1
|
Wang X, Li K, Guo L, Liu X, Guo Y, Zhang W. The Influence of Changes in Microglia Development on the Plasticity of the Developing Visual Cortex Circuit in Juvenile Mice. Invest Ophthalmol Vis Sci 2025; 66:45. [PMID: 40244609 PMCID: PMC12013681 DOI: 10.1167/iovs.66.4.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Purpose To investigate the role of microglial subtypes in mouse visual cortex development, focusing on ocular dominance plasticity and interactions with GABAergic neurons and the extracellular matrix. Methods Immunofluorescence and single-nucleus RNA-sequencing (snRNA-seq) were used to study microglia in the binocular primary visual cortex (V1) from postnatal day (P) 11 to P42. Gene ontology (GO) analysis assessed synapse organization, and the impact of microglial disruption on ocular dominance plasticity was examined. Visual evoked potentials and miniature postsynaptic current recordings are used to monitor functional changes in V1. Results Microglia underwent a marked expansion between P11 and P21 and stabilized after P35, coinciding with notable changes in gene expression that aligned with synaptic remodeling. GO analysis at P14 and P28 revealed significant enrichment in synaptic organization linked to microglia. Single-nucleus RNA sequencing identified six distinct microglial clusters, among which two functionally relevant subpopulations were closely linked to cortical synaptic plasticity. One cluster, enriched in inflammatory responses and endocytosis, peaked at P21, whereas another cluster, associated with synapse organization and signaling, exhibited dynamic changes after eye opening and during the critical period, significantly influencing cortical synaptic plasticity. In parallel, perineuronal nets (PNNs) and PV(+) interneuron populations increased and reached steady levels by P42, suggesting that microglia help coordinate the timing of inhibitory circuit maturation. Disrupting microglial function during the critical period impaired ocular dominance plasticity, but this effect was reversed after treatment cessation. Mechanistically, microglial depletion enhanced PV(+) interneuron numbers, elevated PNN expression, and altered synapse development. Conclusions Our findings highlight specific microglial subtypes as key regulators of cortical synapse development and plasticity through their interactions with PV(+) interneurons and PNNs. These insights advance our understanding of microglial contributions to visual cortex development and provide potential avenues for targeting microglial function to modulate cortical plasticity.
Collapse
Affiliation(s)
- Xuechun Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Kuan Li
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Lingzhi Guo
- Institute of Ophthalmology, Nankai University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xinlong Liu
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Yatu Guo
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
- Institute of Ophthalmology, Nankai University, Tianjin, China
| | - Wei Zhang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
- Institute of Ophthalmology, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Halfmann C, Rüland T, Müller F, Jehasse K, Kampa BM. Electrophysiological properties of layer 2/3 pyramidal neurons in the primary visual cortex of a retinitis pigmentosa mouse model ( rd10). Front Cell Neurosci 2023; 17:1258773. [PMID: 37780205 PMCID: PMC10540630 DOI: 10.3389/fncel.2023.1258773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Retinal degeneration is one of the main causes of visual impairment and blindness. One group of retinal degenerative diseases, leading to the loss of photoreceptors, is collectively termed retinitis pigmentosa. In this group of diseases, the remaining retina is largely spared from initial cell death making retinal ganglion cells an interesting target for vision restoration methods. However, it is unknown how downstream brain areas, in particular the visual cortex, are affected by the progression of blindness. Visual deprivation studies have shown dramatic changes in the electrophysiological properties of visual cortex neurons, but changes on a cellular level in retinitis pigmentosa have not been investigated yet. Therefore, we used the rd10 mouse model to perform patch-clamp recordings of pyramidal neurons in layer 2/3 of the primary visual cortex to screen for potential changes in electrophysiological properties resulting from retinal degeneration. Compared to wild-type C57BL/6 mice, we only found an increase in intrinsic excitability around the time point of maximal retinal degeneration. In addition, we saw an increase in the current amplitude of spontaneous putative inhibitory events after a longer progression of retinal degeneration. However, we did not observe a long-lasting shift in excitability after prolonged retinal degeneration. Together, our results provide evidence of an intact visual cortex with promising potential for future therapeutic strategies to restore vision.
Collapse
Affiliation(s)
- Claas Halfmann
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Thomas Rüland
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
- Molecular and Cellular Physiology, Institute of Biological Information Processing (IBI-1), Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| | - Frank Müller
- Molecular and Cellular Physiology, Institute of Biological Information Processing (IBI-1), Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
- Research Training Group 2610 Innoretvision, RWTH Aachen University, Aachen, Germany
| | - Kevin Jehasse
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Björn M. Kampa
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
- Research Training Group 2610 Innoretvision, RWTH Aachen University, Aachen, Germany
- JARA BRAIN, Institute of Neuroscience and Medicine (INM-10), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
3
|
Curnow E, Wang Y. New Animal Models for Understanding FMRP Functions and FXS Pathology. Cells 2022; 11:1628. [PMID: 35626665 PMCID: PMC9140010 DOI: 10.3390/cells11101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fragile X encompasses a range of genetic conditions, all of which result as a function of changes within the FMR1 gene and abnormal production and/or expression of the FMR1 gene products. Individuals with Fragile X syndrome (FXS), the most common heritable form of intellectual disability, have a full-mutation sequence (>200 CGG repeats) which brings about transcriptional silencing of FMR1 and loss of FMR protein (FMRP). Despite considerable progress in our understanding of FXS, safe, effective, and reliable treatments that either prevent or reduce the severity of the FXS phenotype have not been approved. While current FXS animal models contribute their own unique understanding to the molecular, cellular, physiological, and behavioral deficits associated with FXS, no single animal model is able to fully recreate the FXS phenotype. This review will describe the status and rationale in the development, validation, and utility of three emerging animal model systems for FXS, namely the nonhuman primate (NHP), Mongolian gerbil, and chicken. These developing animal models will provide a sophisticated resource in which the deficits in complex functions of perception, action, and cognition in the human disorder are accurately reflected and aid in the successful translation of novel therapeutics and interventions to the clinic setting.
Collapse
Affiliation(s)
- Eliza Curnow
- REI Division, Department of ObGyn, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
4
|
Ewall G, Parkins S, Lin A, Jaoui Y, Lee HK. Cortical and Subcortical Circuits for Cross-Modal Plasticity Induced by Loss of Vision. Front Neural Circuits 2021; 15:665009. [PMID: 34113240 PMCID: PMC8185208 DOI: 10.3389/fncir.2021.665009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Cortical areas are highly interconnected both via cortical and subcortical pathways, and primary sensory cortices are not isolated from this general structure. In primary sensory cortical areas, these pre-existing functional connections serve to provide contextual information for sensory processing and can mediate adaptation when a sensory modality is lost. Cross-modal plasticity in broad terms refers to widespread plasticity across the brain in response to losing a sensory modality, and largely involves two distinct changes: cross-modal recruitment and compensatory plasticity. The former involves recruitment of the deprived sensory area, which includes the deprived primary sensory cortex, for processing the remaining senses. Compensatory plasticity refers to plasticity in the remaining sensory areas, including the spared primary sensory cortices, to enhance the processing of its own sensory inputs. Here, we will summarize potential cellular plasticity mechanisms involved in cross-modal recruitment and compensatory plasticity, and review cortical and subcortical circuits to the primary sensory cortices which can mediate cross-modal plasticity upon loss of vision.
Collapse
Affiliation(s)
- Gabrielle Ewall
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Samuel Parkins
- Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States
| | - Amy Lin
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yanis Jaoui
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
5
|
Chakraborty R, Vijay Kumar MJ, Clement JP. Critical aspects of neurodevelopment. Neurobiol Learn Mem 2021; 180:107415. [PMID: 33647449 DOI: 10.1016/j.nlm.2021.107415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/21/2020] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
Organisms have the unique ability to adapt to their environment by making use of external inputs. In the process, the brain is shaped by experiences that go hand-in-hand with optimisation of neural circuits. As such, there exists a time window for the development of different brain regions, each unique for a particular sensory modality, wherein the propensity of forming strong, irreversible connections are high, referred to as a critical period of development. Over the years, this domain of neurodevelopmental research has garnered considerable attention from many scientists, primarily because of the intensive activity-dependent nature of development. This review discusses the cellular, molecular, and neurophysiological bases of critical periods of different sensory modalities, and the disorders associated in cases the regulators of development are dysfunctional. Eventually, the neurobiological bases of the behavioural abnormalities related to developmental pathologies are discussed. A more in-depth insight into the development of the brain during the critical period of plasticity will eventually aid in developing potential therapeutics for several neurodevelopmental disorders that are categorised under critical period disorders.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India
| | - M J Vijay Kumar
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India.
| |
Collapse
|
6
|
Li B, Zou Y, Yin X, Tang X, Fan H. Expression of brain-derived neurotrophic factor in the lateral geniculate body of monocular form deprivation amblyopic kittens. Eur J Ophthalmol 2020; 31:2724-2730. [PMID: 32873060 DOI: 10.1177/1120672120953341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The present study compared the expression of brain-derived neurotrophic factor (BDNF) in the lateral geniculate body between form deprivation amblyopia kittens and normal kittens to examine the significance of BDNF in the lateral geniculate body in the pathogenesis of amblyopia. METHODS Twenty kittens were divided into control group (n = 10) and deprivation group (n = 10). A black opaque eye mask was placed to cover the right eye of the deprivation group. Pattern visual-evoked potentials (PVEPs) were detected weekly in all kittens .After the kittens in the deprivation group developed monocular amblyopia, the lateral geniculate bodies of all kittens were removed. The expression of BDNF in the lateral geniculate body of the two groups was compared by immunohistochemistry and Western blotting. RESULTS The latency of the P100 wave in the right eye of the deprivation group was longer than that of the left eye and that of the right eye of the control group (p < 0.05), and the amplitude decreased (p < 0.05). The number and average optical density of BDNF-positive cells in the deprivation group were lower than those in the control group (p < 0.05), and the expression of BDNF in the deprivation group was lower than that in the control group (p < 0.05). CONCLUSIONS The expression of BDNF in the lateral geniculate body of the amblyopic kittens decreased, and the decrease in BDNF promoted the development of amblyopia. These results demonstrate that BDNF in the lateral geniculate body plays an important role in visual development.
Collapse
Affiliation(s)
- Bo Li
- Department of Ophthalmology, Suining Central Hospital, Suining, China.,Department of Ophthalmology, affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Optometry, North Sichuan Medical College, Nanchong, China
| | - Yunchun Zou
- Department of Ophthalmology, affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Optometry, North Sichuan Medical College, Nanchong, China
| | - Ximin Yin
- Department of Ophthalmology, affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Optometry, North Sichuan Medical College, Nanchong, China
| | - Xiuping Tang
- Department of Ophthalmology, affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Optometry, North Sichuan Medical College, Nanchong, China
| | - Haobo Fan
- Department of Ophthalmology, affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Optometry, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
7
|
Temporary Visual Deprivation Causes Decorrelation of Spatiotemporal Population Responses in Adult Mouse Auditory Cortex. eNeuro 2019; 6:ENEURO.0269-19.2019. [PMID: 31744840 PMCID: PMC6901683 DOI: 10.1523/eneuro.0269-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023] Open
Abstract
Although within-modality sensory plasticity is limited to early developmental periods, cross-modal plasticity can occur even in adults. In vivo electrophysiological studies have shown that transient visual deprivation (dark exposure, DE) in adult mice improves the frequency selectivity and discrimination of neurons in thalamorecipient layer 4 (L4) of primary auditory cortex (A1). Since sound information is processed hierarchically in A1 by populations of neurons, we investigated whether DE alters network activity in A1 L4 and layer 2/3 (L2/3). We examined neuronal populations in both L4 and L2/3 using in vivo two-photon calcium (Ca2+) imaging of transgenic mice expressing GCaMP6s. We find that one week of DE in adult mice increased the sound evoked responses and frequency selectivity of both L4 and L2/3 neurons. Moreover, after DE the frequency representation changed with L4 and L2/3 showing a reduced representation of cells with best frequencies (BFs) between 8 and 16 kHz and an increased representation of cells with BFs above 32 kHz. Cells in L4 and L2/3 showed decreased pairwise signal correlations (SCs) consistent with sharper tuning curves. The decreases in SCs were larger in L4 than in L2/3. The decreased pairwise correlations indicate a sparsification of A1 responses to tonal stimuli. Thus, cross-modal experience in adults can both alter the sound-evoked responses of A1 neurons and change activity correlations within A1 potentially enhancing the encoding of auditory stimuli.
Collapse
|
8
|
Lohia R, Salari R, Brannigan G. Sequence specificity despite intrinsic disorder: How a disease-associated Val/Met polymorphism rearranges tertiary interactions in a long disordered protein. PLoS Comput Biol 2019; 15:e1007390. [PMID: 31626641 PMCID: PMC6821141 DOI: 10.1371/journal.pcbi.1007390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/30/2019] [Accepted: 09/10/2019] [Indexed: 11/24/2022] Open
Abstract
The role of electrostatic interactions and mutations that change charge states in intrinsically disordered proteins (IDPs) is well-established, but many disease-associated mutations in IDPs are charge-neutral. The Val66Met single nucleotide polymorphism (SNP) in precursor brain-derived neurotrophic factor (BDNF) is one of the earliest SNPs to be associated with neuropsychiatric disorders, and the underlying molecular mechanism is unknown. Here we report on over 250 μs of fully-atomistic, explicit solvent, temperature replica-exchange molecular dynamics (MD) simulations of the 91 residue BDNF prodomain, for both the V66 and M66 sequence. The simulations were able to correctly reproduce the location of both local and non-local secondary structure changes due to the Val66Met mutation, when compared with NMR spectroscopy. We find that the change in local structure is mediated via entropic and sequence specific effects. We developed a hierarchical sequence-based framework for analysis and conceptualization, which first identifies “blobs” of 4-15 residues representing local globular regions or linkers. We use this framework within a novel test for enrichment of higher-order (tertiary) structure in disordered proteins; the size and shape of each blob is extracted from MD simulation of the real protein (RP), and used to parameterize a self-avoiding heterogenous polymer (SAHP). The SAHP version of the BDNF prodomain suggested a protein segmented into three regions, with a central long, highly disordered polyampholyte linker separating two globular regions. This effective segmentation was also observed in full simulations of the RP, but the Val66Met substitution significantly increased interactions across the linker, as well as the number of participating residues. The Val66Met substitution replaces β-bridging between V66 and V94 (on either side of the linker) with specific side-chain interactions between M66 and M95. The protein backbone in the vicinity of M95 is then free to form β-bridges with residues 31-41 near the N-terminus, which condenses the protein. A significant role for Met/Met interactions is consistent with previously-observed non-local effects of the Val66Met SNP, as well as established interactions between the Met66 sequence and a Met-rich receptor that initiates neuronal growth cone retraction. Intrinsically disordered proteins are proteins that have no well-defined structure in at least one functional form. Mutations in one amino acid may still affect their function significantly, especially in subtle ways with cumulative adverse effects on health. Here we report on molecular dynamics simulations of a protein that is critical for neuronal health throughout adulthood (brain-derived neurotrophic factor). We investigate the effects of a mutation carried by 30% of human population, which has been widely studied for its association with aging-related and stress-related disorders, reduced volume of the hippocampus, and variations in episodic memory. We identify a molecular mechanism in which the mutation may change the global conformations of the protein and its ability to bind to receptors.
Collapse
Affiliation(s)
- Ruchi Lohia
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, United States of America
| | - Reza Salari
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, United States of America
| | - Grace Brannigan
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, United States of America
- Department of Physics, Rutgers University, Camden, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
9
|
Mudd DB, Balmer TS, Kim SY, Machhour N, Pallas SL. TrkB Activation during a Critical Period Mimics the Protective Effects of Early Visual Experience on Perception and the Stability of Receptive Fields in Adult Superior Colliculus. J Neurosci 2019; 39:4475-4488. [PMID: 30940716 PMCID: PMC6554622 DOI: 10.1523/jneurosci.2598-18.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/09/2019] [Accepted: 03/23/2019] [Indexed: 01/12/2023] Open
Abstract
During a critical period in development, spontaneous and evoked retinal activity shape visual pathways in an adaptive fashion. Interestingly, spontaneous activity is sufficient for spatial refinement of visual receptive fields (RFs) in superior colliculus (SC) and visual cortex (V1), but early visual experience is necessary to maintain inhibitory synapses and stabilize RFs in adulthood (Carrasco et al., 2005, 2011; Carrasco and Pallas, 2006; Balmer and Pallas, 2015a). In V1, BDNF and its high-affinity receptor TrkB are important for development of visual acuity, inhibition, and regulation of the critical period for ocular dominance plasticity (Hanover et al., 1999; Huang et al., 1999; Gianfranceschi et al., 2003). To examine the generality of this signaling pathway for visual system plasticity, the present study examined the role of TrkB signaling during the critical period for RF refinement in SC. Activating TrkB receptors during the critical period (P33-P40) in dark reared subjects produced normally refined RFs, and blocking TrkB receptors in light-exposed animals resulted in enlarged adult RFs like those in dark reared animals. We also report here that deprivation- or TrkB blockade-induced RF enlargement in adulthood impaired fear responses to looming overhead stimuli and negatively impacted visual acuity. Thus, early TrkB activation is both necessary and sufficient to maintain visual RF refinement, robust looming responses, and visual acuity in adulthood. These findings suggest a common signaling pathway exists for the maturation of inhibition between V1 and SC.SIGNIFICANCE STATEMENT Receptive field refinement in superior colliculus differs from more commonly studied examples of critical period plasticity in visual pathways in that it does not require visual experience to occur; rather, spontaneous activity is sufficient. Maintenance of refinement beyond puberty requires a brief, early exposure to light to stabilize the lateral inhibition that shapes receptive fields. We find that TrkB activation during a critical period can substitute for visual experience in maintaining receptive field refinement into adulthood, and that this maintenance is beneficial to visual survival behaviors. Thus, as in some other types of plasticity, TrkB signaling plays a crucial role in receptive field refinement.
Collapse
Affiliation(s)
- David B Mudd
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - Timothy S Balmer
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - So Yeon Kim
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - Noura Machhour
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - Sarah L Pallas
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
10
|
Synaptic and circuit development of the primary sensory cortex. Exp Mol Med 2018; 50:1-9. [PMID: 29628505 PMCID: PMC5938038 DOI: 10.1038/s12276-018-0029-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 01/06/2023] Open
Abstract
Animals, including humans, optimize their primary sensory cortex through the use of input signals, which allow them to adapt to the external environment and survive. The time window at the beginning of life in which external input signals are connected sensitively and strongly to neural circuit optimization is called the critical period. The critical period has attracted the attention of many neuroscientists due to the rapid activity-/experience-dependent circuit development that occurs, which is clearly differentiated from other developmental time periods and brain areas. This process involves various types of GABAergic inhibitory neurons, the extracellular matrix, neuromodulators, transcription factors, and neurodevelopmental factors. In this review, I discuss recent progress regarding the biological nature of the critical period that contribute to a better understanding of brain development.
Collapse
|
11
|
Gao M, Whitt JL, Huang S, Lee A, Mihalas S, Kirkwood A, Lee HK. Experience-dependent homeostasis of 'noise' at inhibitory synapses preserves information coding in adult visual cortex. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0156. [PMID: 28093550 DOI: 10.1098/rstb.2016.0156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2016] [Indexed: 02/05/2023] Open
Abstract
Synapses are intrinsically 'noisy' in that neurotransmitter is occasionally released in the absence of an action potential. At inhibitory synapses, the frequency of action potential-independent release is orders of magnitude higher than that at excitatory synapses raising speculations that it may serve a function. Here we report that the frequency of action potential-independent inhibitory synaptic 'noise' (i.e. miniature inhibitory postsynaptic currents, mIPSCs) is highly regulated by sensory experience in visual cortex. Importantly, regulation of mIPSC frequency is so far the predominant form of functional plasticity at inhibitory synapses in adults during the refractory period for plasticity and is a locus of rapid non-genomic actions of oestrogen. Models predict that regulating the frequency of mIPSCs, together with the previously characterized synaptic scaling of miniature excitatory PSCs, allows homeostatic maintenance of both the mean and variance of inputs to a neuron, a necessary feature of probabilistic population codes. Furthermore, mIPSC frequency regulation allows preservation of the temporal profile of neural responses while homeostatically regulating the overall firing rate. Our results suggest that the control of inhibitory 'noise' allows adaptive maintenance of adult cortical function in tune with the sensory environment.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Ming Gao
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jessica L Whitt
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Shiyong Huang
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Angela Lee
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Stefan Mihalas
- Allen Institute for Brain Science, Seattle, WA 98103, USA
| | - Alfredo Kirkwood
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA .,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Brief Novel Visual Experience Fundamentally Changes Synaptic Plasticity in the Mouse Visual Cortex. J Neurosci 2017; 37:9353-9360. [PMID: 28821676 DOI: 10.1523/jneurosci.0334-17.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 08/04/2017] [Accepted: 08/11/2017] [Indexed: 12/29/2022] Open
Abstract
LTP has been known to be a mechanism by which experience modifies synaptic responses in the neocortex. Visual deprivation in the form of dark exposure or dark rearing from birth enhances NMDAR-dependent LTP in layer 2/3 of visual cortex, a process often termed metaplasticity, which may involve changes in NMDAR subunit composition and function. However, the effects of reexposure to light after dark rearing from birth on LTP induction have not been explored. Here, we showed that the light exposure after dark rearing revealed a novel NMDAR independent form of LTP in the layer 2/3 pyramidal cells in visual cortex of mice of both sexes, which is dependent on mGluR5 activation and is associated with intracellular Ca2+ rise, CaMKII activity, PKC activity, and intact protein synthesis. Moreover, the capacity to induce mGluR-dependent LTP is transient: it only occurs when mice of both sexes reared in the dark from birth are exposed to light for 10-12 h, and it does not occur in vision-experienced, male mice, even after prolonged exposure to dark. Thus, the mGluR5-LTP unmasked by short visual experience can only be observed after dark rearing but not after dark exposure. These results suggested that, as in hippocampus, in layer 2/3 of visual cortex, there is coexistence of two distinct activity-dependent systems of synaptic plasticity, NMDAR-LTP, and mGluR5-LTP. The mGluR5-LTP unmasked by short visual experience may play a critical role in the faster establishment of normal receptive field properties.SIGNIFICANCE STATEMENT LTP has been known to be a mechanism by which experience modifies synaptic responses in the neocortex. Visual deprivation in the form of dark exposure or dark rearing from birth enhances NMDAR-dependent LTP in layer 2/3 of visual cortex, a process often termed metaplasticity. NMDAR-dependent form of LTP in visual cortex has been well characterized. Here, we report that an NMDAR-independent form of LTP can be promoted by novel visual experience on dark-reared mice, characterized as dependent on intracellular Ca2+ rise, PKC activity, and intact protein synthesis and also requires the activation of mGluR5. These findings suggest that, in layer 2/3 of visual cortex, as in hippocampus, there is coexistence of two distinct activity-dependent systems of synaptic plasticity.
Collapse
|
13
|
Miceli S, Nadif Kasri N, Joosten J, Huang C, Kepser L, Proville R, Selten MM, van Eijs F, Azarfar A, Homberg JR, Celikel T, Schubert D. Reduced Inhibition within Layer IV of Sert Knockout Rat Barrel Cortex is Associated with Faster Sensory Integration. Cereb Cortex 2017; 27:933-949. [PMID: 28158484 PMCID: PMC5390402 DOI: 10.1093/cercor/bhx016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 12/07/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022] Open
Abstract
Neural activity is essential for the maturation of sensory systems. In the rodent primary somatosensory cortex (S1), high extracellular serotonin (5-HT) levels during development impair neural transmission between the thalamus and cortical input layer IV (LIV). Rodent models of impaired 5-HT transporter (SERT) function show disruption in their topological organization of S1 and in the expression of activity-regulated genes essential for inhibitory cortical network formation. It remains unclear how such alterations affect the sensory information processing within cortical LIV. Using serotonin transporter knockout (Sert-/-) rats, we demonstrate that high extracellular serotonin levels are associated with impaired feedforward inhibition (FFI), fewer perisomatic inhibitory synapses, a depolarized GABA reversal potential and reduced expression of KCC2 transporters in juvenile animals. At the neural population level, reduced FFI increases the excitatory drive originating from LIV, facilitating evoked representations in the supragranular layers II/III. The behavioral consequence of these changes in network excitability is faster integration of the sensory information during whisker-based tactile navigation, as Sert-/- rats require fewer whisker contacts with tactile targets and perform object localization with faster reaction times. These results highlight the association of serotonergic homeostasis with formation and excitability of sensory cortical networks, and consequently with sensory perception.
Collapse
Affiliation(s)
- Stéphanie Miceli
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Neural Networks, Center of Advanced European Studies and Research (caesar), Max Planck Society, Germany
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Joep Joosten
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Chao Huang
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Lara Kepser
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Rémi Proville
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Martijn M. Selten
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Fenneke van Eijs
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Alireza Azarfar
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Taschereau-Dumouchel V, Hétu S, Michon PE, Vachon-Presseau E, Massicotte E, De Beaumont L, Fecteau S, Poirier J, Mercier C, Chagnon YC, Jackson PL. BDNF Val 66Met Polymorphism Influences Visuomotor Associative Learning and the Sensitivity to Action Observation. Sci Rep 2016; 6:34907. [PMID: 27703276 PMCID: PMC5050503 DOI: 10.1038/srep34907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
Motor representations in the human mirror neuron system are tuned to respond to specific observed actions. This ability is widely believed to be influenced by genetic factors, but no study has reported a genetic variant affecting this system so far. One possibility is that genetic variants might interact with visuomotor associative learning to configure the system to respond to novel observed actions. In this perspective, we conducted a candidate gene study on the Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, a genetic variant linked to motor learning in regions of the mirror neuron system, and tested the effect of this polymorphism on motor facilitation and visuomotor associative learning. In a single-pulse TMS study carried on 16 Met (Val/Met and Met/Met) and 16 Val/Val participants selected from a large pool of healthy volunteers, Met participants showed significantly less muscle-specific corticospinal sensitivity during action observation, as well as reduced visuomotor associative learning, compared to Val homozygotes. These results are the first evidence of a genetic variant tuning sensitivity to action observation and bring to light the importance of considering the intricate relation between genetics and associative learning in order to further understand the origin and function of the human mirror neuron system.
Collapse
Affiliation(s)
- Vincent Taschereau-Dumouchel
- École de psychologie, Université Laval, Québec, G1V 0A6, Canada.,Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Québec, G1M 2S8, Canada.,Centre de recherche de l'institut universitaire en santé mentale de Québec (CRIUSMQ), Québec, G1J 2G3, Canada
| | - Sébastien Hétu
- Human Neuroimaging laboratory, Virginia Tech Carilion Research Institute, Roanoke, VA, 24016, USA
| | - Pierre-Emmanuel Michon
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Québec, G1M 2S8, Canada.,Centre de recherche de l'institut universitaire en santé mentale de Québec (CRIUSMQ), Québec, G1J 2G3, Canada
| | | | - Elsa Massicotte
- École de psychologie, Université Laval, Québec, G1V 0A6, Canada.,Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Québec, G1M 2S8, Canada.,Centre de recherche de l'institut universitaire en santé mentale de Québec (CRIUSMQ), Québec, G1J 2G3, Canada
| | - Louis De Beaumont
- Departement de psychologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada.,Centre de recherche de l'Hopital Sacré-Coeur, Montréal, Québec, H4J 1C5, Canada
| | - Shirley Fecteau
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Québec, G1M 2S8, Canada.,Centre de recherche de l'institut universitaire en santé mentale de Québec (CRIUSMQ), Québec, G1J 2G3, Canada.,Department de réadaptation, Université Laval, Québec, G1V 0A6, Canada.,Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, US
| | - Judes Poirier
- Department of psychiatry and medicine, McGill University, Montréal, Québec, H3A 1A1, Canada.,Douglas Mental Health University Institute, Verdun, Québec, H4H 1R3, Canada
| | - Catherine Mercier
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Québec, G1M 2S8, Canada.,Department de réadaptation, Université Laval, Québec, G1V 0A6, Canada
| | - Yvon C Chagnon
- Centre de recherche de l'institut universitaire en santé mentale de Québec (CRIUSMQ), Québec, G1J 2G3, Canada.,Département de Psychiatrie et des Neurosciences, Université Laval, Québec, G1V 0A6, Canada
| | - Philip L Jackson
- École de psychologie, Université Laval, Québec, G1V 0A6, Canada.,Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Québec, G1M 2S8, Canada.,Centre de recherche de l'institut universitaire en santé mentale de Québec (CRIUSMQ), Québec, G1J 2G3, Canada
| |
Collapse
|
15
|
Banerjee B, Medda BK, Zhang J, Tuchscherer V, Babygirija R, Kannampalli P, Sengupta JN, Shaker R. Prolonged esophageal acid exposures induce synaptic downscaling of cortical membrane AMPA receptor subunits in rats. Neurogastroenterol Motil 2016; 28:1356-69. [PMID: 27271201 PMCID: PMC5063079 DOI: 10.1111/nmo.12834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/11/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND We recently reported the involvement of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor subunit upregulation and phosphorylation in the rostral cingulate cortex (rCC) as the underlying mechanism of acute esophageal acid-induced cortical sensitization. Based on these findings, we proposed to investigate whether prolonged esophageal acid exposures in rats exhibit homeostatic synaptic scaling through downregulation of AMPA receptor expression in rCC neurons. We intended to study further whether this compensatory mechanism is impaired when rats are pre-exposed to repeated esophageal acid exposures neonatally during neuronal development. METHODS Two different esophageal acid exposure protocols in rats were used. Since AMPA receptor trafficking and channel conductance depend on CaMKIIα-mediated phosphorylation of AMPA receptor subunits, we examined the effect of esophageal acid on CaMKIIα activation and AMPA receptor expression in synaptoneurosomes and membrane preparations from rCCs. KEY RESULTS In cortical membrane preparations, GluA1 and pGluA1Ser(831) expression were significantly downregulated following prolonged acid exposures in adult rats; this was accompanied by the significant downregulation of cortical membrane pCaMKIIα expression. No change in GluA1 and pGluA1Ser(831) expression was observed in rCC membrane preparations in rats pre-exposed to acid neonatally followed by adult rechallenge. CONCLUSIONS & INFERENCES This study along with our previous findings suggests that synaptic AMPA receptor subunits expression and phosphorylation may be involved bidirectionally in both esophageal acid-induced neuronal sensitization and acid-dependent homeostatic plasticity in cortical neurons. The impairment of homeostatic compensatory mechanism as observed following early-in-life acid exposure could be the underlying mechanism of heightening cortical sensitization and esophageal hypersensitivity in patients with gastroesophageal reflux disease.
Collapse
Affiliation(s)
- Banani Banerjee
- Gastroenterology & Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bidyut K Medda
- Gastroenterology & Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jian Zhang
- Gastroenterology & Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Reji Babygirija
- Gastroenterology & Hepatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pradeep Kannampalli
- Gastroenterology & Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jyoti N. Sengupta
- Gastroenterology & Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Reza Shaker
- Gastroenterology & Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
16
|
Fernandes D, Carvalho AL. Mechanisms of homeostatic plasticity in the excitatory synapse. J Neurochem 2016; 139:973-996. [PMID: 27241695 DOI: 10.1111/jnc.13687] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 11/30/2022]
Abstract
Brain development, sensory information processing, and learning and memory processes depend on Hebbian forms of synaptic plasticity, and on the remodeling and pruning of synaptic connections. Neurons in networks implicated in these processes carry out their functions while facing constant perturbation; homeostatic responses are therefore required to maintain neuronal activity within functional ranges for proper brain function. Here, we will review in vitro and in vivo studies demonstrating that several mechanisms underlie homeostatic plasticity of excitatory synapses, and identifying participant molecular players. Emerging evidence suggests a link between disrupted homeostatic synaptic plasticity and neuropsychiatric and neurologic disorders. Hebbian forms of synaptic plasticity, such as long-term potentiation (LTP), induce long-lasting changes in synaptic strength, which can be destabilizing and drive activity to saturation. Conversely, homeostatic plasticity operates to compensate for prolonged activity changes, stabilizing neuronal firing within a dynamic physiological range. We review mechanisms underlying homeostatic plasticity, and address how neurons integrate distinct forms of plasticity for proper brain function. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Dominique Fernandes
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PDBEB-Doctoral Program in Experimental Biology and Biomedicine, Interdisciplinary Research Institute (III-UC), University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
Functional Role of BDNF Production from Unique Promoters in Aggression and Serotonin Signaling. Neuropsychopharmacology 2016; 41:1943-55. [PMID: 26585288 PMCID: PMC4908631 DOI: 10.1038/npp.2015.349] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 01/12/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) regulates diverse biological functions ranging from neuronal survival and differentiation during development to synaptic plasticity and cognitive behavior in the adult. BDNF disruption in both rodents and humans is associated with neurobehavioral alterations and psychiatric disorders. A unique feature of Bdnf transcription is regulation by nine individual promoters, which drive expression of variants that encode an identical protein. It is hypothesized that this unique genomic structure may provide flexibility that allows different factors to regulate BDNF signaling in distinct cell types and circuits. This has led to the suggestion that isoforms may regulate specific BDNF-dependent functions; however, little scientific support for this idea exists. We generated four novel mutant mouse lines in which BDNF production from one of the four major promoters (I, II, IV, or VI) is selectively disrupted (Bdnf-e1, -e2, -e4, and -e6 mice) and used a comprehensive comparator approach to determine whether different Bdnf transcripts are associated with specific BDNF-dependent molecular, cellular, and behavioral phenotypes. Bdnf-e1 and -e2 mutant males displayed heightened aggression accompanied by convergent expression changes in specific genes associated with serotonin signaling. In contrast, BDNF-e4 and -e6 mutants were not aggressive but displayed impairments associated with GABAergic gene expression. Moreover, quantifications of BDNF protein in the hypothalamus, prefrontal cortex, and hippocampus revealed that individual Bdnf transcripts make differential, region-specific contributions to total BDNF levels. The results highlight the biological significance of alternative Bdnf transcripts and provide evidence that individual isoforms serve distinct molecular and behavioral functions.
Collapse
|
18
|
Abstract
Tonic inhibition mediated by extrasynaptic GABA(A) receptors (GABARs) sensing ambient levels of GABA can profoundly alter the membrane input resistance to affect cellular excitability. Therefore, regulation of tonic inhibition is an attractive mechanism to control the levels of cortical firing. In cortical pyramidal cells, tonic inhibition is regulated by age and several neurotransmitters and is affected by stroke and epilepsy. However, the possible role of sensory experience has not been examined. Here, we report that a brief 2-day exposure to dark reduces by 1/3 the inhibitory tonic conductance recorded in layer II/III pyramidal cells of the mouse juvenile (postnatal day 12-27) visual cortex. In these cells, tonic inhibition is carried primarily by GABARs containing the δ subunit. Consistently, the dark exposure reduction in conductance was associated with a reduction in δ subunit levels, which were not affected in control frontal cortex. We propose that a deprivation-induced reduction in tonic inhibition might serve a homeostatic function by increasing the firing levels of cells in deprived cortical circuits.
Collapse
|
19
|
Beshara S, Beston BR, Pinto JGA, Murphy KM. Effects of Fluoxetine and Visual Experience on Glutamatergic and GABAergic Synaptic Proteins in Adult Rat Visual Cortex. eNeuro 2015; 2:ENEURO.0126-15.2015. [PMID: 26730408 PMCID: PMC4698542 DOI: 10.1523/eneuro.0126-15.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 01/12/2023] Open
Abstract
Fluoxetine has emerged as a novel treatment for persistent amblyopia because in adult animals it reinstates critical period-like ocular dominance plasticity and promotes recovery of visual acuity. Translation of these results from animal models to the clinic, however, has been challenging because of the lack of understanding of how this selective serotonin reuptake inhibitor affects glutamatergic and GABAergic synaptic mechanisms that are essential for experience-dependent plasticity. An appealing hypothesis is that fluoxetine recreates a critical period (CP)-like state by shifting synaptic mechanisms to be more juvenile. To test this we studied the effect of fluoxetine treatment in adult rats, alone or in combination with visual deprivation [monocular deprivation (MD)], on a set of highly conserved presynaptic and postsynaptic proteins (synapsin, synaptophysin, VGLUT1, VGAT, PSD-95, gephyrin, GluN1, GluA2, GluN2B, GluN2A, GABAAα1, GABAAα3). We did not find evidence that fluoxetine shifted the protein amounts or balances to a CP-like state. Instead, it drove the balances in favor of the more mature subunits (GluN2A, GABAAα1). In addition, when fluoxetine was paired with MD it created a neuroprotective-like environment by normalizing the glutamatergic gain found in adult MDs. Together, our results suggest that fluoxetine treatment creates a novel synaptic environment dominated by GluN2A- and GABAAα1-dependent plasticity.
Collapse
Affiliation(s)
- Simon Beshara
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Brett R. Beston
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University, Hamilton, Ontario L8S 4K1, Canada
- Department of Psychology, Neuroscience & Behavior, McMaster University, Hamilton, Ontario L8S 4K1, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, L5L 1C6, ON
| | - Joshua G. A. Pinto
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University, Hamilton, Ontario L8S 4K1, Canada
- Health Care Investment Banking, Credit Suisse AG, San Francisco, CA 94108
| | - Kathryn M. Murphy
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University, Hamilton, Ontario L8S 4K1, Canada
- Department of Psychology, Neuroscience & Behavior, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
20
|
Chumak T, Rüttiger L, Lee SC, Campanelli D, Zuccotti A, Singer W, Popelář J, Gutsche K, Geisler HS, Schraven SP, Jaumann M, Panford-Walsh R, Hu J, Schimmang T, Zimmermann U, Syka J, Knipper M. BDNF in Lower Brain Parts Modifies Auditory Fiber Activity to Gain Fidelity but Increases the Risk for Generation of Central Noise After Injury. Mol Neurobiol 2015; 53:5607-27. [PMID: 26476841 PMCID: PMC5012152 DOI: 10.1007/s12035-015-9474-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 10/05/2015] [Indexed: 11/24/2022]
Abstract
For all sensory organs, the establishment of spatial and temporal cortical resolution is assumed to be initiated by the first sensory experience and a BDNF-dependent increase in intracortical inhibition. To address the potential of cortical BDNF for sound processing, we used mice with a conditional deletion of BDNF in which Cre expression was under the control of the Pax2 or TrkC promoter. BDNF deletion profiles between these mice differ in the organ of Corti (BDNFPax2-KO) versus the auditory cortex and hippocampus (BDNFTrkC-KO). We demonstrate that BDNFPax2-KO but not BDNFTrkC-KO mice exhibit reduced sound-evoked suprathreshold ABR waves at the level of the auditory nerve (wave I) and inferior colliculus (IC) (wave IV), indicating that BDNF in lower brain regions but not in the auditory cortex improves sound sensitivity during hearing onset. Extracellular recording of IC neurons of BDNFPax2 mutant mice revealed that the reduced sensitivity of auditory fibers in these mice went hand in hand with elevated thresholds, reduced dynamic range, prolonged latency, and increased inhibitory strength in IC neurons. Reduced parvalbumin-positive contacts were found in the ascending auditory circuit, including the auditory cortex and hippocampus of BDNFPax2-KO, but not of BDNFTrkC-KO mice. Also, BDNFPax2-WT but not BDNFPax2-KO mice did lose basal inhibitory strength in IC neurons after acoustic trauma. These findings suggest that BDNF in the lower parts of the auditory system drives auditory fidelity along the entire ascending pathway up to the cortex by increasing inhibitory strength in behaviorally relevant frequency regions. Fidelity and inhibitory strength can be lost following auditory nerve injury leading to diminished sensory outcome and increased central noise.
Collapse
Affiliation(s)
- Tetyana Chumak
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Lukas Rüttiger
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Sze Chim Lee
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Dario Campanelli
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Annalisa Zuccotti
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany.,Department of Clinical Neurobiology, University Hospital and DKFZ Heidelberg, In Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Wibke Singer
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Jiří Popelář
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Katja Gutsche
- Instituto de Biologíay Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47003, Valladolid, Spain
| | - Hyun-Soon Geisler
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Sebastian Philipp Schraven
- Department of Otolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Comprehensive Hearing Center, University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Mirko Jaumann
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | | | - Jing Hu
- Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Straße 25, 72076, Tübingen, Germany
| | - Thomas Schimmang
- Instituto de Biologíay Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47003, Valladolid, Spain
| | - Ulrike Zimmermann
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Marlies Knipper
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany.
| |
Collapse
|
21
|
Petrus E, Rodriguez G, Patterson R, Connor B, Kanold PO, Lee HK. Vision loss shifts the balance of feedforward and intracortical circuits in opposite directions in mouse primary auditory and visual cortices. J Neurosci 2015; 35:8790-801. [PMID: 26063913 PMCID: PMC4461685 DOI: 10.1523/jneurosci.4975-14.2015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 04/16/2015] [Accepted: 05/02/2015] [Indexed: 12/15/2022] Open
Abstract
Loss of a sensory modality leads to widespread changes in synaptic function across sensory cortices, which are thought to be the basis for cross-modal adaptation. Previous studies suggest that experience-dependent cross-modal regulation of the spared sensory cortices may be mediated by changes in cortical circuits. Here, we report that loss of vision, in the form of dark exposure (DE) for 1 week, produces laminar-specific changes in excitatory and inhibitory circuits in the primary auditory cortex (A1) of adult mice to promote feedforward (FF) processing and also strengthens intracortical inputs to primary visual cortex (V1). Specifically, DE potentiated FF excitatory synapses from layer 4 (L4) to L2/3 in A1 and recurrent excitatory inputs in A1-L4 in parallel with a reduction in the strength of lateral intracortical excitatory inputs to A1-L2/3. This suggests a shift in processing in favor of FF information at the expense of intracortical processing. Vision loss also strengthened inhibitory synaptic function in L4 and L2/3 of A1, but via laminar specific mechanisms. In A1-L4, DE specifically potentiated the evoked synaptic transmission from parvalbumin-positive inhibitory interneurons to principal neurons without changes in spontaneous miniature IPSCs (mIPSCs). In contrast, DE specifically increased the frequency of mIPSCs in A1-L2/3. In V1, FF excitatory inputs were unaltered by DE, whereas lateral intracortical connections in L2/3 were strengthened, suggesting a shift toward intracortical processing. Our results suggest that loss of vision produces distinct circuit changes in the spared and deprived sensory cortices to shift between FF and intracortical processing to allow adaptation.
Collapse
Affiliation(s)
- Emily Petrus
- Solomon H. Snyder Department of Neuroscience, Zanvyl Krieger Mind/Brain Institute, and
| | - Gabriela Rodriguez
- Cell, Molecular, Developmental Biology, and Biophysics Graduate Program, Johns Hopkins University, Baltimore, Maryland 21218, and
| | - Ryan Patterson
- Solomon H. Snyder Department of Neuroscience, Zanvyl Krieger Mind/Brain Institute, and
| | - Blaine Connor
- Cell, Molecular, Developmental Biology, and Biophysics Graduate Program, Johns Hopkins University, Baltimore, Maryland 21218, and
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl Krieger Mind/Brain Institute, and Cell, Molecular, Developmental Biology, and Biophysics Graduate Program, Johns Hopkins University, Baltimore, Maryland 21218, and
| |
Collapse
|
22
|
Smolders K, Lombaert N, Valkenborg D, Baggerman G, Arckens L. An effective plasma membrane proteomics approach for small tissue samples. Sci Rep 2015; 5:10917. [PMID: 26047021 PMCID: PMC4456939 DOI: 10.1038/srep10917] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/27/2015] [Indexed: 01/22/2023] Open
Abstract
Advancing the quest for new drug targets demands the development of innovative plasma membrane proteome research strategies applicable to small, functionally defined tissue samples. Biotinylation of acute tissue slices and streptavidin pull-down followed by shotgun proteomics allowed the selective extraction and identification of >1,600 proteins of which >60% are associated with the plasma membrane, including (G-protein coupled) receptors, ion channels and transporters, and this from mm3-scale tissue.
Collapse
Affiliation(s)
- Katrien Smolders
- KU Leuven, Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, Leuven, Belgium
| | - Nathalie Lombaert
- KU Leuven, Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, Leuven, Belgium
| | - Dirk Valkenborg
- 1] Unit Environmental Risk &Health, VITO, Mol, Belgium [2] Center for Proteomics, UAntwerp, Antwerp, Belgium [3] Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, Belgium
| | - Geert Baggerman
- 1] Unit Environmental Risk &Health, VITO, Mol, Belgium [2] Center for Proteomics, UAntwerp, Antwerp, Belgium
| | - Lutgarde Arckens
- KU Leuven, Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, Leuven, Belgium
| |
Collapse
|
23
|
Boschen KE, Criss KJ, Palamarchouk V, Roth TL, Klintsova AY. Effects of developmental alcohol exposure vs. intubation stress on BDNF and TrkB expression in the hippocampus and frontal cortex of neonatal rats. Int J Dev Neurosci 2015; 43:16-24. [PMID: 25805052 PMCID: PMC4442714 DOI: 10.1016/j.ijdevneu.2015.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 12/16/2022] Open
Abstract
Third trimester-equivalent alcohol exposure causes significant deficits in hippocampal and cortical neuroplasticity, resulting in alterations to dendritic arborization, hippocampal adult neurogenesis, and performance on learning tasks. The current study investigated the impact of neonatal alcohol exposure (postnatal days 4-9, 5.25 g/kg/day) on expression of brain-derived neurotrophic factor (BDNF) and the tropomyosin-related kinase B (TrkB) receptor in the hippocampal and frontal cortex of infant Long-Evans rats. Levels of BDNF protein were increased in the hippocampus, but not frontal cortex, of alcohol-exposed rats 24h after the last dose, when compared with undisturbed (but not sham-intubated) control animals. BDNF protein levels showed a trend toward increase in hippocampus of sham-intubated animals as well, suggesting an effect of the intubation procedure. TrkB protein was increased in the hippocampus of alcohol-exposed animals compared to sham-intubated pups, indicating an alcohol-specific effect on receptor expression. In addition, expression of bdnf total mRNA in alcohol-exposed and sham-intubated pups was enhanced in the hippocampus; however, there was a differential effect of alcohol and intubation stress on exon I- and IV-specific mRNA transcripts. Further, plasma corticosterone was found to be increased in both alcohol-exposed and sham-intubated pups compared to undisturbed animals. Upregulation of BDNF could potentially represent a neuroprotective mechanism activated following alcohol exposure or stress. The results suggest that alcohol exposure and stress have both overlapping and unique effects on BDNF, and highlight the need for the stress of intubation to be taken into consideration in studies that implement this route of drug delivery.
Collapse
Affiliation(s)
- K E Boschen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - K J Criss
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - V Palamarchouk
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - T L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - A Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
24
|
Deidda G, Allegra M, Cerri C, Naskar S, Bony G, Zunino G, Bozzi Y, Caleo M, Cancedda L. Early depolarizing GABA controls critical-period plasticity in the rat visual cortex. Nat Neurosci 2014; 18:87-96. [PMID: 25485756 PMCID: PMC4338533 DOI: 10.1038/nn.3890] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/03/2014] [Indexed: 12/16/2022]
Abstract
Hyperpolarizing and inhibitory GABA regulates critical periods for plasticity in sensory cortices. Here we examine the role of early, depolarizing GABA in the control of plasticity mechanisms. We report that brief interference with depolarizing GABA during early development prolonged critical-period plasticity in visual cortical circuits without affecting the overall development of the visual system. The effects on plasticity were accompanied by dampened inhibitory neurotransmission, downregulation of brain-derived neurotrophic factor (BDNF) expression and reduced density of extracellular matrix perineuronal nets. Early interference with depolarizing GABA decreased perinatal BDNF signaling, and a pharmacological increase of BDNF signaling during GABA interference rescued the effects on plasticity and its regulators later in life. We conclude that depolarizing GABA exerts a long-lasting, selective modulation of plasticity of cortical circuits by a strong crosstalk with BDNF.
Collapse
Affiliation(s)
- Gabriele Deidda
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Manuela Allegra
- 1] Scuola Normale Superiore, Pisa, Italy. [2] CNR Neuroscience Institute, Pisa, Italy
| | | | - Shovan Naskar
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Guillaume Bony
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Giulia Zunino
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Yuri Bozzi
- 1] CNR Neuroscience Institute, Pisa, Italy. [2] Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Laura Cancedda
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|