1
|
Cheon DH, Park S, Park J, Koo M, Kim HH, Han S, Choi HJ. Lateral hypothalamus and eating: cell types, molecular identity, anatomy, temporal dynamics and functional roles. Exp Mol Med 2025:10.1038/s12276-025-01451-y. [PMID: 40307571 DOI: 10.1038/s12276-025-01451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 05/02/2025] Open
Abstract
The lateral hypothalamus (LH) is a central hub orchestrating eating behavior through its complex cellular, anatomical and temporal organization. The LH is characterized by high heterogeneity and functional complexity, with many aspects still unexplored. Here we synthesize recent advances in understanding the role of the LH in eating regulation across multiple dimensions. At the cellular level, the LH contains diverse neuronal populations that contribute to distinct roles in behavior. Anatomically, we divided the LH into four regions-anteromedial, anterolateral, posteromedial and posterolateral-each with unique cellular compositions, circuit organizations and projection patterns. By integrating the temporal dynamics of each LH cell type during eating behavior, we identified how various LH cell types are involved in regulating the appetitive and consummatory phases of eating behavior. The LH also plays vital roles in associative learning and different types of eating behavior, including homeostatic, pleasure-induced and stress-induced eating. These insights into LH organization and function provide promising directions for therapeutic interventions in eating disorders and obesity, including drugs, deep brain stimulation and gene therapy.
Collapse
Affiliation(s)
- Deok-Hyeon Cheon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sheejune Park
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jihyun Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - MinSeo Koo
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Hyung Kim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seol Han
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Gangwon-do, Republic of Korea.
| |
Collapse
|
2
|
Giuranna J, Zheng Y, Brandt M, Jall S, Mukherjee A, Shankhwar S, Renner S, Kurapati NK, May C, Peters T, Herpertz-Dahlmann B, Seitz J, de Zwaan M, Herzog W, Ehrlich S, Zipfel S, Giel K, Egberts K, Burghardt R, Föcker M, Marcus K, Keyvani K, Müller TD, Schmitz F, Rajcsanyi LS, Hinney A. Genetic and functional analyses of CTBP2 in anorexia nervosa and body weight regulation. Mol Psychiatry 2025; 30:1836-1846. [PMID: 39511451 PMCID: PMC12014503 DOI: 10.1038/s41380-024-02791-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
The C-terminal binding protein 2 (CTBP2) gene (translational isoforms: CTBP2-L/S, RIBEYE) had been identified by a cross-trait analysis of genome-wide association studies for anorexia nervosa (AN) and body mass index (BMI). Here, we did a mutation analysis in CTBP2 by performing polymerase chain reactions with subsequent Sanger-sequencing to identify variants relevant for AN and body weight regulation and ensued functional studies. Analysis of the coding regions of CTBP2 in 462 female patients with AN (acute or recovered), 490 children and adolescents with severe obesity, 445 healthy-lean adult individuals and 168 healthy adult individuals with normal body weight detected 24 variants located in the specific exon of RIBEYE. In the initial analysis, three of these were rare non-synonymous variants (NSVs) detected heterozygously in patients with AN (p.Arg72Trp - rs146900874; p.Val289Met -rs375685611 and p.Gly362Arg - rs202010294). Four NSVs and one heterozygous frameshift variant were exclusively detected in children and adolescents with severe obesity (p.Pro53Ser - rs150867595; p.Gln175ArgfsTer45 - rs141864737; p.Leu310Val - rs769811964; p.Pro397Ala - rs76134089 and p.Pro402Ser - rs113477585). Ribeye mRNA was detected in mouse hypothalamus. No effect of fasting or overfeeding on murine hypothalamic Ribeye expression was determined. Yet, increased Ribeye expression was detected in hypothalami of leptin-treated Lepob/ob mice. This increase was not related to reduced food intake and leptin-induced weight loss. We detected rare and frequent variants in the RIBEYE specific exon in both patients with AN and in children and adolescents with severe obesity. Our data suggest RIBEYE as a relevant gene for weight regulation.
Collapse
Affiliation(s)
- Johanna Giuranna
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
| | - Yiran Zheng
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | | | - Sigrid Jall
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Amrita Mukherjee
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, Homburg, Germany
| | - Soni Shankhwar
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, Homburg, Germany
| | - Simone Renner
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilian University Munich (LMU), Munich, Germany
| | - Nirup Kumar Kurapati
- Institute of Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Caroline May
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Triinu Peters
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
- Section of Molecular Genetics in Mental Disorders, University Hospital Essen, Essen, Germany
- Institute of Sex and Gender-Sensitive Medicine, University Hospital Essen, Essen, Germany
| | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Martina de Zwaan
- Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Wolfgang Herzog
- Department of Internal Medicine II, General Internal and Psychosomatic Medicine, University of Heidelberg, Heidelberg, Germany
| | - Stefan Ehrlich
- Eating Disorders Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Germany
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
- Center of Excellence in Eating Disorders KOMET, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| | - Katrin Giel
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
- Center of Excellence in Eating Disorders KOMET, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| | - Karin Egberts
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Roland Burghardt
- Child and Adolescent Psychiatry Clinic, Oberberg Fachklinik Fasanenkiez Berlin, Berlin, Germany
| | - Manuel Föcker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Münster, Münster, Germany
- LWL-University Hospital Hamm for Child and Adolescent Psychiatry, Ruhr-University Bochum, Hamm, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Kathy Keyvani
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
- Institute of Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Walther-Straub-Insitute for Pharmacology and Toxicology, Ludwig-Maximilians University Munich (LMU), Munich, Germany
| | - Frank Schmitz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, Homburg, Germany
| | - Luisa Sophie Rajcsanyi
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany.
- Section of Molecular Genetics in Mental Disorders, University Hospital Essen, Essen, Germany.
- Institute of Sex and Gender-Sensitive Medicine, University Hospital Essen, Essen, Germany.
| | - Anke Hinney
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
- Section of Molecular Genetics in Mental Disorders, University Hospital Essen, Essen, Germany
- Institute of Sex and Gender-Sensitive Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
3
|
Laule C, Rahmouni K. Leptin and Associated Neural Pathways Underlying Obesity-Induced Hypertension. Compr Physiol 2025; 15:e8. [PMID: 40293220 PMCID: PMC12038170 DOI: 10.1002/cph4.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 04/30/2025]
Abstract
Obesity rates have surged to pandemic levels, placing tremendous burden on our society. This chronic and complex disease is related to the development of many life-threatening illnesses including cardiovascular diseases. Hypertension caused by obesity increases the risk for cardiovascular mortality and morbidity by promoting stroke, myocardial infarction, congestive heart failure, and end-stage renal disease. Overwhelming evidence supports neural origins for obesity-induced hypertension and pinpoints the adipose-derived hormone, leptin, and the sympathetic nervous system as major causal factors. Hyperleptinemia in obesity is associated with selective leptin resistance where leptin's renal sympathoexcitatory and pressor effects are preserved while the metabolic actions are impaired. Understanding the mechanisms driving this phenomenon is critical for developing effective therapeutics. This review describes the neural mechanisms of obesity-induced hypertension with a focus on the molecular and neuronal substrates of leptin action.
Collapse
Affiliation(s)
- Connor Laule
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Veterans Affairs Health Care System, Iowa City, Iowa
| |
Collapse
|
4
|
Asgari R, Caceres-Valdiviezo M, Wu S, Hamel L, Humber BE, Agarwal SM, Fletcher PJ, Fulton S, Hahn MK, Pereira S. Regulation of energy balance by leptin as an adiposity signal and modulator of the reward system. Mol Metab 2025; 91:102078. [PMID: 39615837 PMCID: PMC11696864 DOI: 10.1016/j.molmet.2024.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Leptin is an adipose tissue-derived hormone that plays a crucial role in body weight, appetite, and behaviour regulation. Leptin controls energy balance as an indicator of adiposity levels and as a modulator of the reward system, which is associated with liking palatable foods. Obesity is characterized by expanded adipose tissue mass and consequently, elevated concentrations of leptin in blood. Leptin's therapeutic potential for most forms of obesity is hampered by leptin resistance and a narrow dose-response window. SCOPE OF REVIEW This review describes the current knowledge of the brain regions and intracellular pathways through which leptin promotes negative energy balance and restrains neural circuits affecting food reward. We also describe mechanisms that hinder these biological responses in obesity and highlight potential therapeutic interventions. MAJOR CONCLUSIONS Additional research is necessary to understand how pathways engaged by leptin in different brain regions are interconnected in the control of energy balance.
Collapse
Affiliation(s)
| | - Maria Caceres-Valdiviezo
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Laboratory of Omic Sciences, School of Medicine, Universidad de Especialidades Espíritu Santo, Samborondón, Ecuador
| | - Sally Wu
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Laurie Hamel
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal Diabetes Research Center, Montréal, QC, Canada; Department of Nutrition, Université de Montréal, QC, Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Naganuma F, Khanday M, Bandaru SS, Hasan W, Hirano K, Yoshikawa T, Vetrivelan R. Regulation of wakefulness by neurotensin neurons in the lateral hypothalamus. Exp Neurol 2024; 383:115035. [PMID: 39481513 DOI: 10.1016/j.expneurol.2024.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
The lateral hypothalamic region (LH) has been identified as a key region for arousal regulation, yet the specific cell types and underlying mechanisms are not fully understood. While neurons expressing orexins (OX) are considered the primary wake-promoting population in the LH, their loss does not reduce daily wake levels, suggesting the presence of additional wake-promoting populations. In this regard, we recently discovered that a non-OX cell group in the LH, marked by the expression of neurotensin (Nts), could powerfully drive wakefulness. Activation of these NtsLH neurons elicits rapid arousal from non-rapid eye movement (NREM) sleep and produces uninterrupted wakefulness for several hours in mice. However, it remains unknown if these neurons are necessary for spontaneous wakefulness and what their precise role is in the initiation and maintenance of this state. To address these questions, we first examined the activity dynamics of the NtsLH population across sleep-wake behavior using fiber photometry. We find that NtsLH neurons are more active during wakefulness, and their activity increases concurrently with, but does not precede, wake-onset. We then selectively destroyed the NtsLH neurons using a diphtheria-toxin-based conditional ablation method, which significantly reduced wake amounts and mean duration of wake bouts and increased the EEG delta power during wakefulness. These findings demonstrate a crucial role for NtsLH neurons in maintaining normal arousal levels, and their loss may be associated with chronic sleepiness in mice.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Mudasir Khanday
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Sathyajit Sai Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Whidul Hasan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Kyosuke Hirano
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Takeo Yoshikawa
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
6
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
7
|
Raitamaa L, Kautto J, Tuunanen J, Helakari H, Huotari N, Järvelä M, Korhonen V, Kiviniemi V. Association of body-mass index with physiological brain pulsations across adulthood - a fast fMRI study. Int J Obes (Lond) 2024; 48:1011-1018. [PMID: 38553569 PMCID: PMC11216984 DOI: 10.1038/s41366-024-01515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND/OBJECTIVE Obesity is a risk factor for several brain-related health issues, and high body-mass index (BMI) is associated with an increased risk for several neurological conditions, including cognitive decline and dementia. Cardiovascular, respiratory, and vasomotor brain pulsations have each been shown to drive intracranial cerebrovascular fluid (CSF) flow, which is linked to the brain metabolite efflux that sustains homeostasis. While these three physiological pulsations are demonstrably altered in numerous brain diseases, there is no previous investigation of the association between physiological brain pulsations and BMI. SUBJECTS/METHODS We measured the amplitudes of the physiological brain pulsations using amplitude of low frequency fluctation (ALFF) based method with resting-state functional magnetic resonance imaging via high temporal resolution whole-brain magnetic resonance encephalography (MREG) in 115 healthy subjects. We next undertook multiple linear regression to model the BMI effect voxel-wise whole-brain on very low frequency (VLF), respiration, cardiovascular, and respiratory induced modulation of cardiovascular pulsation amplitudes with age, pulse pressure, and gender as nuisance variables. RESULTS In our study population, BMI was positively associated with the amplitudes of vasomotor, respiratory, and respiratory induced modulations of cardiovascular pulsations (p < 0.05), while negatively associated with the amplitudes of cardiovascular pulsations (p < 0.05). CONCLUSIONS The findings suggest that BMI is a significant factor in alterations of cardiovascular pulsation of neurofluids. As physiological pulsations are the drivers of CSF flow and subsequent metabolite clearance, these results emphasize the need for further research into the mechanisms through which obesity affects brain clearance.
Collapse
Affiliation(s)
- Lauri Raitamaa
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland.
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland.
| | - Joona Kautto
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
| | - Johanna Tuunanen
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
| | - Heta Helakari
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
| | - Niko Huotari
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
| | - Matti Järvelä
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
| | - Vesa Korhonen
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
8
|
Zhu Y, Yin L, Liu Q, Guan Y, Nie S, Zhu Y, Mo F. Tryptophan metabolic pathway plays a key role in the stress-induced emotional eating. Curr Res Food Sci 2024; 8:100754. [PMID: 38736909 PMCID: PMC11087915 DOI: 10.1016/j.crfs.2024.100754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Chronic stress disrupts the emotional and energetic balance, which may lead to abnormal behaviors such as binge eating. This overeating behavior alleviating the negative emotions is called emotional eating, which may exacerbate emotional instability and lead to obesity. It is a complex and multifaceted process that has not yet been fully understood. In this study, we constructed an animal model of chronic mild stress (CMS)-induced emotional eating. The emotional eating mice were treated with tryptophan for 21 days to reveal the key role of tryptophan. Furthermore, serum-targeted metabolomics, immunohistochemical staining, qPCR and ELISA were performed. The results showed that CMS led to the binge eating behavior, accompanied by the disturbed intestinal tryptophan-derived serotonin (5-hydroxytryptamine; 5-HT) metabolic pathways. Then we found that tryptophan supplementation improved depression and anxiety-like behaviors as well as abnormal eating behaviors. Tryptophan supplementation improved the abnormal expression of appetite regulators (e.g., AgRP, OX1R, MC4R), and tryptophan supplementation also increased the tryptophan hydroxylase 2 (tph2) and 5-HT receptors in the hypothalamus of CMS mice, which indicates that the 5-HT metabolic pathway influences feeding behavior. In vitro experiments confirmed that 5-HT supplementation ameliorated corticosterone-induced aberrant expression of appetite regulators, such as AgRP and OX1R, in the hypothalamic cell line. In conclusion, our findings revealed that the tryptophan-derived 5-HT pathway plays an important role in emotional eating, especially in providing targeted therapy for stress-induced obesity.
Collapse
Affiliation(s)
- Ying Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Lifeng Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Qing Liu
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Yaoxing Guan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Shuang Nie
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| |
Collapse
|
9
|
Hristov M, Landzhov B, Yakimova K. Effect of leptin on nitrergic neurons in the lateral hypothalamic area and the supraoptic nucleus of rats. Biotech Histochem 2024; 99:125-133. [PMID: 38533595 DOI: 10.1080/10520295.2024.2335167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
The adipocyte-derived hormone, leptin, plays a key role in the maintenance of energy homeostasis. Leptin binds to the long form of its receptor, which is predominantly expressed in various hypothalamic regions, including the lateral hypothalamic area (LH) and supraoptic nucleus (SO). Several studies have suggested that leptin directly activates neuronal nitric oxide synthase, leading to increased nitric oxide production. We used histochemistry for nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) as a marker for nitric oxide synthase activity and assessed the effect of leptin on nitrergic neurons in the LH and SO of rats. We found that intraperitoneal administration of leptin led to a significant increase in the number of NADPH-d-positive neurons in the LH and SO. In addition, the intensity (optical density) of NADPH-d staining in LH and SO neurons was significantly elevated in rats that received leptin compared with saline-treated rats. These findings suggest that nitrergic neurons in the LH and SO may be implicated in mediating the central effects of leptin.
Collapse
Affiliation(s)
- Milen Hristov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Krassimira Yakimova
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
10
|
Li SY, Cao JJ, Tan K, Fan L, Wang YQ, Shen ZX, Li SS, Wu C, Zhou H, Xu HT. CRH neurons in the lateral hypothalamic area regulate feeding behavior of mice. Curr Biol 2023; 33:4827-4843.e7. [PMID: 37848038 DOI: 10.1016/j.cub.2023.09.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/15/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Food cues serve as pivotal triggers for eliciting physiological responses that subsequently influence food consumption. The magnitude of response induced by these cues stands as a critical determinant in the context of obesity risk. Nonetheless, the underlying neural mechanism that underpins how cues associated with edible food potentiate feeding behaviors remains uncertain. In this study, we revealed that corticotropin-releasing hormone (CRH)-expressing neurons in the lateral hypothalamic area played a crucial role in promoting consummatory behaviors in mice, shedding light on this intricate process. By employing an array of diverse assays, we initially established the activation of these neurons during feeding. Manipulations using optogenetic and chemogenetic assays revealed that their activation amplified appetite and promoted feeding behaviors, whereas inhibition decreased them. Additionally, our investigation identified downstream targets, including the ventral tegmental area, and underscored the pivotal involvement of the CRH neuropeptide itself in orchestrating this regulatory network. This research casts a clarifying light on the neural mechanism underlying the augmentation of appetite and the facilitation of feeding behaviors in response to food cues. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Song-Yun Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Juan Cao
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Tan
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu Fan
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai 201210, China
| | - Ya-Qian Wang
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai 201210, China
| | - Zi-Xuan Shen
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai-Shuai Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Wu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhou
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai 201210, China
| | - Hua-Tai Xu
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai 201210, China.
| |
Collapse
|
11
|
Bouâouda H, Jha PK. Orexin and MCH neurons: regulators of sleep and metabolism. Front Neurosci 2023; 17:1230428. [PMID: 37674517 PMCID: PMC10478345 DOI: 10.3389/fnins.2023.1230428] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Sleep-wake and fasting-feeding are tightly coupled behavioral states that require coordination between several brain regions. The mammalian lateral hypothalamus (LH) is a functionally and anatomically complex brain region harboring heterogeneous cell populations that regulate sleep, feeding, and energy metabolism. Significant attempts were made to understand the cellular and circuit bases of LH actions. Rapid advancements in genetic and electrophysiological manipulation help to understand the role of discrete LH cell populations. The opposing action of LH orexin/hypocretin and melanin-concentrating hormone (MCH) neurons on metabolic sensing and sleep-wake regulation make them the candidate to explore in detail. This review surveys the molecular, genetic, and neuronal components of orexin and MCH signaling in the regulation of sleep and metabolism.
Collapse
Affiliation(s)
- Hanan Bouâouda
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Pawan Kumar Jha
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
12
|
Liu J, Lai F, Hou Y, Zheng R. Leptin signaling and leptin resistance. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:363-384. [PMID: 37724323 PMCID: PMC10388810 DOI: 10.1515/mr-2022-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 09/20/2023]
Abstract
With the prevalence of obesity and associated comorbidities, studies aimed at revealing mechanisms that regulate energy homeostasis have gained increasing interest. In 1994, the cloning of leptin was a milestone in metabolic research. As an adipocytokine, leptin governs food intake and energy homeostasis through leptin receptors (LepR) in the brain. The failure of increased leptin levels to suppress feeding and elevate energy expenditure is referred to as leptin resistance, which encompasses complex pathophysiological processes. Within the brain, LepR-expressing neurons are distributed in hypothalamus and other brain areas, and each population of the LepR-expressing neurons may mediate particular aspects of leptin effects. In LepR-expressing neurons, the binding of leptin to LepR initiates multiple signaling cascades including janus kinase (JAK)-signal transducers and activators of transcription (STAT) phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), extracellular regulated protein kinase (ERK), and AMP-activated protein kinase (AMPK) signaling, etc., mediating leptin actions. These findings place leptin at the intersection of metabolic and neuroendocrine regulations, and render leptin a key target for treating obesity and associated comorbidities. This review highlights the main discoveries that shaped the field of leptin for better understanding of the mechanism governing metabolic homeostasis, and guides the development of safe and effective interventions to treat obesity and associated diseases.
Collapse
Affiliation(s)
- Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Futing Lai
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Yujia Hou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience of Ministry of Education, Peking University, Beijing, China
- Key Laboratory for Neuroscience of National Health Commission, Peking University, Beijing 100191, China
| |
Collapse
|
13
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
14
|
The Sleep-Promoting Ventrolateral Preoptic Nucleus: What Have We Learned over the Past 25 Years? Int J Mol Sci 2022; 23:ijms23062905. [PMID: 35328326 PMCID: PMC8954377 DOI: 10.3390/ijms23062905] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 01/09/2023] Open
Abstract
For over a century, the role of the preoptic hypothalamus and adjacent basal forebrain in sleep-wake regulation has been recognized. However, for years, the identity and location of sleep- and wake-promoting neurons in this region remained largely unresolved. Twenty-five years ago, Saper and colleagues uncovered a small collection of sleep-active neurons in the ventrolateral preoptic nucleus (VLPO) of the preoptic hypothalamus, and since this seminal discovery the VLPO has been intensively investigated by labs around the world, including our own. Herein, we first review the history of the preoptic area, with an emphasis on the VLPO in sleep-wake control. We then attempt to synthesize our current understanding of the circuit, cellular and synaptic bases by which the VLPO both regulates and is itself regulated, in order to exert a powerful control over behavioral state, as well as examining data suggesting an involvement of the VLPO in other physiological processes.
Collapse
|
15
|
Owens-French J, Li SB, Francois M, Leigh Townsend R, Daniel M, Soulier H, Turner A, de Lecea L, Münzberg H, Morrison C, Qualls-Creekmore E. Lateral hypothalamic galanin neurons are activated by stress and blunt anxiety-like behavior in mice. Behav Brain Res 2022; 423:113773. [PMID: 35101456 PMCID: PMC8901126 DOI: 10.1016/j.bbr.2022.113773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/07/2022] [Accepted: 01/23/2022] [Indexed: 12/29/2022]
Abstract
Despite the prevalence of anxiety disorders, the molecular identity of neural circuits underlying anxiety remains unclear. The lateral hypothalamus (LH) is one brain region implicated in the regulation of anxiety, and our recent data found that chemogenetic activation of LH galanin neurons attenuated the stress response to a novel environment as measured by the marble burying test. Thus, we hypothesize that LH galanin neurons may contribute to anxiety-related behavior. We used chemogenetics and fiber photometry to test the ability of LH galanin neurons to influence anxiety and stress-related behavior. Chemogenetic activation of LH galanin neurons significantly decreased anxiety-like behavior in the elevated plus maze, open field test, and light dark test. However, LH galanin activation did not alter restraint stress induced HPA activation or freezing behavior in the fear conditioning paradigm. In vivo calcium monitoring by fiber photometry indicated that LH galanin neurons were activated by anxiogenic and/or stressful stimuli including tail suspension, novel mouse interaction, and predator odor. Further, in a fear conditioning task, calcium transients strongly increased during foot shock, but were not affected by the unconditioned stimulus tone. These data indicate that LH galanin neurons both respond to and modulate anxiety, with no influence on stress induced HPA activation or fear behaviors. Further investigation of LH galanin circuitry and functional mediators of behavioral output may offer a more refined pharmacological target as an alternative to first-line broad pharmacotherapies such as benzodiazepines.
Collapse
|
16
|
Marcos P, Coveñas R. Involvement of the Orexinergic System in Feeding. APPLIED SCIENCES 2021; 12:86. [DOI: 10.3390/app12010086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
To know the processes involved in feeding, the dysregulation of hypothalamic neuropeptides promoting anorexigenic/orexigenic mechanisms must be investigated. Many neuropeptides are involved in this behavior and in overweight/obesity. Current pharmacological strategies for the treatment of obesity are unfortunately not very effective and, hence, new therapeutic strategies must be investigated and developed. Due to the crucial role played by orexins in feeding behavior, the aim of this review is to update the involvement of the orexinergic system in this behavior. The studies performed in experimental animal models and humans and the relationships between the orexinergic system and other substances are mentioned and discussed. Promising research lines on the orexinergic system are highlighted (signaling pathways, heterogeneity of the hypothalamic orexinergic neurons, receptor-receptor interaction, and sex differences). Each of the orexin 1 and 2 receptors plays a unique role in energy metabolism, exerting a differential function in obesity. Additional preclinical/clinical studies must be carried out to demonstrate the beneficial effects mediated by orexin receptor antagonists. Because therapies applied are in general ineffective when they are directed against a single target, the best option for successful anti-obesity treatments is the development of combination therapies as well as the development of new and more specific orexin receptor antagonists.
Collapse
Affiliation(s)
- Pilar Marcos
- CRIB (Regional Centre of Biomedical Research), Cellular Neuroanatomy and Molecular Chemistry of Central Nervous System, Faculty of Medicine, University of Castilla-La Mancha, Avenida de Almansa 14, 02006 Albacete, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, c/Pintor Fernando Gallego 1, 37007 Salamanca, Spain
- Group GIR-BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
17
|
Al-Massadi O, Dieguez C, Schneeberger M, López M, Schwaninger M, Prevot V, Nogueiras R. Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis. Nat Rev Endocrinol 2021; 17:745-755. [PMID: 34608277 DOI: 10.1038/s41574-021-00559-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Melanin-concentrating hormone (MCH) is a small cyclic peptide expressed in all mammals, mainly in the hypothalamus. MCH acts as a robust integrator of several physiological functions and has crucial roles in the regulation of sleep-wake rhythms, feeding behaviour and metabolism. MCH signalling has a very broad endocrine context and is involved in physiological functions and emotional states associated with metabolism, such as reproduction, anxiety, depression, sleep and circadian rhythms. MCH mediates its functions through two receptors (MCHR1 and MCHR2), of which only MCHR1 is common to all mammals. Owing to the wide variety of MCH downstream signalling pathways, MCHR1 agonists and antagonists have great potential as tools for the directed management of energy balance disorders and associated metabolic complications, and translational strategies using these compounds hold promise for the development of novel treatments for obesity. This Review provides an overview of the numerous roles of MCH in energy and glucose homeostasis, as well as in regulation of the mesolimbic dopaminergic circuits that encode the hedonic component of food intake.
Collapse
Affiliation(s)
- Omar Al-Massadi
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
| | - Carlos Dieguez
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Miguel López
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Laboratory of Development and Plasticity of the Neuroendocrine Brain, UMR-S1172, EGID, Lille, France
| | - Ruben Nogueiras
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
18
|
Oesch LT, Adamantidis AR. How REM sleep shapes hypothalamic computations for feeding behavior. Trends Neurosci 2021; 44:990-1003. [PMID: 34663506 DOI: 10.1016/j.tins.2021.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
The electrical activity of diverse brain cells is modulated across states of vigilance, namely wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Enhanced activity of neuronal circuits during NREM sleep impacts on subsequent awake behaviors, yet the significance of their activation, or lack thereof, during REM sleep remains unclear. This review focuses on feeding-promoting cells in the lateral hypothalamus (LH) that express the vesicular GABA and glycine transporter (vgat) as a model to further understand the impact of REM sleep on neural encoding of goal-directed behavior. It emphasizes both spatial and temporal aspects of hypothalamic cell dynamics across awake behaviors and REM sleep, and discusses a role for REM sleep in brain plasticity underlying energy homeostasis and behavioral optimization.
Collapse
Affiliation(s)
- Lukas T Oesch
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland; Department of Neurobiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Antoine R Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
19
|
Yu H, Shi L, Chen J, Jun S, Hao Y, Wang S, Fu C, Zhang X, Lu H, Wang S, Yuan F. A Neural Circuit Mechanism Controlling Breathing by Leptin in the Nucleus Tractus Solitarii. Neurosci Bull 2021; 38:149-165. [PMID: 34212297 PMCID: PMC8821766 DOI: 10.1007/s12264-021-00742-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/07/2021] [Indexed: 02/03/2023] Open
Abstract
Leptin, an adipocyte-derived peptide hormone, has been shown to facilitate breathing. However, the central sites and circuit mechanisms underlying the respiratory effects of leptin remain incompletely understood. The present study aimed to address whether neurons expressing leptin receptor b (LepRb) in the nucleus tractus solitarii (NTS) contribute to respiratory control. Both chemogenetic and optogenetic stimulation of LepRb-expressing NTS (NTSLepRb) neurons notably activated breathing. Moreover, stimulation of NTSLepRb neurons projecting to the lateral parabrachial nucleus (LPBN) not only remarkably increased basal ventilation to a level similar to that of the stimulation of all NTSLepRb neurons, but also activated LPBN neurons projecting to the preBötzinger complex (preBötC). By contrast, ablation of NTSLepRb neurons projecting to the LPBN notably eliminated the enhanced respiratory effect induced by NTSLepRb neuron stimulation. In brainstem slices, bath application of leptin rapidly depolarized the membrane potential, increased the spontaneous firing rate, and accelerated the Ca2+ transients in most NTSLepRb neurons. Therefore, leptin potentiates breathing in the NTS most likely via an NTS-LPBN-preBötC circuit.
Collapse
Affiliation(s)
- Hongxiao Yu
- grid.256883.20000 0004 1760 8442Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 Hebei China
| | - Luo Shi
- grid.256883.20000 0004 1760 8442Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 Hebei China
| | - Jinting Chen
- grid.256883.20000 0004 1760 8442Core Facilities and Centers, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017 Hebei China
| | - Shirui Jun
- grid.256883.20000 0004 1760 8442Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 Hebei China
| | - Yinchao Hao
- grid.256883.20000 0004 1760 8442Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 Hebei China
| | - Shuang Wang
- grid.256883.20000 0004 1760 8442Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 Hebei China
| | - Congrui Fu
- grid.256883.20000 0004 1760 8442School of Nursing, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Xiang Zhang
- grid.256883.20000 0004 1760 8442Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 Hebei China
| | - Haiyan Lu
- grid.256883.20000 0004 1760 8442Department of Orthodontics, College of Stomatology, Hebei Medical University, Shijiazhuang, 050017 Hebei China
| | - Sheng Wang
- grid.256883.20000 0004 1760 8442Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 Hebei China ,Hebei Key Laboratory of Neurophysiology, Shijiazhuang, 050017 Hebei China
| | - Fang Yuan
- grid.256883.20000 0004 1760 8442Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 Hebei China ,Hebei Key Laboratory of Neurophysiology, Shijiazhuang, 050017 Hebei China
| |
Collapse
|
20
|
Pho H, Berger S, Freire C, Kim LJ, Shin MK, Streeter SR, Hosamane N, Cabassa ME, Anokye-Danso F, Dergacheva O, Amorim MR, Fleury-Curado T, Jun JC, Schwartz AR, Ahima RS, Mendelowitz D, Polotsky VY. Leptin receptor expression in the dorsomedial hypothalamus stimulates breathing during NREM sleep in db/db mice. Sleep 2021; 44:6149135. [PMID: 33624805 PMCID: PMC8193564 DOI: 10.1093/sleep/zsab046] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
STUDY OBJECTIVES Obesity leads to obstructive sleep apnea (OSA), which is recurrent upper airway obstruction during sleep, and obesity hypoventilation syndrome (OHS), hypoventilation during sleep resulting in daytime hypercapnia. Impaired leptin signaling in the brain was implicated in both conditions, but mechanisms are unknown. We have previously shown that leptin stimulates breathing and treats OSA and OHS in leptin-deficient ob/ob mice and leptin-resistant diet-induced obese mice and that leptin's respiratory effects may occur in the dorsomedial hypothalamus (DMH). We hypothesized that leptin receptor LepRb-deficient db/db mice have obesity hypoventilation and that restoration of leptin signaling in the DMH will increase ventilation during sleep in these animals. METHODS We measured arterial blood gas in unanesthetized awake db/db mice. We subsequently infected these animals with Ad-LepRb or control Ad-mCherry virus into the DMH and measured ventilation during sleep as well as CO2 production after intracerebroventricular (ICV) infusions of phosphate-buffered saline or leptin. RESULTS Awake db/db mice had elevated CO2 levels in the arterial blood. Ad-LepRb infection resulted in LepRb expression in the DMH neurons in a similar fashion to wildtype mice. In LepRb-DMH db/db mice, ICV leptin shortened REM sleep and increased inspiratory flow, tidal volume, and minute ventilation during NREM sleep without any effect on the quality of NREM sleep or CO2 production. Leptin had no effect on upper airway obstruction in these animals. CONCLUSION Leptin stimulates breathing and treats obesity hypoventilation acting on LepRb-positive neurons in the DMH.
Collapse
Affiliation(s)
- Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Slava Berger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carla Freire
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stone R Streeter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nishitha Hosamane
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meaghan E Cabassa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick Anokye-Danso
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Dergacheva
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Mateus R Amorim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomaz Fleury-Curado
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan C Jun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan R Schwartz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Corresponding author. Vsevolod (Seva) Y. Polotsky, Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Johns Hopkins Asthma and Allergy Center, Rm 4B65, Baltimore, MD 21224.
| |
Collapse
|
21
|
Ramirez-Virella J, Leinninger GM. The Role of Central Neurotensin in Regulating Feeding and Body Weight. Endocrinology 2021; 162:6144574. [PMID: 33599716 PMCID: PMC7951050 DOI: 10.1210/endocr/bqab038] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 12/16/2022]
Abstract
The small peptide neurotensin (Nts) is implicated in myriad processes including analgesia, thermoregulation, reward, arousal, blood pressure, and modulation of feeding and body weight. Alterations in Nts have recently been described in individuals with obesity or eating disorders, suggesting that disrupted Nts signaling may contribute to body weight disturbance. Curiously, Nts mediates seemingly opposing regulation of body weight via different tissues. Peripherally acting Nts promotes fat absorption and weight gain, whereas central Nts signaling suppresses feeding and weight gain. Thus, because Nts is pleiotropic, a location-based approach must be used to understand its contributions to disordered body weight and whether the Nts system might be leveraged to improve metabolic health. Here we review the role of Nts signaling in the brain to understand the sites, receptors, and mechanisms by which Nts can promote behaviors that modify body weight. New techniques permitting site-specific modulation of Nts and Nts receptor-expressing cells suggest that, even in the brain, not all Nts circuitry exerts the same function. Intriguingly, there may be dedicated brain regions and circuits via which Nts specifically suppresses feeding behavior and weight gain vs other Nts-attributed physiology. Defining the central mechanisms by which Nts signaling modifies body weight may suggest strategies to correct disrupted energy balance, as needed to address overweight, obesity, and eating disorders.
Collapse
Affiliation(s)
- Jariel Ramirez-Virella
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
- Correspondence: Gina M. Leinninger, PhD, Department of Physiology, Michigan State University, 5400 ISTB, 766 Service Rd, East Lansing, MI 48824, USA.
| |
Collapse
|
22
|
Unraveling the Role of Leptin in Liver Function and Its Relationship with Liver Diseases. Int J Mol Sci 2020; 21:ijms21249368. [PMID: 33316927 PMCID: PMC7764544 DOI: 10.3390/ijms21249368] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Since its discovery twenty-five years ago, the fat-derived hormone leptin has provided a revolutionary framework for studying the physiological role of adipose tissue as an endocrine organ. Leptin exerts pleiotropic effects on many metabolic pathways and is tightly connected with the liver, the major player in systemic metabolism. As a consequence, understanding the metabolic and hormonal interplay between the liver and adipose tissue could provide us with new therapeutic targets for some chronic liver diseases, an increasing problem worldwide. In this review, we assess relevant literature regarding the main metabolic effects of leptin on the liver, by direct regulation or through the central nervous system (CNS). We draw special attention to the contribution of leptin to the non-alcoholic fatty liver disease (NAFLD) pathogenesis and its progression to more advanced stages of the disease as non-alcoholic steatohepatitis (NASH). Likewise, we describe the contribution of leptin to the liver regeneration process after partial hepatectomy, the mainstay of treatment for certain hepatic malignant tumors.
Collapse
|
23
|
Ge TT, Yao XX, Zhao FL, Zou XH, Yang W, Cui RJ, Li BJ. Role of leptin in the regulation of food intake in fasted mice. J Cell Mol Med 2020; 24:4524-4532. [PMID: 32174013 PMCID: PMC7176890 DOI: 10.1111/jcmm.15110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/25/2022] Open
Abstract
Leptin is well acknowledged as an anorexigenic hormone that plays an important role in feeding control. Hypothalamic GABA system plays a significant role in leptin regulation on feeding and metabolism control. However, the pharmacological relationship of leptin and GABA receptor is still obscure. Therefore, we investigated the effect of leptin or combined with baclofen on the food intake in fasted mice. We detected the changes in hypothalamic c-Fos expression, hypothalamic TH, POMC and GAD67 expression, plasma insulin, POMC and GABA levels to demonstrate the mechanisms. We found that leptin inhibit fasting-induced increased food intake and activated hypothalamic neurons. The inhibitory effect on food intake induced by leptin in fasted mice can be reversed by pretreatment with baclofen. Baclofen reversed leptin's inhibition on c-Fos expression of PAMM in fasted mice. Therefore, these results indicate that leptin might inhibit fasting-triggered activation of PVN neurons via presynaptic GABA synaptic functions which might be partially blocked by pharmacological activating GABA-B. Our findings identify the role of leptin in the regulation of food intake.
Collapse
Affiliation(s)
- Tong Tong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Xiao Xiao Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Feng Lian Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Xiao Han Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Han D, Han F, Shi Y, Zheng S, Wen L. Mechanisms of Memory Impairment Induced by Orexin-A via Orexin 1 and Orexin 2 Receptors in Post-traumatic Stress Disorder Rats. Neuroscience 2020; 432:126-136. [PMID: 32112915 DOI: 10.1016/j.neuroscience.2020.02.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Post-traumatic stress disorder (PTSD) patients exhibit abnormal learning and memory. Axons from orexin neurons in the lateral hypothalamus innervate the hippocampus, modulating learning and memory via the orexin 1 and 2 receptors (OX1R and OX2R). However, the role of the orexin system in the learning and memory dysfunction observed in PTSD is unknown. This was investigated in the present study using PTSD animal model-single prolonged stress (SPS) rats. Spatial learning and memory in the rats were evaluated with the Morris water maze (MWM) test; changes in body weight and food intake were recorded to assess changes in appetite; and the expression of orexin-A and its receptors in the hypothalamus and hippocampus was examined and quantified by immunohistochemistry, western blotting and real-time PCR. The results showed that spatial memory was impaired and food intake was decreased in SPS rats; this was accompanied by downregulation of orexin-A in the hypothalamus and upregulation of OX1R and OX2R in the hippocampus and of OX1R in the hypothalamus. Intracerebroventricular administration of orexin-A improved spatial memory and enhanced appetite in SPS rats and partly reversed the increases in OX1R and OX2R levels in the hippocampus and hypothalamus. These results suggest that the orexin system plays a critical role in the memory and appetite dysfunction observed in PTSD.
Collapse
Affiliation(s)
- Dan Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China; Department of Neonatology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping Area, Shenyang, PR China
| | - Fang Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| | - Shilei Zheng
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Lili Wen
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| |
Collapse
|
25
|
Neurotensin in reward processes. Neuropharmacology 2020; 167:108005. [PMID: 32057800 DOI: 10.1016/j.neuropharm.2020.108005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/18/2022]
Abstract
Neurotensin (NTS) is a neuropeptide neurotransmitter expressed in the central and peripheral nervous systems. Many studies over the years have revealed a number of roles for this neuropeptide in body temperature regulation, feeding, analgesia, ethanol sensitivity, psychosis, substance use, and pain. This review provides a general survey of the role of neurotensin with a focus on modalities that we believe to be particularly relevant to the study of reward. We focus on NTS signaling in the ventral tegmental area, nucleus accumbens, lateral hypothalamus, bed nucleus of the stria terminalis, and central amygdala. Studies on the role of NTS outside of the ventral tegmental area are still in their relative infancy, yet they reveal a complex role for neurotensinergic signaling in reward-related behaviors that merits further study. This article is part of the special issue on 'Neuropeptides'.
Collapse
|
26
|
Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020; 167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Hypocretin/orexin neurons are distributed restrictively in the hypothalamus, a brain region known to orchestrate diverse functions including sleep, reward processing, food intake, thermogenesis, and mood. Since the hypocretins/orexins were discovered more than two decades ago, extensive studies have accumulated concrete evidence showing the pivotal role of hypocretin/orexin in diverse neural modulation. New method of viral-mediated tracing system offers the possibility to map the monosynaptic inputs and detailed anatomical connectivity of Hcrt neurons. With the development of powerful research techniques including optogenetics, fiber-photometry, cell-type/pathway specific manipulation and neuronal activity monitoring, as well as single-cell RNA sequencing, the details of how hypocretinergic system execute functional modulation of various behaviors are coming to light. In this review, we focus on the function of neural pathways from hypocretin neurons to target brain regions. Anatomical and functional inputs to hypocretin neurons are also discussed. We further briefly summarize the development of pharmaceutical compounds targeting hypocretin signaling. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| |
Collapse
|
27
|
Leidmaa E, Gazea M, Patchev AV, Pissioti A, Christian Gassen N, Kimura M, Liposits Z, Kallo I, Almeida OFX. Blunted leptin sensitivity during hedonic overeating can be reinstated by activating galanin 2 receptors (Gal2R) in the lateral hypothalamus. Acta Physiol (Oxf) 2020; 228:e13345. [PMID: 31310704 DOI: 10.1111/apha.13345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
Abstract
AIM Since foods with high hedonic value are often consumed in excess of energetic needs, this study was designed to identify the mechanisms that may counter anorexigenic signalling in the presence of hedonic foods in lean animals. METHODS Mice, in different states of satiety (fed/fasted, or fed/fasted and treated with ghrelin or leptin, respectively), were allowed to choose between high-fat/high-sucrose and standard foods. Intake of each food type and the activity of hypothalamic neuropetidergic neurons that regulate appetite were monitored. In some cases, food choice was monitored in leptin-injected fasted mice that received microinjections of galanin receptor agonists into the lateral hypothalamus. RESULTS Appetite-stimulating orexin neurons in the lateral hypothalamus are rapidly activated when lean, satiated mice consume a highly palatable food (PF); such activation (upregulated c-Fos expression) occurred even after administration of the anorexigenic hormone leptin and despite intact leptin signalling in the hypothalamus. The ability of leptin to restrain PF eating is restored when a galanin receptor 2 (Gal2R) agonist is injected into the lateral hypothalamus. CONCLUSION Hedonically-loaded foods interrupt the inhibitory actions of leptin on orexin neurons and interfere with the homeostatic control of feeding. Overeating of palatable foods can be curtailed in lean animals by activating Gal2R in the lateral hypothalamus.
Collapse
Affiliation(s)
- Este Leidmaa
- Max Planck Institute of Psychiatry Munich Germany
- Graduate School of Systems Neuroscience Munich University Planegg‐Martinsried Germany
- Institute of Molecular Psychiatry Bonn Germany
| | - Mary Gazea
- Max Planck Institute of Psychiatry Munich Germany
| | | | | | | | | | - Zsolt Liposits
- Institute of Experimental Medicine Hungarian Academy of Sciences Budapest Hungary
| | - Imre Kallo
- Institute of Experimental Medicine Hungarian Academy of Sciences Budapest Hungary
| | | |
Collapse
|
28
|
Kelley L, Verlezza S, Long H, Loka M, Walker CD. Increased Hypothalamic Projections to the Lateral Hypothalamus and Responses to Leptin in Rat Neonates From High Fat Fed Mothers. Front Neurosci 2020; 13:1454. [PMID: 32082105 PMCID: PMC7005214 DOI: 10.3389/fnins.2019.01454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022] Open
Abstract
The lateral hypothalamus (LHA) is a central hub in the regulation of food intake and metabolism, as it integrates homeostatic and hedonic circuits. During early development, maturing input to and output from the LHA might be particularly sensitive to environmental dietary changes. We examined the effects of a maternal high fat diet (HFD, 60% Kcal in fat) on the density of hypothalamic projections to the orexin (ORX-A) field of the LHA in 10 day-old (PND10) rat pups using retrograde labeling with fluorescent microspheres. We also compared responsiveness of phenotypically identified LHA neurons to leptin administration (3 mg/kg, bw) between pups from control (CD) or high fat (HFD) fed mothers on PND10 and 15-16, at the onset of independent feeding. HFD pups exhibited a higher density of LHA projections (p = 0.05) from the ventromedial hypothalamus (VMH) compared to CD pups and these originated from both SF-1 and BDNF-positive neurons in the VMH. Increased circulating leptin levels in HFD pups, particularly on PND15-16 was consistent with enhanced pSTAT3 responses to leptin in the orexin (ORX-A) field of the LHA, with some of the activated neurons expressing a GABA, but not CART phenotype. ORX-A neurons colocalizing with pERK were significantly higher in PND15-16 HFD pups compared to CD pups, and leptin-induced increase in pERK signaling was only observed in CD pups. There was no significant effect of leptin on pERK in HFD pups. These results suggest that perinatal maternal high fat feeding increases hypothalamic projections to the ORX-A field of the LHA, increases basal activation of ORX-A neurons and direct responsiveness of LHA neurons to leptin. Since these various LHA neuronal populations project quite heavily to Dopamine (DA) neurons in the ventral tegmental area, they might participate in the early dietary programming of mesocorticolimbic reward circuits and food intake.
Collapse
Affiliation(s)
- Lyla Kelley
- Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | | | - Hong Long
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Mary Loka
- Douglas Mental Health University Institute, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
29
|
Straat ME, Schinkelshoek MS, Fronczek R, Lammers GJ, Rensen PCN, Boon MR. Role of Brown Adipose Tissue in Adiposity Associated With Narcolepsy Type 1. Front Endocrinol (Lausanne) 2020; 11:145. [PMID: 32373062 PMCID: PMC7176868 DOI: 10.3389/fendo.2020.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/02/2020] [Indexed: 11/23/2022] Open
Abstract
Narcolepsy type 1 is a neurological sleep-wake disorder caused by the destruction of orexin (hypocretin)-producing neurons. These neurons are particularly located in the lateral hypothalamus and have widespread projections throughout the brain, where they are involved, e.g., in the regulation of the sleep-wake cycle and appetite. Interestingly, a higher prevalence of obesity has been reported in patients with narcolepsy type 1 compared to healthy controls, despite a normal to decreased food intake and comparable physical activity. This suggests the involvement of tissues implicated in total energy expenditure, including skeletal muscle, liver, white adipose tissue (WAT), and brown adipose tissue (BAT). Recent evidence from pre-clinical studies with orexin knock-out mice demonstrates a crucial role for the orexin system in the functionality of brown adipose tissue (BAT), probably through multiple pathways. Since BAT is a highly metabolically active organ that combusts fatty acids and glucose toward heat, thereby contributing to energy metabolism, this raises the question of whether BAT plays a role in the development of obesity and related metabolic diseases in narcolepsy type 1. BAT is densely innervated by the sympathetic nervous system that activates BAT, for instance, following cold exposure. The sympathetic outflow toward BAT is mainly mediated by the dorsomedial, ventromedial, arcuate, and paraventricular nuclei in the hypothalamus. This review focuses on the current knowledge on the role of the orexin system in the control of energy balance, with specific focus on BAT metabolism and adiposity in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Maaike E. Straat
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Maaike E. Straat
| | - Mink S. Schinkelshoek
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Sleep Wake Centre SEIN, Heemstede, Netherlands
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Sleep Wake Centre SEIN, Heemstede, Netherlands
| | - Gerrit Jan Lammers
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Sleep Wake Centre SEIN, Heemstede, Netherlands
| | - Patrick C. N. Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Mariëtte R. Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
30
|
Levitas-Djerbi T, Sagi D, Lebenthal-Loinger I, Lerer-Goldshtein T, Appelbaum L. Neurotensin Enhances Locomotor Activity and Arousal and Inhibits Melanin-Concentrating Hormone Signaling. Neuroendocrinology 2020; 110:35-49. [PMID: 31030196 DOI: 10.1159/000500590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/28/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypothalamic neurotensin (Nts)-secreting neurons regulate fundamental physiological processes including metabolism and feeding. However, the role of Nts in modulation of locomotor activity, sleep, and arousal is unclear. We previously identified and characterized Nts neurons in the zebrafish hypothalamus. MATERIALS AND METHODS In order to study the role of Nts, nts mutant (nts-/-), and overexpressing zebrafish were generated. RESULTS The expression of both nts mRNA and Nts protein was reduced during the night in wild-type zebrafish. Behavioral assays revealed that locomotor activity was decreased during both day and night, while sleep was increased exclusively during the nighttime in nts-/- larvae. Likewise, inducible overexpression of Nts increased arousal in hsp70:Gal4/uas:Nts larvae. Furthermore, the behavioral response to light-to-dark transitions was reduced in nts-/- larvae. In order to elucidate potential contenders that may mediate Nts action on these behaviors, we profiled the transcriptome of 6 dpf nts-/- larvae. Among other genes, the expression levels of melanin-concentrating hormone receptor 1b were increased in nts-/- larvae. Furthermore, a portion of promelanin-concentrating hormone 1 (pmch1) and pmch2 neurons expressed the nts receptor. In addition, expression of the the two zebrafish melanin-concentrating hormone (Mch) orthologs, Mch1 and Mch2, was increased in nts-/- larvae. CONCLUSION These results show that the Nts and Mch systems interact and modulate locomotor activity and arousal.
Collapse
Affiliation(s)
- Talia Levitas-Djerbi
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Dana Sagi
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Tali Lerer-Goldshtein
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel,
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel,
| |
Collapse
|
31
|
Ueno H, Miyamoto T, Sanada K, Nakazono K, Tanaka K, Nishimura H, Nishimura K, Sonoda S, Yoshimura M, Maruyama T, Serino R, Otsuji Y, Ueta Y. Changes in gene expressions of hypothalamic neuropeptides controlling feeding behaviors in bilateral nephrectomized rats. Neurosci Lett 2019; 711:134426. [PMID: 31401303 DOI: 10.1016/j.neulet.2019.134426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/31/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
Anorexia is one of the most widespread eating disorders that appears to contribute to malnutrition in patients with advanced kidney dysfunction. The changes of neuropeptides controlling feeding behaviors synthesized in the hypothalamus under several physiological condition could induce anorexia. While several mechanisms underlying uremic anorexia have been proposed, the changes of hypothalamic neuropeptides controlling feeding behaviors of uremic patients are poorly understood. The gene expressions of hypothalamic neuropeptides controlling feeding behaviors were evaluated after bilateral nephrectomy, which is a model of acute kidney dysfunction, by in situ hybridization histochemistry. Food consumption decreased markedly in bilateral nephrectomized rats. The mRNA levels of corticotrophin-releasing hormone, proopiomelanocortin, cocaine- and amphetamine-regulated transcript, which suppress feeding behavior, were significantly higher in bilateral nephrectomized rats than in sham-operated rats. On the other hand, the mRNA levels of Agouti-related peptide, neuropeptide Y, melanin-concentrating hormone, and orexin, which promote feeding behavior, were significantly lower in bilateral nephrectomized rats than in sham-operated rats. In addition, the plasma level of leptin, which has an anorexic effect, increased after bilateral nephrectomy. The results suggest that hypothalamic neuropeptides controlling feeding behaviors may be involved in the development of anorexia in bilateral nephrectomized rats. This report is the first step to elucidating the physiological mechanisms of anorexia in patients with kidney dysfunction.
Collapse
Affiliation(s)
- Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan; The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Tetsu Miyamoto
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kenya Sanada
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kazutoshi Nakazono
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Haruki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Ryota Serino
- Department of Nephrology, Yoshino Hospital, Kitakyushu 808-0034, Japan
| | - Yutaka Otsuji
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| |
Collapse
|
32
|
Sun C, Tang K, Wu J, Xu H, Zhang W, Cao T, Zhou Y, Yu T, Li A. Leptin modulates olfactory discrimination and neural activity in the olfactory bulb. Acta Physiol (Oxf) 2019; 227:e13319. [PMID: 31144469 DOI: 10.1111/apha.13319] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022]
Abstract
AIM Leptin is an important peptide hormone that regulates food intake and plays a crucial role in modulating olfactory function. Although a few previous studies have investigated the effect of leptin on odor perception and discrimination in rodents, research on the neural basis underlying the behavioral changes is lacking. Here we study how leptin affects behavioral performance during a go/no-go task and how it modulates neural activity of mitral/tufted cells in the olfactory bulb, which plays an important role in odor information processing and representation. METHODS A go/no-go odor discrimination task was used in the behavioral test. For in vivo studies, single unit recordings, local field potential recordings and fiber photometry recordings were used. For in vitro studies, we performed patch clamp recordings in the slice of the olfactory bulb. RESULTS Behaviorally, leptin affects performance and reaction time in a difficult odor-discrimination task. Leptin decreases the spontaneous firing of single mitral/tufted cells, decreases the odor-evoked beta and high gamma local field potential response, and has bidirectional effects on the odor-evoked responses of single mitral/tufted cells. Leptin also inhibits the population calcium activity in genetically identified mitral/tufted cells and granule cells. Furthermore, in vitro slice recordings reveal that leptin inhibits mitral cell activity through direct modulation of the voltage-sensitive potassium channel. CONCLUSIONS The behavioral reduction in odor discrimination observed after leptin administration is likely due to decreased neural activity in mitral/tufted cells, caused by modulation of potassium channels in these cells.
Collapse
Affiliation(s)
- Changcheng Sun
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Keke Tang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Jing Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Han Xu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Wenfeng Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Tiantian Cao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Yang Zhou
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
- The Affiliated Changzhou NO.2 People's Hospital with Nanjing Medical University Changzhou China
| | - Tian Yu
- Department of Cell and Developmental Biology University of Colorado Anschutz Medical Campus Aurora Colorado
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| |
Collapse
|
33
|
Serum level of orexin A and its correlation with metabolic risk factors in type 2 diabetes mellitus patients. Int J Diabetes Dev Ctries 2019. [DOI: 10.1007/s13410-019-00728-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
34
|
Schiffino FL, Siemian JN, Petrella M, Laing BT, Sarsfield S, Borja CB, Gajendiran A, Zuccoli ML, Aponte Y. Activation of a lateral hypothalamic-ventral tegmental circuit gates motivation. PLoS One 2019; 14:e0219522. [PMID: 31291348 PMCID: PMC6619795 DOI: 10.1371/journal.pone.0219522] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Across species, motivated states such as food-seeking and consumption are essential for survival. The lateral hypothalamus (LH) is known to play a fundamental role in regulating feeding and reward-related behaviors. However, the contributions of neuronal subpopulations in the LH have not been thoroughly identified. Here we examine how lateral hypothalamic leptin receptor-expressing (LHLEPR) neurons, a subset of GABAergic cells, regulate motivation in mice. We find that LHLEPR neuronal activation significantly increases progressive ratio (PR) performance, while inhibition decreases responding. Moreover, we mapped LHLEPR axonal projections and demonstrated that they target the ventral tegmental area (VTA), form functional inhibitory synapses with non-dopaminergic VTA neurons, and their activation promotes motivation for food. Finally, we find that LHLEPR neurons also regulate motivation to obtain water, suggesting that they may play a generalized role in motivation. Together, these results identify LHLEPR neurons as modulators within a hypothalamic-ventral tegmental circuit that gates motivation.
Collapse
Affiliation(s)
- Felipe L. Schiffino
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Justin N. Siemian
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Michele Petrella
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino (MC), Italy
| | - Brenton T. Laing
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Sarah Sarsfield
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Cara B. Borja
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Anjali Gajendiran
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Maria Laura Zuccoli
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yeka Aponte
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Suarez AN, Noble EE, Kanoski SE. Regulation of Memory Function by Feeding-Relevant Biological Systems: Following the Breadcrumbs to the Hippocampus. Front Mol Neurosci 2019; 12:101. [PMID: 31057368 PMCID: PMC6482164 DOI: 10.3389/fnmol.2019.00101] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
The hippocampus (HPC) controls fundamental learning and memory processes, including memory for visuospatial navigation (spatial memory) and flexible memory for facts and autobiographical events (declarative memory). Emerging evidence reveals that hippocampal-dependent memory function is regulated by various peripheral biological systems that are traditionally known for their roles in appetite and body weight regulation. Here, we argue that these effects are consistent with a framework that it is evolutionarily advantageous to encode and recall critical features surrounding feeding behavior, including the spatial location of a food source, social factors, post-absorptive processing, and other episodic elements of a meal. We review evidence that gut-to-brain communication from the vagus nerve and from feeding-relevant endocrine systems, including ghrelin, insulin, leptin, and glucagon-like peptide-1 (GLP-1), promote hippocampal-dependent spatial and declarative memory via neurotrophic and neurogenic mechanisms. The collective literature reviewed herein supports a model in which various stages of feeding behavior and hippocampal-dependent memory function are closely linked.
Collapse
Affiliation(s)
| | | | - Scott E. Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
36
|
Abstract
Cancer is a systemic disease. In order to fully understand it, we must take a holistic view on how cancer interacts with its host. The brain monitors and responds to natural and aberrant signals arriving from the periphery, particularly those of metabolic or immune origin. As has been well described, a hallmark of cancer is marked disruption of metabolic and inflammatory processes. Depending on the salience and timing of these inputs, the brain responds via neural and humoral routes to alter whole-body physiology. These responses have consequences for tumor growth and metastasis, directly influencing patient quality of life and subsequent mortality. Additionally, environmental inputs such as light, diet, and stress, can promote inappropriate neural activity that benefits cancer. Here, I discuss evidence for brain-tumor interactions, with special emphasis on subcortical neuromodulator neural populations, and potential ways of harnessing this cross-talk as a novel approach for cancer treatment.
Collapse
Affiliation(s)
- Jeremy C Borniger
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, P154 MSLS Building, 1201 Welch Rd., Stanford, CA 94305, USA
| |
Collapse
|
37
|
Naganuma F, Kroeger D, Bandaru SS, Absi G, Madara JC, Vetrivelan R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol 2019; 17:e3000172. [PMID: 30893297 PMCID: PMC6426208 DOI: 10.1371/journal.pbio.3000172] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/13/2019] [Indexed: 01/19/2023] Open
Abstract
Sleep and wakefulness are greatly influenced by various physiological and psychological factors, but the neuronal elements responsible for organizing sleep-wake behavior in response to these factors are largely unknown. In this study, we report that a subset of neurons in the lateral hypothalamic area (LH) expressing the neuropeptide neurotensin (Nts) is critical for orchestrating sleep-wake responses to acute psychological and physiological challenges or stressors. We show that selective activation of NtsLH neurons with chemogenetic or optogenetic methods elicits rapid transitions from non-rapid eye movement (NREM) sleep to wakefulness and produces sustained arousal, higher locomotor activity (LMA), and hyperthermia, which are commonly observed after acute stress exposure. On the other hand, selective chemogenetic inhibition of NtsLH neurons attenuates the arousal, LMA, and body temperature (Tb) responses to a psychological stress (a novel environment) and augments the responses to a physiological stress (fasting). A neurotensin-producing subset of neurons in the lateral hypothalamus promote arousal and thermogenesis; these neurons are necessary for appropriate sleep-wake and body temperature responses to various stressors. Adjusting sleep-wake behavior in response to environmental and physiological challenges may not only be of protective value, but can also be vital for the survival of the organism. For example, while it is crucial to increase wake to explore a novel environment to search for potential threats and food sources, it is also necessary to decrease wake and reduce energy expenditure during prolonged absence of food. In this study, we report that a subset of neurons in the lateral hypothalamic area (LH) expressing the neuropeptide neurotensin (Nts) is critical for orchestrating sleep-wake responses to such challenges. We show that brief activation of NtsLH neurons in mice evokes immediate arousals from sleep, while their sustained activation increases wake, locomotor activity, and body temperature for several hours. In contrast, when NtsLH neurons are inhibited, mice are neither able to sustain wake in a novel environment nor able to reduce wake during food deprivation. These data suggest that NtsLH neurons may be necessary for generating appropriate sleep-wake responses to a wide variety of environmental and physiological challenges.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Daniel Kroeger
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sathyajit S. Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Gianna Absi
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Joseph C. Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Murayama S, Yamamoto K, Fujita S, Takei H, Inui T, Ogiso B, Kobayashi M. Extracellular glucose-dependent IPSC enhancement by leptin in fast-spiking to pyramidal neuron connections via JAK2-PI3K pathway in the rat insular cortex. Neuropharmacology 2019; 149:133-148. [PMID: 30772375 DOI: 10.1016/j.neuropharm.2019.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 01/29/2023]
Abstract
Leptin is produced in the adipocytes and plays a pivotal role in regulation of energy balance by controlling appetite and metabolism. Leptin receptors are widely distributed in the brain, especially in the hypothalamus, hippocampus, and neocortex. The insular cortex (IC) processes gustatory and visceral information, which functionally correlate to feeding behavior. However, it is still an open issue whether and how leptin modulates IC neural activities. Our paired whole-cell patch-clamp recordings using IC slice preparations demonstrated that unitary inhibitory postsynaptic currents (uIPSCs) but not uEPSCs were potentiated by leptin in the connections between pyramidal (PNs) and fast-spiking neurons (FSNs). The leptin-induced increase in uIPSC amplitude was accompanied by a decrease in paired-pulse ratio. Under application of inhibitors of JAK2-PI3K but not MAPK pathway, leptin did not change uIPSC amplitude. Variance-mean analysis revealed that leptin increased the release probability but not the quantal size and the number of release site. These electrophysiological findings suggest that the leptin-induced uIPSC increase is mediated by activation of JAK2-PI3K pathway in presynaptic FSNs. An in vivo optical imaging revealed that leptin application decreased excitatory propagation in IC induced by electrical stimulation of IC. These leptin-induced effects were not observed under the low energy states: low glucose concentration (2.5 mM) in vitro and one-day-fasting condition in vivo. However, leptin enhanced uIPSCs under application of low glucose with an AMPK inhibitor. These results suggest that leptin suppresses IC excitation by facilitating GABA release in FSN→PN connections, which may not occur under a hunger state.
Collapse
Affiliation(s)
- Shota Murayama
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Endodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kiyofumi Yamamoto
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Satoshi Fujita
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Hiroki Takei
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Pedodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Tadashi Inui
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Bunnai Ogiso
- Department of Endodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Molecular Dynamics Imaging Unit, RIKEN Centre for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
39
|
Pei H, Patterson CM, Sutton AK, Burnett KH, Myers MG, Olson DP. Lateral Hypothalamic Mc3R-Expressing Neurons Modulate Locomotor Activity, Energy Expenditure, and Adiposity in Male Mice. Endocrinology 2019; 160:343-358. [PMID: 30541071 PMCID: PMC6937456 DOI: 10.1210/en.2018-00747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023]
Abstract
The central melanocortin system plays a crucial role in the control of energy balance. Although the decreased energy expenditure and increased adiposity of melanocortin-3 receptor (Mc3R)-null mice suggest the importance of Mc3R-regulated neurons in energy homeostasis, the roles for specific subsets of Mc3R neurons in energy balance have yet to be determined. Because the lateral hypothalamic area (LHA) contributes to the control of energy expenditure and feeding, we generated Mc3rcre mice to determine the roles of LHA Mc3R (Mc3RLHA) neurons in energy homeostasis. We found that Mc3RLHA neurons overlap extensively with LHA neuron markers that contribute to the control of energy balance (neurotensin, galanin, and leptin receptor) and project to brain areas involved in the control of feeding, locomotion, and energy expenditure, consistent with potential roles for Mc3RLHA neurons in these processes. Indeed, selective chemogenetic activation of Mc3RLHA neurons increased locomotor activity and augmented refeeding after a fast. Although the ablation of Mc3RLHA neurons did not alter food intake, mice lacking Mc3RLHA neurons displayed decreased energy expenditure and locomotor activity, along with increased body mass and adiposity. Thus, Mc3R neurons lie within LHA neurocircuitry that modulates locomotor activity and energy expenditure and contribute to energy balance control.
Collapse
Affiliation(s)
- Hongjuan Pei
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan
| | | | - Amy K Sutton
- Molecular and Integrative Physiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Korri H Burnett
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan
| | - Martin G Myers
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan
- Molecular and Integrative Physiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - David P Olson
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan
- Molecular and Integrative Physiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
- Correspondence: David P. Olson, MD, PhD, University of Michigan, 1000 Wall Street, Brehm Tower 6329, Ann Arbor, Michigan 48105. E-mail:
| |
Collapse
|
40
|
Milbank E, López M. Orexins/Hypocretins: Key Regulators of Energy Homeostasis. Front Endocrinol (Lausanne) 2019; 10:830. [PMID: 31920958 PMCID: PMC6918865 DOI: 10.3389/fendo.2019.00830] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
Originally described to be involved in feeding regulation, orexins/hypocretins are now also considered as major regulatory actors of numerous biological processes, such as pain, sleep, cardiovascular function, neuroendocrine regulation, and energy expenditure. Therefore, they constitute one of the most pleiotropic families of hypothalamic neuropeptides. Although their orexigenic effect is well documented, orexins/hypocretins also exert central effects on energy expenditure, notably on the brown adipose tissue (BAT) thermogenesis. A better comprehension of the underlying mechanisms and potential interactions with other hypothalamic molecular pathways involved in the modulation of food intake and thermogenesis, such as AMP-activated protein kinase (AMPK) and endoplasmic reticulum (ER) stress, is essential to determine the exact implication and pathophysiological relevance of orexins/hypocretins on the control of energy balance. Here, we will review the actions of orexins on energy balance, with special focus on feeding and brown fat function.
Collapse
Affiliation(s)
- Edward Milbank
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- *Correspondence: Edward Milbank
| | - Miguel López
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Miguel López
| |
Collapse
|
41
|
Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2018; 154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
The lateral hypothalamus (LH) is a functionally and anatomically complex brain region that is involved in the regulation of many behavioral and physiological processes including feeding, arousal, energy balance, stress, reward and motivated behaviors, pain perception, body temperature regulation, digestive functions and blood pressure. Despite noteworthy experimental efforts over the past decades, the circuit, cellular and synaptic bases by which these different processes are regulated by the LH remains incompletely understood. This knowledge gap links in large part to the high cellular heterogeneity of the LH. Fortunately, the rapid evolution of newer genetic and electrophysiological tools is now permitting the selective manipulation, typically genetically-driven, of discrete LH cell populations. This, in turn, permits not only assignment of function to discrete cell groups, but also reveals that considerable synergistic and antagonistic interactions exist between key LH cell populations that regulate feeding and arousal. For example, we now know that while LH melanin-concentrating hormone (MCH) and orexin/hypocretin neurons both function as sensors of the internal metabolic environment, their roles regulating sleep and arousal are actually opposing. Additional studies have uncovered similarly important roles for subpopulations of LH GABAergic cells in the regulation of both feeding and arousal. Herein we review the role of LH MCH, orexin/hypocretin and GABAergic cell populations in the regulation of energy homeostasis (including feeding) and sleep-wake and discuss how these three cell populations, and their subpopulations, may interact to optimize and coordinate metabolism, sleep and arousal. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Melissa J S Chee
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
42
|
Berrendero F, Flores Á, Robledo P. When orexins meet cannabinoids: Bidirectional functional interactions. Biochem Pharmacol 2018; 157:43-50. [PMID: 30171834 DOI: 10.1016/j.bcp.2018.08.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/23/2018] [Indexed: 01/11/2023]
|
43
|
Qualls-Creekmore E, Münzberg H. Modulation of Feeding and Associated Behaviors by Lateral Hypothalamic Circuits. Endocrinology 2018; 159:3631-3642. [PMID: 30215694 PMCID: PMC6195675 DOI: 10.1210/en.2018-00449] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
Abstract
Our ability to modulate and observe neuronal activity in defined neurons in freely moving animals has revolutionized neuroscience research in recent years. Findings in the lateral hypothalamus (LHA) highlighted the existence of many neuronal circuits that regulate distinct phenotypes of feeding behavior, emotional valence, and locomotor activity. Several of these neuronal circuits do not fit into a common model of neuronal integration and highlight the need to improve working models for complex behaviors. This review will specifically focus on recent literature that distinguishes LHA circuits based on their molecular and anatomical characteristics and studies their role in feeding, associated behaviors (e.g., arousal and locomotion), and emotional states (e.g., emotional valences).
Collapse
Affiliation(s)
- Emily Qualls-Creekmore
- Neurobiology of Nutrition and Metabolism, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Heike Münzberg
- Neurobiology of Nutrition and Metabolism, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| |
Collapse
|
44
|
Liu JJ, Mirabella VR, Pang ZP. Cell type- and pathway-specific synaptic regulation of orexin neurocircuitry. Brain Res 2018; 1731:145974. [PMID: 30296428 DOI: 10.1016/j.brainres.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]
Abstract
Orexin-expressing neurons are located exclusively in the lateral hypothalamic and perifornical areas and exhibit complex connectivity. The intricate wiring pattern is evident from a diverse function for orexin neurons in regulating many physiological processes and behaviors including sleep, metabolism, circadian cycles, anxiety, and reward. Nevertheless, the precise synaptic and circuitry-level mechanisms mediating these processes remain enigmatic, partially due to the wide spread connectivity of the orexin system, complex neurochemistry of orexin neurons, and previous lack of suitable tools to address its complexity. Here we summarize recent advances, focusing on synaptic regulatory mechanisms in the orexin neurocircuitry, including both the synaptic inputs to orexin neurons as well as their downstream targets in the brain. A clear and detailed elucidation of these mechanisms will likely provide novel insight into how dysfunction in orexin-mediated signaling leads to human disease and may ultimately be treated with more precise strategies.
Collapse
Affiliation(s)
- Jing-Jing Liu
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | - Vincent R Mirabella
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
45
|
Latifi B, Adamantidis A, Bassetti C, Schmidt MH. Sleep-Wake Cycling and Energy Conservation: Role of Hypocretin and the Lateral Hypothalamus in Dynamic State-Dependent Resource Optimization. Front Neurol 2018; 9:790. [PMID: 30344503 PMCID: PMC6183196 DOI: 10.3389/fneur.2018.00790] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/31/2018] [Indexed: 12/23/2022] Open
Abstract
The hypocretin (Hcrt) system has been implicated in a wide range of physiological functions from sleep-wake regulation to cardiovascular, behavioral, metabolic, and thermoregulagtory control. These wide-ranging physiological effects have challenged the identification of a parsimonious function for Hcrt. A compelling hypothesis suggests that Hcrt plays a role in the integration of sleep-wake neurophysiology with energy metabolism. For example, Hcrt neurons promote waking and feeding, but are also sensors of energy balance. Loss of Hcrt function leads to an increase in REM sleep propensity, but a potential role for Hcrt linking energy balance with REM sleep expression has not been addressed. Here we examine a potential role for Hcrt and the lateral hypothalamus (LH) in state-dependent resource allocation as a means of optimizing resource utilization and, as a result, energy conservation. We review the energy allocation hypothesis of sleep and how state-dependent metabolic partitioning may contribute toward energy conservation, but with additional examination of how the loss of thermoregulatory function during REM sleep may impact resource optimization. Optimization of energy expenditures at the whole organism level necessitates a top-down network responsible for coordinating metabolic operations in a state-dependent manner across organ systems. In this context, we then specifically examine the potential role of the LH in regulating this output control, including the contribution from both Hcrt and melanin concentrating hormone (MCH) neurons among a diverse LH cell population. We propose that this hypothalamic integration system is responsible for global shifts in state-dependent resource allocations, ultimately promoting resource optimization and an energy conservation function of sleep-wake cycling.
Collapse
Affiliation(s)
- Blerina Latifi
- Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Antoine Adamantidis
- Department of Neurology, Center for Experimental Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Claudio Bassetti
- Department of Neurology, Center for Experimental Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus H Schmidt
- Department of Neurology, Center for Experimental Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Ohio Sleep Medicine Institute, Dublin, OH, United States
| |
Collapse
|
46
|
Barchetta I, Ciccarelli G, Cimini FA, Ceccarelli V, Orho-Melander M, Melander O, Cavallo MG. Association between systemic leptin and neurotensin concentration in adult individuals with and without type 2 diabetes mellitus. J Endocrinol Invest 2018; 41:1159-1163. [PMID: 29417469 DOI: 10.1007/s40618-018-0845-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/31/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE Leptin is an adipokine which regulates appetite and energy balance through a mechanism partially mediated by neurotensin (NT) in central nervous system. Besides acting as a neurotransmitter, NT is expressed in human intestine where it promotes fat absorption and its circulating levels associate with obesity, type 2 diabetes mellitus (T2DM) and cardiovascular disease. Whether a relation exists between circulating leptin and NT levels has not been investigated yet. The aim of this study was to test the hypothesis of an association between plasma leptin and NT concentration in adults with or without T2DM. METHODS We recruited a population of 72 subjects (M/F: 39/33; age: 49.5 ± 10.6 years; BMI: 26.5 ± 4.7 kg/m2) including individuals with T2DM (n = 32) referring to our Diabetes Outpatient Clinics, Sapienza University of Rome, and healthy controls. Study participants underwent metabolic characterization; plasma leptin was measured by MILLIPLEX, Luminex, and proneurotensin (proNT), a stable precursor of NT, by chemiluminometric sandwich immunoassay. RESULTS Circulating median (25°-75°) leptin levels were 2.75 (1.27-4.93) ng/mL and did not differ between T2DM and non-diabetic subjects. Leptin concentration directly correlated with proNT (r = 0.41; p = 0.015); higher leptin levels were also associated with age, male gender, obesity, higher HOMA-IR, systolic blood pressure and C-reactive protein. Belonging to the highest pro-NT quartile correlated with greater leptin levels independent of age, gender and other confounders (r2 = 0.82, p = 0.02). CONCLUSIONS Circulating leptin is associated with higher proNT levels independent of diabetes, obesity and metabolic syndrome components; besides its effects on central leptin signaling, NT may influence energy balance by modulating circulating leptin concentration likely through a mechanism involving gut fat absorption.
Collapse
Affiliation(s)
- I Barchetta
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - G Ciccarelli
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - F A Cimini
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - V Ceccarelli
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - M Orho-Melander
- Department of Clinical Sciences, Lund University, Malmoe, Sweden
| | - O Melander
- Department of Clinical Sciences, Lund University, Malmoe, Sweden
| | - M G Cavallo
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| |
Collapse
|
47
|
Kurt G, Woodworth HL, Fowler S, Bugescu R, Leinninger GM. Activation of lateral hypothalamic area neurotensin-expressing neurons promotes drinking. Neuropharmacology 2018; 154:13-21. [PMID: 30266601 DOI: 10.1016/j.neuropharm.2018.09.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/04/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022]
Abstract
Animals must ingest water via drinking to maintain fluid homeostasis, yet the neurons that specifically promote drinking behavior are incompletely characterized. The lateral hypothalamic area (LHA) as a whole is essential for drinking behavior but most LHA neurons indiscriminately promote drinking and feeding. By contrast, activating neurotensin (Nts)-expressing LHA neurons (termed LHA Nts neurons) causes mice to immediately drink water with a delayed suppression of feeding. We therefore hypothesized that LHA Nts neurons are sufficient to induce drinking behavior and that these neurons specifically bias for fluid intake over food intake. To test this hypothesis we used designer receptors exclusively activated by designer drugs (DREADDs) to selectively activate LHA Nts neurons and studied the impact on fluid intake, fluid preference and feeding. Activation of LHA Nts neurons stimulated drinking in water-replete and dehydrated mice, indicating that these neurons are sufficient to promote water intake regardless of homeostatic need. Interestingly, mice with activated LHA Nts neurons drank any fluid that was provided regardless of its palatability, but if given a choice they preferred water or palatable solutions over unpalatable (quinine) or dehydrating (hypertonic saline) solutions. Notably, acute activation of LHA Nts neurons robustly promoted fluid but not food intake. Overall, our study confirms that activation of LHA Nts neurons is sufficient to induce drinking behavior and biases for fluid intake. Hence, LHA Nts neurons may be important targets for orchestrating the appropriate ingestive behavior necessary to maintain fluid homeostasis. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Gizem Kurt
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Hillary L Woodworth
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Sabrina Fowler
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA.
| |
Collapse
|
48
|
Brown J, Sagante A, Mayer T, Wright A, Bugescu R, Fuller PM, Leinninger G. Lateral Hypothalamic Area Neurotensin Neurons Are Required for Control of Orexin Neurons and Energy Balance. Endocrinology 2018; 159:3158-3176. [PMID: 30010830 PMCID: PMC6669822 DOI: 10.1210/en.2018-00311] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
The lateral hypothalamic area (LHA) is essential for motivated ingestive and locomotor behaviors that impact body weight, yet it remains unclear how the neurochemically defined subpopulations of LHA neurons contribute to energy balance. In particular, the role of the large population of LHA neurotensin (Nts) neurons has remained ambiguous due to the lack of methods to easily visualize and modulate these neurons. Because LHA Nts neurons are activated by leptin and other anorectic cues and they modulate dopamine or local LHA orexin neurons implicated in energy balance, they may have important, unappreciated roles for coordinating behaviors necessary for proper body weight. In this study, we genetically ablated or chemogenetically inhibited LHA Nts neurons in adult mice to determine their necessity for control of motivated behaviors and body weight. Genetic ablation of LHA Nts neurons resulted in profoundly increased adiposity compared with mice with intact LHA Nts neurons, as well as diminished locomotor activity, energy expenditure, and water intake. Complete loss of LHA Nts neurons also led to downregulation of orexin, revealing important cross-talk between the LHA Nts and orexin populations in maintenance of behavior and body weight. In contrast, chemogenetic inhibition of intact LHA Nts neurons did not disrupt orexin expression, but it suppressed locomotor activity and the adaptive response to leptin. Taken together, these data reveal the necessity of LHA Nts neurons and their activation for controlling energy balance, and that LHA Nts neurons influence behavior and body weight via orexin-dependent and orexin-independent mechanisms.
Collapse
Affiliation(s)
- Juliette Brown
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Andrew Sagante
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Thomas Mayer
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Anna Wright
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
| | - Gina Leinninger
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
- Department of Physiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
49
|
Reduced learning and memory performances in high-fat treated hamsters related to brain neurotensin receptor1 expression variations. Behav Brain Res 2018; 347:227-233. [DOI: 10.1016/j.bbr.2018.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
|
50
|
Tsuneki H, Wada T, Sasaoka T. Chronopathophysiological implications of orexin in sleep disturbances and lifestyle-related disorders. Pharmacol Ther 2018; 186:25-44. [PMID: 29289556 DOI: 10.1016/j.pharmthera.2017.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sleep, a mysterious behavior, has recently been recognized as a crucial factor for health and longevity. The daily sleep/wake cycle provides the basis of biorhythms controlling whole-body homeostasis and homeodynamics; therefore, disruption of sleep causes several physical and psychological disorders, including cardiovascular disease, obesity, diabetes, cancer, anxiety, depression, and cognitive dysfunction. However, the mechanism linking sleep disturbances and sleep-related disorders remains unknown. Orexin (also known as hypocretin) is a neuropeptide produced in the hypothalamus. Central levels of orexin oscillate with the daily rhythm and peak at the awake phase. Orexin plays a major role in stabilizing the wakefulness state. Orexin deficiency causes sleep/wake-state instability, resulting in narcolepsy. Hyper-activation of the orexin system also causes sleep disturbances, such as insomnia, and hence, suvorexant, an orexin receptor antagonist, has been clinically used to treat insomnia. Importantly, central actions of orexin regulate motivated behaviors, stress response, and energy/glucose metabolism by coordinating the central-autonomic nervous systems and endocrine systems. These multiple actions of orexin maintain survival. However, it remains unknown whether chronopharmacological interventions targeting the orexin system ameliorate sleep-related disorders as well as sleep in humans. To understand the significance of adequate orexin action for prevention of these disorders, this review summarizes the physiological functions of daily orexin action and pathological implications of its mistimed or reduced action in sleep disturbances and sleep-related disorders (lifestyle-related physical and neurological disorders in particular). Timed administration of drugs targeting the orexin system may prevent lifestyle-related diseases by improving the quality of life in patients with sleep disturbances.
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|