1
|
Bai S, Wei Y, Liu R, Chen Y, Ma W, Wang M, Chen L, Luo Y, Du J. The role of transient receptor potential channels in metastasis. Biomed Pharmacother 2023; 158:114074. [PMID: 36493698 DOI: 10.1016/j.biopha.2022.114074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the hallmark of failed tumor treatment and is typically associated with death due to cancer. Transient receptor potential (TRP) channels affect changes in intracellular calcium concentrations and participate at every stage of metastasis. Further, they increase the migratory ability of tumor cells, promote angiogenesis, regulate immune function, and promote the growth of tumor cells through changes in gene expression and function. In this review, we explore the potential mechanisms of action of TRP channels, summarize their role in tumor metastasis, compile inhibitors of TRP channels relevant in tumors, and discuss current challenges in research on TRP channels involved in tumor metastasis.
Collapse
Affiliation(s)
- Suwen Bai
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yuan Wei
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Rong Liu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuhua Chen
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Wanling Ma
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Minghua Wang
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Li Chen
- Department of obstetrics and gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Rd, Guangming Dist., Shenzhen, Guangdong 518107, China
| | - Yumei Luo
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Juan Du
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
2
|
Paes de Faria J, Vale-Silva RS, Fässler R, Werner HB, Relvas JB. Pinch2 regulates myelination in the mouse central nervous system. Development 2022; 149:275524. [DOI: 10.1242/dev.200597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The extensive morphological changes of oligodendrocytes during axon ensheathment and myelination involve assembly of the Ilk-Parvin-Pinch (IPP) heterotrimeric complex of proteins to relay essential mechanical and biochemical signals between integrins and the actin cytoskeleton. Binding of Pinch1 and Pinch2 isoforms to Ilk is mutually exclusive and allows the formation of distinct IPP complexes with specific signaling properties. Using tissue-specific conditional gene ablation in mice, we reveal an essential role for Pinch2 during central nervous system myelination. Unlike Pinch1 gene ablation, loss of Pinch2 in oligodendrocytes results in hypermyelination and in the formation of pathological myelin outfoldings in white matter regions. These structural changes concur with inhibition of Rho GTPase RhoA and Cdc42 activities and phenocopy aspects of myelin pathology observed in corresponding mouse mutants. We propose a dual role for Pinch2 in preventing an excess of myelin wraps through RhoA-dependent control of membrane growth and in fostering myelin stability via Cdc42-dependent organization of cytoskeletal septins. Together, these findings indicate that IPP complexes containing Pinch2 act as a crucial cell-autonomous molecular hub ensuring synchronous control of key signaling networks during developmental myelination.
Collapse
Affiliation(s)
- Joana Paes de Faria
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto 1 , 4200-135 Porto , Portugal
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto 2 , 4200-135 Porto , Portugal
| | - Raquel S. Vale-Silva
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto 1 , 4200-135 Porto , Portugal
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto 2 , 4200-135 Porto , Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto 3 , 4050-313 Porto , Portugal
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry 4 , 82152 Martinsried , Germany
| | - Hauke B. Werner
- Max Planck Institute of Experimental Medicine 5 Department of Neurogenetics , , D-37075 Gottingen , Germany
| | - João B. Relvas
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto 1 , 4200-135 Porto , Portugal
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto 2 , 4200-135 Porto , Portugal
- Faculty of Medicine, Universidade do Porto 6 Department of Biomedicine , , 4200-319 Porto , Portugal
| |
Collapse
|
3
|
Carvalho E, Morais M, Ferreira H, Silva M, Guimarães S, Pêgo A. A paradigm shift: Bioengineering meets mechanobiology towards overcoming remyelination failure. Biomaterials 2022; 283:121427. [DOI: 10.1016/j.biomaterials.2022.121427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
|
4
|
Mrówczyńska E, Mazur AJ. Integrin-Linked Kinase (ILK) Plays an Important Role in the Laminin-Dependent Development of Dorsal Root Ganglia during Chicken Embryogenesis. Cells 2021; 10:cells10071666. [PMID: 34359835 PMCID: PMC8304069 DOI: 10.3390/cells10071666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Integrin-linked kinase (ILK) is mainly localized in focal adhesions where it interacts and modulates the downstream signaling of integrins affecting cell migration, adhesion, and survival. The interaction of dorsal root ganglia (DRG) cells, being part of the peripheral nervous system (PNS), with the extracellular matrix (ECM) via integrins is crucial for proper PNS development. A few studies have focused on ILK’s role in PNS development, but none of these have focused on chicken. Therefore, we decided to investigate ILK’s role in the development of Gallus gallus domesticus’s DRG. First, using RT-PCR, Western blotting, and in situ hybridization, we show that ILK is expressed in DRG. Next, by immunocytochemistry, we show ILK’s localization both intracellularly and on the cell membrane of DRG neurons and Schwann cell precursors (SCPs). Finally, we describe ILK’s involvement in multiple aspects of DRG development by performing functional experiments in vitro. IgG-mediated interruption of ILK’s action improved DRG neurite outgrowth, modulated their directionality, stimulated SCPs migration, and impacted growth cone morphology in the presence of laminin-1 or laminin-1 mimicking peptide IKVAV. Taken together, our results show that ILK is important for chicken PNS development, probably via its exposure to the ECM.
Collapse
Affiliation(s)
- Ewa Mrówczyńska
- Correspondence: (E.M.); (A.J.M.); Tel.: +48-71-375-7972 (E.M.); +48-71-375-6206 (A.J.M.)
| | - Antonina Joanna Mazur
- Correspondence: (E.M.); (A.J.M.); Tel.: +48-71-375-7972 (E.M.); +48-71-375-6206 (A.J.M.)
| |
Collapse
|
5
|
Structural myelin defects are associated with low axonal ATP levels but rapid recovery from energy deprivation in a mouse model of spastic paraplegia. PLoS Biol 2020; 18:e3000943. [PMID: 33196637 PMCID: PMC7704050 DOI: 10.1371/journal.pbio.3000943] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 11/30/2020] [Accepted: 10/22/2020] [Indexed: 11/19/2022] Open
Abstract
In several neurodegenerative disorders, axonal pathology may originate from impaired oligodendrocyte-to-axon support of energy substrates. We previously established transgenic mice that allow measuring axonal ATP levels in electrically active optic nerves. Here, we utilize this technique to explore axonal ATP dynamics in the Plpnull/y mouse model of spastic paraplegia. Optic nerves from Plpnull/y mice exhibited lower and more variable basal axonal ATP levels and reduced compound action potential (CAP) amplitudes, providing a missing link between axonal pathology and a role of oligodendrocytes in brain energy metabolism. Surprisingly, when Plpnull/y optic nerves are challenged with transient glucose deprivation, both ATP levels and CAP decline slower, but recover faster upon reperfusion of glucose. Structurally, myelin sheaths display an increased frequency of cytosolic channels comprising glucose and monocarboxylate transporters, possibly facilitating accessibility of energy substrates to the axon. These data imply that complex metabolic alterations of the axon–myelin unit contribute to the phenotype of Plpnull/y mice. Imaging of ATP dynamics in the optic nerve axons of mice lacking the major myelin protein PLP (a model of spastic paraplegia) reveals complex alterations in the metabolic interaction between oligodendrocytes and axons, associated with structural deficits of myelin.
Collapse
|
6
|
Arreguin AJ, Colognato H. Brain Dysfunction in LAMA2-Related Congenital Muscular Dystrophy: Lessons From Human Case Reports and Mouse Models. Front Mol Neurosci 2020; 13:118. [PMID: 32792907 PMCID: PMC7390928 DOI: 10.3389/fnmol.2020.00118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022] Open
Abstract
Laminin α2 gene (LAMA2)-related Congenital Muscular Dystrophy (CMD) was distinguished by a defining central nervous system (CNS) abnormality—aberrant white matter signals by MRI—when first described in the 1990s. In the past 25 years, researchers and clinicians have expanded our knowledge of brain involvement in LAMA2-related CMD, also known as Congenital Muscular Dystrophy Type 1A (MDC1A). Neurological changes in MDC1A can be structural, including lissencephaly and agyria, as well as functional, including epilepsy and intellectual disability. Mouse models of MDC1A include both spontaneous and targeted LAMA2 mutations and range from a partial loss of LAMA2 function (e.g., dy2J/dy2J), to a complete loss of LAMA2 expression (dy3K/dy3K). Diverse cellular and molecular changes have been reported in the brains of MDC1A mouse models, including blood-brain barrier dysfunction, altered neuro- and gliogenesis, changes in synaptic plasticity, and decreased myelination, providing mechanistic insight into potential neurological dysfunction in MDC1A. In this review article, we discuss selected studies that illustrate the potential scope and complexity of disturbances in brain development in MDC1A, and as well as highlight mechanistic insights that are emerging from mouse models.
Collapse
Affiliation(s)
- Andrea J Arreguin
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States.,Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY, United States
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
7
|
Crawford M, Liu N, Mahdipour E, Barr K, Heit B, Dagnino L. Integrin-linked kinase regulates melanosome trafficking and melanin transfer in melanocytes. Mol Biol Cell 2020; 31:768-781. [PMID: 32049584 PMCID: PMC7185957 DOI: 10.1091/mbc.e19-09-0510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Melanosomes are melanin-containing organelles that provide pigmentation and protection from solar UV radiation to the skin. In melanocytes, melanosomes mature and traffic to dendritic tips, where they are transferred to adjacent epidermal keratinocytes through pathways that involve microtubule networks and the actin cytoskeleton. However, the role of scaffold proteins in these processes is poorly understood. Integrin-linked kinase (ILK) is a scaffold protein that regulates microtubule stability and F-actin dynamics. Here we show that ILK is necessary for normal trafficking of melanosomes along microtubule tracks. In the absence of ILK, immature melanosomes are not retained in perinuclear regions, and mature melanosome trafficking along microtubule tracks is impaired. These deficits can be attenuated by microtubule stabilization. Microtubules are also necessary for the formation of dendrites in melanocytes, and Ilk inactivation reduces melanocyte dendricity. Activation of glycogen synthase kinase-3 (GSK-3) interferes with microtubule assembly. Significantly, inhibition of GSK-3 activity or exogenous expression of the GSK-3 substrate collapsin response mediator protein 2 (CRMP2) in ILK-deficient melanocytes restored dendricity. ILK is also required for normal melanin transfer, and GSK-3 inhibition in melanocytes partially restored melanin transfer to neighboring keratinocytes. Thus, our work shows that ILK is a central modulator of melanosome movements in primary epidermal melanocytes and identifies ILK and GSK-3 as important modulators of melanin transfer to keratinocytes, a key process for epidermal UV photoprotection.
Collapse
Affiliation(s)
- Melissa Crawford
- Department of Physiology and Pharmacology, Children's Health Research Institute and Lawson Health Research Institute, University of Western Ontario, London, ON N6G 2C4, Canada
| | - Nancy Liu
- Department of Physiology and Pharmacology, Children's Health Research Institute and Lawson Health Research Institute, University of Western Ontario, London, ON N6G 2C4, Canada
| | - Elahe Mahdipour
- Department of Physiology and Pharmacology, Children's Health Research Institute and Lawson Health Research Institute, University of Western Ontario, London, ON N6G 2C4, Canada.,Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kevin Barr
- Department of Physiology and Pharmacology, Children's Health Research Institute and Lawson Health Research Institute, University of Western Ontario, London, ON N6G 2C4, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology and Robarts Research Institute, University of Western Ontario, London, ON N6G 2C4, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Children's Health Research Institute and Lawson Health Research Institute, University of Western Ontario, London, ON N6G 2C4, Canada.,Department of Oncology, University of Western Ontario, London, ON N6G 2C4, Canada
| |
Collapse
|
8
|
Thomason EJ, Escalante M, Osterhout DJ, Fuss B. The oligodendrocyte growth cone and its actin cytoskeleton: A fundamental element for progenitor cell migration and CNS myelination. Glia 2019; 68:1329-1346. [PMID: 31696982 DOI: 10.1002/glia.23735] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023]
Abstract
Cells of the oligodendrocyte (OLG) lineage engage in highly motile behaviors that are crucial for effective central nervous system (CNS) myelination. These behaviors include the guided migration of OLG progenitor cells (OPCs), the surveying of local environments by cellular processes extending from differentiating and pre-myelinating OLGs, and during the process of active myelin wrapping, the forward movement of the leading edge of the myelin sheath's inner tongue along the axon. Almost all of these motile behaviors are driven by actin cytoskeletal dynamics initiated within a lamellipodial structure that is located at the tip of cellular OLG/OPC processes and is structurally as well as functionally similar to the neuronal growth cone. Accordingly, coordinated stoichiometries of actin filament (F-actin) assembly and disassembly at these OLG/OPC growth cones have been implicated in directing process outgrowth and guidance, and the initiation of myelination. Nonetheless, the functional importance of the OLG/OPC growth cone still remains to be fully understood, and, as a unique aspect of actin cytoskeletal dynamics, F-actin depolymerization and disassembly start to predominate at the transition from myelination initiation to myelin wrapping. This review provides an overview of the current knowledge about OLG/OPC growth cones, and it proposes a model in which actin cytoskeletal dynamics in OLG/OPC growth cones are a main driver for morphological transformations and motile behaviors. Remarkably, these activities, at least at the later stages of OLG maturation, may be regulated independently from the transcriptional gene expression changes typically associated with CNS myelination.
Collapse
Affiliation(s)
- Elizabeth J Thomason
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Miguel Escalante
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Donna J Osterhout
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
9
|
Cyfip1 haploinsufficient rats show white matter changes, myelin thinning, abnormal oligodendrocytes and behavioural inflexibility. Nat Commun 2019; 10:3455. [PMID: 31371763 PMCID: PMC6671959 DOI: 10.1038/s41467-019-11119-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/20/2019] [Indexed: 11/30/2022] Open
Abstract
The biological basis of the increased risk for psychiatric disorders seen in 15q11.2 copy number deletion is unknown. Previous work has shown disturbances in white matter tracts in human carriers of the deletion. Here, in a novel rat model, we recapitulated low dosage of the candidate risk gene CYFIP1 present within the 15q11.2 interval. Using diffusion tensor imaging, we first showed extensive white matter changes in Cyfip1 mutant rats, which were most pronounced in the corpus callosum and external capsule. Transmission electron microscopy showed that these changes were associated with thinning of the myelin sheath in the corpus callosum. Myelin thinning was independent of changes in axon number or diameter but was associated with effects on mature oligodendrocytes, including aberrant intracellular distribution of myelin basic protein. Finally, we demonstrated effects on cognitive phenotypes sensitive to both disruptions in myelin and callosal circuitry. People with a genetic deletion of the 15q11.2 locus are at increased risk for psychiatric disorders and white matter disturbances, but the gene(s) responsible are unclear. Here, the authors show that low dosage of CYFIP1, present in the human 15q11.2 region, alters white matter structure and cognition in rats.
Collapse
|
10
|
Zou S, Balinang JM, Paris JJ, Hauser KF, Fuss B, Knapp PE. Effects of HIV-1 Tat on oligodendrocyte viability are mediated by CaMKIIβ-GSK3β interactions. J Neurochem 2019; 149:98-110. [PMID: 30674062 DOI: 10.1111/jnc.14668] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 12/16/2022]
Abstract
Myelin disruptions are frequently reported in human immunodeficiency virus (HIV)-infected individuals and can occur in the CNS very early in the disease process. Immature oligodendrocytes (OLs) are quite sensitive to toxic increases in [Ca2+ ]i caused by exposure to HIV-1 Tat (transactivator of transcription, a protein essential for HIV replication and gene expression), but sensitivity to Tat-induced [Ca2+ ]i is reduced in mature OLs. Tat exposure also increased the activity of Ca2+ /calmodulin-dependent kinase IIβ (CaMKIIβ), the major isoform of CaMKII expressed by OLs, in both immature and mature OLs. Since CaMKIIβ is reported to interact with glycogen synthase kinase 3β (GSK3β), and GSK3β activity is implicated in OL apoptosis as well as HIV neuropathology, we hypothesized that disparate effects of Tat on OL viability with maturity might be because of an altered balance of CaMKIIβ-GSK3β activities. Tat expression in vivo led to increased CaMKIIβ and GSK3β activity in multiple brain regions in transgenic mice. In vitro, immature murine OLs expressed higher levels of GSK3β, but much lower levels of CaMKIIβ, than did mature OLs. Exogenous Tat up-regulated GSK3β activity in immature, but not mature, OLs. Tat-induced death of immature OLs was rescued by the GSK3β inhibitors valproic acid or SB415286, supporting involvement of GSK3β signaling. Pharmacologically inhibiting CaMKIIβ increased GSK3β activity in Tat-treated OLs, and genetically knocking down CaMKIIβ promoted death in mature OL cultures treated with Tat. Together, these results suggest that the effects of Tat on OL viability are dependent on CaMKIIβ-GSK3β interactions, and that increasing CaMKIIβ activity is a potential approach for limiting OL/myelin injury with HIV infection.
Collapse
Affiliation(s)
- Shiping Zou
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Joyce M Balinang
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Jason J Paris
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Kurt F Hauser
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Pamela E Knapp
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
11
|
Seixas AI, Azevedo MM, Paes de Faria J, Fernandes D, Mendes Pinto I, Relvas JB. Evolvability of the actin cytoskeleton in oligodendrocytes during central nervous system development and aging. Cell Mol Life Sci 2019; 76:1-11. [PMID: 30302529 PMCID: PMC11105620 DOI: 10.1007/s00018-018-2915-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/24/2018] [Accepted: 09/04/2018] [Indexed: 01/23/2023]
Abstract
The organization of actin filaments into a wide range of subcellular structures is a defining feature of cell shape and dynamics, important for tissue development and homeostasis. Nervous system function requires morphological and functional plasticity of neurons and glial cells, which is largely determined by the dynamic reorganization of the actin cytoskeleton in response to intrinsic and extracellular signals. Oligodendrocytes are specialized glia that extend multiple actin-based protrusions to form the multilayered myelin membrane that spirally wraps around axons, increasing conduction speed and promoting long-term axonal integrity. Myelination is a remarkable biological paradigm in development, and maintenance of myelin is essential for a healthy adult nervous system. In this review, we discuss how structure and dynamics of the actin cytoskeleton is a defining feature of myelinating oligodendrocytes' biology and function. We also review "old and new" concepts to reflect on the potential role of the cytoskeleton in balancing life and death of myelin membranes and oligodendrocytes in the aging central nervous system.
Collapse
Affiliation(s)
- Ana Isabel Seixas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.
| | - Maria Manuela Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Joana Paes de Faria
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Diogo Fernandes
- Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- International Iberian Nanotechnology Laboratory - INL, Braga, Portugal
| | - Inês Mendes Pinto
- International Iberian Nanotechnology Laboratory - INL, Braga, Portugal
| | - João Bettencourt Relvas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- The Discoveries Centre for Regeneration and Precision Medicine, Porto Campus, Porto, Portugal
| |
Collapse
|
12
|
Cytoskeletal Signal-Regulated Oligodendrocyte Myelination and Remyelination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:33-42. [DOI: 10.1007/978-981-32-9636-7_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Azevedo MM, Domingues HS, Cordelières FP, Sampaio P, Seixas AI, Relvas JB. Jmy regulates oligodendrocyte differentiation via modulation of actin cytoskeleton dynamics. Glia 2018; 66:1826-1844. [DOI: 10.1002/glia.23342] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/26/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Maria M. Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
| | - Helena S. Domingues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
| | - Fabrice P. Cordelières
- Bordeaux Imaging Centre, UMS 3420 CNRS, CNRS-INSERM, University of Bordeaux; Bordeaux France
| | - Paula Sampaio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
| | - Ana I. Seixas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
| | - João B. Relvas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
- The Discoveries Centre for Regeneration and Precision Medicine, Porto campus; Porto Portugal
| |
Collapse
|
14
|
Toledo A, Grieger E, Karram K, Morrison H, Baader SL. Neurofibromatosis type 2 tumor suppressor protein is expressed in oligodendrocytes and regulates cell proliferation and process formation. PLoS One 2018; 13:e0196726. [PMID: 29715273 PMCID: PMC5929554 DOI: 10.1371/journal.pone.0196726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 04/18/2018] [Indexed: 12/25/2022] Open
Abstract
The neurofibromatosis type 2 (NF2) tumor suppressor protein Merlin functions as a negative regulator of cell growth and actin dynamics in different cell types amongst which Schwann cells have been extensively studied. In contrast, the presence and the role of Merlin in oligodendrocytes, the myelin forming cells within the CNS, have not been elucidated. In this work, we demonstrate that Merlin immunoreactivity was broadly distributed in the white matter throughout the central nervous system. Following Merlin expression during development in the cerebellum, Merlin could be detected in the cerebellar white matter tract at early postnatal stages as shown by its co-localization with Olig2-positive cells as well as in adult brain sections where it was aligned with myelin basic protein containing fibers. This suggests that Merlin is expressed in immature and mature oligodendrocytes. Expression levels of Merlin were low in oligodendrocytes as compared to astrocytes and neurons throughout development. Expression of Merlin in oligodendroglia was further supported by its identification in either immortalized cell lines of oligodendroglial origin or in primary oligodendrocyte cultures. In these cultures, the two main splice variants of Nf2 could be detected. Merlin was localized in clusters within the nuclei and in the cytoplasm. Overexpressing Merlin in oligodendrocyte cell lines strengthened reduced impedance in XCELLigence measurements and Ki67 stainings in cultures over time. In addition, the initiation and elongation of cellular projections were reduced by Merlin overexpression. Consistently, cell migration was retarded in scratch assays done on Nf2-transfected oligodendrocyte cell lines. These data suggest that Merlin actively modulates process outgrowth and migration in oligodendrocytes.
Collapse
Affiliation(s)
- Andrea Toledo
- Institute of Anatomy, Anatomy and Cell Biology, Bonn, Germany
- Laboratorio de Cultivo de Tejidos, Sección Biología Celular, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - Elena Grieger
- Institute of Anatomy, Anatomy and Cell Biology, Bonn, Germany
| | - Khalad Karram
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Helen Morrison
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Stephan L. Baader
- Institute of Anatomy, Anatomy and Cell Biology, Bonn, Germany
- * E-mail:
| |
Collapse
|
15
|
O'Meara RW, Cummings SE, De Repentigny Y, McFall E, Michalski JP, Deguise MO, Gibeault S, Kothary R. Oligodendrocyte development and CNS myelination are unaffected in a mouse model of severe spinal muscular atrophy. Hum Mol Genet 2017; 26:282-292. [PMID: 28069797 DOI: 10.1093/hmg/ddw385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/04/2016] [Indexed: 11/12/2022] Open
Abstract
The childhood neurodegenerative disease spinal muscular atrophy (SMA) is caused by loss-of-function mutations or deletions in the Survival Motor Neuron 1 (SMN1) gene resulting in insufficient levels of survival motor neuron (SMN) protein. Classically considered a motor neuron disease, increasing evidence now supports SMA as a multi-system disorder with phenotypes discovered in cortical neuron, astrocyte, and Schwann cell function within the nervous system. In this study, we sought to determine whether Smn was critical for oligodendrocyte (OL) development and central nervous system myelination. A mouse model of severe SMA was used to assess OL growth, migration, differentiation and myelination. All aspects of OL development and function studied were unaffected by Smn depletion. The tremendous impact of Smn depletion on a wide variety of other cell types renders the OL response unique. Further investigation of the OLs derived from SMA models may reveal disease modifiers or a compensatory mechanism allowing these cells to flourish despite the reduced levels of this multifunctional protein.
Collapse
Affiliation(s)
- Ryan W O'Meara
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Sarah E Cummings
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Emily McFall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - John-Paul Michalski
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Marc-Olivier Deguise
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Sabrina Gibeault
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
16
|
Integrin-Linked Kinase (ILK) Deletion Disrupts Oligodendrocyte Development by Altering Cell Cycle. J Neurosci 2017; 37:397-412. [PMID: 28077718 DOI: 10.1523/jneurosci.2113-16.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/28/2016] [Accepted: 11/15/2016] [Indexed: 01/29/2023] Open
Abstract
During development, oligodendrocytes are initially specified, after which oligodendrocyte precursor cells (OPCs) migrate and proliferate before differentiating into myelinating cells. Lineage-specific programming of oligodendrocytes results from sensing environmental cues through membrane-bound receptors and related intracellular signaling molecules. Integrin-linked kinase (ILK) is an important protein that is expressed at the inner margins of the plasma membrane and can mediate some of these signals. The current studies demonstrate that ILK deletion reduces the proliferation and differentiation of OPCs in the developing CNS. There was a significant decrease in the number of OPCs and mature oligodendrocytes throughout postnatal development in Olig1Cre+/- × ILKfl/fl mice. These changes were accompanied by reduced numbers of myelinated axons. Key proteins involved in cell cycle regulation were dysregulated. Cyclin D1/D3 and cyclin-dependent kinase 2/4 (cdc2/cdc4) were downregulated and the cell cycle inhibitor protein p27 Kip1 was upregulated. Therefore, ILK deletion impaired the developmental profile, proliferation, and differentiation of OPCs by altering the expression of regulatory cytoplasmic and nuclear factors. SIGNIFICANCE STATEMENT Integrin-linked kinase (ILK) is a scaffolding protein involved in integrating signals from the extracellular environment and communicating those signals to downstream effectors within cells. It has been proposed to regulate aspects of oligodendrocyte process extension and thereby myelination. However, the current studies demonstrate that it has an earlier impact on cells in this lineage. Knocking down ILK in Olig1-Cre-expressing cells reduces the pool of oligodendrocyte progenitor cells (OPCs). This smaller pool of OPCs results from altered cell cycle and reduced cell proliferation. These cells myelinate fewer axons than in wild-type mice and, in corpus callosum, the myelin is thinner than in controls. Interestingly, the smaller pool of spinal cord oligodendrocytes generates myelin that is of normal thickness.
Collapse
|
17
|
Jiao R, Cui D, Wang SC, Li D, Wang YF. Interactions of the Mechanosensitive Channels with Extracellular Matrix, Integrins, and Cytoskeletal Network in Osmosensation. Front Mol Neurosci 2017; 10:96. [PMID: 28424587 PMCID: PMC5380722 DOI: 10.3389/fnmol.2017.00096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/21/2017] [Indexed: 01/14/2023] Open
Abstract
Life is maintained in a sea water-like internal environment. The homeostasis of this environment is dependent on osmosensory system translation of hydromineral information into osmotic regulatory machinery at system, tissue and cell levels. In the osmosensation, hydromineral information can be converted into cellular reactions through osmoreceptors, which changes thirst and drinking, secretion of antidiuretic vasopressin (VP), reabsorption of water and salt in the kidneys at systemic level as well as cellular metabolic activity and survival status at tissue level. The key feature of osmosensation is the activation of mechanoreceptors or mechanosensors, particularly transient receptor potential vallinoid (TRPV) and canonical (TRPC) family channels, which increases cytosolic Ca2+ levels, activates osmosensory cells including VP neurons and triggers a series of secondary reactions. TRPV channels are sensitive to both hyperosmotic and hyposmotic stimuli while TRPC channels are more sensitive to hyposmotic challenge in neurons. The activation of TRP channels relies on changes in cell volume, membrane stretch and cytoskeletal reorganization as well as hydration status of extracellular matrix (ECM) and activity of integrins. Different families of TRP channels could be activated differently in response to hyperosmotic and hyposmotic stimuli in different spatiotemporal orders, leading to differential reactions of osmosensory cells. Together, they constitute the osmosensory machinery. The activation of this osmoreceptor complex is also associated with the activity of other osmolarity-regulating organelles, such as water channel protein aquaporins, Na-K-2Cl cotransporters, volume-sensitive anion channels, sodium pump and purinergic receptors in addition to intercellular interactions, typically astrocytic neuronal interactions. In this article, we review our current understandings of the composition of osmoreceptors and the processes of osmosensation.
Collapse
Affiliation(s)
- Runsheng Jiao
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| | - Dan Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| | - Stephani C Wang
- Department of Internal Medicine, Albany Medical CollegeAlbany, NY, USA
| | - Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| |
Collapse
|
18
|
Inman DM, Harun-Or-Rashid M. Metabolic Vulnerability in the Neurodegenerative Disease Glaucoma. Front Neurosci 2017; 11:146. [PMID: 28424571 PMCID: PMC5371671 DOI: 10.3389/fnins.2017.00146] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
Axons can be several orders of magnitude longer than neural somas, presenting logistical difficulties in cargo trafficking and structural maintenance. Keeping the axon compartment well supplied with energy also presents a considerable challenge; even seemingly subtle modifications of metabolism can result in functional deficits and degeneration. Axons require a great deal of energy, up to 70% of all energy used by a neuron, just to maintain the resting membrane potential. Axonal energy, in the form of ATP, is generated primarily through oxidative phosphorylation in the mitochondria. In addition, glial cells contribute metabolic intermediates to axons at moments of high activity or according to need. Recent evidence suggests energy disruption is an early contributor to pathology in a wide variety of neurodegenerative disorders characterized by axonopathy. However, the degree to which the energy disruption is intrinsic to the axon vs. associated glia is not clear. This paper will review the role of energy availability and utilization in axon degeneration in glaucoma, a chronic axonopathy of the retinal projection.
Collapse
Affiliation(s)
- Denise M Inman
- Department of Pharmaceutical Sciences, Northeast Ohio Medical UniversityRootstown, OH, USA
| | | |
Collapse
|
19
|
Abstract
The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Olig1 acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Olig1 acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Olig1 decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Olig1 regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation.
Collapse
|
20
|
Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination. PLoS One 2016; 11:e0149201. [PMID: 26886550 PMCID: PMC4757544 DOI: 10.1371/journal.pone.0149201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/28/2016] [Indexed: 01/12/2023] Open
Abstract
Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as was myelin basic protein expression in both cerebral cortex and spinal cord. Together these data suggest that, unlike Schwann cells, oligodendrocytes do not have an intrinsic requirement for neuronal dystonin for differentiation and myelination.
Collapse
|
21
|
O'Meara RW, Cummings SE, Michalski JP, Kothary R. A new in vitro mouse oligodendrocyte precursor cell migration assay reveals a role for integrin-linked kinase in cell motility. BMC Neurosci 2016; 17:7. [PMID: 26831726 PMCID: PMC4736119 DOI: 10.1186/s12868-016-0242-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/24/2016] [Indexed: 12/20/2022] Open
Abstract
Background The decline of remyelination in chronic multiple sclerosis (MS) is in part attributed to inadequate oligodendrocyte precursor cell (OPC) migration, a process governed by the extracellular matrix (ECM). Elucidating the mechanisms underlying OPC migration is therefore an important step towards developing new therapeutic strategies to promote myelin repair. Many seminal OPC culture methods were established using rat-sourced cells, and these often need modification for use with mouse OPCs due to their sensitive nature. It is of interest to develop mouse OPC assays to leverage the abundant transgenic lines. To this end, we developed a new OPC migration method specifically suited for use with mouse-derived cells. Results To validate its utility, we combined the new OPC migration assay with a conditional knockout approach to investigate the role of integrin-linked kinase (ILK) in OPC migration. ILK is a focal adhesion protein that stabilizes cellular adhesions to the extracellular matrix (ECM) by mediating a linkage between matrix-bound integrin receptors and the cytoskeleton. We identified ILK as a regulator of OPC migration on three permissive substrates. ILK loss produced an early, albeit transient, deficit in OPC migration on laminin matrix, while migration on fibronectin and polylysine was heavily reliant on ILK expression. Conclusions Inclusively, our work provides a new tool for studying mouse OPC migration and highlights the role of ILK in its regulation on ECM proteins relevant to MS.
Collapse
Affiliation(s)
- Ryan W O'Meara
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Sarah E Cummings
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - John-Paul Michalski
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,Department of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,University of Ottawa Centre for Neuromuscular Disease, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
22
|
Michalski JP, Cummings SE, O'Meara RW, Kothary R. Integrin-linked kinase regulates oligodendrocyte cytoskeleton, growth cone, and adhesion dynamics. J Neurochem 2016; 136:536-49. [DOI: 10.1111/jnc.13446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/15/2015] [Accepted: 11/20/2015] [Indexed: 01/28/2023]
Affiliation(s)
- John-Paul Michalski
- Ottawa Hospital Research Institute; Ottawa Ontario Canada
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa Ontario Canada
| | - Sarah E. Cummings
- Ottawa Hospital Research Institute; Ottawa Ontario Canada
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa Ontario Canada
| | - Ryan W. O'Meara
- Ottawa Hospital Research Institute; Ottawa Ontario Canada
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa Ontario Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute; Ottawa Ontario Canada
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa Ontario Canada
- Department of Medicine; University of Ottawa; Ottawa Ontario Canada
- University of Ottawa Centre for Neuromuscular Disease; Ottawa Ontario Canada
| |
Collapse
|
23
|
Integrin-Linked Kinase Is Indispensable for Keratinocyte Differentiation and Epidermal Barrier Function. J Invest Dermatol 2015; 136:425-435. [PMID: 26967476 DOI: 10.1016/j.jid.2015.10.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/16/2015] [Accepted: 10/01/2015] [Indexed: 11/23/2022]
Abstract
A functional permeability barrier is essential to prevent the passage of water and electrolytes, macromolecules, and pathogens through the epidermis. This is accomplished in terminally differentiated keratinocytes through formation of a cornified envelope and the assembly of tight intercellular junctions. Integrin-linked kinase (ILK) is a scaffold protein essential for hair follicle morphogenesis and epidermal attachment to the basement membrane. However, the biological functions of ILK in differentiated keratinocytes remain poorly understood. Furthermore, whether ILK is implicated in keratinocyte differentiation and intercellular junction formation has remained an unresolved issue. Here we describe a pivotal role for ILK in keratinocyte differentiation responses to increased extracellular Ca(2+), regulation of adherens and tight junction assembly, and the formation of an outside-in permeability barrier toward macromolecules. In the absence of ILK, the calcium sensing receptor, E-cadherin, and ZO-1 fail to translocate to the cell membrane, through mechanisms that involve abnormalities in microtubules and in RhoA activation. In situ, ILK-deficient epidermis exhibits reduced tight junction formation and increased outside-in permeability to a dextran tracer, indicating reduced barrier properties toward macromolecules. Therefore, ILK is an essential component of keratinocyte differentiation programs that contribute to epidermal integrity and the establishment of its barrier properties.
Collapse
|
24
|
Linneberg C, Harboe M, Laursen LS. Axo-Glia Interaction Preceding CNS Myelination Is Regulated by Bidirectional Eph-Ephrin Signaling. ASN Neuro 2015; 7:7/5/1759091415602859. [PMID: 26354550 PMCID: PMC4568937 DOI: 10.1177/1759091415602859] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In the central nervous system, myelination of axons is required to ensure fast saltatory conduction and for survival of neurons. However, not all axons are myelinated, and the molecular mechanisms involved in guiding the oligodendrocyte processes toward the axons to be myelinated are not well understood. Only a few negative or positive guidance clues that are involved in regulating axo-glia interaction prior to myelination have been identified. One example is laminin, known to be required for early axo-glia interaction, which functions through α6β1 integrin. Here, we identify the Eph-ephrin family of guidance receptors as novel regulators of the initial axo-glia interaction, preceding myelination. We demonstrate that so-called forward and reverse signaling, mediated by members of both Eph and ephrin subfamilies, has distinct and opposing effects on processes extension and myelin sheet formation. EphA forward signaling inhibits oligodendrocyte process extension and myelin sheet formation, and blocking of bidirectional signaling through this receptor enhances myelination. Similarly, EphB forward signaling also reduces myelin membrane formation, but in contrast to EphA forward signaling, this occurs in an integrin-dependent manner, which can be reversed by overexpression of a constitutive active β1-integrin. Furthermore, ephrin-B reverse signaling induced by EphA4 or EphB1 enhances myelin sheet formation. Combined, this suggests that the Eph-ephrin receptors are important mediators of bidirectional signaling between axons and oligodendrocytes. It further implies that balancing Eph-ephrin forward and reverse signaling is important in the selection process of axons to be myelinated.
Collapse
Affiliation(s)
- Cecilie Linneberg
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, Aarhus, Denmark
| | - Mette Harboe
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, Aarhus, Denmark
| | - Lisbeth S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, Aarhus, Denmark
| |
Collapse
|
25
|
Sayedyahossein S, Xu SX, Rudkouskaya A, McGavin MJ, McCormick JK, Dagnino L. Staphylococcus aureus keratinocyte invasion is mediated by integrin-linked kinase and Rac1. FASEB J 2014; 29:711-23. [PMID: 25416549 DOI: 10.1096/fj.14-262774] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus is a major component of the skin microbiota and causes a large number of serious infections. S. aureus first interacts with epidermal keratinocytes to breach the epidermal barrier through mechanisms not fully understood. By use of primary keratinocytes from mice with epidermis-restricted Ilk gene inactivation and control integrin-linked kinase (ILK)-expressing littermates, we investigated the role of ILK in epidermal S. aureus invasion. Heat-killed, but not live, bacteria were internalized to Rab5- and Rab7-positive phagosomes, and incubation with keratinocyte growth factor increased their uptake 2.5-fold. ILK-deficient mouse keratinocytes internalized bacteria 2- to 4-fold less efficiently than normal cells. The reduced invasion by live S. aureus of ILK-deficient cells was restored in the presence of exogenous, constitutively active Rac1. Thus, Rac1 functions downstream from ILK during invasion. Further, invasion by S. aureus of Rac1-deficient cells was 2.5-fold lower than in normal cells. Paradoxically, staphylococcal cutaneous penetration of mouse skin explants with ILK-deficient epidermis was 35-fold higher than that of normal skin, indicating defects in epidermal barrier function in the absence of ILK. Thus, we identified an ILK-Rac1 pathway essential for bacterial invasion of keratinocytes, and established ILK as a key contributor to prevent invasive staphylococcal cutaneous infection.
Collapse
Affiliation(s)
- Samar Sayedyahossein
- *Department of Physiology and Pharmacology, Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada; and Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Stacey X Xu
- *Department of Physiology and Pharmacology, Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada; and Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Alena Rudkouskaya
- *Department of Physiology and Pharmacology, Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada; and Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Martin J McGavin
- *Department of Physiology and Pharmacology, Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada; and Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - John K McCormick
- *Department of Physiology and Pharmacology, Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada; and Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Lina Dagnino
- *Department of Physiology and Pharmacology, Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada; and Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
26
|
Mitew S, Hay C, Peckham H, Xiao J, Koenning M, Emery B. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 2014; 276:29-47. [DOI: 10.1016/j.neuroscience.2013.11.029] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 12/29/2022]
|
27
|
Shah S, Yin PT, Uehara TM, Chueng STD, Yang L, Lee KB. Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:3673-80. [PMID: 24668911 PMCID: PMC4048813 DOI: 10.1002/adma.201400523] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 02/17/2014] [Indexed: 05/20/2023]
Affiliation(s)
- Shreyas Shah
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (USA)
| | - Perry T. Yin
- Department of Biomedical Engineering, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (USA)
| | - Thiers M. Uehara
- Physics Institute of Sao Carlos, University of Sao Paulo, CP 369 Sao Carlos, Sao Paulo 13566 (Brazil)
| | - Sy-Tsong Dean Chueng
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (USA)
| | - Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (USA)
| | - Ki-Bum Lee
- Fax: (+1) 732-445-5312, http://rutchem.rutgers.edu/~kbleeweb,
| |
Collapse
|
28
|
Burnside ER, Bradbury EJ. Review: Manipulating the extracellular matrix and its role in brain and spinal cord plasticity and repair. Neuropathol Appl Neurobiol 2014; 40:26-59. [DOI: 10.1111/nan.12114] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/20/2013] [Indexed: 12/17/2022]
Affiliation(s)
- E. R. Burnside
- King's College London; Regeneration Group; The Wolfson Centre for Age-Related Diseases; Guy's Campus; London UK
| | - E. J. Bradbury
- King's College London; Regeneration Group; The Wolfson Centre for Age-Related Diseases; Guy's Campus; London UK
| |
Collapse
|