1
|
Bourque M, Morissette M, Di Paolo T. Neuroactive steroids and Parkinson's disease: Review of human and animal studies. Neurosci Biobehav Rev 2024; 156:105479. [PMID: 38007170 DOI: 10.1016/j.neubiorev.2023.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/13/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The greater prevalence and incidence of Parkinson's disease (PD) in men suggest a beneficial effect of sex hormones. Neuroactive steroids have neuroprotective activities thus offering interesting option for disease-modifying therapy for PD. Neuroactive steroids are also neuromodulators of neurotransmitter systems and may thus help to control PD symptoms and side effect of dopamine medication. Here, we review the effect on sex hormones (estrogen, androgen, progesterone and its metabolites) as well as androstenediol, pregnenolone and dehydroepiandrosterone) in human studies and in animal models of PD. The effect of neuroactive steroids is reviewed by considering sex and hormonal status to help identify specifically for women and men with PD what might be a preventive approach or a symptomatic treatment. PD is a complex disease and the pathogenesis likely involves multiple cellular processes. Thus it might be useful to target different cellular mechanisms that contribute to neuronal loss and neuroactive steroids provide therapeutics options as they have multiple mechanisms of action.
Collapse
Affiliation(s)
- Mélanie Bourque
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada
| | - Marc Morissette
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada; Faculté de pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec G1V 0A6, Canada.
| |
Collapse
|
2
|
Subbamanda YD, Bhargava A. Intercommunication between Voltage-Gated Calcium Channels and Estrogen Receptor/Estrogen Signaling: Insights into Physiological and Pathological Conditions. Cells 2022; 11:cells11233850. [PMID: 36497108 PMCID: PMC9739980 DOI: 10.3390/cells11233850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) and estrogen receptors are important cellular proteins that have been shown to interact with each other across varied cells and tissues. Estrogen hormone, the ligand for estrogen receptors, can also exert its effects independent of estrogen receptors that collectively constitute non-genomic mechanisms. Here, we provide insights into the VGCC regulation by estrogen and the possible mechanisms involved therein across several cell types. Notably, most of the interaction is described in neuronal and cardiovascular tissues given the importance of VGCCs in these electrically excitable tissues. We describe the modulation of various VGCCs by estrogen known so far in physiological conditions and pathological conditions. We observed that in most in vitro studies higher concentrations of estrogen were used while a handful of in vivo studies used meager concentrations resulting in inhibition or upregulation of VGCCs, respectively. There is a need for more relevant physiological assays to study the regulation of VGCCs by estrogen. Additionally, other interacting receptors and partners need to be identified that may be involved in exerting estrogen receptor-independent effects of estrogen.
Collapse
|
3
|
Vitku J, Hill M, Kolatorova L, Kubala Havrdova E, Kancheva R. Steroid Sulfation in Neurodegenerative Diseases. Front Mol Biosci 2022; 9:839887. [PMID: 35281259 PMCID: PMC8904904 DOI: 10.3389/fmolb.2022.839887] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Steroid sulfation and desulfation participates in the regulation of steroid bioactivity, metabolism and transport. The authors focused on sulfation and desulfation balance in three neurodegenerative diseases: Alzheimer´s disease (AD), Parkinson´s disease (PD), and multiple sclerosis (MS). Circulating steroid conjugates dominate their unconjugated counterparts, but unconjugated steroids outweigh their conjugated counterparts in the brain. Apart from the neurosteroid synthesis in the central nervous system (CNS), most brain steroids cross the blood-brain barrier (BBB) from the periphery and then may be further metabolized. Therefore, steroid levels in the periphery partly reflect the situation in the brain. The CNS steroids subsequently influence the neuronal excitability and have neuroprotective, neuroexcitatory, antidepressant and memory enhancing effects. They also exert anti-inflammatory and immunoprotective actions. Like the unconjugated steroids, the sulfated ones modulate various ligand-gated ion channels. Conjugation by sulfotransferases increases steroid water solubility and facilitates steroid transport. Steroid sulfates, having greater half-lives than their unconjugated counterparts, also serve as a steroid stock pool. Sulfotransferases are ubiquitous enzymes providing massive steroid sulfation in adrenal zona reticularis and zona fasciculata.. Steroid sulfatase hydrolyzing the steroid conjugates is exceedingly expressed in placenta but is ubiquitous in low amounts including brain capillaries of BBB which can rapidly hydrolyze the steroid sulfates coming across the BBB from the periphery. Lower dehydroepiandrosterone sulfate (DHEAS) plasma levels and reduced sulfotransferase activity are considered as risk factors in AD patients. The shifted balance towards unconjugated steroids can participate in the pathophysiology of PD and anti-inflammatory effects of DHEAS may counteract the MS.
Collapse
Affiliation(s)
- Jana Vitku
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
- *Correspondence: Jana Vitku,
| | - Martin Hill
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| | - Lucie Kolatorova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Radmila Kancheva
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| |
Collapse
|
4
|
Adekunle AO, Adzika GK, Mprah R, Ndzie Noah ML, Adu-Amankwaah J, Rizvi R, Akhter N, Sun H. Predominance of Heart Failure With Preserved Ejection Fraction in Postmenopausal Women: Intra- and Extra-Cardiomyocyte Maladaptive Alterations Scaffolded by Estrogen Deficiency. Front Cell Dev Biol 2021; 9:685996. [PMID: 34660569 PMCID: PMC8511782 DOI: 10.3389/fcell.2021.685996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) remains a public health concern as it is associated with high morbidity and death rates. In particular, heart failure with preserved ejection fraction (HFpEF) represents the dominant (>50%) form of HF and mostly occurring among postmenopausal women. Hence, the initiation and progression of the left ventricular diastolic dysfunctions (LVDD) (a typically clinical manifestation of HFpEF) in postmenopausal women have been attributed to estrogen deficiency and the loss of its residue cardioprotective effects. In this review, from a pathophysiological and immunological standpoint, we discuss the probable multiple pathomechanisms resulting in HFpEF, which are facilitated by estrogen deficiency. The initial discussions recap estrogen and estrogen receptors (ERs) and β-adrenergic receptors (βARs) signaling under physiological/pathological states to facilitate cardiac function/dysfunction, respectively. By reconciling these prior discussions, attempts were made to explain how the loss of estrogen facilitates the disruptions both ERs and βARs-mediated signaling responsible for; the modulation of intra-cardiomyocyte calcium homeostasis, maintenance of cardiomyocyte cytoskeletal and extracellular matrix, the adaptive regulation of coronary microvascular endothelial functions and myocardial inflammatory responses. By scaffolding the disruption of these crucial intra- and extra-cardiomyocyte physiological functions, estrogen deficiency has been demonstrated to cause LVDD and increase the incidence of HFpEF in postmenopausal women. Finally, updates on the advancements in treatment interventions for the prevention of HFpEF were highlighted.
Collapse
Affiliation(s)
| | | | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | | | | | | | - Nazma Akhter
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Kumar A. Calcium Signaling During Brain Aging and Its Influence on the Hippocampal Synaptic Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:985-1012. [PMID: 31646542 DOI: 10.1007/978-3-030-12457-1_39] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Calcium (Ca2+) ions are highly versatile intracellular signaling molecules and are universal second messenger for regulating a variety of cellular and physiological functions including synaptic plasticity. Ca2+ homeostasis in the central nervous system endures subtle dysregulation with advancing age. Research has provided abundant evidence that brain aging is associated with altered neuronal Ca2+ regulation and synaptic plasticity mechanisms. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during aging. The current chapter takes a specific perspective, assessing various Ca2+ sources and the influence of aging on Ca2+ sources and synaptic plasticity in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in neuronal Ca2+ signaling and synaptic plasticity mechanisms will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment associated with aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Gant JC, Kadish I, Chen KC, Thibault O, Blalock EM, Porter NM, Landfield PW. Aging-Related Calcium Dysregulation in Rat Entorhinal Neurons Homologous with the Human Entorhinal Neurons in which Alzheimer's Disease Neurofibrillary Tangles First Appear. J Alzheimers Dis 2019; 66:1371-1378. [PMID: 30412490 PMCID: PMC6294592 DOI: 10.3233/jad-180618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aging is the leading risk factor for idiopathic Alzheimer’s disease (AD), indicating that normal aging processes promote AD and likely are present in the neurons in which AD pathogenesis originates. In AD, neurofibrillary tangles (NFTs) appear first in entorhinal cortex, implying that aging processes in entorhinal neurons promote NFT pathogenesis. Using electrophysiology and immunohistochemistry, we find pronounced aging-related Ca2 + dysregulation in rat entorhinal neurons homologous with the human neurons in which NFTs originate. Considering that humans recapitulate many aspects of animal brain aging, these results support the hypothesis that aging-related Ca2 + dysregulation occurs in human entorhinal neurons and promotes NFT pathogenesis.
Collapse
Affiliation(s)
- John C Gant
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Inga Kadish
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kuey-Chu Chen
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Olivier Thibault
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Eric M Blalock
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Nada M Porter
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Philip W Landfield
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
7
|
Lai Y, Zhu B, Sun F, Luo D, Ma Y, Luo B, Tang J, Xiong M, Liu L, Long Y, Hu X, He L, Deng X, Zhang JH, Yang J, Yan Z, Chen G. Estrogen receptor α promotes Cav1.2 ubiquitination and degradation in neuronal cells and in APP/PS1 mice. Aging Cell 2019; 18:e12961. [PMID: 31012223 PMCID: PMC6612642 DOI: 10.1111/acel.12961] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/10/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Cav1.2 is the pore-forming subunit of L-type voltage-gated calcium channel (LTCC) that plays an important role in calcium overload and cell death in Alzheimer's disease. LTCC activity can be regulated by estrogen, a sex steroid hormone that is neuroprotective. Here, we investigated the potential mechanisms in estrogen-mediated regulation of Cav1.2 protein. We found that in cultured primary neurons, 17β-estradiol (E2) reduced Cav1.2 protein through estrogen receptor α (ERα). This effect was offset by a proteasomal inhibitor MG132, indicating that ubiquitin-proteasome system was involved. Consistently, the ubiquitin (UB) mutant at lysine 29 (K29R) or the K29-deubiquitinating enzyme TRAF-binding protein domain (TRABID) attenuated the effect of ERα on Cav1.2. We further identified that the E3 ligase Mdm2 (double minute 2 protein) and the PEST sequence in Cav1.2 protein played a role, as Mdm2 overexpression and the membrane-permeable PEST peptides prevented ERα-mediated Cav1.2 reduction, and Mdm2 overexpression led to the reduced Cav1.2 protein and the increased colocalization of Cav1.2 with ubiquitin in cortical neurons in vivo. In ovariectomized (OVX) APP/PS1 mice, administration of ERα agonist PPT reduced cerebral Cav1.2 protein, increased Cav1.2 ubiquitination, and improved cognitive performances. Taken together, ERα-induced Cav1.2 degradation involved K29-linked UB chains and the E3 ligase Mdm2, which might play a role in cognitive improvement in OVX APP/PS1 mice.
Collapse
Affiliation(s)
- Yu‐Jie Lai
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of Neurologythe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Bing‐Lin Zhu
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Fei Sun
- Department of PhysiologyWayne State University School of MedicineDetroitMichigan
| | - Dong Luo
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yuan‐Lin Ma
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Bio Luo
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jing Tang
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ming‐Jian Xiong
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lu Liu
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yan Long
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiao‐Tong Hu
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ling He
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiao‐Juan Deng
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - John H. Zhang
- Division of Physiology, School of MedicineLoma Linda UniversityLoma LindaCalifornia
| | - Jian Yang
- Department of Biological SciencesColumbia UniversityNew York CityNew York
| | - Zhen Yan
- Department of Physiology and BiophysicsState University of New York at BuffaloBuffaloNew York
| | - Guo‐Jun Chen
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
8
|
Wong AM, Scott AK, Johnson CS, Mohr MA, Mittelman-Smith M, Micevych PE. ERαΔ4, an ERα splice variant missing exon4, interacts with caveolin-3 and mGluR2/3. J Neuroendocrinol 2019; 31:e12725. [PMID: 31050077 PMCID: PMC6591055 DOI: 10.1111/jne.12725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 12/11/2022]
Abstract
The two isoforms of the nuclear estrogen receptor, ERα and ERβ are widely expressed in the central nervous system. Although they were first described as nuclear receptors, both isoforms have also been found at the cell membrane where they mediate cell signaling. Surface biotinylation studies using neuronal and glial primary cultures label an alternatively spliced form of ERα. The 52 kDa protein, ERαΔ4, is missing exon 4 and is highly expressed in membrane fractions derived from cultured cells. In vivo, both full-length (66 kDa) ERα and ERαΔ4 are present in membrane fractions. In response to estradiol, full-length ERα and ERαΔ4 are initially trafficked to the membrane, and then internalized in parallel. Previous studies determined that only the full-length ERα associates with metabotropic glutamate receptor-1a (mGluR1a), initiating cellular signaling. The role of ERαΔ4, remained to be elucidated. Here, we report ERαΔ4 trafficking, association with mGluR2/3, and downstream signaling in female rat arcuate nucleus (ARH). Caveolin (CAV) proteins are needed for ER transport to the cell membrane, and using co-immunoprecipitation CAV-3 was shown to associate with ERαΔ4. CAV-3 was necessary for ERαΔ4 trafficking to the membrane: in the ARH, microinjection of CAV-3 siRNA reduced CAV-3 and ERαΔ4a in membrane fractions by 50%, and 60%, respectively. Moreover, co-immunoprecipitation revealed that ERαΔ4 associated with inhibitory mGluRs, mGluR2/3. Estrogen benzoate (EB) treatment (5 μg; s.c.; every 4 days; three cycles) reduced levels of cAMP, an effect attenuated by antagonizing mGluR2/3. Following EB treatment, membrane levels of ERαΔ4 and mGluR2/3 were reduced implying ligand-induced internalization. These results implicate ERαΔ4 in an estradiol-induced inhibitory cell signaling in the ARH.
Collapse
Affiliation(s)
- Angela M Wong
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California
| | - Alexandra K Scott
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California
| | - Caroline S Johnson
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California
| | - Margaret A Mohr
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California
| | - Melinda Mittelman-Smith
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California
| | - Paul E Micevych
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California
| |
Collapse
|
9
|
Kisko TM, Braun MD, Michels S, Witt SH, Rietschel M, Culmsee C, Schwarting RKW, Wöhr M. Sex‐dependent effects of
Cacna1c
haploinsufficiency on juvenile social play behavior and pro‐social 50‐kHz ultrasonic communication in rats. GENES BRAIN AND BEHAVIOR 2019; 19:e12552. [DOI: 10.1111/gbb.12552] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Theresa M. Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
| | - Moria D. Braun
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
| | - Susanne Michels
- Institute of Pharmacology and Clinical PharmacyPhilipps‐Universität Marburg Marburg Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine MannheimRuprecht‐Karls‐Universität Heidelberg Mannheim Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine MannheimRuprecht‐Karls‐Universität Heidelberg Mannheim Germany
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical PharmacyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| | - Rainer K. W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| |
Collapse
|
10
|
Chandran R, Kumar M, Kesavan L, Jacob RS, Gunasekaran S, Lakshmi S, Sadasivan C, Omkumar R. Cellular calcium signaling in the aging brain. J Chem Neuroanat 2019; 95:95-114. [DOI: 10.1016/j.jchemneu.2017.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/03/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
|
11
|
Kumar A, Foster TC. Alteration in NMDA Receptor Mediated Glutamatergic Neurotransmission in the Hippocampus During Senescence. Neurochem Res 2018; 44:38-48. [PMID: 30209673 DOI: 10.1007/s11064-018-2634-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 12/17/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in neurons and glia. N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate receptors are major ionotropic glutamate receptors. Glutamatergic neurotransmission is strongly linked with Ca2+ homeostasis. Research has provided ample evidence that brain aging is associated with altered glutamatergic neurotransmission and Ca2+ dysregulation. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during senescence. The current review examines Ca2+ regulation with a focus on the NMDA receptors in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in Ca2+ homeostasis and NMDA receptor-mediated glutamatergic neurotransmission will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, PO Box 100244, Gainesville, FL, 32610-0244, USA.
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, PO Box 100244, Gainesville, FL, 32610-0244, USA.
- Genetics and Genomics Program, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
12
|
Rasinger J, Carroll T, Maranghi F, Tassinari R, Moracci G, Altieri I, Mantovani A, Lundebye AK, Hogstrand C. Low dose exposure to HBCD, CB-153 or TCDD induces histopathological and hormonal effects and changes in brain protein and gene expression in juvenile female BALB/c mice. Reprod Toxicol 2018; 80:105-116. [DOI: 10.1016/j.reprotox.2018.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 11/16/2022]
|
13
|
Precision medicine and drug development in Alzheimer's disease: the importance of sexual dimorphism and patient stratification. Front Neuroendocrinol 2018; 50:31-51. [PMID: 29902481 DOI: 10.1016/j.yfrne.2018.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/29/2018] [Accepted: 06/07/2018] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases (ND) are among the leading causes of disability and mortality. Considerable sex differences exist in the occurrence of the various manifestations leading to cognitive decline. Alzheimer's disease (AD) exhibits substantial sexual dimorphisms and disproportionately affects women. Women have a higher life expectancy compared to men and, consequently, have more lifespan to develop AD. The emerging precision medicine and pharmacology concepts - taking into account the individual genetic and biological variability relevant for disease risk, prevention, detection, diagnosis, and treatment - are expected to substantially enhance our knowledge and management of AD. Stratifying the affected individuals by sex and gender is an important basic step towards personalization of scientific research, drug development, and care. We hypothesize that sex and gender differences, extending from genetic to psychosocial domains, are highly relevant for the understanding of AD pathophysiology, and for the conceptualization of basic/translational research and for clinical therapy trial design.
Collapse
|
14
|
Bourque M, Morissette M, Di Paolo T. Repurposing sex steroids and related drugs as potential treatment for Parkinson's disease. Neuropharmacology 2018; 147:37-54. [PMID: 29649433 DOI: 10.1016/j.neuropharm.2018.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 01/19/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder for which a greater prevalence and incidence is described in men. This suggests a protective effect of sex hormones in the brain. Therefore, steroids and drugs to treat endocrine conditions could have additional application for PD. Here, we review the protective effect of sex hormones, particularly estrogens, progesterone, androgens and dehydroepiandrosterone, in animal models of PD and also in human studies. Data also support that drugs affecting estrogen neurotransmission such as selective estrogen receptor modulators or affecting steroid metabolism with 5α-reductase inhibitors could be repositioned for treatment of PD. Sex steroids are also modulator of neurotransmission, thus they could repurposed to treat PD motor symptoms and to modulate the response to PD medication. No drug is yet available to limit PD progression. PD is a complex disease implicating multiple pathological processes and a therapeutic strategy using drugs with several mechanisms of action, such as sex steroids and endocrine drugs are interesting repositioning options for symptomatic treatment and disease-modifying activity for PD. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.
Collapse
Affiliation(s)
- Mélanie Bourque
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Quebec City, G1K 7P4, Canada
| | - Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, G1V 4G2, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Quebec City, G1K 7P4, Canada.
| |
Collapse
|
15
|
Kabir ZD, Martínez-Rivera A, Rajadhyaksha AM. From Gene to Behavior: L-Type Calcium Channel Mechanisms Underlying Neuropsychiatric Symptoms. Neurotherapeutics 2017; 14:588-613. [PMID: 28497380 PMCID: PMC5509628 DOI: 10.1007/s13311-017-0532-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The L-type calcium channels (LTCCs) Cav1.2 and Cav1.3, encoded by the CACNA1C and CACNA1D genes, respectively, are important regulators of calcium influx into cells and are critical for normal brain development and plasticity. In humans, CACNA1C has emerged as one of the most widely reproduced and prominent candidate risk genes for a range of neuropsychiatric disorders, including bipolar disorder (BD), schizophrenia (SCZ), major depressive disorder, autism spectrum disorder, and attention deficit hyperactivity disorder. Separately, CACNA1D has been found to be associated with BD and autism spectrum disorder, as well as cocaine dependence, a comorbid feature associated with psychiatric disorders. Despite growing evidence of a significant link between CACNA1C and CACNA1D and psychiatric disorders, our understanding of the biological mechanisms by which these LTCCs mediate neuropsychiatric-associated endophenotypes, many of which are shared across the different disorders, remains rudimentary. Clinical studies with LTCC blockers testing their efficacy to alleviate symptoms associated with BD, SCZ, and drug dependence have provided mixed results, underscoring the importance of further exploring the neurobiological consequences of dysregulated Cav1.2 and Cav1.3. Here, we provide a review of clinical studies that have evaluated LTCC blockers for BD, SCZ, and drug dependence-associated symptoms, as well as rodent studies that have identified Cav1.2- and Cav1.3-specific molecular and cellular cascades that underlie mood (anxiety, depression), social behavior, cognition, and addiction.
Collapse
Affiliation(s)
- Zeeba D Kabir
- Pediatric Neurology, Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY, USA
| | - Arlene Martínez-Rivera
- Pediatric Neurology, Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY, USA
| | - Anjali M Rajadhyaksha
- Pediatric Neurology, Pediatrics, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY, USA.
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Frazier HN, Maimaiti S, Anderson KL, Brewer LD, Gant JC, Porter NM, Thibault O. Calcium's role as nuanced modulator of cellular physiology in the brain. Biochem Biophys Res Commun 2016; 483:981-987. [PMID: 27553276 DOI: 10.1016/j.bbrc.2016.08.105] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/04/2016] [Accepted: 08/18/2016] [Indexed: 12/22/2022]
Abstract
Neuroscientists studying normal brain aging, spinal cord injury, Alzheimer's disease (AD) and other neurodegenerative diseases have focused considerable effort on carefully characterizing intracellular perturbations in calcium dynamics or levels. At the cellular level, calcium is known for controlling life and death and orchestrating most events in between. For many years, intracellular calcium has been recognized as an essential ion associated with nearly all cellular functions from cell growth to degeneration. Often the emphasis is on the negative impact of calcium dysregulation and the typical worse-case-scenario leading inevitably to cell death. However, even high amplitude calcium transients, when executed acutely, can alter neuronal communication and synaptic strength in positive ways, without necessarily killing neurons. Here, we focus on the evidence that calcium has a subtle and distinctive role in shaping and controlling synaptic events that underpin neuronal communication and that these subtle changes in aging or AD may contribute to cognitive decline. We emphasize that calcium imaging in dendritic components is ultimately necessary to directly test for the presence of age- or disease-associated alterations during periods of synaptic activation.
Collapse
Affiliation(s)
- Hilaree N Frazier
- UKMC, MS-313, Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | - Shaniya Maimaiti
- UKMC, MS-313, Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | - Katie L Anderson
- UKMC, MS-313, Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | - Lawrence D Brewer
- UKMC, MS-313, Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | - John C Gant
- UKMC, MS-313, Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | - Nada M Porter
- UKMC, MS-313, Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | - Olivier Thibault
- UKMC, MS-313, Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA.
| |
Collapse
|
17
|
L-Type Calcium Channels Modulation by Estradiol. Mol Neurobiol 2016; 54:4996-5007. [PMID: 27525676 DOI: 10.1007/s12035-016-0045-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/08/2016] [Indexed: 01/29/2023]
Abstract
Voltage-gated calcium channels are key regulators of brain function, and their dysfunction has been associated with multiple conditions and neurodegenerative diseases because they couple membrane depolarization to the influx of calcium-and other processes such as gene expression-in excitable cells. L-type calcium channels, one of the three major classes and probably the best characterized of the voltage-gated calcium channels, act as an essential calcium binding proteins with a significant biological relevance. It is well known that estradiol can activate rapidly brain signaling pathways and modulatory/regulatory proteins through non-genomic (or non-transcriptional) mechanisms, which lead to an increase of intracellular calcium that activate multiple kinases and signaling cascades, in the same way as L-type calcium channels responses. In this context, estrogens-L-type calcium channels signaling raises intracellular calcium levels and activates the same signaling cascades in the brain probably through estrogen receptor-independent modulatory mechanisms. In this review, we discuss the available literature on this area, which seems to suggest that estradiol exerts dual effects/modulation on these channels in a concentration-dependent manner (as a potentiator of these channels in pM concentrations and as an inhibitor in nM concentrations). Indeed, estradiol may orchestrate multiple neurotrophic responses, which open a new avenue for the development of novel estrogen-based therapies to alleviate different neuropathologies. We also highlight that it is essential to determine through computational and/or experimental approaches the interaction between estradiol and L-type calcium channels to assist these developments, which is an interesting area of research that deserves a closer look in future biomedical research.
Collapse
|
18
|
Regulation and the Mechanism of Estrogen on Cav1.2 Gene in Rat-Cultured Cortical Astrocytes. J Mol Neurosci 2016; 60:205-13. [PMID: 27498200 DOI: 10.1007/s12031-016-0803-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/28/2016] [Indexed: 12/11/2022]
Abstract
L-type calcium channel (LTCC) gene Cav1.2 is believed to play an important role in the alteration of Ca(2+) homeostasis in brain astrocytes. Increasing evidence shows that alteration of intracellular Ca(2+) concentration is related to the effect of 17β-estradiol (E2) in a variety of neurophysiological and neuropathological conditions. In this study, we measured immunoreactivity of Cav1.2 protein expression in rat primary cortical astrocytes by using Western blots. We demonstrated that E2 upregulated Cav1.2 expression in a dose- and time-dependent manner and the effect of E2 on Cav1.2 expression were blocked by an estrogen receptor (ER) antagonist, ICI-182,780. The ER subtype-selective ERα agonists propylpyrazole triole (PPT) and ERβ agonist diarylpropionitrile (DPN) both increase the expression of Cav1.2 in a dose-dependent manner. Also, the PPT most closely mimicked the upregulation of Cav1.2 protein expression by E2. Similar experiments of 10 nM E2-treated ERα- or ERβ-knockdown astrocytes have also shown that the E2 regulation of Cav1.2 protein expression is mediated through an ERα-dependent pathway. Furthermore, we established that E2 did not change the level of Cav1.2 mRNA. The induction of E2-mediated Cav1.2 expression was inhibited by cycloheximide (CHX) but not by actinomycin D (Act-D), suggesting that E2 regulation of Cav1.2 expression occurred at a posttranscriptional level. We also found that E2 may increase Cav1.2 levels by decreasing its ubiquitination and degradation rate. These findings provide new information about the effect of E2 on Cav1.2 in astrocytes, particularly necessary for the treatment of neurological disease.
Collapse
|
19
|
Zanos P, Bhat S, Terrillion CE, Smith RJ, Tonelli LH, Gould TD. Sex-dependent modulation of age-related cognitive decline by the L-type calcium channel gene Cacna1c (Cav 1.2). Eur J Neurosci 2015; 42:2499-507. [PMID: 25989111 PMCID: PMC4615431 DOI: 10.1111/ejn.12952] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/27/2015] [Accepted: 05/14/2015] [Indexed: 11/27/2022]
Abstract
Increased calcium influx through L-type voltage-gated calcium channels has been implicated in the neuronal dysfunction underlying age-related memory declines. The present study aimed to test the specific role of Cacna1c (which encodes Cav 1.2) in modulating age-related memory dysfunction. Short-term, spatial and contextual/emotional memory was evaluated in young and aged, wild-type as well as mice with one functional copy of Cacna1c (haploinsufficient), using the novel object recognition, Y-maze and passive avoidance tasks, respectively. Hippocampal expression of Cacna1c mRNA was measured by quantitative polymerase chain reaction. Ageing was associated with object recognition and contextual/emotional memory deficits, and a significant increase in hippocampal Cacna1c mRNA expression. Cacna1c haploinsufficiency was associated with decreased Cacna1c mRNA expression in both young and old animals. However, haploinsufficient mice did not manifest an age-related increase in expression of this gene. Behaviourally, Cacna1c haploinsufficiency prevented object recognition deficits during ageing in both male and female mice. A significant correlation between higher Cacna1c levels and decreased object recognition performance was observed in both sexes. Also, a sex-dependent protective role of decreased Cacna1c levels in contextual/emotional memory loss has been observed, specifically in male mice. These data provide evidence for an association between increased hippocampal Cacna1c expression and age-related cognitive decline. Additionally, they indicate an interaction between the Cacna1c gene and sex in the modulation of age-related contextual memory declines.
Collapse
Affiliation(s)
- Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Shambhu Bhat
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | | | - Robert J. Smith
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Leonardo H. Tonelli
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
20
|
Hao J, Bao X, Jin B, Wang X, Mao Z, Li X, Wei L, Shen D, Wang JL. Ca2+ channel subunit α 1D promotes proliferation and migration of endometrial cancer cells mediated by 17β-estradiol via the G protein-coupled estrogen receptor. FASEB J 2015; 29:2883-93. [PMID: 25805831 DOI: 10.1096/fj.14-265603] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/05/2015] [Indexed: 12/15/2022]
Abstract
Calcium and calcium channels are closely related to the estrogen-induced nongenomic effect of endometrial carcinoma, but the specific role of calcium channels is unknown. This study aimed to explore the expression and the biologic effect of the L-type calcium channel in endometrial carcinoma cells and to clarify the molecular mechanism of the relationship between L-type calcium channels and estrogen. The immunohistochemical results showed that Ca(2+) channel subunit α 1D (Cav1.3) expression was high in atypical hyperplasia (1.90 ± 0.35) and endometrial carcinoma tissues (2.05 ± 0.82) but weak (0.80 ± 0.15) in benign endometrial tissues (P < 0.05). Treatment with 17β-estradiol rapidly increased Cav1.3 expression in a dose- and time-dependent manner, and 100 nM cell-impermeable β-estradiol-6-(O-carboxymethyl)oxime:bovine serum albumin also promoted Cav1.3 expression. Transfection with small interfering RNA against G protein-coupled estrogen receptor (GPER) suppressed estrogen-induced up-regulation of Cav1.3 compared with control cells and markedly reduced the estrogen-induced phosphorylation of ERK1/2 and CREB. Knocking down the Cav1.3 significantly suppressed estrogen-stimulated Ca(2+) influx, cell proliferation, and migration in endometrial cancer cells. Taken together, Cav1.3 was overexpressed in atypical hyperplasia and endometrial carcinoma, and the estrogen-induced phosphorylation of downstream molecular ERK1/2 and CREB is the result of activation of the GPER pathway. L-type channel Cav1.3 is required for estrogen-stimulated Ca(2+) influx and contributes broadly to the development of endometrial cancer. The Cav1.3 channel may be a new target for endometrial carcinoma treatment.
Collapse
Affiliation(s)
- Juan Hao
- *Department of Obstetrics and Gynaecology and Department of Pathology, Peking University People's Hospital, Beijing, China; and Department of Biochemistry and Molecular Biology, Peking University, Beijing, China
| | - Xiaoxia Bao
- *Department of Obstetrics and Gynaecology and Department of Pathology, Peking University People's Hospital, Beijing, China; and Department of Biochemistry and Molecular Biology, Peking University, Beijing, China
| | - Bo Jin
- *Department of Obstetrics and Gynaecology and Department of Pathology, Peking University People's Hospital, Beijing, China; and Department of Biochemistry and Molecular Biology, Peking University, Beijing, China
| | - Xiujuan Wang
- *Department of Obstetrics and Gynaecology and Department of Pathology, Peking University People's Hospital, Beijing, China; and Department of Biochemistry and Molecular Biology, Peking University, Beijing, China
| | - Zebin Mao
- *Department of Obstetrics and Gynaecology and Department of Pathology, Peking University People's Hospital, Beijing, China; and Department of Biochemistry and Molecular Biology, Peking University, Beijing, China
| | - Xiaoping Li
- *Department of Obstetrics and Gynaecology and Department of Pathology, Peking University People's Hospital, Beijing, China; and Department of Biochemistry and Molecular Biology, Peking University, Beijing, China
| | - Lihui Wei
- *Department of Obstetrics and Gynaecology and Department of Pathology, Peking University People's Hospital, Beijing, China; and Department of Biochemistry and Molecular Biology, Peking University, Beijing, China
| | - Danhua Shen
- *Department of Obstetrics and Gynaecology and Department of Pathology, Peking University People's Hospital, Beijing, China; and Department of Biochemistry and Molecular Biology, Peking University, Beijing, China
| | - Jian-Liu Wang
- *Department of Obstetrics and Gynaecology and Department of Pathology, Peking University People's Hospital, Beijing, China; and Department of Biochemistry and Molecular Biology, Peking University, Beijing, China
| |
Collapse
|
21
|
Rizzo V, Richman J, Puthanveettil SV. Dissecting mechanisms of brain aging by studying the intrinsic excitability of neurons. Front Aging Neurosci 2015; 6:337. [PMID: 25610394 PMCID: PMC4285138 DOI: 10.3389/fnagi.2014.00337] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/29/2014] [Indexed: 01/30/2023] Open
Abstract
Several studies using vertebrate and invertebrate animal models have shown aging associated changes in brain function. Importantly, changes in soma size, loss or regression of dendrites and dendritic spines and alterations in the expression of neurotransmitter receptors in specific neurons were described. Despite this understanding, how aging impacts intrinsic properties of individual neurons or circuits that govern a defined behavior is yet to be determined. Here we discuss current understanding of specific electrophysiological changes in individual neurons and circuits during aging.
Collapse
Affiliation(s)
- Valerio Rizzo
- Department of Neuroscience, The Scripps Research Institute Jupiter, FL, USA
| | - Jeffrey Richman
- Department of Neuroscience, The Scripps Research Institute Jupiter, FL, USA
| | | |
Collapse
|
22
|
Gant JC, Blalock EM, Chen KC, Kadish I, Porter NM, Norris CM, Thibault O, Landfield PW. FK506-binding protein 1b/12.6: a key to aging-related hippocampal Ca2+ dysregulation? Eur J Pharmacol 2013; 739:74-82. [PMID: 24291098 DOI: 10.1016/j.ejphar.2013.10.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 12/25/2022]
Abstract
It has been recognized for some time that the Ca(2+)-dependent slow afterhyperpolarization (sAHP) is larger in hippocampal neurons of aged compared with young animals. In addition, extensive studies since have shown that other Ca(2+)-mediated electrophysiological responses are increased in hippocampus with aging, including Ca(2+) transients, L-type voltage-gated Ca(2+) channel activity, Ca(2+) spike duration and action potential accommodation. Elevated Ca(2+)-induced Ca(2+) release from ryanodine receptors (RyRs) appears to drive amplification of the Ca(2+) responses. Components of this Ca(2+) dysregulation phenotype correlate with deficits in cognitive function and plasticity, indicating they may play critical roles in aging-related impairment of brain function. However, the molecular mechanisms underlying aging-related Ca(2+) dysregulation are not well understood. FK506-binding proteins 1a and 1b (FKBP1a/1b, also known as FKBP12/12.6) are immunophilin proteins that bind the immunosuppressant drugs FK506 and rapamycin. In muscle cells, FKBP1a/1b also bind RyRs and inhibits Ca(2+)-induced Ca(2+) release, but it is not clear whether FKBPs act similarly in brain cells. Recently, we found that selectively disrupting hippocampal FKBP1b function in young rats, either by microinjecting adeno-associated viral vectors expressing siRNA, or by treatment with rapamycin, increases the sAHP and recapitulates much of the hippocampal Ca(2+) dysregulation phenotype. Moreover, in microarray studies, we found FKBP1b gene expression was downregulated in hippocampus of aging rats and early-stage Alzheimer's disease subjects. These results suggest the novel hypothesis that declining FKBP function is a key factor in aging-related Ca(2+) dysregulation in the brain and point to potential new therapeutic targets for counteracting unhealthy brain aging.
Collapse
Affiliation(s)
- J C Gant
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - E M Blalock
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - K-C Chen
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - I Kadish
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - N M Porter
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - C M Norris
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - O Thibault
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - P W Landfield
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States.
| |
Collapse
|
23
|
Searcy JL, Phelps JT, Pancani T, Kadish I, Popovic J, Anderson KL, Beckett TL, Murphy MP, Chen KC, Blalock EM, Landfield PW, Porter NM, Thibault O. Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of Alzheimer's disease. J Alzheimers Dis 2013; 30:943-61. [PMID: 22495349 DOI: 10.3233/jad-2012-111661] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thiazolidinediones (TZDs) are agonists at peroxisome proliferator-activated gamma-type (PPAR-γ) receptors and are used clinically for the treatment of type 2 diabetes where they have been shown to reestablish insulin sensitivity, improve lipid profiles, and reduce inflammation. Recent work also suggests that TZDs may be beneficial in Alzheimer's disease (AD), ameliorating cognitive decline early in the disease process. However, there have been only a few studies identifying mechanisms through which cognitive benefits may be exerted. Starting at 10 months of age, the triple transgenic mouse model of AD (3xTg-AD) with accelerated amyloid-β (Aβ) deposition and tau pathology was treated with the TZD pioglitazone (PIO-Actos) at 18 mg/Kg body weight/day. After four months, PIO-treated animals showed multiple beneficial effects, including improved learning on the active avoidance task, reduced serum cholesterol, decreased hippocampal amyloid-β and tau deposits, and enhanced short- and long-term plasticity. Electrophysiological membrane properties and post-treatment blood glucose levels were unchanged by PIO. Gene microarray analyses of hippocampal tissue identified predicted transcriptional responses following TZD treatment as well as potentially novel targets of TZDs, including facilitation of estrogenic processes and decreases in glutamatergic and lipid metabolic/cholesterol dependent processes. Taken together, these results confirm prior animal studies showing that TZDs can ameliorate cognitive deficits associated with AD-related pathology, but also extend these findings by pointing to novel molecular targets in the brain.
Collapse
Affiliation(s)
- James L Searcy
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, KY 40536-0084, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Avila MF, Cabezas R, Torrente D, Gonzalez J, Morales L, Alvarez L, Capani F, Barreto GE. Novel interactions of GRP78: UPR and estrogen responses in the brain. Cell Biol Int 2013; 37:521-32. [DOI: 10.1002/cbin.10058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/22/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Marco Fidel Avila
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Ricardo Cabezas
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Daniel Torrente
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Janneth Gonzalez
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Ludis Morales
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Lisandro Alvarez
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), Facultad de Medicina, UBA-CONICET; Marcelo T. de Alvear 2270, C1122AAJ Buenos Aires; Argentina
| | - Francisco Capani
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), Facultad de Medicina, UBA-CONICET; Marcelo T. de Alvear 2270, C1122AAJ Buenos Aires; Argentina
| | - George E. Barreto
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| |
Collapse
|
25
|
Sama DM, Mohmmad Abdul H, Furman JL, Artiushin IA, Szymkowski DE, Scheff SW, Norris CM. Inhibition of soluble tumor necrosis factor ameliorates synaptic alterations and Ca2+ dysregulation in aged rats. PLoS One 2012; 7:e38170. [PMID: 22666474 PMCID: PMC3362564 DOI: 10.1371/journal.pone.0038170] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/01/2012] [Indexed: 12/14/2022] Open
Abstract
The role of tumor necrosis factor α (TNF) in neural function has been investigated extensively in several neurodegenerative conditions, but rarely in brain aging, where cognitive and physiologic changes are milder and more variable. Here, we show that protein levels for TNF receptor 1 (TNFR1) are significantly elevated in the hippocampus relative to TNF receptor 2 (TNFR2) in aged (22 months) but not young adult (6 months) Fischer 344 rats. To determine if altered TNF/TNFR1 interactions contribute to key brain aging biomarkers, aged rats received chronic (4–6 week) intracranial infusions of XPro1595: a soluble dominant negative TNF that preferentially inhibits TNFR1 signaling. Aged rats treated with XPro1595 showed improved Morris Water Maze performance, reduced microglial activation, reduced susceptibility to hippocampal long-term depression, increased protein levels for the GluR1 type glutamate receptor, and lower L-type voltage sensitive Ca2+ channel (VSCC) activity in hippocampal CA1 neurons. The results suggest that diverse functional changes associated with brain aging may arise, in part, from selective alterations in TNF signaling.
Collapse
Affiliation(s)
- Diana M. Sama
- Graduate Center for Gerontology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Hafiz Mohmmad Abdul
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jennifer L. Furman
- Molecular & Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Irina A. Artiushin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | | | - Stephen W. Scheff
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Christopher M. Norris
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Molecular & Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
26
|
Farkas I, Sárvári M, Aller M, Okada N, Okada H, Likó I, Liposits Z. Estrogen receptor alpha and beta differentially mediate C5aR agonist evoked Ca2+-influx in neurons through L-type voltage-gated Ca2+ channels. Neurochem Int 2012; 60:631-9. [DOI: 10.1016/j.neuint.2012.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/19/2011] [Accepted: 02/21/2012] [Indexed: 01/19/2023]
|
27
|
Thibault O, Pancani T, Landfield PW, Norris CM. Reduction in neuronal L-type calcium channel activity in a double knock-in mouse model of Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1822:546-9. [PMID: 22265986 PMCID: PMC3293940 DOI: 10.1016/j.bbadis.2012.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 11/25/2022]
Abstract
Increased function of neuronal L-type voltage-sensitive Ca(2+) channels (L-VSCCs) is strongly linked to impaired memory and altered hippocampal synaptic plasticity in aged rats. However, no studies have directly assessed L-VSCC function in any of the common mouse models of Alzheimer's disease where neurologic deficits are typically more robust. Here, we used cell-attached patch-clamp recording techniques to measure L-VSCC activity in CA1 pyramidal neurons of partially dissociated hippocampal "zipper" slices prepared from 14-month-old wild-type mice and memory-impaired APP/PS1 double knock-in mice. Surprisingly, the functional channel density of L-VSCCs was significantly reduced in the APP/PS1 group. No differences in voltage dependency and unitary conductance of L-VSCCs were observed. The results suggest that mechanisms for Ca(2+) dysregulation can differ substantially between animal models of normal aging and models of pathological aging.
Collapse
Affiliation(s)
- Olivier Thibault
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536 USA
| | - Tristano Pancani
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536 USA
| | - Philip W. Landfield
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536 USA
| | - Christopher M. Norris
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536 USA
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY 40536 USA
| |
Collapse
|
28
|
Foster TC. Role of estrogen receptor alpha and beta expression and signaling on cognitive function during aging. Hippocampus 2012; 22:656-69. [PMID: 21538657 PMCID: PMC3704216 DOI: 10.1002/hipo.20935] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2011] [Indexed: 12/24/2022]
Abstract
This review presents evidence for the idea that the expression of estrogen receptor alpha and beta (ERα and ERβ) interacts with the level of estradiol (E2) to influence the etiology of age-related cognitive decline and responsiveness to E2 treatments. There is a nonmonotonic dose response curve for E2 influences on behavior and transcription. Evidence is mounting to indicate that the dose response curve is shifted according to the relative expression of ERα and ERβ. Recent work characterizing age-related changes in the expression of ERα and ERβ in the hippocampus, as well as studies using mutant mice, and viral mediated delivery of estrogen receptors indicate that an age-related shift in ERα/ERβ expression, combined with declining gonadal E2 can impact transcription, cell signaling, neuroprotection, and neuronal growth. Finally, the role of ERα/ERβ on rapid E2 signaling and synaptogenesis as it relates to hippocampal aging is discussed.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610-0244, USA.
| |
Collapse
|
29
|
Barha CK, Galea LA. Motherhood alters the cellular response to estrogens in the hippocampus later in life. Neurobiol Aging 2011; 32:2091-5. [DOI: 10.1016/j.neurobiolaging.2009.12.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 11/10/2009] [Accepted: 12/04/2009] [Indexed: 12/13/2022]
|
30
|
Kumar P, Kale RK, McLean P, Baquer NZ. Protective effects of 17β estradiol on altered age related neuronal parameters in female rat brain. Neurosci Lett 2011; 502:56-60. [PMID: 21802496 DOI: 10.1016/j.neulet.2011.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/02/2011] [Accepted: 07/13/2011] [Indexed: 12/15/2022]
Abstract
Biological aging is a fundamental process observed in almost all living beings. During aging the brain experiences structural, molecular, and functional alterations. Aging in females and males is considered as the end of natural protection against age related diseases like osteoporosis, coronary heart disease, diabetes, Alzheimer's and Parkinson's disease. These changes increase during menopausal condition in females when the level of estradiol is decreased. The aim of the present study was to investigate the anti-aging and protective potential of 17β estradiol (E2) treatment on activities of membrane linked ATPases (Na⁺K⁺ ATPase, Ca²⁺ATPase), antioxidant enzymes (superoxide dismutases, glutathione-S-transferases), intrasynaptosomal calcium levels, membrane fluidity and neurolipofuscin in the brain of aging female rats of 3 months (young), 12 months (adult) and 24 months (old) age groups, and to see whether these changes are restored to normal levels after exogenous administration of E2 (0.1 μg/g body weight for one month).The results obtained in the present work revealed that normal aging was associated with significant decrease in the activities of membrane linked ATPases, antioxidant enzymes and an increase in neurolipofuscin, intrasynaptosomal calcium levels in brain of aging female rats. The present study showed that E2 treatment reversed the changes to near normal levels. E2 treatment appears to be beneficial in preventing some of the age related changes in the brain, an important anti-aging effect of the hormone.
Collapse
Affiliation(s)
- Pardeep Kumar
- School of Life Sciences, Jawaharlal Nehru University, 110067 New Delhi, India
| | | | | | | |
Collapse
|
31
|
Aenlle KK, Foster TC. Aging alters the expression of genes for neuroprotection and synaptic function following acute estradiol treatment. Hippocampus 2011; 20:1047-60. [PMID: 19790252 DOI: 10.1002/hipo.20703] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study used microarray analysis to examine age-related changes in gene expression 6 and 12 h following a single estradiol injection in ovariectomized mice. Estradiol-responsive gene expression at the 6 h time point was reduced in aged (18 months) animals compared with young (4 months) and middle-aged (MA, 12 months) mice. Examination of gene clustering within biological and functional pathways indicated that young and MA mice exhibited increased expression of genes for cellular components of the synapse and decreased expression of genes related to oxidative phosphorylation and mitochondrial dysfunction. At the 12 h time point, estradiol-responsive gene expression increased in aged animals and decreased in young and MA mice compared with the 6 h time point. Gene clustering analysis indicated that aged mice exhibited increased expression of genes for signaling pathways that are rapidly influenced by estradiol. The age differences in gene expression for rapid signaling pathways may relate to disparity in basal pathway activity and estradiol mediated activation of rapid signaling cascades.
Collapse
Affiliation(s)
- Kristina K Aenlle
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
32
|
BDNF upregulation rescues synaptic plasticity in middle-aged ovariectomized rats. Neurobiol Aging 2010; 33:708-19. [PMID: 20674095 DOI: 10.1016/j.neurobiolaging.2010.06.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/30/2010] [Accepted: 06/12/2010] [Indexed: 01/31/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has emerged as a possible broad-spectrum treatment for the plasticity losses found in rodent models of human conditions associated with memory and cognitive deficits. We have tested this strategy in the particular case of ovariectomy. The actin polymerization in spines normally found after patterned afferent stimulation was greatly reduced, along with the stabilization of long-term potentiation, in hippocampal slices prepared from middle-aged ovariectomized rats. Both effects were fully restored by a 60-minute infusion of 2 nM BDNF. Comparable rescue results were obtained after elevating endogenous BDNF protein levels in hippocampus with 4 daily injections of a short half-life ampakine (positive modulator of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate [AMPA]-type glutamate receptors). These results provide the first evidence that minimally invasive, mechanism-based drug treatments can ameliorate defects in spine plasticity caused by depressed estrogen levels.
Collapse
|
33
|
Bolego C, Rossoni G, Fadini GP, Vegeto E, Pinna C, Albiero M, Boscaro E, Agostini C, Avogaro A, Gaion RM, Cignarella A. Selective estrogen receptor-alpha agonist provides widespread heart and vascular protection with enhanced endothelial progenitor cell mobilization in the absence of uterotrophic action. FASEB J 2010; 24:2262-72. [PMID: 20203089 DOI: 10.1096/fj.09-139220] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The beneficial effects of estrogens on the cardiovascular system are associated with adverse effects on reproductive tissues. On the basis of previous work indicating a major role for estrogen receptor (ER)-alpha in maintaining cardiovascular health, we evaluated the tissue selectivity of the ER alpha-selective agonist propyl pyrazole triol (PPT) compared with 17beta-estradiol (E2) in vivo. Four weeks postovariectomy, equimolar doses of PPT and E2 were administered to rats in subcutaneous implants for 5 d. Both treatments restored rapid vasorelaxation of aortic tissue to estrogenic agents and prevented coronary hyperresponsiveness to angiotensin II in isolated heart preparations. Accordingly, multiple endpoints of myocardial ischemia-reperfusion injury exacerbated by ovariectomy returned to baseline following treatment. These protective effects were linked to increased in vivo levels of endothelial progenitor cells (EPCs). Human EPC function was enhanced in vitro after PPT treatment. In sharp contrast to E2, PPT treatment had no effect on uterine weight and histomorphology except for vessel density, and failed to up-regulate classic estrogen target genes. Dissection of the effects on vascular reactivity and uterine morphology was also observed following increased exposure to PPT at a higher dose for longer time. These data provide the first in vivo evidence for tissue-specific ER alpha activation. By conferring cardiovascular protection dissected from unwanted uterotrophic effects, ER alpha-selective agonists may represent a potential safer alternative to natural hormones.
Collapse
Affiliation(s)
- Chiara Bolego
- Department of Pharmacology and Anesthesiology, University of Padua, Largo Meneghetti 2, 35131 Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kumar A, Bodhinathan K, Foster TC. Susceptibility to Calcium Dysregulation during Brain Aging. Front Aging Neurosci 2009; 1:2. [PMID: 20552053 PMCID: PMC2874411 DOI: 10.3389/neuro.24.002.2009] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 10/27/2009] [Indexed: 01/06/2023] Open
Abstract
Calcium (Ca(2+)) is a highly versatile intracellular signaling molecule that is essential for regulating a variety of cellular and physiological processes ranging from fertilization to programmed cell death. Research has provided ample evidence that brain aging is associated with altered Ca(2+) homeostasis. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during senescence. The current review takes a broader perspective, assessing age-related changes in Ca(2+) sources, Ca(2+) sequestration, and Ca(2+) binding proteins throughout the nervous system. The nature of altered Ca(2+) homeostasis is cell specific and may represent a deficit or a compensatory mechanism, producing complex patterns of impaired cellular function. Incorporating the knowledge of the complexity of age-related alterations in Ca(2+) homeostasis will positively shape the development of highly effective therapeutics to treat brain disorders.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | | | | |
Collapse
|