith
- Allen Institute for Brain Science, Seattle, WA 98109
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Richard J. Weinberg
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27514
| | - Scott F. Owen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
- Lead contact
| |
Collapse
|
5
|
Wang JZ, Hu P, Ma S. Mechanisms of stationary voltage fluctuation in the neuromuscular junction endplate and corresponding denoising paradigms. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:299-310. [PMID: 39009693 DOI: 10.1007/s00249-024-01715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/24/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024]
Abstract
The neuromuscular junction (NMJ) has an elaborate anatomy to ensure agile and accurate signal transmission. Based on our formerly obtained expressions of the thermal and conductance induced voltage fluctuations, in this paper, the mechanisms underlying the conductance-induced voltage fluctuation are characterized from two aspects: the scaling laws with respect to either of the two system-size factors, the number of receptors or the membrane area; and the "seesaw effect" with respect to the intensive parameter, the concentration of acetylcholine. According to these mechanisms, several aspects of the NMJ anatomy are explained from a denoising perspective. Finally, the power spectra of the two types of voltage fluctuations are characterized by their specific scaling laws, based on which we explain why the endplate noise has the low-frequency property that is described by the term "seashell sound".
Collapse
Affiliation(s)
- Jia-Zeng Wang
- School of Mathematics and Statistics, Beijing Technology and Business University, Beijing , 100048, PR China.
- Research Center for Statistical Science, Beijing Technology and Business University, Beijing, 100048, PR China.
| | - Pengkun Hu
- School of Mathematics and Statistics, Beijing Technology and Business University, Beijing , 100048, PR China
| | - Shu Ma
- School of Mathematics and Statistics, Beijing Technology and Business University, Beijing , 100048, PR China
| |
Collapse
|
6
|
Yousefian-Jazi A, Kim S, Choi SH, Chu J, Nguyen PTT, Park U, Lim K, Hwang H, Lee K, Kim Y, Hyeon SJ, Rhim H, Ryu HL, Lim G, Stein TD, Ryu H, Lee J. Loss of MEF2C function by enhancer mutation leads to neuronal mitochondria dysfunction and motor deficits in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603186. [PMID: 39071309 PMCID: PMC11275751 DOI: 10.1101/2024.07.15.603186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Genetic changes and epigenetic modifications are associated with neuronal dysfunction in the pathogenesis of neurodegenerative disorders. However, the mechanism behind genetic mutations in the non-coding region of genes that affect epigenetic modifications remains unclear. Here, we identified an ALS-associated SNP located in the intronic region of MEF2C (rs304152), residing in a putative enhancer element, using convolutional neural network. The enhancer mutation of MEF2C reduces own gene expression and consequently impairs mitochondrial function in motor neurons. MEF2C localizes and binds to the mitochondria DNA, and directly modulates mitochondria-encoded gene expression. CRISPR/Cas-9-induced mutation of the MEF2C enhancer decreases expression of mitochondria-encoded genes. Moreover, MEF2C mutant cells show reduction of mitochondrial membrane potential, ATP level but elevation of oxidative stress. MEF2C deficiency in the upper and lower motor neurons of mice impairs mitochondria-encoded genes, and leads to mitochondrial metabolic disruption and progressive motor behavioral deficits. Together, MEF2C dysregulation by the enhancer mutation leads to mitochondrial dysfunction and oxidative stress, which are prevalent features in motor neuronal damage and ALS pathogenesis. This genetic and epigenetic crosstalk mechanism provides insights for advancing our understanding of motor neuron disease and developing effective treatments.
Collapse
|
7
|
Vega-Rivera NM, González-Trujano ME, Luna-Angula A, Sánchez-Chapul L, Estrada-Camarena E. Antidepressant-like effects of the Punica granatum and citalopram combination are associated with structural changes in dendritic spines of granule cells in the dentate gyrus of rats. Front Pharmacol 2023; 14:1211663. [PMID: 37900157 PMCID: PMC10613096 DOI: 10.3389/fphar.2023.1211663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/31/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: Natural products such as phytoestrogens-enriched foods or supplements have been considered as an alternative therapy to reduce depressive symptoms associated with menopause. It is known that the aqueous extract of Punica granatum (AE-PG) exerts antidepressant-like effects by activating β-estrogen receptors and facilitates the antidepressant response of the clinical drug citalopram (CIT). However, the effects on neuroplasticity are unknown. Objectvie investigated the antidepressant-like response of combining AE-PG and CIT at sub-optimal doses, analyzing their effects on the formation and maturation of dendrite spines in granule cells as well as on the dendrite complexity. Methods: Ovariectomized Wistar rats (3-month-old) were randomly assigned to one of the following groups: A) control (saline solution as vehicle of CIT and AE-PG, B) AE-PG at a sub-threshold dose (vehicle of CIT plus AE-PG at 0.125 mg/kg), C) CIT at a sub-threshold dose (0.77 mg/kg plus vehicle of AE-PG), and D) a combination of CIT plus AE-PG (0.125 mg/kg and 0.77 mg/kg, respectively). All rats were treated intraperitoneally for 14 days. Antidepressant-like effects were evaluated using the force swimming test test (FST). The complexity of dendrites and the number and morphology of dendrite spines of neurons were assessed in the dentate gyrus after Golgi-Cox impregnation. The expressions of the mature brain-derived neurotrophic factor (mBDNF) in plasma and of mBDNF and synaptophysin in the hippocampus, as markers of synaptogenesis, were also determined. Results: Administration of CIT combined with AE-PG, but not alone, induced a significant antidepressant-like effect in the FST with an increase in the dendritic complexity and the number of dendritic spines in the dentate gyrus (DG) of the hippocampus, revealed by the thin and stubby categories of neurons at the granular cell layer. At the same time, an increase of mBDNF and synaptophysin expression was observed in the hippocampus of rats that received the combination of AE-PG and CIT.
Collapse
Affiliation(s)
- Nelly-Maritza Vega-Rivera
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Alexandra Luna-Angula
- Laboratorio de Enfermedades Neuromusculares, División de Neurociencias Clínicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Laura Sánchez-Chapul
- Laboratorio de Enfermedades Neuromusculares, División de Neurociencias Clínicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Erika Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| |
Collapse
|
8
|
Rodrigues YE, Tigaret CM, Marie H, O'Donnell C, Veltz R. A stochastic model of hippocampal synaptic plasticity with geometrical readout of enzyme dynamics. eLife 2023; 12:e80152. [PMID: 37589251 PMCID: PMC10435238 DOI: 10.7554/elife.80152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/22/2023] [Indexed: 08/18/2023] Open
Abstract
Discovering the rules of synaptic plasticity is an important step for understanding brain learning. Existing plasticity models are either (1) top-down and interpretable, but not flexible enough to account for experimental data, or (2) bottom-up and biologically realistic, but too intricate to interpret and hard to fit to data. To avoid the shortcomings of these approaches, we present a new plasticity rule based on a geometrical readout mechanism that flexibly maps synaptic enzyme dynamics to predict plasticity outcomes. We apply this readout to a multi-timescale model of hippocampal synaptic plasticity induction that includes electrical dynamics, calcium, CaMKII and calcineurin, and accurate representation of intrinsic noise sources. Using a single set of model parameters, we demonstrate the robustness of this plasticity rule by reproducing nine published ex vivo experiments covering various spike-timing and frequency-dependent plasticity induction protocols, animal ages, and experimental conditions. Our model also predicts that in vivo-like spike timing irregularity strongly shapes plasticity outcome. This geometrical readout modelling approach can be readily applied to other excitatory or inhibitory synapses to discover their synaptic plasticity rules.
Collapse
Affiliation(s)
- Yuri Elias Rodrigues
- Université Côte d’AzurNiceFrance
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRSValbonneFrance
- Inria Center of University Côte d’Azur (Inria)Sophia AntipolisFrance
| | - Cezar M Tigaret
- Neuroscience and Mental Health Research Innovation Institute, Division of Psychological Medicine and Clinical Neurosciences,School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Hélène Marie
- Université Côte d’AzurNiceFrance
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRSValbonneFrance
| | - Cian O'Donnell
- School of Computing, Engineering, and Intelligent Systems, Magee Campus, Ulster UniversityLondonderryUnited Kingdom
- School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, University of BristolBristolUnited Kingdom
| | - Romain Veltz
- Inria Center of University Côte d’Azur (Inria)Sophia AntipolisFrance
| |
Collapse
|
9
|
Bod R, Tóth K, Essam N, Tóth EZ, Erõss L, Entz L, Bagó AG, Fabó D, Ulbert I, Wittner L. Synaptic alterations and neuronal firing in human epileptic neocortical excitatory networks. Front Synaptic Neurosci 2023; 15:1233569. [PMID: 37635750 PMCID: PMC10450510 DOI: 10.3389/fnsyn.2023.1233569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Epilepsy is a prevalent neurological condition, with underlying neuronal mechanisms involving hyperexcitability and hypersynchrony. Imbalance between excitatory and inhibitory circuits, as well as histological reorganization are relatively well-documented in animal models or even in the human hippocampus, but less is known about human neocortical epileptic activity. Our knowledge about changes in the excitatory signaling is especially scarce, compared to that about the inhibitory cell population. This study investigated the firing properties of single neurons in the human neocortex in vitro, during pharmacological blockade of glutamate receptors, and additionally evaluated anatomical changes in the excitatory circuit in tissue samples from epileptic and non-epileptic patients. Both epileptic and non-epileptic tissues exhibited spontaneous population activity (SPA), NMDA receptor antagonization reduced SPA recurrence only in epileptic tissue, whereas further blockade of AMPA/kainate receptors reversibly abolished SPA emergence regardless of epilepsy. Firing rates did not significantly change in excitatory principal cells and inhibitory interneurons during pharmacological experiments. Granular layer (L4) neurons showed an increased firing rate in epileptic compared to non-epileptic tissue. The burstiness of neurons remained unchanged, except for that of inhibitory cells in epileptic recordings, which decreased during blockade of glutamate receptors. Crosscorrelograms computed from single neuron discharge revealed both mono- and polysynaptic connections, particularly involving intrinsically bursting principal cells. Histological investigations found similar densities of SMI-32-immunopositive long-range projecting pyramidal cells in both groups, and shorter excitatory synaptic active zones with a higher proportion of perforated synapses in the epileptic group. These findings provide insights into epileptic modifications from the perspective of the excitatory system and highlight discrete alterations in firing patterns and synaptic structure. Our data suggest that NMDA-dependent glutamatergic signaling, as well as the excitatory synaptic machinery are perturbed in epilepsy, which might contribute to epileptic activity in the human neocortex.
Collapse
Affiliation(s)
- Réka Bod
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Kinga Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Nour Essam
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Estilla Zsófia Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Loránd Erõss
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - László Entz
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Attila G. Bagó
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Dániel Fabó
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| |
Collapse
|
10
|
Villanueva CB, Stephensen HJT, Mokso R, Benraiss A, Sporring J, Goldman SA. Astrocytic engagement of the corticostriatal synaptic cleft is disrupted in a mouse model of Huntington's disease. Proc Natl Acad Sci U S A 2023; 120:e2210719120. [PMID: 37279261 PMCID: PMC10268590 DOI: 10.1073/pnas.2210719120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
Astroglial dysfunction contributes to the pathogenesis of Huntington's disease (HD), and glial replacement can ameliorate the disease course. To establish the topographic relationship of diseased astrocytes to medium spiny neuron (MSN) synapses in HD, we used 2-photon imaging to map the relationship of turboRFP-tagged striatal astrocytes and rabies-traced, EGFP-tagged coupled neuronal pairs in R6/2 HD and wild-type (WT) mice. The tagged, prospectively identified corticostriatal synapses were then studied by correlated light electron microscopy followed by serial block-face scanning EM, allowing nanometer-scale assessment of synaptic structure in 3D. By this means, we compared the astrocytic engagement of single striatal synapses in HD and WT brains. R6/2 HD astrocytes exhibited constricted domains, with significantly less coverage of mature dendritic spines than WT astrocytes, despite enhanced engagement of immature, thin spines. These data suggest that disease-dependent changes in the astroglial engagement and sequestration of MSN synapses enable the high synaptic and extrasynaptic levels of glutamate and K+ that underlie striatal hyperexcitability in HD. As such, these data suggest that astrocytic structural pathology may causally contribute to the synaptic dysfunction and disease phenotype of those neurodegenerative disorders characterized by network overexcitation.
Collapse
Affiliation(s)
- Carlos Benitez Villanueva
- Center for Translational Neuromedicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen N2200, Denmark
| | - Hans J. T. Stephensen
- Center for Translational Neuromedicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen N2200, Denmark
- Department of Computer Science, University of Copenhagen, Faculty of Science, Copenhagen N2200, Denmark
| | - Rajmund Mokso
- Faculty of Engineering, Division of Solid Mechanics, Lund University, Lund22100, Sweden
| | - Abdellatif Benraiss
- Center for Translational Neuroscience, Department of Neurology, University of Rochester Medical Center, Rochester, NY14642
| | - Jon Sporring
- Department of Computer Science, University of Copenhagen, Faculty of Science, Copenhagen N2200, Denmark
| | - Steven A. Goldman
- Center for Translational Neuromedicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen N2200, Denmark
- Center for Translational Neuroscience, Department of Neurology, University of Rochester Medical Center, Rochester, NY14642
| |
Collapse
|
11
|
Droogers WJ, MacGillavry HD. Plasticity of postsynaptic nanostructure. Mol Cell Neurosci 2023; 124:103819. [PMID: 36720293 DOI: 10.1016/j.mcn.2023.103819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The postsynaptic density (PSD) of excitatory synapses is built from a wide variety of scaffolding proteins, receptors, and signaling molecules that collectively orchestrate synaptic transmission. Seminal work over the past decades has led to the identification and functional characterization of many PSD components. In contrast, we know far less about how these constituents are assembled within synapses, and how this organization contributes to synapse function. Notably, recent evidence from high-resolution microscopy studies and in silico models, highlights the importance of the precise subsynaptic structure of the PSD for controlling the strength of synaptic transmission. Even further, activity-driven changes in the distribution of glutamate receptors are acknowledged to contribute to long-term changes in synaptic efficacy. Thus, defining the mechanisms that drive structural changes within the PSD are important for a molecular understanding of synaptic transmission and plasticity. Here, we review the current literature on how the PSD is organized to mediate basal synaptic transmission and how synaptic activity alters the nanoscale organization of synapses to sustain changes in synaptic strength.
Collapse
Affiliation(s)
- W J Droogers
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, The Netherlands
| | - H D MacGillavry
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, The Netherlands.
| |
Collapse
|
12
|
Steffen DM, Hanes CM, Mah KM, Valiño Ramos P, Bosch PJ, Hinz DC, Radley JJ, Burgess RW, Garrett AM, Weiner JA. A Unique Role for Protocadherin γC3 in Promoting Dendrite Arborization through an Axin1-Dependent Mechanism. J Neurosci 2023; 43:918-935. [PMID: 36604170 PMCID: PMC9908324 DOI: 10.1523/jneurosci.0729-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/30/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
The establishment of a functional cerebral cortex depends on the proper execution of multiple developmental steps, culminating in dendritic and axonal outgrowth and the formation and maturation of synaptic connections. Dysregulation of these processes can result in improper neuronal connectivity, including that associated with various neurodevelopmental disorders. The γ-Protocadherins (γ-Pcdhs), a family of 22 distinct cell adhesion molecules that share a C-terminal cytoplasmic domain, are involved in multiple aspects of neurodevelopment including neuronal survival, dendrite arborization, and synapse development. The extent to which individual γ-Pcdh family members play unique versus common roles remains unclear. We demonstrated previously that the γ-Pcdh-C3 isoform (γC3), via its unique "variable" cytoplasmic domain (VCD), interacts in cultured cells with Axin1, a Wnt-pathway scaffold protein that regulates the differentiation and morphology of neurons. Here, we confirm that γC3 and Axin1 interact in the cortex in vivo and show that both male and female mice specifically lacking γC3 exhibit disrupted Axin1 localization to synaptic fractions, without obvious changes in dendritic spine density or morphology. However, both male and female γC3 knock-out mice exhibit severely decreased dendritic complexity of cortical pyramidal neurons that is not observed in mouse lines lacking several other γ-Pcdh isoforms. Combining knock-out with rescue constructs in cultured cortical neurons pooled from both male and female mice, we show that γC3 promotes dendritic arborization through an Axin1-dependent mechanism mediated through its VCD. Together, these data identify a novel mechanism through which γC3 uniquely regulates the formation of cortical circuitry.SIGNIFICANCE STATEMENT The complexity of a neuron's dendritic arbor is critical for its function. We showed previously that the γ-Protocadherin (γ-Pcdh) family of 22 cell adhesion molecules promotes arborization during development; it remained unclear whether individual family members played unique roles. Here, we show that one γ-Pcdh isoform, γC3, interacts in the brain with Axin1, a scaffolding protein known to influence dendrite development. A CRISPR/Cas9-generated mutant mouse line lacking γC3 (but not lines lacking other γ-Pcdhs) exhibits severely reduced dendritic complexity of cerebral cortex neurons. Using cultured γC3 knock-out neurons and a variety of rescue constructs, we confirm that the γC3 cytoplasmic domain promotes arborization through an Axin1-dependent mechanism. Thus, γ-Pcdh isoforms are not interchangeable, but rather can play unique neurodevelopmental roles.
Collapse
Affiliation(s)
- David M Steffen
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Camille M Hanes
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Paula Valiño Ramos
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Peter J Bosch
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Dalton C Hinz
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Jason J Radley
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | | | - Andrew M Garrett
- Department of Pharmacology and Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, Michigan 48202
| | - Joshua A Weiner
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
13
|
KASAI H. Unraveling the mysteries of dendritic spine dynamics: Five key principles shaping memory and cognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:254-305. [PMID: 37821392 PMCID: PMC10749395 DOI: 10.2183/pjab.99.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/11/2023] [Indexed: 10/13/2023]
Abstract
Recent research extends our understanding of brain processes beyond just action potentials and chemical transmissions within neural circuits, emphasizing the mechanical forces generated by excitatory synapses on dendritic spines to modulate presynaptic function. From in vivo and in vitro studies, we outline five central principles of synaptic mechanics in brain function: P1: Stability - Underpinning the integral relationship between the structure and function of the spine synapses. P2: Extrinsic dynamics - Highlighting synapse-selective structural plasticity which plays a crucial role in Hebbian associative learning, distinct from pathway-selective long-term potentiation (LTP) and depression (LTD). P3: Neuromodulation - Analyzing the role of G-protein-coupled receptors, particularly dopamine receptors, in time-sensitive modulation of associative learning frameworks such as Pavlovian classical conditioning and Thorndike's reinforcement learning (RL). P4: Instability - Addressing the intrinsic dynamics crucial to memory management during continual learning, spotlighting their role in "spine dysgenesis" associated with mental disorders. P5: Mechanics - Exploring how synaptic mechanics influence both sides of synapses to establish structural traces of short- and long-term memory, thereby aiding the integration of mental functions. We also delve into the historical background and foresee impending challenges.
Collapse
Affiliation(s)
- Haruo KASAI
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
14
|
Dürst CD, Wiegert JS, Schulze C, Helassa N, Török K, Oertner TG. Vesicular release probability sets the strength of individual Schaffer collateral synapses. Nat Commun 2022; 13:6126. [PMID: 36253353 PMCID: PMC9576736 DOI: 10.1038/s41467-022-33565-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 09/22/2022] [Indexed: 12/24/2022] Open
Abstract
Information processing in the brain is controlled by quantal release of neurotransmitters, a tightly regulated process. From ultrastructural analysis, it is known that presynaptic boutons along single axons differ in the number of vesicles docked at the active zone. It is not clear whether the probability of these vesicles to get released (pves) is homogenous or also varies between individual boutons. Here, we optically measure evoked transmitter release at individual Schaffer collateral synapses at different calcium concentrations, using the genetically encoded glutamate sensor iGluSnFR. Fitting a binomial model to measured response amplitude distributions allowed us to extract the quantal parameters N, pves, and q. We find that Schaffer collateral boutons typically release single vesicles under low pves conditions and switch to multivesicular release in high calcium saline. The potency of individual boutons is highly correlated with their vesicular release probability while the number of releasable vesicles affects synaptic output only under high pves conditions.
Collapse
Affiliation(s)
- Céline D Dürst
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg (ZMNH), 20251, Hamburg, Germany
- Department of Basic Neurosciences, Center for Neurosciences (CMU), University of Geneva, 1211, Geneva, Switzerland
| | - J Simon Wiegert
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg (ZMNH), 20251, Hamburg, Germany
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg (ZMNH), 20251, Hamburg, Germany
| | - Christian Schulze
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg (ZMNH), 20251, Hamburg, Germany
| | - Nordine Helassa
- Cell Biology and Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, SW17 0RE, UK
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Katalin Török
- Cell Biology and Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, SW17 0RE, UK
| | - Thomas G Oertner
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg (ZMNH), 20251, Hamburg, Germany.
| |
Collapse
|
15
|
Argunşah AÖ, Erdil E, Ghani MU, Ramiro-Cortés Y, Hobbiss AF, Karayannis T, Çetin M, Israely I, Ünay D. An interactive time series image analysis software for dendritic spines. Sci Rep 2022; 12:12405. [PMID: 35859092 PMCID: PMC9300710 DOI: 10.1038/s41598-022-16137-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
Live fluorescence imaging has demonstrated the dynamic nature of dendritic spines, with changes in shape occurring both during development and in response to activity. The structure of a dendritic spine correlates with its functional efficacy. Learning and memory studies have shown that a great deal of the information stored by a neuron is contained in the synapses. High precision tracking of synaptic structures can give hints about the dynamic nature of memory and help us understand how memories evolve both in biological and artificial neural networks. Experiments that aim to investigate the dynamics behind the structural changes of dendritic spines require the collection and analysis of large time-series datasets. In this paper, we present an open-source software called SpineS for automatic longitudinal structural analysis of dendritic spines with additional features for manual intervention to ensure optimal analysis. We have tested the algorithm on in-vitro, in-vivo, and simulated datasets to demonstrate its performance in a wide range of possible experimental scenarios.
Collapse
Affiliation(s)
- Ali Özgür Argunşah
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal. .,Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zürich, Zürich, Switzerland. .,UZH/ETH Zürich, Neuroscience Center Zurich (ZNZ), Zürich, Switzerland.
| | - Ertunç Erdil
- ETH Zürich, Computer Vision Laboratory, Zürich, Switzerland
| | - Muhammad Usman Ghani
- Department of Electrical and Computer Engineering, Boston University, Boston, 02215, MA, USA
| | - Yazmín Ramiro-Cortés
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal.,Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, C.P. 04510, Mexico
| | - Anna F Hobbiss
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Theofanis Karayannis
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zürich, Zürich, Switzerland.,UZH/ETH Zürich, Neuroscience Center Zurich (ZNZ), Zürich, Switzerland
| | - Müjdat Çetin
- Department of Electrical and Computer Engineering, Goergen Institute for Data Science, University of Rochester, Rochester, 14627, NY, USA
| | - Inbal Israely
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal.,Department of Pathology and Cell Biology, Columbia University, New York, 10032, NY, USA
| | - Devrim Ünay
- Department of Biomedical Engineering, İzmir University of Economics, İzmir, Turkey. .,Department of Electrical and Electronics Engineering, İzmir Democracy University, İzmir, Turkey.
| |
Collapse
|
16
|
Contreras D, Piña R, Carvallo C, Godoy F, Ugarte G, Zeise M, Rozas C, Morales B. Methylphenidate Restores Behavioral and Neuroplasticity Impairments in the Prenatal Nicotine Exposure Mouse Model of ADHD: Evidence for Involvement of AMPA Receptor Subunit Composition and Synaptic Spine Morphology in the Hippocampus. Int J Mol Sci 2022; 23:ijms23137099. [PMID: 35806103 PMCID: PMC9266648 DOI: 10.3390/ijms23137099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
In ADHD treatment, methylphenidate (MPH) is the most frequently used medication. The present work provides evidence that MPH restored behavioral impairments and neuroplasticity due to changes in AMPAR subunit composition and distribution, as well as maturation of dendritic spines, in a prenatal nicotine exposure (PNE) ADHD mouse model. PNE animals and controls were given a single oral dose of MPH (1 mg/kg), and their behavior was tested for attention, hyperactivity, and working memory. Long-term potentiation (LTP) was induced and analyzed at the CA3/CA1 synapse in hippocampal slices taken from the same animals tested behaviorally, measuring fEPSPs and whole-cell patch-clamp EPSCs. By applying crosslinking and Western blots, we estimated the LTP effects on AMPAR subunit composition and distribution. The density and types of dendritic spines were quantified by using the Golgi staining method. MPH completely restored the behavioral impairments of PNE mice. Reduced LTP and AMPA-receptor-mediated EPSCs were also restored. EPSC amplitudes were tightly correlated with numbers of GluA1/GluA1 AMPA receptors at the cell surface. Finally, we found a lower density of dendritic spines in hippocampal pyramidal neurons in PNE mice, with a higher fraction of thin-type immature spines and a lower fraction of mushroom mature spines; the latter effect was also reversed by MPH.
Collapse
Affiliation(s)
- Darwin Contreras
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Alameda 3363, Santiago 9170022, Chile; (D.C.); (F.G.); (G.U.)
| | - Ricardo Piña
- Departamento de Biología, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile;
- Departamento de Ciencias Pedagógicas, Facultad de Educación, Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Claudia Carvallo
- Centro de investigación e innovación en Gerontología Aplicada (CIGAP), Facultad de Salud, Universidad Santo Tomás, Santiago 8370003, Chile;
| | - Felipe Godoy
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Alameda 3363, Santiago 9170022, Chile; (D.C.); (F.G.); (G.U.)
| | - Gonzalo Ugarte
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Alameda 3363, Santiago 9170022, Chile; (D.C.); (F.G.); (G.U.)
| | - Marc Zeise
- School of Psychology, Faculty of Humanities, University of Santiago de Chile, Santiago 9170022, Chile;
| | - Carlos Rozas
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Alameda 3363, Santiago 9170022, Chile; (D.C.); (F.G.); (G.U.)
- Correspondence: (C.R.); (B.M.)
| | - Bernardo Morales
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Alameda 3363, Santiago 9170022, Chile; (D.C.); (F.G.); (G.U.)
- Correspondence: (C.R.); (B.M.)
| |
Collapse
|
17
|
Kietzman HW, Shapiro LP, Trinoskey-Rice G, Gourley SL. Cell adhesion presence during adolescence controls the architecture of projection-defined prefrontal cortical neurons and reward-related action strategies later in life. Dev Cogn Neurosci 2022; 54:101097. [PMID: 35325840 PMCID: PMC8938620 DOI: 10.1016/j.dcn.2022.101097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 01/17/2023] Open
Abstract
Adolescent brain development is characterized by neuronal remodeling in the prefrontal cortex; relationships with behavior are largely undefined. Integrins are cell adhesion factors that link the extracellular matrix with intracellular actin cytoskeleton. We find that β1-integrin presence in the prelimbic prefrontal cortex (PL) during adolescence, but not adulthood, is necessary for mice to select actions based on reward likelihood and value. As such, adult mice that lacked β1-integrin during adolescence failed to modify response strategies when rewards lost value or failed to be delivered. This pattern suggests that β1-integrin-mediated neuronal development is necessary for PL function in adulthood. We next visualized adolescent PL neurons, including those receiving input from the basolateral amygdala (BLA) - thought to signal salience - and projecting to the dorsomedial striatum (DMS) - the striatal output by which the PL controls goal-seeking behavior. Firstly, we found that these projection-defined neurons had a distinct morphology relative to general layer V PL neurons. Secondly, β1-integrin loss triggered the overexpression of stubby-type dendritic spines at the expense of mature spines, including on projection-defined neurons. This phenotype was not observed when β1-integrins were silenced before or after adolescence. Altogether, our experiments localize β1-integrin-mediated cell adhesion within a developing di-synaptic circuit coordinating adaptive action.
Collapse
Affiliation(s)
- Henry W Kietzman
- Medical Scientist Training Program, Emory University School of Medicine, United States; Departments of Pediatrics and Psychiatry, Emory University School of Medicine, United States; Graduate Program in Neuroscience, Emory University, United States; Yerkes National Primate Research Center, Emory University, United States
| | - Lauren P Shapiro
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, United States; Yerkes National Primate Research Center, Emory University, United States; Graduate Program in Molecular and Systems Pharmacology, Emory University, United States
| | - Gracy Trinoskey-Rice
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, United States; Yerkes National Primate Research Center, Emory University, United States
| | - Shannon L Gourley
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, United States; Graduate Program in Neuroscience, Emory University, United States; Yerkes National Primate Research Center, Emory University, United States; Graduate Program in Molecular and Systems Pharmacology, Emory University, United States; Children's Healthcare of Atlanta, United States.
| |
Collapse
|
18
|
Kellner S, Abbasi A, Carmi I, Heinrich R, Garin-Shkolnik T, Hershkovitz T, Giladi M, Haitin Y, Johannesen KM, Steensbjerre Møller R, Berlin S. Two de novo GluN2B mutations affect multiple NMDAR-functions and instigate severe pediatric encephalopathy. eLife 2021; 10:67555. [PMID: 34212862 PMCID: PMC8260228 DOI: 10.7554/elife.67555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/27/2021] [Indexed: 12/15/2022] Open
Abstract
The N-methyl-D-aspartate receptors (NMDARs; GluNRS) are glutamate receptors, commonly located at excitatory synapses. Mutations affecting receptor function often lead to devastating neurodevelopmental disorders. We have identified two toddlers with different heterozygous missense mutations of the same, and highly conserved, glycine residue located in the ligand-binding-domain of GRIN2B: G689C and G689S. Structure simulations suggest severely impaired glutamate binding, which we confirm by functional analysis. Both variants show three orders of magnitude reductions in glutamate EC50, with G689S exhibiting the largest reductions observed for GRIN2B (~2000-fold). Moreover, variants multimerize with, and upregulate, GluN2Bwt-subunits, thus engendering a strong dominant-negative effect on mixed channels. In neurons, overexpression of the variants instigates suppression of synaptic GluNRs. Lastly, while exploring spermine potentiation as a potential treatment, we discovered that the variants fail to respond due to G689’s novel role in proton-sensing. Together, we describe two unique variants with extreme effects on channel function. We employ protein-stability measures to explain why current (and future) LBD mutations in GluN2B primarily instigate Loss-of-Function.
Collapse
Affiliation(s)
- Shai Kellner
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Abeer Abbasi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ido Carmi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronit Heinrich
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | - Moshe Giladi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Treatment, the Danish Epilepsy Centre, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Rikke Steensbjerre Møller
- Department of Epilepsy Genetics and Personalized Treatment, the Danish Epilepsy Centre, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
19
|
The importance of ultrastructural analysis of memory. Brain Res Bull 2021; 173:28-36. [PMID: 33984429 DOI: 10.1016/j.brainresbull.2021.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/22/2022]
Abstract
Plasticity of glutamatergic synapses in the hippocampus is believed to underlie learning and memory processes. Surprisingly, very few studies report long-lasting structural changes of synapses induced by behavioral training. It remains, therefore, unclear which synaptic changes in the hippocampus contribute to memory storage. Here, we systematically compare how long-term potentiation of synaptic transmission (LTP) (a primary form of synaptic plasticity and cellular model of memory) and behavioral training affect hippocampal glutamatergic synapses at the ultrastructural level enabled by electron microscopy. The review of the literature indicates that while LTP induces growth of dendritic spines and post-synaptic densities (PSD), that represent postsynaptic part of a glutamatergic synapse, after behavioral training there is transient (< 6 h) synaptogenesis and long-lasting (> 24 h) increase in PSD volume (without a significant change of dendritic spine volume), indicating that training-induced PSD growth may reflect long-term enhancement of synaptic functions. Additionally, formation of multi-innervated spines (MIS), is associated with long-term memory in aged mice and LTP-deficient mutant mice. Since volume of PSD, as well as atypical synapses, can be reliably observed only with electron microscopy, we argue that the ultrastructural level of analysis is required to reveal synaptic changes that are associated with long-term storage of information in the brain.
Collapse
|
20
|
Dembitskaya Y, Gavrilov N, Kraev I, Doronin M, Tang Y, Li L, Semyanov A. Attenuation of the extracellular matrix increases the number of synapses but suppresses synaptic plasticity through upregulation of SK channels. Cell Calcium 2021; 96:102406. [PMID: 33848733 DOI: 10.1016/j.ceca.2021.102406] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 01/01/2023]
Abstract
The effect of brain extracellular matrix (ECM) on synaptic plasticity remains controversial. Here, we show that targeted enzymatic attenuation with chondroitinase ABC (ChABC) of ECM triggers the appearance of new glutamatergic synapses on hippocampal pyramidal neurons, thereby increasing the amplitude of field EPSPs while decreasing both the mean miniature EPSC amplitude and AMPA/NMDA ratio. Although the increased proportion of 'unpotentiated' synapses caused by ECM attenuation should promote long-term potentiation (LTP), surprisingly, LTP was suppressed. The upregulation of small conductance Ca2+-activated K+ (SK) channels decreased the excitability of pyramidal neurons, thereby suppressing LTP. A blockade of SK channels restored cell excitability and enhanced LTP; this enhancement was abolished by a blockade of Rho-associated protein kinase (ROCK), which is involved in the maturation of dendritic spines. Thus, targeting ECM elicits the appearance of new synapses, which can have potential applications in regenerative medicine. However, this process is compensated for by a reduction in postsynaptic neuron excitability, preventing network overexcitation at the expense of synaptic plasticity.
Collapse
Affiliation(s)
- Yulia Dembitskaya
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow, 117997, Russia
| | - Nikolay Gavrilov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK
| | - Maxim Doronin
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow, 117997, Russia
| | - Yong Tang
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Li
- Department of Physiology, Jiaxing University College of Medicine, Zhejiang, 314033 China
| | - Alexey Semyanov
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow, 117997, Russia; Department of Physiology, Jiaxing University College of Medicine, Zhejiang, 314033 China; Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Str 19с1, Moscow, 119146, Russia.
| |
Collapse
|
21
|
NMDA Receptors Enhance the Fidelity of Synaptic Integration. eNeuro 2021; 8:ENEURO.0396-20.2020. [PMID: 33468538 PMCID: PMC7932188 DOI: 10.1523/eneuro.0396-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022] Open
Abstract
Excitatory synaptic transmission in many neurons is mediated by two coexpressed ionotropic glutamate receptor subtypes, AMPA and NMDA receptors, that differ in kinetics, ion selectivity, and voltage-sensitivity. AMPA receptors have fast kinetics and are voltage-insensitive, while NMDA receptors have slower kinetics and increased conductance at depolarized membrane potentials. Here, we report that the voltage dependency and kinetics of NMDA receptors act synergistically to stabilize synaptic integration of EPSPs across spatial and voltage domains. Simulations of synaptic integration in simplified and morphologically realistic dendritic trees revealed that the combined presence of AMPA and NMDA conductances reduce the variability of somatic responses to spatiotemporal patterns of excitatory synaptic input presented at different initial membrane potentials and/or in different dendritic domains. This moderating effect of the NMDA conductance on synaptic integration was robust across a wide range of AMPA-to-NMDA ratios, and results from synergistic interaction of NMDA kinetics (which reduces variability across membrane potential) and voltage dependence (which favors stabilization across dendritic location). When combined with AMPA conductance, the NMDA conductance compensates for voltage-dependent and impedance-dependent changes in synaptic driving force, and distance-dependent attenuation of synaptic potentials arriving at the axon, to increase the fidelity of synaptic integration and EPSP-spike coupling across both neuron state (i.e., initial membrane potential) and dendritic location of synaptic input. Thus, synaptic NMDA receptors convey advantages for synaptic integration that are independent of, but fully compatible with, their importance for coincidence detection and synaptic plasticity.
Collapse
|
22
|
Energetics of stochastic BCM type synaptic plasticity and storing of accurate information. J Comput Neurosci 2021; 49:71-106. [PMID: 33528721 PMCID: PMC8046702 DOI: 10.1007/s10827-020-00775-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/04/2020] [Accepted: 12/13/2020] [Indexed: 11/10/2022]
Abstract
Excitatory synaptic signaling in cortical circuits is thought to be metabolically expensive. Two fundamental brain functions, learning and memory, are associated with long-term synaptic plasticity, but we know very little about energetics of these slow biophysical processes. This study investigates the energy requirement of information storing in plastic synapses for an extended version of BCM plasticity with a decay term, stochastic noise, and nonlinear dependence of neuron’s firing rate on synaptic current (adaptation). It is shown that synaptic weights in this model exhibit bistability. In order to analyze the system analytically, it is reduced to a simple dynamic mean-field for a population averaged plastic synaptic current. Next, using the concepts of nonequilibrium thermodynamics, we derive the energy rate (entropy production rate) for plastic synapses and a corresponding Fisher information for coding presynaptic input. That energy, which is of chemical origin, is primarily used for battling fluctuations in the synaptic weights and presynaptic firing rates, and it increases steeply with synaptic weights, and more uniformly though nonlinearly with presynaptic firing. At the onset of synaptic bistability, Fisher information and memory lifetime both increase sharply, by a few orders of magnitude, but the plasticity energy rate changes only mildly. This implies that a huge gain in the precision of stored information does not have to cost large amounts of metabolic energy, which suggests that synaptic information is not directly limited by energy consumption. Interestingly, for very weak synaptic noise, such a limit on synaptic coding accuracy is imposed instead by a derivative of the plasticity energy rate with respect to the mean presynaptic firing, and this relationship has a general character that is independent of the plasticity type. An estimate for primate neocortex reveals that a relative metabolic cost of BCM type synaptic plasticity, as a fraction of neuronal cost related to fast synaptic transmission and spiking, can vary from negligible to substantial, depending on the synaptic noise level and presynaptic firing.
Collapse
|
23
|
Heterosynaptic cross-talk of pre- and postsynaptic strengths along segments of dendrites. Cell Rep 2021; 34:108693. [PMID: 33503435 DOI: 10.1016/j.celrep.2021.108693] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/13/2020] [Accepted: 01/05/2021] [Indexed: 11/20/2022] Open
Abstract
Dendrites are crucial for integrating incoming synaptic information. Individual dendritic branches are thought to constitute a signal processing unit, yet how neighboring synapses shape the boundaries of functional dendritic units is not well understood. Here, we address the cellular basis underlying the organization of the strengths of neighboring Schaffer collateral-CA1 synapses by optical quantal analysis and spine size measurements. Inducing potentiation at clusters of spines produces NMDA-receptor-dependent heterosynaptic plasticity. The direction of postsynaptic strength change shows distance dependency to the stimulated synapses where proximal synapses predominantly depress, whereas distal synapses potentiate; potentiation and depression are regulated by CaMKII and calcineurin, respectively. In contrast, heterosynaptic presynaptic plasticity is confined to weakening of presynaptic strength of nearby synapses, which requires CaMKII and the retrograde messenger nitric oxide. Our findings highlight the parallel engagement of multiple signaling pathways, each with characteristic spatial dynamics in shaping the local pattern of synaptic strengths.
Collapse
|
24
|
Sabatini BL, Tian L. Imaging Neurotransmitter and Neuromodulator Dynamics In Vivo with Genetically Encoded Indicators. Neuron 2020; 108:17-32. [PMID: 33058762 DOI: 10.1016/j.neuron.2020.09.036] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
The actions of neuromodulation are thought to mediate the ability of the mammalian brain to dynamically adjust its functional state in response to changes in the environment. Altered neurotransmitter (NT) and neuromodulator (NM) signaling is central to the pathogenesis or treatment of many human neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, depression, and addiction. To reveal the precise mechanisms by which these neurochemicals regulate healthy and diseased neural circuitry, one needs to measure their spatiotemporal dynamics in the living brain with great precision. Here, we discuss recent development, optimization, and applications of optical approaches to measure the spatial and temporal profiles of NT and NM release in the brain using genetically encoded sensors for in vivo studies.
Collapse
Affiliation(s)
- Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - Lin Tian
- Departments of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
25
|
Chen Y, Kunath T, Simpson J, Homer N, Sylantyev S. Synaptic signalling in a network of dopamine neurons: what prevents proper intercellular crosstalk? FEBS Lett 2020; 594:3272-3292. [PMID: 33073864 DOI: 10.1002/1873-3468.13910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 01/09/2023]
Abstract
Human embryonic stem cell (hESC)-derived midbrain dopamine (DA) neurons stand out as a cell source for transplantation with their sustainability and consistency superior to the formerly used fetal tissues. However, multiple studies of DA neurons in culture failed to register action potential (AP) generation upon synaptic input. To test whether this is due to deficiency of NMDA receptor (NMDAR) coagonists released from astroglia, we studied the functional properties of neural receptors in hESC-derived DA neuronal cultures. We find that, apart from an insufficient amount of coagonists, lack of interneuronal crosstalk is caused by hypofunction of synaptic NMDARs due to their direct inhibition by synaptically released DA. This inhibitory tone is independent of DA receptors and affects the NMDAR coagonist binding site.
Collapse
Affiliation(s)
- Yixi Chen
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK.,UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh, UK
| | - Tilo Kunath
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK.,UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh, UK
| | - Joanna Simpson
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Natalie Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
26
|
Tazerart S, Mitchell DE, Miranda-Rottmann S, Araya R. A spike-timing-dependent plasticity rule for dendritic spines. Nat Commun 2020; 11:4276. [PMID: 32848151 PMCID: PMC7449969 DOI: 10.1038/s41467-020-17861-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/22/2020] [Indexed: 12/03/2022] Open
Abstract
The structural organization of excitatory inputs supporting spike-timing-dependent plasticity (STDP) remains unknown. We performed a spine STDP protocol using two-photon (2P) glutamate uncaging (pre) paired with postsynaptic spikes (post) in layer 5 pyramidal neurons from juvenile mice. Here we report that pre-post pairings that trigger timing-dependent LTP (t-LTP) produce shrinkage of the activated spine neck and increase in synaptic strength; and post-pre pairings that trigger timing-dependent LTD (t-LTD) decrease synaptic strength without affecting spine shape. Furthermore, the induction of t-LTP with 2P glutamate uncaging in clustered spines (<5 μm apart) enhances LTP through a NMDA receptor-mediated spine calcium accumulation and actin polymerization-dependent neck shrinkage, whereas t-LTD was dependent on NMDA receptors and disrupted by the activation of clustered spines but recovered when separated by >40 μm. These results indicate that synaptic cooperativity disrupts t-LTD and extends the temporal window for the induction of t-LTP, leading to STDP only encompassing LTP.
Collapse
Affiliation(s)
- Sabrina Tazerart
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Diana E Mitchell
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Soledad Miranda-Rottmann
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Roberto Araya
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada.
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada.
| |
Collapse
|
27
|
Ordyan M, Bartol T, Kennedy M, Rangamani P, Sejnowski T. Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. PLoS Comput Biol 2020; 16:e1008015. [PMID: 32678848 PMCID: PMC7390456 DOI: 10.1371/journal.pcbi.1008015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/29/2020] [Accepted: 06/04/2020] [Indexed: 01/10/2023] Open
Abstract
Calmodulin-dependent kinase II (CaMKII) has long been known to play an important role in learning and memory as well as long term potentiation (LTP). More recently it has been suggested that it might be involved in the time averaging of synaptic signals, which can then lead to the high precision of information stored at a single synapse. However, the role of the scaffolding molecule, neurogranin (Ng), in governing the dynamics of CaMKII is not yet fully understood. In this work, we adopt a rule-based modeling approach through the Monte Carlo method to study the effect of Ca2+ signals on the dynamics of CaMKII phosphorylation in the postsynaptic density (PSD). Calcium surges are observed in synaptic spines during an EPSP and back-propagating action potential due to the opening of NMDA receptors and voltage dependent calcium channels. Using agent-based models, we computationally investigate the dynamics of phosphorylation of CaMKII monomers and dodecameric holoenzymes. The scaffolding molecule, Ng, when present in significant concentration, limits the availability of free calmodulin (CaM), the protein which activates CaMKII in the presence of calcium. We show that Ng plays an important modulatory role in CaMKII phosphorylation following a surge of high calcium concentration. We find a non-intuitive dependence of this effect on CaM concentration that results from the different affinities of CaM for CaMKII depending on the number of calcium ions bound to the former. It has been shown previously that in the absence of phosphatase, CaMKII monomers integrate over Ca2+ signals of certain frequencies through autophosphorylation (Pepke et al, Plos Comp. Bio., 2010). We also study the effect of multiple calcium spikes on CaMKII holoenzyme autophosphorylation, and show that in the presence of phosphatase, CaMKII behaves as a leaky integrator of calcium signals, a result that has been recently observed in vivo. Our models predict that the parameters of this leaky integrator are finely tuned through the interactions of Ng, CaM, CaMKII, and PP1, providing a mechanism to precisely control the sensitivity of synapses to calcium signals. Author Summary not valid for PLOS ONE submissions.
Collapse
Affiliation(s)
- Mariam Ordyan
- Institute for Neural Computation, University of California San Diego, La Jolla, California, United States of America
- Computational Neurobiology Laboratory, Salk Institute for Biological Sciences, La Jolla, California, United States of America
| | - Tom Bartol
- Computational Neurobiology Laboratory, Salk Institute for Biological Sciences, La Jolla, California, United States of America
| | - Mary Kennedy
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (PR), (TS)
| | - Terrence Sejnowski
- Institute for Neural Computation, University of California San Diego, La Jolla, California, United States of America
- Computational Neurobiology Laboratory, Salk Institute for Biological Sciences, La Jolla, California, United States of America
- * E-mail: (PR), (TS)
| |
Collapse
|
28
|
Nanoscale co-organization and coactivation of AMPAR, NMDAR, and mGluR at excitatory synapses. Proc Natl Acad Sci U S A 2020; 117:14503-14511. [PMID: 32513712 PMCID: PMC7321977 DOI: 10.1073/pnas.1922563117] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The nanoscale co-organization of neurotransmitter receptors facing presynaptic release sites is a fundamental determinant of their coactivation and of synaptic physiology. At excitatory synapses, how endogenous AMPARs, NMDARs, and mGluRs are co-organized inside the synapse and their respective activation during glutamate release are still unclear. Combining single-molecule superresolution microscopy, electrophysiology, and modeling, we determined the average quantity of each glutamate receptor type, their nanoscale organization, and their respective activation. We observed that NMDARs form a unique cluster mainly at the center of the PSD, while AMPARs segregate in clusters surrounding the NMDARs. mGluR5 presents a different organization and is homogenously dispersed at the synaptic surface. From these results, we build a model predicting the synaptic transmission properties of a unitary synapse, allowing better understanding of synaptic physiology.
Collapse
|
29
|
Willems J, de Jong APH, Scheefhals N, Mertens E, Catsburg LAE, Poorthuis RB, de Winter F, Verhaagen J, Meye FJ, MacGillavry HD. ORANGE: A CRISPR/Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons. PLoS Biol 2020; 18:e3000665. [PMID: 32275651 PMCID: PMC7176289 DOI: 10.1371/journal.pbio.3000665] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 04/22/2020] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
The correct subcellular distribution of proteins establishes the complex morphology and function of neurons. Fluorescence microscopy techniques are invaluable to investigate subcellular protein distribution, but they suffer from the limited ability to efficiently and reliably label endogenous proteins with fluorescent probes. We developed ORANGE: Open Resource for the Application of Neuronal Genome Editing, which mediates targeted genomic integration of epitope tags in rodent dissociated neuronal culture, in organotypic slices, and in vivo. ORANGE includes a knock-in library for in-depth investigation of endogenous protein distribution, viral vectors, and a detailed two-step cloning protocol to develop knock-ins for novel targets. Using ORANGE with (live-cell) superresolution microscopy, we revealed the dynamic nanoscale organization of endogenous neurotransmitter receptors and synaptic scaffolding proteins, as well as previously uncharacterized proteins. Finally, we developed a mechanism to create multiple knock-ins in neurons, mediating multiplex imaging of endogenous proteins. Thus, ORANGE enables quantification of expression, distribution, and dynamics for virtually any protein in neurons at nanoscale resolution. This study describes the development of a genome editing toolbox (ORANGE) for endogenous tagging of proteins in neurons. This open resource allows the investigation of protein localization and dynamics in neurons using live-cell and super-resolution imaging techniques.
Collapse
Affiliation(s)
- Jelmer Willems
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Arthur P. H. de Jong
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Nicky Scheefhals
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Eline Mertens
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Lisa A. E. Catsburg
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Rogier B. Poorthuis
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Frank J. Meye
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Harold D. MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
30
|
Birefringence Changes of Dendrites in Mouse Hippocampal Slices Revealed with Polarizing Microscopy. Biophys J 2020; 118:2366-2384. [PMID: 32294480 DOI: 10.1016/j.bpj.2020.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/20/2020] [Accepted: 03/06/2020] [Indexed: 11/23/2022] Open
Abstract
Intrinsic optical signal (IOS) imaging has been widely used to map the patterns of brain activity in vivo in a label-free manner. Traditional IOS refers to changes in light transmission, absorption, reflectance, and scattering of the brain tissue. Here, we use polarized light for IOS imaging to monitor structural changes of cellular and subcellular architectures due to their neuronal activity in isolated brain slices. To reveal fast spatiotemporal changes of subcellular structures associated with neuronal activity, we developed the instantaneous polarized light microscope (PolScope), which allows us to observe birefringence changes in neuronal cells and tissues while stimulating neuronal activity. The instantaneous PolScope records changes in transmission, birefringence, and slow axis orientation in tissue at a high spatial and temporal resolution using a single camera exposure. These capabilities enabled us to correlate polarization-sensitive IOS with traditional IOS on the same preparations. We detected reproducible spatiotemporal changes in both IOSs at the stratum radiatum in mouse hippocampal slices evoked by electrical stimulation at Schaffer collaterals. Upon stimulation, changes in traditional IOS signals were broadly uniform across the area, whereas birefringence imaging revealed local variations not seen in traditional IOS. Locations with high resting birefringence produced larger stimulation-evoked birefringence changes than those produced at low resting birefringence. Local application of glutamate to the synaptic region in CA1 induced an increase in both transmittance and birefringence signals. Blocking synaptic transmission with inhibitors CNQX (for AMPA-type glutamate receptor) and D-APV (for NMDA-type glutamate receptor) reduced the peak amplitude of the optical signals. Changes in both IOSs were enhanced by an inhibitor of the membranous glutamate transporter, DL-TBOA. Our results indicate that the detection of activity-induced structural changes of the subcellular architecture in dendrites is possible in a label-free manner.
Collapse
|
31
|
Yang F, Yang L, Wataya-Kaneda M, Teng L, Katayama I. Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: A novel epilepsy model. PLoS One 2020; 15:e0228204. [PMID: 31978189 PMCID: PMC6980560 DOI: 10.1371/journal.pone.0228204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/09/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To clarify the complex mechanism underlying epileptogeneis, a novel animal model was generated. METHODS In our previous research, we have generated a melanocyte-lineage mTOR hyperactivation mouse model (Mitf-M-Cre Tsc2 KO mice; cKO mice) to investigate mTOR pathway in melanogenesis regulation, markedly reduced skin pigmentation was observed. Very unexpectedly, spontaneous recurrent epilepsy was also developed in this mouse model. RESULTS Compared with control littermates, no change was found in either brain size or brain mass in cKO mice. Hematoxylin staining revealed no obvious aberrant histologic features in the whole brains of cKO mice. Histoimmunofluorescence staining and electron microscopy examination revealed markedly increased mTOR signaling and hyperproliferation of mitochondria in cKO mice, especially in the hippocampus. Furthermore, rapamycin treatment reversed these abnormalities. CONCLUSIONS This study suggests that our melanocyte-lineage mTOR hyperactivation mouse is a novel animal model of epilepsy, which may promote the progress of both epilepsy and neurophysiology research.
Collapse
Affiliation(s)
- Fei Yang
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Lingli Yang
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mari Wataya-Kaneda
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Lanting Teng
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ichiro Katayama
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
32
|
Anderson RM, Johnson SB, Lingg RT, Hinz DC, Romig-Martin SA, Radley JJ. Evidence for Similar Prefrontal Structural and Functional Alterations in Male and Female Rats Following Chronic Stress or Glucocorticoid Exposure. Cereb Cortex 2020; 30:353-370. [PMID: 31184364 PMCID: PMC7029687 DOI: 10.1093/cercor/bhz092] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/28/2022] Open
Abstract
Previous work of ours and others has documented regressive changes in neuronal architecture and function in the medial prefrontal cortex (mPFC) of male rats following chronic stress. As recent focus has shifted toward understanding whether chronic stress effects on mPFC are sexually dimorphic, here we undertake a comprehensive analysis to address this issue. First, we show that chronic variable stress (14-day daily exposure to different challenges) resulted in a comparable degree of adrenocortical hyperactivity, working memory impairment, and dendritic spine loss in mPFC pyramidal neurons in both sexes. Next, exposure of female rats to 21-day regimen of corticosterone resulted in a similar pattern of mPFC dendritic spine attrition and increase in spine volume. Finally, we examined the effects of another widely used regimen, chronic restraint stress (CRS, 21-day of daily 6-h restraint), on dendritic spine changes in mPFC in both sexes. CRS resulted in response decrements in adrenocortical output (habituation), and induced a pattern of consistent, but less widespread, dendritic spine loss similar to the foregoing challenges. Our data suggest that chronic stress or glucocorticoid exposure induces a relatively undifferentiated pattern of structural and functional alterations in mPFC in both males and females.
Collapse
Affiliation(s)
- Rachel M Anderson
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Shane B Johnson
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Ryan T Lingg
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Dalton C Hinz
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Sara A Romig-Martin
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Jason J Radley
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
33
|
Soares C, Trotter D, Longtin A, Béïque JC, Naud R. Parsing Out the Variability of Transmission at Central Synapses Using Optical Quantal Analysis. Front Synaptic Neurosci 2019; 11:22. [PMID: 31474847 PMCID: PMC6702664 DOI: 10.3389/fnsyn.2019.00022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Properties of synaptic release dictates the core of information transfer in neural circuits. Despite decades of technical and theoretical advances, distinguishing bona fide information content from the multiple sources of synaptic variability remains a challenging problem. Here, we employed a combination of computational approaches with cellular electrophysiology, two-photon uncaging of MNI-Glutamate and imaging at single synapses. We describe and calibrate the use of the fluorescent glutamate sensor iGluSnFR and found that its kinetic profile is close to that of AMPA receptors, therefore providing several distinct advantages over slower methods relying on NMDA receptor activation (i.e., chemical or genetically encoded calcium indicators). Using an array of statistical methods, we further developed, and validated on surrogate data, an expectation-maximization algorithm that, by biophysically constraining release variability, extracts the quantal parameters n (maximum number of released vesicles) and p (unitary probability of release) from single-synapse iGluSnFR-mediated transients. Together, we present a generalizable mathematical formalism which, when applied to optical recordings, paves the way to an increasingly precise investigation of information transfer at central synapses.
Collapse
Affiliation(s)
- Cary Soares
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Trotter
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - André Longtin
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
| | - Richard Naud
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
34
|
Karbowski J. Metabolic constraints on synaptic learning and memory. J Neurophysiol 2019; 122:1473-1490. [PMID: 31365284 DOI: 10.1152/jn.00092.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dendritic spines, the carriers of long-term memory, occupy a small fraction of cortical space, and yet they are the major consumers of brain metabolic energy. What fraction of this energy goes for synaptic plasticity, correlated with learning and memory? It is estimated here based on neurophysiological and proteomic data for rat brain that, depending on the level of protein phosphorylation, the energy cost of synaptic plasticity constitutes a small fraction of the energy used for fast excitatory synaptic transmission, typically 4.0-11.2%. Next, this study analyzes a metabolic cost of new learning and its memory trace in relation to the cost of prior memories, using a class of cascade models of synaptic plasticity. It is argued that these models must contain bidirectional cyclic motifs, related to protein phosphorylation, to be compatible with basic thermodynamic principles. For most investigated parameters longer memories generally require proportionally more energy to store. The exceptions are the parameters controlling the speed of molecular transitions (e.g., ATP-driven phosphorylation rate), for which memory lifetime per invested energy can increase progressively for longer memories. Furthermore, in general, a memory trace decouples dynamically from a corresponding synaptic metabolic rate such that the energy expended on new learning and its memory trace constitutes in most cases only a small fraction of the baseline energy associated with prior memories. Taken together, these empirical and theoretical results suggest a metabolic efficiency of synaptically stored information.NEW & NOTEWORTHY Learning and memory involve a sequence of molecular events in dendritic spines called synaptic plasticity. These events are physical in nature and require energy, which has to be supplied by ATP molecules. However, our knowledge of the energetics of these processes is very poor. This study estimates the empirical energy cost of synaptic plasticity and considers theoretically a metabolic rate of learning and its memory trace in a class of cascade models of synaptic plasticity.
Collapse
Affiliation(s)
- Jan Karbowski
- Institute of Applied Mathematics and Mechanics, University of Warsaw, Warsaw, Poland.,Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
35
|
Metzbower SR, Joo Y, Benavides DR, Blanpied TA. Properties of Individual Hippocampal Synapses Influencing NMDA-Receptor Activation by Spontaneous Neurotransmission. eNeuro 2019; 6:ENEURO.0419-18.2019. [PMID: 31110134 PMCID: PMC6541874 DOI: 10.1523/eneuro.0419-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/05/2019] [Accepted: 05/12/2019] [Indexed: 12/14/2022] Open
Abstract
NMDA receptor (NMDAR) activation is critical for maintenance and modification of synapse strength. Specifically, NMDAR activation by spontaneous glutamate release has been shown to mediate some forms of synaptic plasticity as well as synaptic development. Interestingly, there is evidence that within individual synapses each release mode may be segregated such that postsynaptically there are distinct pools of responsive receptors. To examine potential regulators of NMDAR activation because of spontaneous glutamate release in cultured hippocampal neurons, we used GCaMP6f imaging at single synapses in concert with confocal and super-resolution imaging. Using these single-spine approaches, we found that Ca2+ entry activated by spontaneous release tends to be carried by GluN2B-NMDARs. Additionally, the amount of NMDAR activation varies greatly both between synapses and within synapses, and is unrelated to spine and synapse size, but does correlate loosely with synapse distance from the soma. Despite the critical role of spontaneous activation of NMDARs in maintaining synaptic function, their activation seems to be controlled factors other than synapse size or synapse distance from the soma. It is most likely that NMDAR activation by spontaneous release influenced variability in subsynaptic receptor position, release site position, vesicle content, and channel properties. Therefore, spontaneous activation of NMDARs appears to be regulated distinctly from other receptor types, notably AMPARs, within individual synapses.
Collapse
Affiliation(s)
| | - Yuyoung Joo
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - David R Benavides
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | | |
Collapse
|
36
|
Tottori T, Fujii M, Kuroda S. NMDAR-Mediated Ca 2+ Increase Shows Robust Information Transfer in Dendritic Spines. Biophys J 2019; 116:1748-1758. [PMID: 31023534 DOI: 10.1016/j.bpj.2019.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 03/11/2019] [Accepted: 03/28/2019] [Indexed: 01/21/2023] Open
Abstract
A dendritic spine is a small structure on the dendrites of a neuron that processes input timing information from other neurons. Tens of thousands of spines are present on a neuron. Why are spines so small and many? We addressed this issue by using the stochastic simulation model of N-methyl-D-aspartate receptor (NMDAR)-mediated Ca2+ increase. NMDAR-mediated Ca2+ increase codes the input timing information between prespiking and postspiking. We examined how much the input timing information is encoded by Ca2+ increase against presynaptic fluctuation. We found that the input timing information encoded in the cell volume (103μm3) largely decreases against the presynaptic fluctuation, whereas that in the spine volume (10-1μm3) slightly decreases. Therefore, the input timing information encoded in the spine volume is more robust against presynaptic fluctuation than that in the cell volume. We further examined the mechanism of the robust information transfer in the spine volume. We demonstrated that the condition for the robustness is that the stochastic NMDAR-mediated Ca2+ increase (intrinsic noise) becomes much larger than the presynaptic fluctuation (extrinsic noise). When the presynaptic fluctuation is large, the condition is satisfied in the spine volume but not in the cell volume. Moreover, we compared the input timing information encoded in many small spines with that encoded in a single large spine. We found that the input timing information encoded in many small spines are larger than that in a single large spine when presynaptic fluctuation is large because of their robustness. Thus, robustness is a functional reason why dendritic spines are so small and many.
Collapse
Affiliation(s)
- Takehiro Tottori
- Department of Bioinformatics and Systems Biology, Faculty of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masashi Fujii
- Department of Bioinformatics and Systems Biology, Faculty of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinya Kuroda
- Department of Bioinformatics and Systems Biology, Faculty of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan; CREST, Japan Science and Technology Agency, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
37
|
Stahlberg MA, Ramakrishnan C, Willig KI, Boyden ES, Deisseroth K, Dean C. Investigating the feasibility of channelrhodopsin variants for nanoscale optogenetics. NEUROPHOTONICS 2019; 6:015007. [PMID: 30854405 PMCID: PMC6393647 DOI: 10.1117/1.nph.6.1.015007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Optogenetics has revolutionized the study of circuit function in the brain, by allowing activation of specific ensembles of neurons by light. However, this technique has not yet been exploited extensively at the subcellular level. Here, we test the feasibility of a focal stimulation approach using stimulated emission depletion/reversible saturable optical fluorescence transitions-like illumination, whereby switchable light-gated channels are focally activated by a laser beam of one wavelength and deactivated by an overlapping donut-shaped beam of a different wavelength, confining activation to a center focal region. This method requires that activated channelrhodopsins are inactivated by overlapping illumination of a distinct wavelength and that photocurrents are large enough to be detected at the nanoscale. In tests of current optogenetic tools, we found that ChR2 C128A/H134R/T159C and CoChR C108S and C108S/D136A-activated with 405-nm light and inactivated by coillumination with 594-nm light-and C1V1 E122T/C167S-activated by 561-nm light and inactivated by 405-nm light-were most promising in terms of highest photocurrents and efficient inactivation with coillumination. Although further engineering of step-function channelrhodopsin variants with higher photoconductances will be required to employ this approach at the nanoscale, our findings provide a framework to guide future development of this technique.
Collapse
Affiliation(s)
- Markus A. Stahlberg
- European Neuroscience Institute, Trans-Synaptic Signaling Group, Goettingen, Germany
| | - Charu Ramakrishnan
- Stanford University, Howard Hughes Medical Institute, Department of Bioengineering, Department of Psychiatry, CNC Program, Stanford, California, United States
| | - Katrin I. Willig
- University Medical Center, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany
| | - Edward S. Boyden
- MIT Media Lab and McGovern Institute, Departments of Brain and Cognitive Science and Biological Engineering, Cambridge, Massachusetts, United States
| | - Karl Deisseroth
- Stanford University, Howard Hughes Medical Institute, Department of Bioengineering, Department of Psychiatry, CNC Program, Stanford, California, United States
| | - Camin Dean
- European Neuroscience Institute, Trans-Synaptic Signaling Group, Goettingen, Germany
| |
Collapse
|
38
|
Sun W, Wong JM, Gray JA, Carter BC. Incomplete block of NMDA receptors by intracellular MK-801. Neuropharmacology 2018; 143:122-129. [PMID: 30227149 PMCID: PMC8920045 DOI: 10.1016/j.neuropharm.2018.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022]
Abstract
NMDA receptors (NMDARs) are essential components in glutamatergic synaptic signaling. The NMDAR antagonist MK-801 has been a valuable pharmacological tool in evaluating NMDAR function because it binds with high affinity to the NMDAR ion channel pore and is non-competitive with ligand binding. MK-801 has also been used to selectively inhibit NMDAR current in only the cell being recorded by including the drug in the intracellular recording solution. Here, we report that intracellular MK-801 (iMK-801) only partially inhibits synaptic NMDAR currents at +40 mV at both cortical layer 4 to layer 2/3 and hippocampal Schaffer collateral to CA1 synapses. Furthermore, iMK-801 incompletely inhibits heterologously expressed NMDAR currents at -60 mV, consistent with a model of iMK-801 having a very slow binding rate and consequently ∼30,000 times lower affinity than MK-801 applied to the extracellular side of the receptor. While iMK-801 can be used as a qualitative tool to study reduced postsynaptic NMDAR function, it cannot be assumed to completely block NMDARs at concentrations typically used in experiments.
Collapse
Affiliation(s)
- Weinan Sun
- Vollum Institute, Oregon Health & Science University, Portland, USA
| | - Jonathan M. Wong
- Center for Neuroscience, University of California, Davis, USA,Neuroscience Graduate Program, University of California, Davis, USA
| | - John A. Gray
- Center for Neuroscience, University of California, Davis, USA,Neurology Department, University of California, Davis, USA
| | - Brett C. Carter
- Vollum Institute, Oregon Health & Science University, Portland, USA,European Neuroscience Institute Göttingen, Germany,Corresponding author: Corresponding author: Brett C. Carter, European Neuroscience Institute Gőttingen, Grisebachstrasse 5, Gőttingen Germany 37077, Phone: +49 51 39 13898,
| |
Collapse
|
39
|
Singh D, Bhalla US. Subunit exchange enhances information retention by CaMKII in dendritic spines. eLife 2018; 7:e41412. [PMID: 30418153 PMCID: PMC6286124 DOI: 10.7554/elife.41412] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
Molecular bistables are strong candidates for long-term information storage, for example, in synaptic plasticity. Calcium/calmodulin-dependent protein Kinase II (CaMKII) is a highly expressed synaptic protein which has been proposed to form a molecular bistable switch capable of maintaining its state for years despite protein turnover and stochastic noise. It has recently been shown that CaMKII holoenzymes exchange subunits among themselves. Here, we used computational methods to analyze the effect of subunit exchange on the CaMKII pathway in the presence of diffusion in two different micro-environments, the post synaptic density (PSD) and spine cytosol. We show that CaMKII exhibits multiple timescales of activity due to subunit exchange. Further, subunit exchange enhances information retention by CaMKII both by improving the stability of its switching in the PSD, and by slowing the decay of its activity in the spine cytosol. The existence of diverse timescales in the synapse has important theoretical implications for memory storage in networks.
Collapse
Affiliation(s)
- Dilawar Singh
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
| | - Upinder Singh Bhalla
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
40
|
Breit M, Kessler M, Stepniewski M, Vlachos A, Queisser G. Spine-to-Dendrite Calcium Modeling Discloses Relevance for Precise Positioning of Ryanodine Receptor-Containing Spine Endoplasmic Reticulum. Sci Rep 2018; 8:15624. [PMID: 30353066 PMCID: PMC6199256 DOI: 10.1038/s41598-018-33343-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 09/18/2018] [Indexed: 12/15/2022] Open
Abstract
The endoplasmic reticulum (ER) forms a complex endomembrane network that reaches into the cellular compartments of a neuron, including dendritic spines. Recent work discloses that the spine ER is a dynamic structure that enters and leaves spines. While evidence exists that ER Ca2+ release is involved in synaptic plasticity, the role of spine ER morphology remains unknown. Combining a new 3D spine generator with 3D Ca2+ modeling, we addressed the relevance of ER positioning on spine-to-dendrite Ca2+ signaling. Our simulations, which account for Ca2+ exchange on the plasma membrane and ER, show that spine ER needs to be present in distinct morphological conformations in order to overcome a barrier between the spine and dendritic shaft. We demonstrate that RyR-carrying spine ER promotes spine-to-dendrite Ca2+ signals in a position-dependent manner. Our simulations indicate that RyR-carrying ER can initiate time-delayed Ca2+ reverberation, depending on the precise position of the spine ER. Upon spine growth, structural reorganization of the ER restores spine-to-dendrite Ca2+ communication, while maintaining aspects of Ca2+ homeostasis in the spine head. Our work emphasizes the relevance of precise positioning of RyR-containing spine ER in regulating the strength and timing of spine Ca2+ signaling, which could play an important role in tuning spine-to-dendrite Ca2+ communication and homeostasis.
Collapse
Affiliation(s)
- Markus Breit
- Goethe Center for Scientific Computing, Computational Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Marcus Kessler
- Goethe Center for Scientific Computing, Computational Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Martin Stepniewski
- Goethe Center for Scientific Computing, Computational Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, 79104, Germany. .,Bernstein Center Freiburg, University of Freiburg, Freiburg, 79104, Germany.
| | - Gillian Queisser
- Department of Mathematics, Temple University, Philadelphia, USA.
| |
Collapse
|
41
|
Patriarchi T, Buonarati OR, Hell JW. Postsynaptic localization and regulation of AMPA receptors and Cav1.2 by β2 adrenergic receptor/PKA and Ca 2+/CaMKII signaling. EMBO J 2018; 37:e99771. [PMID: 30249603 PMCID: PMC6187224 DOI: 10.15252/embj.201899771] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/25/2018] [Accepted: 08/17/2018] [Indexed: 11/09/2022] Open
Abstract
The synapse transmits, processes, and stores data within its tiny space. Effective and specific signaling requires precise alignment of the relevant components. This review examines current insights into mechanisms of AMPAR and NMDAR localization by PSD-95 and their spatial distribution at postsynaptic sites to illuminate the structural and functional framework of postsynaptic signaling. It subsequently delineates how β2 adrenergic receptor (β2 AR) signaling via adenylyl cyclase and the cAMP-dependent protein kinase PKA is organized within nanodomains. Here, we discuss targeting of β2 AR, adenylyl cyclase, and PKA to defined signaling complexes at postsynaptic sites, i.e., AMPARs and the L-type Ca2+ channel Cav1.2, and other subcellular surface localizations, the role of A kinase anchor proteins, the physiological relevance of the spatial restriction of corresponding signaling, and their interplay with signal transduction by the Ca2+- and calmodulin-dependent kinase CaMKII How localized and specific signaling by cAMP occurs is a central cellular question. The dendritic spine constitutes an ideal paradigm for elucidating the dimensions of spatially restricted signaling because of their small size and defined protein composition.
Collapse
MESH Headings
- Animals
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/physiology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Humans
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synapses/genetics
- Synapses/metabolism
Collapse
Affiliation(s)
- Tommaso Patriarchi
- Department of Pharmacology, University of California, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | | | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
42
|
Wiegert JS, Pulin M, Gee CE, Oertner TG. The fate of hippocampal synapses depends on the sequence of plasticity-inducing events. eLife 2018; 7:39151. [PMID: 30311904 PMCID: PMC6205809 DOI: 10.7554/elife.39151] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/11/2018] [Indexed: 01/31/2023] Open
Abstract
Synapses change their strength in response to specific activity patterns. This functional plasticity is assumed to be the brain’s primary mechanism for information storage. We used optogenetic stimulation of rat hippocampal slice cultures to induce long-term potentiation (LTP), long-term depression (LTD), or both forms of plasticity in sequence. Two-photon imaging of spine calcium signals allowed us to identify stimulated synapses and to follow their fate for the next 7 days. We found that plasticity-inducing protocols affected the synapse’s chance for survival: LTP increased synaptic stability, LTD destabilized synapses, and the effect of the last stimulation protocol was dominant over earlier stimulations. Interestingly, most potentiated synapses were resistant to depression-inducing protocols delivered 24 hr later. Our findings suggest that activity-dependent changes in the transmission strength of individual synapses are transient, but have long-lasting consequences for synaptic lifetime.
Collapse
Affiliation(s)
- J Simon Wiegert
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mauro Pulin
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Elizabeth Gee
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas G Oertner
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
43
|
Abstract
Understanding the communication theoretical capabilities of information transmission among neurons, known as neuro-spike communication, is a significant step in developing bio-inspired solutions for nanonetworking. In this paper, we focus on a part of this communication known as synaptic transmission for pyramidal neurons in the Cornu Ammonis area of the hippocampus location in the brain and propose a communication-based model for it that includes effects of spike shape variation on neural calcium signaling and the vesicle release process downstream of it. For this aim, we find impacts of spike shape variation on opening of voltage-dependent calcium channels, which control the release of vesicles from the pre-synaptic neuron by changing the influx of calcium ions. Moreover, we derive the structure of the optimum receiver based on the Neyman-Pearson detection method to find the effects of spike shape variations on the functionality of neuro-spike communication. Numerical results depict that changes in both spike width and amplitude affect the error detection probability. Moreover, these two factors do not control the performance of the system independently. Hence, a proper model for neuro-spike communication should contain effects of spike shape variations during axonal transmission on both synaptic propagation and spike generation mechanisms to enable us to accurately explain the performance of this communication paradigm.
Collapse
|
44
|
Extracellular Glutamate in the Nucleus Accumbens Is Nanomolar in Both Synaptic and Non-synaptic Compartments. Cell Rep 2017; 18:2576-2583. [PMID: 28297662 DOI: 10.1016/j.celrep.2017.02.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/26/2017] [Accepted: 02/15/2017] [Indexed: 12/25/2022] Open
Abstract
In the CNS, glutamate is both phasically and tonically released into the extracellular space and must be removed by excitatory amino acid transporters (EAATs) to prevent excitotoxic accumulation. There remains uncertainty, however, regarding the functional steady-state concentration, with estimates ranging from tens of nanomolar to tens of micromolar. Efforts to reconcile these disparate values have led to a hypothesis that the extracellular space comprises distinct compartments in which basal glutamate concentrations are maintained independently. We used electrophysiology and two-photon Ca2+ imaging to test this hypothesis in the nucleus accumbens (NAc), where it has been proposed that micromolar extracellular glutamate is necessary for normal function. We found that the average concentration of synaptic glutamate is nanomolar, in agreement with previous electrophysiological estimates. Furthermore, this held true when glutamate uptake was inhibited, indicating that extracellular glutamate is not compartmentalized by EAATs.
Collapse
|
45
|
Abstract
At each of the brain's vast number of synapses, the presynaptic nerve terminal, synaptic cleft, and postsynaptic specialization form a transcellular unit to enable efficient transmission of information between neurons. While we know much about the molecular machinery within each compartment, we are only beginning to understand how these compartments are structurally registered and functionally integrated with one another. This review will describe the organization of each compartment and then discuss their alignment across pre- and postsynaptic cells at a nanometer scale. We propose that this architecture may allow for precise synaptic information exchange and may be modulated to contribute to the remarkable plasticity of brain function.
Collapse
Affiliation(s)
- Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
46
|
Biederer T, Kaeser PS, Blanpied TA. Transcellular Nanoalignment of Synaptic Function. Neuron 2017; 96:680-696. [PMID: 29096080 PMCID: PMC5777221 DOI: 10.1016/j.neuron.2017.10.006] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
At each of the brain's vast number of synapses, the presynaptic nerve terminal, synaptic cleft, and postsynaptic specialization form a transcellular unit to enable efficient transmission of information between neurons. While we know much about the molecular machinery within each compartment, we are only beginning to understand how these compartments are structurally registered and functionally integrated with one another. This review will describe the organization of each compartment and then discuss their alignment across pre- and postsynaptic cells at a nanometer scale. We propose that this architecture may allow for precise synaptic information exchange and may be modulated to contribute to the remarkable plasticity of brain function.
Collapse
Affiliation(s)
- Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
47
|
Xu B, Sun A, He Y, Qian F, Liu L, Chen Y, Luo H. Running-induced memory enhancement correlates with the preservation of thin spines in the hippocampal area CA1 of old C57BL/6 mice. Neurobiol Aging 2017; 52:106-116. [DOI: 10.1016/j.neurobiolaging.2017.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/31/2016] [Accepted: 01/02/2017] [Indexed: 01/01/2023]
|
48
|
Walker AS, Neves G, Grillo F, Jackson RE, Rigby M, O'Donnell C, Lowe AS, Vizcay-Barrena G, Fleck RA, Burrone J. Distance-dependent gradient in NMDAR-driven spine calcium signals along tapering dendrites. Proc Natl Acad Sci U S A 2017; 114:E1986-E1995. [PMID: 28209776 PMCID: PMC5347575 DOI: 10.1073/pnas.1607462114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons receive a multitude of synaptic inputs along their dendritic arbor, but how this highly heterogeneous population of synaptic compartments is spatially organized remains unclear. By measuring N-methyl-d-aspartic acid receptor (NMDAR)-driven calcium responses in single spines, we provide a spatial map of synaptic calcium signals along dendritic arbors of hippocampal neurons and relate this to measures of synapse structure. We find that quantal NMDAR calcium signals increase in amplitude as they approach a thinning dendritic tip end. Based on a compartmental model of spine calcium dynamics, we propose that this biased distribution in calcium signals is governed by a gradual, distance-dependent decline in spine size, which we visualized using serial block-face scanning electron microscopy. Our data describe a cell-autonomous feature of principal neurons, where tapering dendrites show an inverse distribution of spine size and NMDAR-driven calcium signals along dendritic trees, with important implications for synaptic plasticity rules and spine function.
Collapse
Affiliation(s)
- Alison S Walker
- Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, United Kingdom
| | - Guilherme Neves
- Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, United Kingdom
| | - Federico Grillo
- Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, United Kingdom
| | - Rachel E Jackson
- Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, United Kingdom
| | - Mark Rigby
- Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, United Kingdom
| | - Cian O'Donnell
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom
| | - Andrew S Lowe
- Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, United Kingdom
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging, Kings College London, London SE1 1UL, United Kingdom
| | - Roland A Fleck
- Centre for Ultrastructural Imaging, Kings College London, London SE1 1UL, United Kingdom
| | - Juan Burrone
- Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, United Kingdom;
| |
Collapse
|
49
|
Serita T, Fukushima H, Kida S. Constitutive activation of CREB in mice enhances temporal association learning and increases hippocampal CA1 neuronal spine density and complexity. Sci Rep 2017; 7:42528. [PMID: 28195219 PMCID: PMC5307365 DOI: 10.1038/srep42528] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/10/2017] [Indexed: 12/02/2022] Open
Abstract
Transcription factor CREB is believed to play essential roles in the formation of long-term memory (LTM), but not in learning and short-term memory (STM). Surprisingly, we previously showed that transgenic mice expressing a dominant active mutant of CREB (DIEDML) in the forebrain (DIEDML mice) demonstrated enhanced STM and LTM in hippocampal-dependent, rapid, one-trial learning tasks. Here we show that constitutive activation of CREB enhances hippocampal-dependent learning of temporal association in trace fear conditioning and delayed matching-to-place tasks. We then show that in DIEDML mice the apical tuft dendrites of hippocampal CA1 pyramidal neurons, required for temporal association learning, display increased spine density, especially of thin spines and of Homer1-negative spines. In contrast, the basal and apical oblique dendrites of CA1 neurons, required for rapid one-trial learning, show increased density of thin, stubby, and mushroom spines and of Homer1-positive spines. Furthermore, DIEDML mice showed increased dendritic complexity in the proximal portion of apical CA1 dendrites to the soma. In contrast, forebrain overexpression of CaMKIV, leading to enhanced LTM but not STM, show normal learning and CA1 neuron morphology. These findings suggest that dendritic region-specific morphological changes in CA1 neurons by constitutive activation of CREB may contribute to improved learning and STM.
Collapse
Affiliation(s)
- Tatsurou Serita
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Hotaka Fukushima
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.,Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Satoshi Kida
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.,Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
50
|
Inaba H, Kishimoto T, Oishi S, Nagata K, Hasegawa S, Watanabe T, Kida S. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke-Korsakoff syndrome. Biosci Biotechnol Biochem 2016; 80:2425-2436. [PMID: 27576603 PMCID: PMC5213968 DOI: 10.1080/09168451.2016.1224639] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Patients with severe Wernicke-Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation.
Collapse
Affiliation(s)
- Hiroyoshi Inaba
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | - Takuya Kishimoto
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | - Satoru Oishi
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | - Kan Nagata
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | - Shunsuke Hasegawa
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan.,b Core Research for Evolutional Science and Technology , Japan Science and Technology Agency , Saitama , Japan
| | - Tamae Watanabe
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | - Satoshi Kida
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan.,b Core Research for Evolutional Science and Technology , Japan Science and Technology Agency , Saitama , Japan
| |
Collapse
|