1
|
Dutta S, Skm V. Grasp context-dependent uncertainty alters the relative contribution of anticipatory and feedback-based mechanisms in object manipulation. Neuropsychologia 2024; 204:108996. [PMID: 39251108 DOI: 10.1016/j.neuropsychologia.2024.108996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/01/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Predictive control within dexterous object manipulation while allowing for the choice of contact points has been shown to employ a predominantly feedback-based force modulation. The anticipation is thought to be facilitated through the internal representation of the object dynamics being integrated and updated on a trial-to-trial basis with the feedback of contact locations on the object. This is as opposed to the classically studied memory representation-based fingertip force control for grasping with pre-selected contact locations. We designed a study to examine this grasp context-dependent asymmetry in sensorimotor integration by introducing binary uncertainty about the grasp type before movement initiation within the framework of motor planning. An inverted T-shaped instrumented object was presented to 24 participants as the manipulandum, and they were asked to reach, grasp, and lift it while minimising the peak roll. We dissociated the planning and the execution phases by pseudo-randomly manipulating the availability of visual contact cues on the object after movement onset. We analysed both derived as well as direct kinetic and kinematic measures of the grasp during the loading phase to understand the anticipatory coordination. Our findings suggest that uncertainty about the grasp context during movement preparation resulted in a shift towards feedback-based mechanisms for grasp force modulation despite the persistence of visual cues.
Collapse
Affiliation(s)
- Swarnab Dutta
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India.
| | - Varadhan Skm
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
2
|
Quirmbach F, Limanowski J. Visuomotor prediction during action planning in the human frontoparietal cortex and cerebellum. Cereb Cortex 2024; 34:bhae382. [PMID: 39325000 DOI: 10.1093/cercor/bhae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
The concept of forward models in the brain, classically applied to describing on-line motor control, can in principle be extended to action planning, i.e. assuming forward sensory predictions are issued during the mere preparation of movements. To test this idea, we combined a delayed movement task with a virtual reality based manipulation of visuomotor congruence during functional magnetic resonance imaging. Participants executed simple hand movements after a delay. During the delay, two aspects of the upcoming movement could be cued: the movement type and the visuomotor mapping (i.e. congruence of executed hand movements and visual movement feedback by a glove-controlled virtual hand). Frontoparietal areas showed increased delay period activity when preparing pre-specified movements (cued > uncued). The cerebellum showed increased activity during the preparation for incongruent > congruent visuomotor mappings. The left anterior intraparietal sulcus showed an interaction effect, responding most strongly when a pre-specified (cued) movement was prepared under expected visuomotor incongruence. These results suggest that motor planning entails a forward prediction of visual body movement feedback, which can be adjusted in anticipation of nonstandard visuomotor mappings, and which is likely computed by the cerebellum and integrated with state estimates for (planned) control in the anterior intraparietal sulcus.
Collapse
Affiliation(s)
- Felix Quirmbach
- Faculty of Psychology, Technical University of Dresden, Helmholtzstraße 10, 01069 Dresden, Germany
- Center for Tactile Internet with Human-in-the-Loop, Technical University of Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
| | - Jakub Limanowski
- Center for Tactile Internet with Human-in-the-Loop, Technical University of Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
- Institute of Psychology, University of Greifswald, Franz-Mehring-Straße 47, 17489 Greifswald, Germany
| |
Collapse
|
3
|
Bress KS, Cascio CJ. Sensorimotor regulation of facial expression - An untouched frontier. Neurosci Biobehav Rev 2024; 162:105684. [PMID: 38710425 DOI: 10.1016/j.neubiorev.2024.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Facial expression is a critical form of nonverbal social communication which promotes emotional exchange and affiliation among humans. Facial expressions are generated via precise contraction of the facial muscles, guided by sensory feedback. While the neural pathways underlying facial motor control are well characterized in humans and primates, it remains unknown how tactile and proprioceptive information reaches these pathways to guide facial muscle contraction. Thus, despite the importance of facial expressions for social functioning, little is known about how they are generated as a unique sensorimotor behavior. In this review, we highlight current knowledge about sensory feedback from the face and how it is distinct from other body regions. We describe connectivity between the facial sensory and motor brain systems, and call attention to the other brain systems which influence facial expression behavior, including vision, gustation, emotion, and interoception. Finally, we petition for more research on the sensory basis of facial expressions, asserting that incomplete understanding of sensorimotor mechanisms is a barrier to addressing atypical facial expressivity in clinical populations.
Collapse
Affiliation(s)
- Kimberly S Bress
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | - Carissa J Cascio
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Monaco S, Menghi N, Crawford JD. Action-specific feature processing in the human cortex: An fMRI study. Neuropsychologia 2024; 194:108773. [PMID: 38142960 DOI: 10.1016/j.neuropsychologia.2023.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Sensorimotor integration involves feedforward and reentrant processing of sensory input. Grasp-related motor activity precedes and is thought to influence visual object processing. Yet, while the importance of reentrant feedback is well established in perception, the top-down modulations for action and the neural circuits involved in this process have received less attention. Do action-specific intentions influence the processing of visual information in the human cortex? Using a cue-separation fMRI paradigm, we found that action-specific instruction processing (manual alignment vs. grasp) became apparent only after the visual presentation of oriented stimuli, and occurred as early as in the primary visual cortex and extended to the dorsal visual stream, motor and premotor areas. Further, dorsal stream area aIPS, known to be involved in object manipulation, and the primary visual cortex showed task-related functional connectivity with frontal, parietal and temporal areas, consistent with the idea that reentrant feedback from dorsal and ventral visual stream areas modifies visual inputs to prepare for action. Importantly, both the task-dependent modulations and connections were linked specifically to the object presentation phase of the task, suggesting a role in processing the action goal. Our results show that intended manual actions have an early, pervasive, and differential influence on the cortical processing of vision.
Collapse
Affiliation(s)
- Simona Monaco
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Rovereto (TN), Italy.
| | - Nicholas Menghi
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - J Douglas Crawford
- Center for Vision Research, York University, Toronto, Ontario M3J 1P3, Canada; Vision: Science to Applications (VISTA) Program, Neuroscience Graduate Diploma Program and Departments of Psychology, Biology, and Kinesiology and Health Science, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
5
|
Van Malderen S, Hehl M, Verstraelen S, Swinnen SP, Cuypers K. Dual-site TMS as a tool to probe effective interactions within the motor network: a review. Rev Neurosci 2023; 34:129-221. [PMID: 36065080 DOI: 10.1515/revneuro-2022-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023]
Abstract
Dual-site transcranial magnetic stimulation (ds-TMS) is well suited to investigate the causal effect of distant brain regions on the primary motor cortex, both at rest and during motor performance and learning. However, given the broad set of stimulation parameters, clarity about which parameters are most effective for identifying particular interactions is lacking. Here, evidence describing inter- and intra-hemispheric interactions during rest and in the context of motor tasks is reviewed. Our aims are threefold: (1) provide a detailed overview of ds-TMS literature regarding inter- and intra-hemispheric connectivity; (2) describe the applicability and contributions of these interactions to motor control, and; (3) discuss the practical implications and future directions. Of the 3659 studies screened, 109 were included and discussed. Overall, there is remarkable variability in the experimental context for assessing ds-TMS interactions, as well as in the use and reporting of stimulation parameters, hindering a quantitative comparison of results across studies. Further studies examining ds-TMS interactions in a systematic manner, and in which all critical parameters are carefully reported, are needed.
Collapse
Affiliation(s)
- Shanti Van Malderen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Melina Hehl
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Koen Cuypers
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| |
Collapse
|
6
|
Zhang W, Andrews-Hanna JR, Mair RW, Goh JOS, Gutchess A. Functional connectivity with medial temporal regions differs across cultures during post-encoding rest. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:1334-1348. [PMID: 35896854 PMCID: PMC9703377 DOI: 10.3758/s13415-022-01027-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 01/27/2023]
Abstract
Connectivity of the brain at rest can reflect individual differences and impact behavioral outcomes, including memory. The present study investigated how culture influences functional connectivity with regions of the medial temporal lobe. In this study, 46 Americans and 59 East Asians completed a resting state scan after encoding pictures of objects. To investigate cross-cultural differences in resting state functional connectivity, left parahippocampal gyrus (anterior and posterior regions) and left hippocampus were selected as seed regions. These regions were selected, because they were previously implicated in a study of cultural differences during the successful encoding of detailed memories. Results revealed that left posterior parahippocampal gyrus had stronger connectivity with temporo-occipital regions for East Asians compared with Americans and stronger connectivity with parieto-occipital regions for Americans compared with East Asians. Left anterior parahippocampal gyrus had stronger connectivity with temporal regions for East Asians than Americans and stronger connectivity with frontal regions for Americans than East Asians. Although connectivity did not relate to memory performance, patterns did relate to cultural values. The degree of independent self-construal and subjective value of tradition were associated with functional connectivity involving left anterior parahippocampal gyrus. Findings are discussed in terms of potential cultural differences in memory consolidation or more general trait or state-based processes, such as holistic versus analytic processing.
Collapse
Affiliation(s)
- Wanbing Zhang
- Department of Psychology, Brandeis University, 415 South Street, MS 062, Waltham, MA, 02453, USA
| | - Jessica R Andrews-Hanna
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Cognitive Science, University of Arizona, Tucson, AZ, USA
| | - Ross W Mair
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Joshua Oon Soo Goh
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei City, Taiwan
- Department of Psychology, National Taiwan University, Taipei City, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei City, Taiwan
- Center of Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei City, Taiwan
| | - Angela Gutchess
- Department of Psychology, Brandeis University, 415 South Street, MS 062, Waltham, MA, 02453, USA.
| |
Collapse
|
7
|
Caggiano P, Grossi G, De Mattia LC, vanVelzen J, Cocchini G. Objects with motor valence affect the visual processing of human body parts: Evidence from behavioural and ERP studies. Cortex 2022; 153:194-206. [DOI: 10.1016/j.cortex.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/06/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
|
8
|
Bernard-Espina J, Dal Canto D, Beraneck M, McIntyre J, Tagliabue M. How Tilting the Head Interferes With Eye-Hand Coordination: The Role of Gravity in Visuo-Proprioceptive, Cross-Modal Sensory Transformations. Front Integr Neurosci 2022; 16:788905. [PMID: 35359704 PMCID: PMC8961421 DOI: 10.3389/fnint.2022.788905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
To correctly position the hand with respect to the spatial location and orientation of an object to be reached/grasped, visual information about the target and proprioceptive information from the hand must be compared. Since visual and proprioceptive sensory modalities are inherently encoded in a retinal and musculo-skeletal reference frame, respectively, this comparison requires cross-modal sensory transformations. Previous studies have shown that lateral tilts of the head interfere with the visuo-proprioceptive transformations. It is unclear, however, whether this phenomenon is related to the neck flexion or to the head-gravity misalignment. To answer to this question, we performed three virtual reality experiments in which we compared a grasping-like movement with lateral neck flexions executed in an upright seated position and while lying supine. In the main experiment, the task requires cross-modal transformations, because the target information is visually acquired, and the hand is sensed through proprioception only. In the other two control experiments, the task is unimodal, because both target and hand are sensed through one, and the same, sensory channel (vision and proprioception, respectively), and, hence, cross-modal processing is unnecessary. The results show that lateral neck flexions have considerably different effects in the seated and supine posture, but only for the cross-modal task. More precisely, the subjects’ response variability and the importance associated to the visual encoding of the information significantly increased when supine. We show that these findings are consistent with the idea that head-gravity misalignment interferes with the visuo-proprioceptive cross-modal processing. Indeed, the principle of statistical optimality in multisensory integration predicts the observed results if the noise associated to the visuo-proprioceptive transformations is assumed to be affected by gravitational signals, and not by neck proprioceptive signals per se. This finding is also consistent with the observation of otolithic projections in the posterior parietal cortex, which is involved in the visuo-proprioceptive processing. Altogether these findings represent a clear evidence of the theorized central role of gravity in spatial perception. More precisely, otolithic signals would contribute to reciprocally align the reference frames in which the available sensory information can be encoded.
Collapse
Affiliation(s)
- Jules Bernard-Espina
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Daniele Dal Canto
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Mathieu Beraneck
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Joseph McIntyre
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
- Ikerbasque Science Foundation, Bilbao, Spain
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Michele Tagliabue
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
- *Correspondence: Michele Tagliabue,
| |
Collapse
|
9
|
Liu(刘) R, Bögels S, Bird G, Medendorp WP, Toni I. Hierarchical Integration of Communicative and Spatial Perspective‐Taking Demands in Sensorimotor Control of Referential Pointing. Cogn Sci 2022; 46:e13084. [PMID: 35066907 PMCID: PMC9287027 DOI: 10.1111/cogs.13084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
Recognized as a simple communicative behavior, referential pointing is cognitively complex because it invites a communicator to consider an addressee's knowledge. Although we know referential pointing is affected by addressees’ physical location, it remains unclear whether and how communicators’ inferences about addressees’ mental representation of the interaction space influence sensorimotor control of referential pointing. The communicative perspective‐taking task requires a communicator to point at one out of multiple referents either to instruct an addressee which one should be selected (communicative, COM) or to predict which one the addressee will select (non‐communicative, NCOM), based on either which referents can be seen (Level‐1 perspective‐taking, PT1) or how the referents were perceived (Level‐2 perspective‐taking, PT2) by the addressee. Communicators took longer to initiate the movements in PT2 than PT1 trials, and they held their pointing fingers for longer at the referent in COM than NCOM trials. The novel findings of this study pertain to trajectory control of the pointing movements. Increasing both communicative and perspective‐taking demands led to longer pointing trajectories, with an under‐additive interaction between those two experimental factors. This finding suggests that participants generate communicative behaviors that are as informative as required rather than overly exaggerated displays, by integrating communicative and perspective‐taking information hierarchically during sensorimotor control. This observation has consequences for models of human communication. It implies that the format of communicative and perspective‐taking knowledge needs to be commensurate with the movement dynamics controlled by the sensorimotor system.
Collapse
Affiliation(s)
- Rui(睿) Liu(刘)
- Donders Institute for Brain, Cognition and Behaviour Radboud University
| | - Sara Bögels
- Donders Institute for Brain, Cognition and Behaviour Radboud University
| | - Geoffrey Bird
- Department of Experimental Psychology University of Oxford
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience King's College London
| | | | - Ivan Toni
- Donders Institute for Brain, Cognition and Behaviour Radboud University
| |
Collapse
|
10
|
Lega C, Chelazzi L, Cattaneo L. Two Distinct Systems Represent Contralateral and Ipsilateral Sensorimotor Processes in the Human Premotor Cortex: A Dense TMS Mapping Study. Cereb Cortex 2021; 30:2250-2266. [PMID: 31828296 DOI: 10.1093/cercor/bhz237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/19/2019] [Accepted: 09/13/2019] [Indexed: 11/12/2022] Open
Abstract
Animal brains contain behaviorally committed representations of the surrounding world, which integrate sensory and motor information. In primates, sensorimotor mechanisms reside in part in the premotor cortex (PM), where sensorimotor neurons are topographically clustered according to functional specialization. Detailed functional cartography of the human PM is still under investigation. We explored the topographic distribution of spatially dependent sensorimotor functions in healthy volunteers performing left or right, hand or foot, responses to visual cues presented in the left or right hemispace, thus combining independently stimulus side, effector side, and effector type. Event-related transcranial magnetic stimulation was applied to single spots of a dense grid of 10 points on the participants' left hemiscalp, covering the whole PM. Results showed: (1) spatially segregated hand and foot representations, (2) focal representations of contralateral cues and movements in the dorsal PM, and (3) distributed representations of ipsilateral cues and movements in the ventral and dorso-medial PM. The present novel causal information indicates that (1) the human PM is somatotopically organized and (2) the left PM contains sensory-motor representations of both hemispaces and of both hemibodies, but the hemispace and hemibody contralateral to the PM are mapped on a distinct, nonoverlapping cortical region compared to the ipsilateral ones.
Collapse
Affiliation(s)
- Carlotta Lega
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Leonardo Chelazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.,Italian Institute of Neuroscience, Section of Verona, Verona, Italy
| | - Luigi Cattaneo
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.,Italian Institute of Neuroscience, Section of Verona, Verona, Italy
| |
Collapse
|
11
|
Zhang Z, Zeidman P, Nelissen N, Filippini N, Diedrichsen J, Bracci S, Friston K, Rounis E. Neural Correlates of Hand-Object Congruency Effects during Action Planning. J Cogn Neurosci 2021; 33:1487-1503. [PMID: 34496373 DOI: 10.1162/jocn_a_01728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Selecting hand actions to manipulate an object is affected both by perceptual factors and by action goals. Affordances may contribute to "stimulus-response" congruency effects driven by habitual actions to an object. In previous studies, we have demonstrated an influence of the congruency between hand and object orientations on response times when reaching to turn an object, such as a cup. In this study, we investigated how the representation of hand postures triggered by planning to turn a cup was influenced by this congruency effect, in an fMRI scanning environment. Healthy participants were asked to reach and turn a real cup that was placed in front of them either in an upright orientation or upside-down. They were instructed to use a hand orientation that was either congruent or incongruent with the cup orientation. As expected, the motor responses were faster when the hand and cup orientations were congruent. There was increased activity in a network of brain regions involving object-directed actions during action planning, which included bilateral primary and extrastriate visual, medial, and superior temporal areas, as well as superior parietal, primary motor, and premotor areas in the left hemisphere. Specific activation of the dorsal premotor cortex was associated with hand-object orientation congruency during planning and prior to any action taking place. Activity in that area and its connectivity with the lateral occipito-temporal cortex increased when planning incongruent (goal-directed) actions. The increased activity in premotor areas in trials where the orientation of the hand was incongruent to that of the object suggests a role in eliciting competing representations specified by hand postures in lateral occipito-temporal cortex.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elisabeth Rounis
- University of Oxford.,West Middlesex University Hospital, Isleworth
| |
Collapse
|
12
|
The Topography of Visually Guided Grasping in the Premotor Cortex: A Dense-Transcranial Magnetic Stimulation (TMS) Mapping Study. J Neurosci 2020; 40:6790-6800. [PMID: 32709693 DOI: 10.1523/jneurosci.0560-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 11/21/2022] Open
Abstract
Visuomotor transformations at the cortical level occur along a network where posterior parietal regions are connected to homologous premotor regions. Grasping-related activity is represented in a diffuse, ventral and dorsal system in the posterior parietal regions, but no systematic causal description of a premotor counterpart of a similar diffuse grasping representation is available. To fill this gap, we measured the kinematics of right finger movements in 17 male and female human participants during grasping of three objects of different sizes. Single-pulse transcranial magnetic stimulation was applied 100 ms after visual presentation of the object over a regular grid of 8 spots covering the left premotor cortex (PMC) and 2 Sham stimulations. Maximum finger aperture during reach was used as the feature to classify object size in different types of classifiers. Classification accuracy was taken as a measure of the efficiency of visuomotor transformations for grasping. Results showed that transcranial magnetic stimulation reduced classification accuracy compared with Sham stimulation when it was applied to 2 spots in the ventral PMC and 1 spot in the medial PMC, corresponding approximately to the ventral PMC and the dorsal portion of the supplementary motor area. Our results indicate a multifocal representation of object geometry for grasping in the PMC that matches the known multifocal parietal maps of grasping representations. Additionally, we confirm that, by applying a uniform spatial sampling procedure, transcranial magnetic stimulation can produce cortical functional maps independent of a priori spatial assumptions.SIGNIFICANCE STATEMENT Visually guided actions activate a large frontoparietal network. Here, we used a dense grid of transcranial magnetic stimulation spots covering the whole premotor cortex (PMC), to identify with accurate spatial mapping the functional specialization of the human PMC during grasping movement. Results corroborate previous findings about the role of the ventral PMC in preshaping the fingers according to the size of the target. Crucially, we found that the medial part of PMC, putatively covering the supplementary motor area, plays a direct role in object grasping. In concert with findings in nonhuman primates, these results indicate a multifocal representation of object geometry for grasping in the PMC and expand our understanding of how our brain integrates visual and motor information to perform visually guided actions.
Collapse
|
13
|
Real and Imagined Grasping Movements Differently Activate the Human Dorsomedial Parietal Cortex. Neuroscience 2020; 434:22-34. [DOI: 10.1016/j.neuroscience.2020.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 11/24/2022]
|
14
|
Cattaneo L, Giampiccolo D, Meneghelli P, Tramontano V, Sala F. Cortico-cortical connectivity between the superior and inferior parietal lobules and the motor cortex assessed by intraoperative dual cortical stimulation. Brain Stimul 2020; 13:819-831. [DOI: 10.1016/j.brs.2020.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 01/02/2023] Open
|
15
|
Multivariate Analysis of Electrophysiological Signals Reveals the Temporal Properties of Visuomotor Computations for Precision Grips. J Neurosci 2019; 39:9585-9597. [PMID: 31628180 DOI: 10.1523/jneurosci.0914-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 11/21/2022] Open
Abstract
The frontoparietal networks underlying grasping movements have been extensively studied, especially using fMRI. Accordingly, whereas much is known about their cortical locus much less is known about the temporal dynamics of visuomotor transformations. Here, we show that multivariate EEG analysis allows for detailed insights into the time course of visual and visuomotor computations of precision grasps. Male and female human participants first previewed one of several objects and, upon its reappearance, reached to grasp it with the thumb and index finger along one of its two symmetry axes. Object shape classifiers reached transient accuracies of 70% at ∼105 ms, especially based on scalp sites over visual cortex, dropping to lower levels thereafter. Grasp orientation classifiers relied on a system of occipital-to-frontal electrodes. Their accuracy rose concurrently with shape classification but ramped up more gradually, and the slope of the classification curve predicted individual reaction times. Further, cross-temporal generalization revealed that dynamic shape representation involved early and late neural generators that reactivated one another. In contrast, grasp computations involved a chain of generators attaining a sustained state about 100 ms before movement onset. Our results reveal the progression of visual and visuomotor representations over the course of planning and executing grasp movements.SIGNIFICANCE STATEMENT Grasping an object requires the brain to perform visual-to-motor transformations of the object's properties. Although much of the neuroanatomic basis of visuomotor transformations has been uncovered, little is known about its time course. Here, we orthogonally manipulated object visual characteristics and grasp orientation, and used multivariate EEG analysis to reveal that visual and visuomotor computations follow similar time courses but display different properties and dynamics.
Collapse
|
16
|
Patané I, Cardinali L, Salemme R, Pavani F, Farnè A, Brozzoli C. Action Planning Modulates Peripersonal Space. J Cogn Neurosci 2019; 31:1141-1154. [DOI: 10.1162/jocn_a_01349] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Peripersonal space is a multisensory representation relying on the processing of tactile and visual stimuli presented on and close to different body parts. The most studied peripersonal space representation is perihand space (PHS), a highly plastic representation modulated following tool use and by the rapid approach of visual objects. Given these properties, PHS may serve different sensorimotor functions, including guidance of voluntary actions such as object grasping. Strong support for this hypothesis would derive from evidence that PHS plastic changes occur before the upcoming movement rather than after its initiation, yet to date, such evidence is scant. Here, we tested whether action-dependent modulation of PHS, behaviorally assessed via visuotactile perception, may occur before an overt movement as early as the action planning phase. To do so, we probed tactile and visuotactile perception at different time points before and during the grasping action. Results showed that visuotactile perception was more strongly affected during the planning phase (250 msec after vision of the target) than during a similarly static but earlier phase (50 msec after vision of the target). Visuotactile interaction was also enhanced at the onset of hand movement, and it further increased during subsequent phases of hand movement. Such a visuotactile interaction featured interference effects during all phases from action planning onward as well as a facilitation effect at the movement onset. These findings reveal that planning to grab an object strengthens the multisensory interaction of visual information from the target and somatosensory information from the hand. Such early updating of the visuotactile interaction reflects multisensory processes supporting motor planning of actions.
Collapse
Affiliation(s)
- Ivan Patané
- INSERM U1028, CNRS U5292, Lyon, France
- University of Bologna
- University of Lyon 1
- Hospices Civils de Lyon
| | | | - Romeo Salemme
- INSERM U1028, CNRS U5292, Lyon, France
- University of Lyon 1
- Hospices Civils de Lyon
| | | | - Alessandro Farnè
- INSERM U1028, CNRS U5292, Lyon, France
- University of Lyon 1
- Hospices Civils de Lyon
- University of Trento
| | - Claudio Brozzoli
- INSERM U1028, CNRS U5292, Lyon, France
- University of Lyon 1
- Hospices Civils de Lyon
- Karolinska Institutet
| |
Collapse
|
17
|
Grant S, Conway ML. Some binocular advantages for planning reach, but not grasp, components of prehension. Exp Brain Res 2019; 237:1239-1255. [PMID: 30850853 PMCID: PMC6557882 DOI: 10.1007/s00221-019-05503-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/25/2019] [Indexed: 11/04/2022]
Abstract
Proficient (fast, accurate, precise) hand actions for reaching-to-grasp 3D objects are known to benefit significantly from the use of binocular vision compared to one eye alone. We examined whether these binocular advantages derive from increased reliability in encoding the goal object’s properties for feedforward planning of prehension movements or from enhanced feedback mediating their online control. Adult participants reached for, precision grasped and lifted cylindrical table-top objects (two sizes, 2 distances) using binocular vision or only their dominant/sighting eye or their non-dominant eye to program and fully execute their movements or using each of the three viewing conditions only to plan their reach-to-grasp during a 1 s preview, with vision occluded just before movement onset. Various kinematic measures of reaching and grasping proficiency, including corrective error rates, were quantified and compared by view, feedback and object type. Some significant benefits of binocular over monocular vision when they were just available for pre-movement planning were retained for the reach regardless of target distance, including higher peak velocities, straighter paths and shorter low velocity approach times, although these latter were contaminated by more velocity corrections and by poorer coordination with object contact. By contrast, virtually all binocular advantages for grasping, including improvements in peak grip aperture scaling, the accuracy and precision of digit placements at object contact and shorter grip application times preceding the lift, were eliminated with no feedback available, outcomes that were influenced by the object’s size. We argue that vergence cues can improve the reliability of binocular internal representations of object distance for the feedforward programming of hand transport, whereas the major benefits of binocular vision for enhancing grasping performance derive exclusively from its continuous presence online.
Collapse
Affiliation(s)
- Simon Grant
- Applied Vision Research Centre, City, University of London, Northampton Square, London, EC1V 0HB, UK.
| | - Miriam L Conway
- Applied Vision Research Centre, City, University of London, Northampton Square, London, EC1V 0HB, UK
| |
Collapse
|
18
|
Potok W, Maskiewicz A, Króliczak G, Marangon M. The temporal involvement of the left supramarginal gyrus in planning functional grasps: A neuronavigated TMS study. Cortex 2019; 111:16-34. [DOI: 10.1016/j.cortex.2018.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/04/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023]
|
19
|
Bruner E, Fedato A, Silva-Gago M, Alonso-Alcalde R, Terradillos-Bernal M, Fernández-Durantes MÁ, Martín-Guerra E. Visuospatial Integration and Hand-Tool Interaction in Cognitive Archaeology. Curr Top Behav Neurosci 2019; 41:13-36. [PMID: 30547431 DOI: 10.1007/7854_2018_71] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Testing cognitive hypotheses in extinct species can be challenging, but it can be done through the integration of independent sources of information (e.g., anatomy, archaeology, neurobiology, psychology), and validated with quantitative and experimental approaches. The parietal cortex has undergone changes and specializations in humans, probably in regions involved in visuospatial integration. Visual imagery and hand-eye coordination are crucial for a species with a remarkable technological and symbolic capacity. Hand-tool relationships are not only a matter of spatial planning but involve deeper cognitive levels that concern body cognition, self-awareness, and the ability to integrate tools into body schemes, extending the body's functional and structural range. Therefore, a co-evolution between body and technology is to be expected not only in terms of anatomical correspondence but also in terms of cognitive integration. In prehistory, lithic tools are crucial in the interpretation of the cognitive abilities of extinct human species. The shape of tools and the grasping patterns associated with the corresponding haptic experience can supply some basic quantitative approaches to evaluate changes in the archaeological record. At the physiological level, electrodermal activity can be used as proxy to investigate the cognitive response during haptic experiences, revealing differences between tools and between subjects. These approaches can be also useful to evaluate whether and to what extent our complex cognitive resources are based on the capacity to export and delegate functions to external technological components.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain.
| | - Annapaola Fedato
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - María Silva-Gago
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | | | | | | | | |
Collapse
|
20
|
Fattori P, Breveglieri R, Bosco A, Gamberini M, Galletti C. Vision for Prehension in the Medial Parietal Cortex. Cereb Cortex 2018; 27:1149-1163. [PMID: 26656999 DOI: 10.1093/cercor/bhv302] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the last 2 decades, the medial posterior parietal area V6A has been extensively studied in awake macaque monkeys for visual and somatosensory properties and for its involvement in encoding of spatial parameters for reaching, including arm movement direction and amplitude. This area also contains populations of neurons sensitive to grasping movements, such as wrist orientation and grip formation. Recent work has shown that V6A neurons also encode the shape of graspable objects and their affordance. In other words, V6A seems to encode object visual properties specifically for the purpose of action, in a dynamic sequence of visuomotor transformations that evolve in the course of reach-to-grasp action.We propose a model of cortical circuitry controlling reach-to-grasp actions, in which V6A acts as a comparator that monitors differences between current and desired hand positions and configurations. This error signal could be used to continuously update the motor output, and to correct reach direction, hand orientation, and/or grip aperture as required during the act of prehension.In contrast to the generally accepted view that the dorsomedial component of the dorsal visual stream encodes reaching, but not grasping, the functional properties of V6A neurons strongly suggest the view that this area is involved in encoding all phases of prehension, including grasping.
Collapse
Affiliation(s)
- Patrizia Fattori
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Rossella Breveglieri
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Annalisa Bosco
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Michela Gamberini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
21
|
Bruner E, Fedato A, Silva-Gago M, Alonso-Alcalde R, Terradillos-Bernal M, Fernández-Durantes MÁ, Martín-Guerra E. Cognitive archeology, body cognition, and hand–tool interaction. PROGRESS IN BRAIN RESEARCH 2018; 238:325-345. [DOI: 10.1016/bs.pbr.2018.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Ariani G, Oosterhof NN, Lingnau A. Time-resolved decoding of planned delayed and immediate prehension movements. Cortex 2017; 99:330-345. [PMID: 29334647 DOI: 10.1016/j.cortex.2017.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/20/2017] [Accepted: 12/11/2017] [Indexed: 01/20/2023]
Abstract
Different contexts require us either to react immediately, or to delay (or suppress) a planned movement. Previous studies that aimed at decoding movement plans typically dissociated movement preparation and execution by means of delayed-movement paradigms. Here we asked whether these results can be generalized to the planning and execution of immediate movements. To directly compare delayed, non-delayed, and suppressed reaching and grasping movements, we used a slow event-related functional magnetic resonance imaging (fMRI) design. To examine how neural representations evolved throughout movement planning, execution, and suppression, we performed time-resolved multivariate pattern analysis (MVPA). During the planning phase, we were able to decode upcoming reaching and grasping movements in contralateral parietal and premotor areas. During the execution phase, we were able to decode movements in a widespread bilateral network of motor, premotor, and somatosensory areas. Moreover, we obtained significant decoding across delayed and non-delayed movement plans in contralateral primary motor cortex. Our results demonstrate the feasibility of time-resolved MVPA and provide new insights into the dynamics of the prehension network, suggesting early neural representations of movement plans in the primary motor cortex that are shared between delayed and non-delayed contexts.
Collapse
Affiliation(s)
- Giacomo Ariani
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy.
| | | | - Angelika Lingnau
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy; Department of Psychology & Cognitive Science, University of Trento, Italy; Department of Psychology, Royal Holloway University of London, United Kingdom
| |
Collapse
|
23
|
Independent Causal Contributions of Alpha- and Beta-Band Oscillations during Movement Selection. J Neurosci 2017; 36:8726-33. [PMID: 27535917 DOI: 10.1523/jneurosci.0868-16.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/06/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED To select a movement, specific neuronal populations controlling particular features of that movement need to be activated, whereas other populations are downregulated. The selective (dis)inhibition of cortical sensorimotor populations is governed by rhythmic neural activity in the alpha (8-12 Hz) and beta (15-25 Hz) frequency range. However, it is unclear whether and how these rhythms contribute independently to motor behavior. Building on a recent dissociation of the sensorimotor alpha- and beta-band rhythms, we test the hypothesis that the beta-band rhythm governs the disinhibition of task-relevant neuronal populations, whereas the alpha-band rhythm suppresses neurons that may interfere with task performance. Cortical alpha- and beta-band rhythms were manipulated with transcranial alternating current stimulation (tACS) while human participants selected how to grasp an object. Stimulation was applied at either 10 or 20 Hz and was imposed on the sensorimotor cortex contralaterally or ipsilaterally to the grasping hand. In line with task-induced changes in endogenous spectral power, the effect of the tACS intervention depended on the frequency and site of stimulation. Whereas tACS stimulation generally increased movement selection times, 10 Hz stimulation led to relatively faster selection times when applied to the hemisphere ipsilateral to the grasping hand, compared with other stimulation conditions. These effects occurred selectively when multiple movements were considered. These observations functionally differentiate the causal contribution of alpha- and beta-band oscillations to movement selection. The findings suggest that sensorimotor beta-band rhythms disinhibit task-relevant populations, whereas alpha-band rhythms inhibit neuronal populations that could interfere with movement selection. SIGNIFICANCE STATEMENT This study shows dissociable effects of 10 Hz and 20 Hz tACS on the duration of movement selection. These observations have two elements of general relevance. First, the finding that alpha- and beta-band oscillations contribute independently to movement selection provides insight in how oscillations orchestrate motor behavior, which is key to understand movement selection deficits in neurodegenerative disorders. Second, the findings highlight the potential of 10 Hz stimulation as a neurophysiologically grounded intervention to enhance human performance. In particular, this intervention can potentially be exploited to boost rehabilitation after neural damage by targeting the unaffected hemisphere.
Collapse
|
24
|
Is the extrastriate body area part of the dorsal visuomotor stream? Brain Struct Funct 2017; 223:31-46. [PMID: 28702735 PMCID: PMC5772142 DOI: 10.1007/s00429-017-1469-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 07/01/2017] [Indexed: 01/17/2023]
Abstract
The extrastriate body area (EBA) processes visual information about body parts, and it is considered one among a series of category-specific perceptual modules distributed across the occipito-temporal cortex. However, recent evidence raises the possibility that EBA might also provide an interface between perception and action, linking the ventral and dorsal streams of visual information processing. Here, we assess anatomical evidence supporting this possibility. We localise EBA in individual subjects using a perceptual task and compare the characteristics of its functional and structural connectivity to those of two perceptual areas, the lateral occipital complex (LOC) and the fusiform body area (FBA), separately for each hemisphere. We apply complementary analyses of resting-state fMRI and diffusion-weighted MRI data in a group of healthy right-handed human subjects (N = 31). Functional and structural connectivity profiles indicate that EBA interacts more strongly with dorsal-stream regions compared to other portions of the occipito-temporal cortex involved in processing body parts (FBA) and object identification (LOC). These findings provide anatomical ground for a revision of the functional role of EBA. Building on a number of recent observations, we suggest that EBA contributes to planning goal-directed actions, possibly by specifying a desired postural configuration to parieto-frontal areas involved in computing movement parameters.
Collapse
|
25
|
Communicative knowledge pervasively influences sensorimotor computations. Sci Rep 2017; 7:4268. [PMID: 28655870 PMCID: PMC5487354 DOI: 10.1038/s41598-017-04442-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/16/2017] [Indexed: 11/08/2022] Open
Abstract
Referential pointing is a characteristically human behavior, which involves moving a finger through space to direct an addressee towards a desired mental state. Planning this type of action requires an interface between sensorimotor and conceptual abilities. A simple interface could supplement spatially-guided motor routines with communicative-ostensive cues. For instance, a pointing finger held still for an extended period of time could aid the addressee’s understanding, without altering the movement’s trajectory. A more complex interface would entail communicative knowledge penetrating the sensorimotor system and directly affecting pointing trajectories. We compare these two possibilities using motion analyses of referential pointing during multi-agent interactions. We observed that communicators produced ostensive cues that were sensitive to the communicative context. Crucially, we also observed pervasive adaptations to the pointing trajectories: they were tailored to the communicative context and to partner-specific information. These findings indicate that human referential pointing is planned and controlled on the basis of partner-specific knowledge, over and above the tagging of motor routines with ostensive cues.
Collapse
|
26
|
Borra E, Gerbella M, Rozzi S, Luppino G. The macaque lateral grasping network: A neural substrate for generating purposeful hand actions. Neurosci Biobehav Rev 2017; 75:65-90. [DOI: 10.1016/j.neubiorev.2017.01.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/22/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|
27
|
Galletti C, Fattori P. The dorsal visual stream revisited: Stable circuits or dynamic pathways? Cortex 2017; 98:203-217. [PMID: 28196647 DOI: 10.1016/j.cortex.2017.01.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 11/29/2022]
Abstract
In both macaque and human brain, information regarding visual motion flows from the extrastriate area V6 along two different paths: a dorsolateral one towards areas MT/V5, MST, V3A, and a dorsomedial one towards the visuomotor areas of the superior parietal lobule (V6A, MIP, VIP). The dorsolateral visual stream is involved in many aspects of visual motion analysis, including the recognition of object motion and self motion. The dorsomedial stream uses visual motion information to continuously monitor the spatial location of objects while we are looking and/or moving around, to allow skilled reaching for and grasping of the objects in structured, dynamically changing environments. Grasping activity is present in two areas of the dorsal stream, AIP and V6A. Area AIP is more involved than V6A in object recognition, V6A in encoding vision for action. We suggest that V6A is involved in the fast control of prehension and plays a critical role in biomechanically selecting appropriate postures during reach to grasp behaviors. In everyday life, numerous functional networks, often involving the same cortical areas, are continuously in action in the dorsal visual stream, with each network dynamically activated or inhibited according to the context. The dorsolateral and dorsomedial streams represent only two examples of these networks. Many others streams have been described in the literature, but it is worthwhile noting that the same cortical area, and even the same neurons within an area, are not specific for just one functional property, being part of networks that encode multiple functional aspects. Our proposal is to conceive the cortical streams not as fixed series of interconnected cortical areas in which each area belongs univocally to one stream and is strictly involved in only one function, but as interconnected neuronal networks, often involving the same neurons, that are involved in a number of functional processes and whose activation changes dynamically according to the context.
Collapse
Affiliation(s)
- Claudio Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|
28
|
Rogasch NC, Sullivan C, Thomson RH, Rose NS, Bailey NW, Fitzgerald PB, Farzan F, Hernandez-Pavon JC. Analysing concurrent transcranial magnetic stimulation and electroencephalographic data: A review and introduction to the open-source TESA software. Neuroimage 2016; 147:934-951. [PMID: 27771347 DOI: 10.1016/j.neuroimage.2016.10.031] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/16/2016] [Accepted: 10/18/2016] [Indexed: 11/16/2022] Open
Abstract
The concurrent use of transcranial magnetic stimulation with electroencephalography (TMS-EEG) is growing in popularity as a method for assessing various cortical properties such as excitability, oscillations and connectivity. However, this combination of methods is technically challenging, resulting in artifacts both during recording and following typical EEG analysis methods, which can distort the underlying neural signal. In this article, we review the causes of artifacts in EEG recordings resulting from TMS, as well as artifacts introduced during analysis (e.g. as the result of filtering over high-frequency, large amplitude artifacts). We then discuss methods for removing artifacts, and ways of designing pipelines to minimise analysis-related artifacts. Finally, we introduce the TMS-EEG signal analyser (TESA), an open-source extension for EEGLAB, which includes functions that are specific for TMS-EEG analysis, such as removing and interpolating the TMS pulse artifact, removing and minimising TMS-evoked muscle activity, and analysing TMS-evoked potentials. The aims of TESA are to provide users with easy access to current TMS-EEG analysis methods and to encourage direct comparisons of these methods and pipelines. It is hoped that providing open-source functions will aid in both improving and standardising analysis across the field of TMS-EEG research.
Collapse
Affiliation(s)
- Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Australia.
| | - Caley Sullivan
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University, Australia
| | - Richard H Thomson
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University, Australia
| | - Nathan S Rose
- Department of Psychology, University of Notre Dame, USA
| | - Neil W Bailey
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University, Australia
| | - Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Canada
| | - Julio C Hernandez-Pavon
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| |
Collapse
|
29
|
Affordance processing in segregated parieto-frontal dorsal stream sub-pathways. Neurosci Biobehav Rev 2016; 69:89-112. [DOI: 10.1016/j.neubiorev.2016.07.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 05/29/2016] [Accepted: 07/07/2016] [Indexed: 02/04/2023]
|
30
|
Farzan F, Vernet M, Shafi MMD, Rotenberg A, Daskalakis ZJ, Pascual-Leone A. Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography. Front Neural Circuits 2016; 10:73. [PMID: 27713691 PMCID: PMC5031704 DOI: 10.3389/fncir.2016.00073] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
The concurrent combination of transcranial magnetic stimulation (TMS) with electroencephalography (TMS-EEG) is a powerful technology for characterizing and modulating brain networks across developmental, behavioral, and disease states. Given the global initiatives in mapping the human brain, recognition of the utility of this technique is growing across neuroscience disciplines. Importantly, TMS-EEG offers translational biomarkers that can be applied in health and disease, across the lifespan, and in humans and animals, bridging the gap between animal models and human studies. However, to utilize the full potential of TMS-EEG methodology, standardization of TMS-EEG study protocols is needed. In this article, we review the principles of TMS-EEG methodology, factors impacting TMS-EEG outcome measures, and the techniques for preventing and correcting artifacts in TMS-EEG data. To promote the standardization of this technique, we provide comprehensive guides for designing TMS-EEG studies and conducting TMS-EEG experiments. We conclude by reviewing the application of TMS-EEG in basic, cognitive and clinical neurosciences, and evaluate the potential of this emerging technology in brain research.
Collapse
Affiliation(s)
- Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | - Marine Vernet
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Mouhsin M D Shafi
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA; Neuromodulation Program, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| |
Collapse
|
31
|
Beta band modulations underlie action representations for movement planning. Neuroimage 2016; 136:197-207. [PMID: 27173760 DOI: 10.1016/j.neuroimage.2016.05.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/04/2016] [Accepted: 05/08/2016] [Indexed: 11/20/2022] Open
Abstract
To be able to interact with our environment, we need to transform incoming sensory information into goal-directed motor outputs. Whereas our ability to plan an appropriate movement based on sensory information appears effortless and simple, the underlying brain dynamics are still largely unknown. Here we used magnetoencephalography (MEG) to investigate this issue by recording brain activity during the planning of non-visually guided reaching and grasping actions, performed with either the left or right hand. Adopting a combination of univariate and multivariate analyses, we revealed specific patterns of beta power modulations underlying varying levels of neural representations during movement planning. (1) Effector-specific modulations were evident as a decrease in power in the beta band. Within both hemispheres, this decrease was stronger while planning a movement with the contralateral hand. (2) The comparison of planned grasping and reaching led to a relative increase in power in the beta band. These power changes were localized within temporal, premotor and posterior parietal cortices. Action-related modulations overlapped with effector-related beta power changes within widespread frontal and parietal regions, suggesting the possible integration of these two types of neural representations. (3) Multivariate analyses of action-specific power changes revealed that part of this broadband beta modulation also contributed to the encoding of an effector-independent neural representation of a planned action within fronto-parietal and temporal regions. Our results suggest that beta band power modulations play a central role in movement planning, within both the dorsal and ventral stream, by coding and integrating different levels of neural representations, ranging from the simple representation of the to-be-moved effector up to an abstract, effector-independent representation of the upcoming action.
Collapse
|
32
|
The Extrastriate Body Area Computes Desired Goal States during Action Planning. eNeuro 2016; 3:eN-NWR-0020-16. [PMID: 27066535 PMCID: PMC4821904 DOI: 10.1523/eneuro.0020-16.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/03/2016] [Accepted: 03/17/2016] [Indexed: 11/21/2022] Open
Abstract
How do object perception and action interact at a neural level? Here we test the hypothesis that perceptual features, processed by the ventral visuoperceptual stream, are used as priors by the dorsal visuomotor stream to specify goal-directed grasping actions. We present three main findings, which were obtained by combining time-resolved transcranial magnetic stimulation and kinematic tracking of grasp-and-rotate object manipulations, in a group of healthy human participants (N = 22). First, the extrastriate body area (EBA), in the ventral stream, provides an initial structure to motor plans, based on current and desired states of a grasped object and of the grasping hand. Second, the contributions of EBA are earlier in time than those of a caudal intraparietal region known to specify the action plan. Third, the contributions of EBA are particularly important when desired and current object configurations differ, and multiple courses of actions are possible. These findings specify the temporal and functional characteristics for a mechanism that integrates perceptual processing with motor planning.
Collapse
|
33
|
Abstract
The two visual systems hypothesis suggests processing of visual information into two distinct routes in the brain: a dorsal stream for the control of actions and a ventral stream for the identification of objects. Recently, increasing evidence has shown that the dorsal and ventral streams are not strictly independent, but do interact with each other. In this paper, we argue that the interactions between dorsal and ventral streams are important for controlling complex object-oriented hand movements, especially skilled grasp. Anatomical studies have reported the existence of direct connections between dorsal and ventral stream areas. These physiological interconnections appear to be gradually more active as the precision demands of the grasp become higher. It is hypothesised that the dorsal stream needs to retrieve detailed information about object identity, stored in ventral stream areas, when the object properties require complex fine-tuning of the grasp. In turn, the ventral stream might receive up to date grasp-related information from dorsal stream areas to refine the object internal representation. Future research will provide direct evidence for which specific areas of the two streams interact, the timing of their interactions and in which behavioural context they occur.
Collapse
Affiliation(s)
- Vonne van Polanen
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of Kinesiology, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Marco Davare
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of Kinesiology, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium; Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, Queen Square, WC1N 3BG London, United Kingdom.
| |
Collapse
|
34
|
Gaze–grasp coordination in obstacle avoidance: differences between binocular and monocular viewing. Exp Brain Res 2015; 233:3489-505. [DOI: 10.1007/s00221-015-4421-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
|
35
|
van Polanen V, Davare M. Interactions between dorsal and ventral streams for controlling skilled grasp. Neuropsychologia 2015; 79:186-91. [PMID: 26169317 PMCID: PMC4678292 DOI: 10.1016/j.neuropsychologia.2015.07.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/12/2015] [Accepted: 07/09/2015] [Indexed: 11/12/2022]
Abstract
The two visual systems hypothesis suggests processing of visual information into two distinct routes in the brain: a dorsal stream for the control of actions and a ventral stream for the identification of objects. Recently, increasing evidence has shown that the dorsal and ventral streams are not strictly independent, but do interact with each other. In this paper, we argue that the interactions between dorsal and ventral streams are important for controlling complex object-oriented hand movements, especially skilled grasp. Anatomical studies have reported the existence of direct connections between dorsal and ventral stream areas. These physiological interconnections appear to be gradually more active as the precision demands of the grasp become higher. It is hypothesised that the dorsal stream needs to retrieve detailed information about object identity, stored in ventral stream areas, when the object properties require complex fine-tuning of the grasp. In turn, the ventral stream might receive up to date grasp-related information from dorsal stream areas to refine the object internal representation. Future research will provide direct evidence for which specific areas of the two streams interact, the timing of their interactions and in which behavioural context they occur. The dorsal and ventral streams are both involved in skilled grasping movements. Ventral areas feed dorsal areas with information about object identity. Grasps of increased complexity require gradually higher recruitment of ventral areas. Dorsal stream inputs could fine tune object representations stored in ventral areas.
Collapse
Affiliation(s)
- Vonne van Polanen
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of Kinesiology, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Marco Davare
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of Kinesiology, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium; Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, Queen Square, WC1N 3BG London, United Kingdom.
| |
Collapse
|
36
|
Causative role of left aIPS in coding shared goals during human-avatar complementary joint actions. Nat Commun 2015; 6:7544. [PMID: 26154706 PMCID: PMC4510640 DOI: 10.1038/ncomms8544] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/19/2015] [Indexed: 11/08/2022] Open
Abstract
Successful motor interactions require agents to anticipate what a partner is doing in order to predictively adjust their own movements. Although the neural underpinnings of the ability to predict others' action goals have been well explored during passive action observation, no study has yet clarified any critical neural substrate supporting interpersonal coordination during active, non-imitative (complementary) interactions. Here, we combine non-invasive inhibitory brain stimulation (continuous Theta Burst Stimulation) with a novel human–avatar interaction task to investigate a causal role for higher-order motor cortical regions in supporting the ability to predict and adapt to others' actions. We demonstrate that inhibition of left anterior intraparietal sulcus (aIPS), but not ventral premotor cortex, selectively impaired individuals' performance during complementary interactions. Thus, in addition to coding observed and executed action goals, aIPS is crucial in coding ‘shared goals', that is, integrating predictions about one's and others' complementary actions. The neural mechanisms supporting imitative motor interactions have been well studied. However, considerably less is known about the mechanisms supporting complementary interactions. Here the authors demonstrate a causal role for left anterior intraparietal sulcus in coding complementary motor goals.
Collapse
|
37
|
Flexible Reference Frames for Grasp Planning in Human Parietofrontal Cortex. eNeuro 2015; 2:eN-NWR-0008-15. [PMID: 26464989 PMCID: PMC4586935 DOI: 10.1523/eneuro.0008-15.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 11/21/2022] Open
Abstract
Reaching to a location in space is supported by a cortical network that operates in a variety of reference frames. Computational models and recent fMRI evidence suggest that this diversity originates from neuronal populations dynamically shifting between reference frames as a function of task demands and sensory modality. In this human fMRI study, we extend this framework to nonmanipulative grasping movements, an action that depends on multiple properties of a target, not only its spatial location. By presenting targets visually or somaesthetically, and by manipulating gaze direction, we investigate how information about a target is encoded in gaze- and body-centered reference frames in dorsomedial and dorsolateral grasping-related circuits. Data were analyzed using a novel multivariate approach that combines classification and cross-classification measures to explicitly aggregate evidence in favor of and against the presence of gaze- and body-centered reference frames. We used this approach to determine whether reference frames are differentially recruited depending on the availability of sensory information, and where in the cortical networks there is common coding across modalities. Only in the left anterior intraparietal sulcus (aIPS) was coding of the grasping target modality dependent: predominantly gaze-centered for visual targets and body-centered for somaesthetic targets. Left superior parieto-occipital cortex consistently coded targets for grasping in a gaze-centered reference frame. Left anterior precuneus and premotor areas operated in a modality-independent, body-centered frame. These findings reveal how dorsolateral grasping area aIPS could play a role in the transition between modality-independent gaze-centered spatial maps and body-centered motor areas.
Collapse
|
38
|
Abstract
Human tool use is complex, and underlying neural mechanisms seem to be widely distributed across several brain systems; however, neuroimaging studies of actual tool use are rare because of experimental challenges hindering detailed analysis within one acting subject. We developed a "Tool-Carousel" that enabled us to test actual manipulation of different objects during fMRI and investigate the planning and execution of goal-directed actions. Particularly, we focused on the effects of three factors on object manipulations: the type of object manipulated, the type of manipulation, and the hand to be used. The main focus lay on the question of how complex object use compared with unspecific actions are processed and especially how such representations interact with the knowledge about the object in the action-related dorsal stream. We found that object manipulations with both right and left hand recruit a common network strongly lateralized to the left hemisphere especially during planning but also action execution. Specifically, while activity in the ventral stream was involved in processing semantic information and object properties, a dorso-dorsal pathway (i.e., superior occipital gyrus, superior parietal lobule, and dorsal premotor area) was relevant for monitoring the online control of objects and also a ventro-dorsal pathway (i.e., middle occipital gyrus, inferior parietal lobule, and ventral premotor area) was specifically involved in processing known object manipulations, such as tool use. Data further indicate an interaction of ventral stream areas, such as middle temporal gyrus and lateral occipital complex, with both dorsal pathways. These results provide evidence for left-lateralized occipito-temporo-parieto-frontal network of everyday tool use, which may help to characterize specific deficits in patients suffering from apraxia.
Collapse
|
39
|
Abstract
Prehension, the capacity to reach and grasp objects, comprises two main components: reaching, i.e., moving the hand towards an object, and grasping, i.e., shaping the hand with respect to its properties. Knowledge of this topic has gained a huge advance in recent years, dramatically changing our view on how prehension is represented within the dorsal stream. While our understanding of the various nodes coding the grasp component is rapidly progressing, little is known of the integration between grasping and reaching. With this Mini Review we aim to provide an up-to-date overview of the recent developments on the coding of prehension. We will start with a description of the regions coding various aspects of grasping in humans and monkeys, delineating where it might be integrated with reaching. To gain insights into the causal role of these nodes in the coding of prehension, we will link this functional description to lesion studies. Finally, we will discuss future directions that might be promising to unveil new insights on the coding of prehension movements.
Collapse
Affiliation(s)
- Luca Turella
- Center for Mind/Brain Sciences (CIMeC), University of Trento Trento, Italy
| | - Angelika Lingnau
- Center for Mind/Brain Sciences (CIMeC), University of Trento Trento, Italy ; Department of Cognitive Sciences, University of Trento Trento, Italy
| |
Collapse
|
40
|
de Haan A, Van der Stigchel S, Nijnens C, Dijkerman H. The influence of object identity on obstacle avoidance reaching behaviour. Acta Psychol (Amst) 2014; 150:94-9. [PMID: 24859673 DOI: 10.1016/j.actpsy.2014.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 04/13/2014] [Accepted: 04/20/2014] [Indexed: 10/25/2022] Open
Abstract
When reaching for target objects, we hardly ever collide with other objects located in our working environment. Behavioural studies have demonstrated that the introduction of non-target objects into the workspace alters both spatial and temporal parameters of reaching trajectories. Previous studies have shown the influence of spatial object features (e.g. size and position) on obstacle avoidance movements. However, obstacle identity may also play a role in the preparation of avoidance responses as this allows prediction of possible negative consequences of collision based on recognition of the obstacle. In this study we test this hypothesis by asking participants to reach towards a target as quickly as possible, in the presence of an empty or full glass of water placed about half way between the target and the starting position, at 8 cm either left or right of the virtual midline. While the spatial features of full and empty glasses of water are the same, the consequences of collision are clearly different. Indeed, when there was a high chance of collision, reaching trajectories veered away more from filled than from empty glasses. This shows that the identity of potential obstacles, which allows for estimating the predicted consequences of collision, is taken into account during obstacle avoidance.
Collapse
|
41
|
Konvalinka I, Bauer M, Stahlhut C, Hansen LK, Roepstorff A, Frith CD. Frontal alpha oscillations distinguish leaders from followers: multivariate decoding of mutually interacting brains. Neuroimage 2014; 94:79-88. [PMID: 24631790 DOI: 10.1016/j.neuroimage.2014.03.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/22/2014] [Accepted: 03/04/2014] [Indexed: 01/08/2023] Open
Abstract
Successful social interactions rely upon the abilities of two or more people to mutually exchange information in real-time, while simultaneously adapting to one another. The neural basis of social cognition has mostly been investigated in isolated individuals, and more recently using two-person paradigms to quantify the neuronal dynamics underlying social interaction. While several studies have shown the relevance of understanding complementary and mutually adaptive processes, the neural mechanisms underlying such coordinative behavioral patterns during joint action remain largely unknown. Here, we employed a synchronized finger-tapping task while measuring dual-EEG from pairs of human participants who either mutually adjusted to each other in an interactive task or followed a computer metronome. Neurophysiologically, the interactive condition was characterized by a stronger suppression of alpha and low-beta oscillations over motor and frontal areas in contrast to the non-interactive computer condition. A multivariate analysis of two-brain activity to classify interactive versus non-interactive trials revealed asymmetric patterns of the frontal alpha-suppression in each pair, during both task anticipation and execution, such that only one member showed the frontal component. Analysis of the behavioral data showed that this distinction coincided with the leader-follower relationship in 8/9 pairs, with the leaders characterized by the stronger frontal alpha-suppression. This suggests that leaders invest more resources in prospective planning and control. Hence our results show that the spontaneous emergence of leader-follower relationships in dyadic interactions can be predicted from EEG recordings of brain activity prior to and during interaction. Furthermore, this emphasizes the importance of investigating complementarity in joint action.
Collapse
Affiliation(s)
- Ivana Konvalinka
- Center of Functionally Integrative Neuroscience, Aarhus University, 8000 Aarhus, Denmark; Section for Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Markus Bauer
- Wellcome Trust Centre for Neuroimaging, University College London, WC1N 3BG London, UK; School of Psychology, University of Nottingham, NG7 2RD Nottingham, UK
| | - Carsten Stahlhut
- Section for Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Lars Kai Hansen
- Section for Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Andreas Roepstorff
- Center of Functionally Integrative Neuroscience, Aarhus University, 8000 Aarhus, Denmark; Interacting Minds Centre, Aarhus University, 8000 Aarhus, Denmark
| | - Chris D Frith
- Center of Functionally Integrative Neuroscience, Aarhus University, 8000 Aarhus, Denmark; Wellcome Trust Centre for Neuroimaging, University College London, WC1N 3BG London, UK
| |
Collapse
|
42
|
White CN, Congdon E, Mumford JA, Karlsgodt KH, Sabb FW, Freimer NB, London ED, Cannon TD, Bilder RM, Poldrack RA. Decomposing decision components in the stop-signal task: a model-based approach to individual differences in inhibitory control. J Cogn Neurosci 2014; 26:1601-14. [PMID: 24405185 DOI: 10.1162/jocn_a_00567] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The stop-signal task, in which participants must inhibit prepotent responses, has been used to identify neural systems that vary with individual differences in inhibitory control. To explore how these differences relate to other aspects of decision making, a drift-diffusion model of simple decisions was fitted to stop-signal task data from go trials to extract measures of caution, motor execution time, and stimulus processing speed for each of 123 participants. These values were used to probe fMRI data to explore individual differences in neural activation. Faster processing of the go stimulus correlated with greater activation in the right frontal pole for both go and stop trials. On stop trials, stimulus processing speed also correlated with regions implicated in inhibitory control, including the right inferior frontal gyrus, medial frontal gyrus, and BG. Individual differences in motor execution time correlated with activation of the right parietal cortex. These findings suggest a robust relationship between the speed of stimulus processing and inhibitory processing at the neural level. This model-based approach provides novel insight into the interrelationships among decision components involved in inhibitory control and raises interesting questions about strategic adjustments in performance and inhibitory deficits associated with psychopathology.
Collapse
|
43
|
Stolk A, Verhagen L, Schoffelen JM, Oostenveld R, Blokpoel M, Hagoort P, van Rooij I, Toni I. Neural mechanisms of communicative innovation. Proc Natl Acad Sci U S A 2013; 110:14574-9. [PMID: 23959895 PMCID: PMC3767563 DOI: 10.1073/pnas.1303170110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human referential communication is often thought as coding-decoding a set of symbols, neglecting that establishing shared meanings requires a computational mechanism powerful enough to mutually negotiate them. Sharing the meaning of a novel symbol might rely on similar conceptual inferences across communicators or on statistical similarities in their sensorimotor behaviors. Using magnetoencephalography, we assess spectral, temporal, and spatial characteristics of neural activity evoked when people generate and understand novel shared symbols during live communicative interactions. Solving those communicative problems induced comparable changes in the spectral profile of neural activity of both communicators and addressees. This shared neuronal up-regulation was spatially localized to the right temporal lobe and the ventromedial prefrontal cortex and emerged already before the occurrence of a specific communicative problem. Communicative innovation relies on neuronal computations that are shared across generating and understanding novel shared symbols, operating over temporal scales independent from transient sensorimotor behavior.
Collapse
Affiliation(s)
- Arjen Stolk
- Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500 HB, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
De Sanctis T, Tarantino V, Straulino E, Begliomini C, Castiello U. Co-registering kinematics and evoked related potentials during visually guided reach-to-grasp movements. PLoS One 2013; 8:e65508. [PMID: 23755241 PMCID: PMC3670879 DOI: 10.1371/journal.pone.0065508] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 04/25/2013] [Indexed: 12/03/2022] Open
Abstract
Background In non-human primates grasp-related sensorimotor transformations are accomplished in a circuit involving the anterior intraparietal sulcus (area AIP) and both the ventral and the dorsal sectors of the premotor cortex (vPMC and dPMC, respectively). Although a human homologue of such a circuit has been identified, the time course of activation of these cortical areas and how such activity relates to specific kinematic events has yet to be investigated. Methodology/Principal Findings We combined kinematic and event-related potential techniques to explicitly test how activity within human grasping-related brain areas is modulated in time. Subjects were requested to reach towards and grasp either a small stimulus using a precision grip (i.e., the opposition of index finger and thumb) or a large stimulus using a whole hand grasp (i.e., the flexion of all digits around the stimulus). Results revealed a time course of activation starting at the level of parietal regions and continuing at the level of premotor regions. More specifically, we show that activity within these regions was tuned for specific grasps well before movement onset and this early tuning was carried over - as evidenced by kinematic analysis - during the preshaping period of the task. Conclusions/Significance Data are discussed in terms of recent findings showing a marked differentiation across different grasps during premovement phases which was carried over into subsequent movement phases. These findings offer a substantial contribution to the current debate about the nature of the sensorimotor transformations underlying grasping. And provide new insights into the detailed movement information contained in the human preparatory activity for specific hand movements.
Collapse
Affiliation(s)
| | | | - Elisa Straulino
- Department of General Psychology, University of Padua, Padua, Italy
| | | | - Umberto Castiello
- Department of General Psychology, University of Padua, Padua, Italy
- * E-mail:
| |
Collapse
|
45
|
D'Andrea JNA, Haffenden AM, Furtado S, Suchowersky O, Goodyear BG. Degradation of stored movement representations in the Parkinsonian brain and the impact of levodopa. Neuropsychologia 2013; 51:1195-203. [PMID: 23591046 DOI: 10.1016/j.neuropsychologia.2013.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 03/20/2013] [Accepted: 04/05/2013] [Indexed: 11/19/2022]
Abstract
Parkinson's disease (PD) results from the depletion of dopamine and other neurotransmitters within the basal ganglia, and is typically characterized by motor impairment (e.g., bradykinesia) and difficulty initiating voluntary movements. Difficulty initiating a movement may result from a deficit in accessing or executing a stored representation of the movement, or having to create a new representation each time a movement is required. To date, it is unclear which may be responsible for movement initiation impairments observed in PD. In this study, we used functional magnetic resonance imaging and a task in which participants passively viewed familiar and unfamiliar graspable objects, with no confounding motor task component. Our results show that the brains of PD patients implicitly analyze familiar graspable objects as if the brain has little or no motor experience with the objects. This was observed as a lack of differential activity within brain regions associated with stored movement representations for familiar objects relative to unfamiliar objects, as well as significantly greater activity for familiar objects when off levodopa relative to on medication. Symptom severity modulated this activity difference within the basal ganglia. Levodopa appears to normalize brain activity, but its effect may be one of attenuation of brain hyperactivity within the basal ganglia network, which is responsible for controlling motor behavior and the integration of visuomotor information. Overall, this study demonstrates that difficulty initiating voluntary movements experienced by PD patients may be the result of degradation in stored representations responsible for the movement.
Collapse
Affiliation(s)
- Jolyn N A D'Andrea
- Department of Medical Sciences, University of Calgary, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
46
|
Verhagen L, Dijkerman HC, Medendorp WP, Toni I. Hierarchical organization of parietofrontal circuits during goal-directed action. J Neurosci 2013; 33:6492-503. [PMID: 23575847 PMCID: PMC6619073 DOI: 10.1523/jneurosci.3928-12.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 11/21/2022] Open
Abstract
Two parietofrontal networks share the control of goal-directed movements: a dorsomedial circuit that includes the superior parieto-occipital sulcus (sPOS) and a dorsolateral circuit comprising the anterior intraparietal sulcus (aIPS). These circuits are thought to independently control either reach and grip components (a functional dissociation), or planning and execution phases of grasping movements (a temporal dissociation). However, recent evidence of functional and temporal overlap between these circuits has undermined those models. Here, we test an alternative model that subsumes previous accounts: the dorsolateral and dorsomedial circuits operate at different hierarchical levels, resulting in functional and temporal dependencies between their computations. We asked human participants to grasp a visually presented object, manipulating movement complexity by varying object slant. We used concurrent single-pulse transcranial magnetic stimulation and electroencephalography (TMS-EEG) to probe and record neurophysiological activity in the two circuits. Changes in alpha-band oscillations (8-12 Hz) characterized the effects of task manipulations and TMS interferences over aIPS and sPOS. Increasing the complexity of the grasping movement was accompanied by alpha-suppression over dorsomedial parietofrontal regions, including sPOS, during both planning and execution stages. TMS interference over either aIPS or sPOS disrupted this index of dorsomedial computations; early when aIPS was perturbed, later when sPOS was perturbed, indicating that the dorsomedial circuit is temporally dependent on aIPS. TMS over sPOS enhanced alpha-suppression in inferior parietal cortex, indicating that the dorsolateral circuit can compensate for a transient sPOS perturbation. These findings suggest that both circuits specify the same grasping parameters, with dorsomedial computations depending on dorsolateral contributions.
Collapse
Affiliation(s)
- Lennart Verhagen
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Complementary hemispheric specialization for language production and visuospatial attention. Proc Natl Acad Sci U S A 2013; 110:E322-30. [PMID: 23297206 DOI: 10.1073/pnas.1212956110] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Language production and spatial attention are the most salient lateralized cerebral functions, and their complementary specialization has been observed in the majority of the population. To investigate whether the complementary specialization has a causal origin (the lateralization of one function causes the opposite lateralization of the other) or rather is a statistical phenomenon (different functions lateralize independently), we determined the lateralization for spatial attention in a group of individuals with known atypical right hemispheric (RH) lateralization for speech production, based on a previous large-scale screening of left-handers. We show that all 13 participants with RH language dominance have left-hemispheric dominance for spatial attention, and all but one of 16 participants with left-hemispheric language dominance are RH dominant for spatial attention. Activity was observed in the dorsal fronto-parietal pathway of attention, including the inferior parietal sulcus and superior parietal lobule, the frontal eye-movement field, and the inferior frontal sulcus/gyrus, and these regions functionally colateralized in the hemisphere dominant for attention, independently of the side of lateralization. Our results clearly support the Causal hypothesis about the complementary specialization, and we speculate that it derives from a longstanding evolutionary origin. We also suggest that the conclusions about lateralization based on an unselected sample of the population and laterality assessment using coarse functional transcranial Doppler sonography should be interpreted with more caution.
Collapse
|