1
|
Giacolini T, Alcaro A, Conversi D, Tarsitani L. Depression in adolescence and young adulthood: the difficulty to integrate motivational/emotional systems. Front Psychol 2025; 15:1391664. [PMID: 39834756 PMCID: PMC11743547 DOI: 10.3389/fpsyg.2024.1391664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025] Open
Abstract
Depression is presented as a multi-factorial bio-psycho-social expression that has evolved primarily as an effect of stressors related to the motivational/emotional systems that regulate the BrainMind in our relationship with conspecifics. These stressors may be caused by two sources of threat, firstly, the loss of bonding with the caregiver and later with a partner and/or group which relates to the SEPARATION (PANIC/GRIEF) system, secondly, social defeat as an expression of the social competition and social dominance. The sexual maturity drives the individual to social competition and social dominance, even if the latter often occurs before sexual maturity, e.g., chickens, dogs, non-human primates, and humans. Depression is an evolutionarily conserved mechanism in mammals to terminate both separation anxiety, so as to protect the vulnerable social brain from the consequences of prolonged separation anxiety, and the stress of social competition when social defeat is predictable. Adolescence and Young adulthood are particularly susceptible to these two types of threat because of human developmental characteristics that are summarized by the term neoteny. This refers to the slowing down of growth and development, resulting in both a prolonged period of dependence on a caring/protective adult and the persistence of juvenile characteristics throughout life. Therefore, neoteny makes the transition from childhood to sexual maturity more dramatic, making the integration of the SEPARATION (PANIC/GRIEF) system with the dynamics of social competition and dominance more stressful and a source of depression. Stress is an expression of the HPA-Hypothalamic-Pituitary-Adrenal axis that articulates with other systems, mainly the autonomic nervous system and the immune-inflammatory system. The latter is believed to be one of the most significant components in the dynamics of depressive processes, connected to the prodromes of its activation in childhood, under the pressure of environmental and relational stressors which can lead to learned helplessness. The recurrence of stressors makes it easier for the immune-inflammatory system to be activated in later life, which could make a significant contribution to the establishment of a depressive disease. The possible contribution of children's identification processes with their parents' depressive personalities through observational learning is considered.
Collapse
Affiliation(s)
- Teodosio Giacolini
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Antonio Alcaro
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - David Conversi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Tarsitani
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Nourse WRP, Jackson C, Szczecinski NS, Quinn RD. SNS-Toolbox: An Open Source Tool for Designing Synthetic Nervous Systems and Interfacing Them with Cyber-Physical Systems. Biomimetics (Basel) 2023; 8:247. [PMID: 37366842 DOI: 10.3390/biomimetics8020247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
One developing approach for robotic control is the use of networks of dynamic neurons connected with conductance-based synapses, also known as Synthetic Nervous Systems (SNS). These networks are often developed using cyclic topologies and heterogeneous mixtures of spiking and non-spiking neurons, which is a difficult proposition for existing neural simulation software. Most solutions apply to either one of two extremes, the detailed multi-compartment neural models in small networks, and the large-scale networks of greatly simplified neural models. In this work, we present our open-source Python package SNS-Toolbox, which is capable of simulating hundreds to thousands of spiking and non-spiking neurons in real-time or faster on consumer-grade computer hardware. We describe the neural and synaptic models supported by SNS-Toolbox, and provide performance on multiple software and hardware backends, including GPUs and embedded computing platforms. We also showcase two examples using the software, one for controlling a simulated limb with muscles in the physics simulator Mujoco, and another for a mobile robot using ROS. We hope that the availability of this software will reduce the barrier to entry when designing SNS networks, and will increase the prevalence of SNS networks in the field of robotic control.
Collapse
Affiliation(s)
- William R P Nourse
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Clayton Jackson
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicholas S Szczecinski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Roger D Quinn
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Enhancement of synaptic responses in ascending interneurones following acquisition of social dominance in crayfish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:415-428. [PMID: 33772639 DOI: 10.1007/s00359-021-01481-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
When crayfish have attained dominant status after agonistic bouts, their avoidance reaction to mechanical stimulation of the tailfan changes from a dart to a turn response. Ascending interneurones originating in the terminal ganglion receive sensory inputs from the tailfan and they affect spike activity of both uropod and abdominal postural motor neurones, which coordinates the uropod and abdominal postural movements. Despite the varying output effects of ascending interneurones, the synaptic responses of all interneurones to sensory stimulation were enhanced when they acquired a dominant state. The number of spikes increased as did a sustained membrane depolarizations. Regardless of social status, the output effects on the uropod motor neurones of all interneurones except VE-1 remained unchanged. VE-1 mainly inhibited the uropod opener motor neurones in naive animals, but tended to excite them in dominant animals. Synaptic enhancement of the sensory response of ascending interneurones was also observed in naive animals treated with bath-applied serotonin. However, subordinate animals or naive animals treated with octopamine had no noticeable effect on the synaptic response of their ascending interneurones to sensory stimulation. Thus, enhancement of the synaptic response is a specific neural event that occurs when crayfish attain social dominance and it is mediated by serotonin.
Collapse
|
4
|
Bacqué-Cazenave J, Bharatiya R, Barrière G, Delbecque JP, Bouguiyoud N, Di Giovanni G, Cattaert D, De Deurwaerdère P. Serotonin in Animal Cognition and Behavior. Int J Mol Sci 2020; 21:ijms21051649. [PMID: 32121267 PMCID: PMC7084567 DOI: 10.3390/ijms21051649] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is acknowledged as a major neuromodulator of nervous systems in both invertebrates and vertebrates. It has been proposed for several decades that it impacts animal cognition and behavior. In spite of a completely distinct organization of the 5-HT systems across the animal kingdom, several lines of evidence suggest that the influences of 5-HT on behavior and cognition are evolutionary conserved. In this review, we have selected some behaviors classically evoked when addressing the roles of 5-HT on nervous system functions. In particular, we focus on the motor activity, arousal, sleep and circadian rhythm, feeding, social interactions and aggressiveness, anxiety, mood, learning and memory, or impulsive/compulsive dimension and behavioral flexibility. The roles of 5-HT, illustrated in both invertebrates and vertebrates, show that it is more able to potentiate or mitigate the neuronal responses necessary for the fine-tuning of most behaviors, rather than to trigger or halt a specific behavior. 5-HT is, therefore, the prototypical neuromodulator fundamentally involved in the adaptation of all organisms across the animal kingdom.
Collapse
Affiliation(s)
- Julien Bacqué-Cazenave
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Rahul Bharatiya
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09100 Cagliari, Italy
| | - Grégory Barrière
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Jean-Paul Delbecque
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Nouhaila Bouguiyoud
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- School of Biosciences, Neuroscience Division, Cardiff University, Cardiff CF24 4HQ, UK
| | - Daniel Cattaert
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
- Correspondence: (D.C.); (P.D.D.)
| | - Philippe De Deurwaerdère
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
- Correspondence: (D.C.); (P.D.D.)
| |
Collapse
|
5
|
Bacqué-Cazenave J, Fossat P, Issa FA, Edwards DH, Delbecque JP, Cattaert D. Duality of 5-HT Effects on Crayfish Motoneurons. Front Physiol 2019; 10:1280. [PMID: 31695619 PMCID: PMC6817598 DOI: 10.3389/fphys.2019.01280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/24/2019] [Indexed: 11/13/2022] Open
Abstract
Serotonin (5-HT) is a major neuromodulator acting on the nervous system. Its various effects have been studied in vertebrates, as well as in arthropods, from the cellular and subcellular compartments up to the behavioral level, which includes the control of mood, aggression, locomotion, and anxiety. The diversity of responses of neurons to 5-HT has been related to its mode of application, the diversity of 5-HT-receptors, and the animals’ social status history. In the locomotor network of socially isolated crayfish, the duality of 5-HT-evoked responses (excitatory/inhibitory) on motoneurons (MNs), sensorimotor pathways, and their consequences on motor network activity has largely been studied. The aim of the present report is to examine if this duality of exogenous 5-HT-evoked responses in the crayfish locomotor network can be reproduced by direct activation of 5-HT neurons in the case of socially isolated animals. Our previous studies have focused on the mechanisms supporting these opposite effects on MNs, pointing out spatial segregation of 5-HT receptors responsible either for positive or negative responses. Here, we report new findings indicating that excitatory and inhibitory effects can be achieved simultaneously in different leg MNs by the activation of a single 5-HT cell in the first abdominal ganglion.
Collapse
Affiliation(s)
- Julien Bacqué-Cazenave
- University of Bordeaux, CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA) UMR5287, Bordeaux, France
| | - Pascal Fossat
- University of Bordeaux, CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA) UMR5287, Bordeaux, France
| | - Fadi A Issa
- Neuroscience Institute, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Donald H Edwards
- Neuroscience Institute, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Jean Paul Delbecque
- University of Bordeaux, CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA) UMR5287, Bordeaux, France
| | - Daniel Cattaert
- University of Bordeaux, CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA) UMR5287, Bordeaux, France
| |
Collapse
|
6
|
Tierney AJ, MacKillop I, Rosenbloom T, Werner A. Post-feeding behavior in crayfish (Procambarus clarkii): Description of an invertebrate behavioral satiety sequence. Physiol Behav 2019; 213:112720. [PMID: 31639378 DOI: 10.1016/j.physbeh.2019.112720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/01/2019] [Accepted: 10/18/2019] [Indexed: 11/19/2022]
Abstract
Previous studies have demonstrated that food consumption induces the behavioral satiety sequence (BSS) in some animals, a characteristic series of activities which include exploration, grooming, and resting. The BSS, while valuable in assessing the effects of drugs on food intake, has not been widely studied in non-mammalian species. Our experiment examined post-feeding behavior in crayfish using continuous recording of five behaviors: feeding, walking, grooming, leg wave, and quiescence. We found that food intake, but not sham feeding, significantly decreased feeding behavior, increased leg wave, and increased quiescence. Walking and grooming were not significantly altered by food intake. These findings indicate that post-feeding behaviors in crayfish share some characteristics with the mammalian BSS. Detailed descriptions of post-ingestive behavior in invertebrates may contribute to the development of drugs targeting feeding behaviors in medically and economically important species.
Collapse
Affiliation(s)
- A J Tierney
- Neuroscience Program, Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY 13346, USA.
| | - I MacKillop
- Neuroscience Program, Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY 13346, USA
| | - T Rosenbloom
- Neuroscience Program, Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY 13346, USA
| | - A Werner
- Neuroscience Program, Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY 13346, USA
| |
Collapse
|
7
|
Identification of putative amine receptor complement in the eyestalk of the crayfish, Procambarus clarkii. INVERTEBRATE NEUROSCIENCE 2019; 19:12. [PMID: 31549228 DOI: 10.1007/s10158-019-0232-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
Abstract
In decapod crustaceans, the amines dopamine, octopamine, serotonin, and histamine are known to serve as locally released and/or circulating neuromodulators. While many studies have focused on determining the modulatory actions of amines on decapod nervous systems, comparatively little is known about the identity of the receptors through which they exert their actions. Here, a crayfish, Procambarus clarkii, tissue-specific transcriptome was used to identify putative amine receptors in the eyestalk, a structure composed largely of the eyestalk ganglia, including the neuroendocrine X-organ-sinus gland system, and retina. Transcripts encoding 17 distinct putative amine receptors, three dopamine (one dopamine 1-like, one dopamine 2-like, and one dopamine/ecdysteroid-like), five octopamine (one alpha-like, three beta-like, and one octopamine/tyramine-like), three serotonin (two type-1-like and one type-7-like), and six histamine (five histamine-gated chloride channel A-like and one histamine-gated chloride channel B-like) were identified in the assembly. Comparison of the nucleotide sequence of the transcript encoding one predicted type-1-like serotonin receptor with that cloned previously from the P. clarkii nervous system shows the two sequences to be essentially identical, providing increased support for the validity of the transcripts used to deduce the proteins reported here. Reciprocal BLAST and structural/functional domain analyses support the protein family annotations ascribed to the putative P. clarkii receptors. These data represent the first large-scale description of amine receptors from P. clarkii, and as such provide a new resource for initiating gene-based studies of aminergic control of physiology/behavior at the level of receptors in this species.
Collapse
|
8
|
Rillich J, Rillich B, Stevenson PA. Differential modulation of courtship behavior and subsequent aggression by octopamine, dopamine and serotonin in male crickets. Horm Behav 2019; 114:104542. [PMID: 31226329 DOI: 10.1016/j.yhbeh.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/16/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
Aggression is a behavioral strategy for securing limited resources and its expression is strongly influenced by their presence and value. In particular, males are generally thought to guard females after mating to ward off other males, but the underlying control mechanisms are unknown. Here, we investigated the role of amines on male courtship behavior and its subsequent effect on male-male aggression in crickets (Gryllus bimaculatus). Contrary to the guarding hypothesis, female presence alone had no immediate effect on male-male aggression. Furthermore, confirming studies on other species, prior female contact, but not necessarily courtship or copulation, promoted subsequent male-male aggression in subordinate, but not socially naive crickets. This promoting effect of female contact is transient and slowly wanes after her removal. Selective aminergic receptor antagonists revealed that the promoting effect of prior female contact on male-male aggression is mediated by octopamine (OA), as well as by serotonin (5HT) acting most likely via 5HT1 and/or 5HT7 like receptors. This contrasts the role of 5HT2-like receptors in maintaining reduced aggressiveness after social defeat. Furthermore, while dopamine (DA) is necessary for the recovery of aggression in subordinates after defeat, it appears to play no part in female induced aggression. Male courtship, on the other hand, is selectively promoted by DA and 5HT, again most likely via 5HT1 and/or 5HT7 like receptors, but not by OA. We conclude that OA, DA and 5HT each differentially modulate different aspects of courtship and aggressive behavior in a context specific fashion.
Collapse
Affiliation(s)
- Jan Rillich
- Institute for Biology, Leipzig University, Leipzig, Germany.
| | - Birk Rillich
- Institute for Biology, University of Rostock, Rostock, Germany
| | | |
Collapse
|
9
|
Rillich J, Stevenson PA. Serotonin Mediates Depression of Aggression After Acute and Chronic Social Defeat Stress in a Model Insect. Front Behav Neurosci 2018; 12:233. [PMID: 30349464 PMCID: PMC6186776 DOI: 10.3389/fnbeh.2018.00233] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023] Open
Abstract
In all animals, losers of a conflict against a conspecific exhibit reduced aggressiveness, often coupled with depression-like symptoms, particularly after multiple defeats. While serotonin (5HT) is involved, discovering its natural role in aggression and depression has proven elusive. We show how 5HT influences aggression in male crickets, before, and after single and multiple defeats using serotonergic drugs, at dosages that had no obvious deleterious effect on general motility: the 5HT synthesis inhibitor alpha-methyltryptophan (AMTP), the 5HT2 receptor blocker ketanserin, methiothepin which blocks 5HT receptor subtypes other than 5HT2, 5HT's precursor 5-hydroxytryptophan (5HTP) and re-uptake inhibitor fluoxetine. Contrasting reports for other invertebrates, none of the drugs influenced aggression at the first encounter. However, the recovery of aggression after single defeat, which normally requires 3 h in crickets, was severely affected. Losers that received ketanserin or AMTP regained their aggressiveness sooner, whereas those that received fluoxetine, 5HTP, or methiothepin failed to recover within 3 h. Furthermore, compared to controls, which show long term aggressive depression 24 h after 6 defeats at 1 h intervals, crickets that received AMTP or ketanserin regained their full aggressiveness and were thus more resilient to chronic defeat stress. In contrast, 5HTP and fluoxetine treated crickets showed long term aggressive depression 24 h after only 2 defeats, and were thus more susceptible to defeat stress. We conclude that 5HT acts after social defeat via a 5HT2 like receptor to maintain depressed aggressiveness after defeat, and to promote the susceptibility to and establishment of long-term depression after chronic social defeat. It is known that the decision to flee and establishment of loser depression in crickets is controlled by nitric oxide (NO), whereas dopamine (DA), but not octopamine (OA) is necessary for recovery after defeat. Here we show that blocking NO synthesis, just like ketanserin, affords resilience to multiple defeat stress, whereas blocking DA receptors, but not OA receptors, increases susceptibility, just like fluoxetine. We discuss the possible interplay between 5HT, NO, DA, and OA in controlling aggression after defeat, as well as similarities and differences to findings in mammals and other invertebrate model systems.
Collapse
Affiliation(s)
- Jan Rillich
- Institute for Biology, Leipzig University, Leipzig, Germany
| | | |
Collapse
|
10
|
Clements KN, Miller TH, Keever JM, Hall AM, Issa FA. Social Status-Related Differences in Motor Activity Between Wild-Type and Mutant Zebrafish. THE BIOLOGICAL BULLETIN 2018; 235:71-82. [PMID: 30358446 DOI: 10.1086/699514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Use of zebrafish as a model organism in biomedical research has led to the generation of many genetically modified mutant lines to investigate various aspects of developmental and cellular processes. However, the broader effects of the underlying mutations on social and motor behavior remain poorly examined. Here, we compared the dynamics of social interactions in the Tüpfel long-fin nacre mutant line, which lacks skin pigmentation, to wild-type zebrafish; and we determined whether status-dependent differences in escape and swimming behavior existed within each strain. We show that despite similarities in aggressive activity, Tüpfel long-fin nacre pairs exhibit unstable social relationships characterized by frequent reversals in social dominance compared to wild-type pairs. The lack of strong dominance relationships in Tüpfel long-fin nacre pairs correlates with weak territoriality and overlapping spatial distribution of dominants and subordinates. Conversely, wild-type dominants displayed strong territoriality that severely limited the movement of subordinates. Additionally, the sensitivity of the startle escape response was significantly higher in wild-type subordinates compared to dominants. However, status-related differences in sensitivity of escape response in Tüpfel long-fin nacre pairs were absent. Finally, we present evidence suggesting that these differences could be a consequence of a disruption of proper visual social signals. We show that in wild-type pairs dominants are more conspicuous, and that in wild-type and Tüpfel long-fin nacre pairings wild-type fish are more likely to dominate Tüpfel long-fin nacres. Our results serve as a cautionary note in research design when morphologically engineered zebrafish for color differences are utilized in the study of social behavior and central nervous system function.
Collapse
|
11
|
Park C, Clements KN, Issa FA, Ahn S. Effects of Social Experience on the Habituation Rate of Zebrafish Startle Escape Response: Empirical and Computational Analyses. Front Neural Circuits 2018; 12:7. [PMID: 29459823 PMCID: PMC5807392 DOI: 10.3389/fncir.2018.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
While the effects of social experience on nervous system function have been extensively investigated in both vertebrate and invertebrate systems, our understanding of how social status differentially affects learning remains limited. In the context of habituation, a well-characterized form of non-associative learning, we investigated how the learning processes differ between socially dominant and subordinate in zebrafish (Danio rerio). We found that social status and frequency of stimulus inputs influence the habituation rate of short latency C-start escape response that is initiated by the Mauthner neuron (M-cell). Socially dominant animals exhibited higher habituation rates compared to socially subordinate animals at a moderate stimulus frequency, but low stimulus frequency eliminated this difference of habituation rates between the two social phenotypes. Moreover, habituation rates of both dominants and subordinates were higher at a moderate stimulus frequency compared to those at a low stimulus frequency. We investigated a potential mechanism underlying these status-dependent differences by constructing a simplified neurocomputational model of the M-cell escape circuit. The computational study showed that the change in total net excitability of the model M-cell was able to replicate the experimental results. At moderate stimulus frequency, the model M-cell with lower total net excitability, that mimicked a dominant-like phenotype, exhibited higher habituation rates. On the other hand, the model with higher total net excitability, that mimicked the subordinate-like phenotype, exhibited lower habituation rates. The relationship between habituation rates and characteristics (frequency and amplitude) of the repeated stimulus were also investigated. We found that habituation rates are decreasing functions of amplitude and increasing functions of frequency while these rates depend on social status (higher for dominants and lower for subordinates). Our results show that social status affects habituative learning in zebrafish, which could be mediated by a summative neuromodulatory input to the M-cell escape circuit, which enables animals to readily learn to adapt to changes in their social environment.
Collapse
Affiliation(s)
- Choongseok Park
- Department of Mathematics, North Carolina A&T State University, Greensboro, NC, United States
| | - Katie N Clements
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Fadi A Issa
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Sungwoo Ahn
- Department of Mathematics, East Carolina University, Greenville, NC, United States
| |
Collapse
|
12
|
Falotico E, Vannucci L, Ambrosano A, Albanese U, Ulbrich S, Vasquez Tieck JC, Hinkel G, Kaiser J, Peric I, Denninger O, Cauli N, Kirtay M, Roennau A, Klinker G, Von Arnim A, Guyot L, Peppicelli D, Martínez-Cañada P, Ros E, Maier P, Weber S, Huber M, Plecher D, Röhrbein F, Deser S, Roitberg A, van der Smagt P, Dillman R, Levi P, Laschi C, Knoll AC, Gewaltig MO. Connecting Artificial Brains to Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform. Front Neurorobot 2017; 11:2. [PMID: 28179882 PMCID: PMC5263131 DOI: 10.3389/fnbot.2017.00002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/04/2017] [Indexed: 11/13/2022] Open
Abstract
Combined efforts in the fields of neuroscience, computer science, and biology allowed to design biologically realistic models of the brain based on spiking neural networks. For a proper validation of these models, an embodiment in a dynamic and rich sensory environment, where the model is exposed to a realistic sensory-motor task, is needed. Due to the complexity of these brain models that, at the current stage, cannot deal with real-time constraints, it is not possible to embed them into a real-world task. Rather, the embodiment has to be simulated as well. While adequate tools exist to simulate either complex neural networks or robots and their environments, there is so far no tool that allows to easily establish a communication between brain and body models. The Neurorobotics Platform is a new web-based environment that aims to fill this gap by offering scientists and technology developers a software infrastructure allowing them to connect brain models to detailed simulations of robot bodies and environments and to use the resulting neurorobotic systems for in silico experimentation. In order to simplify the workflow and reduce the level of the required programming skills, the platform provides editors for the specification of experimental sequences and conditions, environments, robots, and brain-body connectors. In addition to that, a variety of existing robots and environments are provided. This work presents the architecture of the first release of the Neurorobotics Platform developed in subproject 10 "Neurorobotics" of the Human Brain Project (HBP). At the current state, the Neurorobotics Platform allows researchers to design and run basic experiments in neurorobotics using simulated robots and simulated environments linked to simplified versions of brain models. We illustrate the capabilities of the platform with three example experiments: a Braitenberg task implemented on a mobile robot, a sensory-motor learning task based on a robotic controller, and a visual tracking embedding a retina model on the iCub humanoid robot. These use-cases allow to assess the applicability of the Neurorobotics Platform for robotic tasks as well as in neuroscientific experiments.
Collapse
Affiliation(s)
- Egidio Falotico
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Lorenzo Vannucci
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
| | | | - Ugo Albanese
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Stefan Ulbrich
- Department of Intelligent Systems and Production Engineering (ISPE – IDS/TKS), FZI Research Center for Information Technology, Karlsruhe, Germany
| | - Juan Camilo Vasquez Tieck
- Department of Intelligent Systems and Production Engineering (ISPE – IDS/TKS), FZI Research Center for Information Technology, Karlsruhe, Germany
| | - Georg Hinkel
- Department of Software Engineering (SE), FZI Research Center for Information Technology, Karlsruhe, Germany
| | - Jacques Kaiser
- Department of Intelligent Systems and Production Engineering (ISPE – IDS/TKS), FZI Research Center for Information Technology, Karlsruhe, Germany
| | - Igor Peric
- Department of Intelligent Systems and Production Engineering (ISPE – IDS/TKS), FZI Research Center for Information Technology, Karlsruhe, Germany
| | - Oliver Denninger
- Department of Software Engineering (SE), FZI Research Center for Information Technology, Karlsruhe, Germany
| | - Nino Cauli
- Computer and Robot Vision Laboratory, Instituto de Sistemas e Robotica, Instituto Superior Tecnico, Lisbon, Portugal
| | - Murat Kirtay
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Arne Roennau
- Department of Intelligent Systems and Production Engineering (ISPE – IDS/TKS), FZI Research Center for Information Technology, Karlsruhe, Germany
| | - Gudrun Klinker
- Department of Informatics, Technical University of Munich, Garching, Germany
| | | | - Luc Guyot
- Blue Brain Project (BBP), École polytechnique fédérale de Lausanne (EPFL), Genève, Switzerland
| | - Daniel Peppicelli
- Blue Brain Project (BBP), École polytechnique fédérale de Lausanne (EPFL), Genève, Switzerland
| | - Pablo Martínez-Cañada
- Department of Computer Architecture and Technology, CITIC, University of Granada, Granada, Spain
| | - Eduardo Ros
- Department of Computer Architecture and Technology, CITIC, University of Granada, Granada, Spain
| | - Patrick Maier
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Sandro Weber
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Manuel Huber
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - David Plecher
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Florian Röhrbein
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Stefan Deser
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Alina Roitberg
- Department of Informatics, Technical University of Munich, Garching, Germany
| | | | - Rüdiger Dillman
- Department of Intelligent Systems and Production Engineering (ISPE – IDS/TKS), FZI Research Center for Information Technology, Karlsruhe, Germany
| | - Paul Levi
- Department of Intelligent Systems and Production Engineering (ISPE – IDS/TKS), FZI Research Center for Information Technology, Karlsruhe, Germany
| | - Cecilia Laschi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Alois C. Knoll
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Marc-Oliver Gewaltig
- Blue Brain Project (BBP), École polytechnique fédérale de Lausanne (EPFL), Genève, Switzerland
| |
Collapse
|
13
|
Social Status-Dependent Shift in Neural Circuit Activation Affects Decision Making. J Neurosci 2017; 37:2137-2148. [PMID: 28093472 DOI: 10.1523/jneurosci.1548-16.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 11/21/2022] Open
Abstract
In a social group, animals make behavioral decisions that fit their social ranks. These behavioral choices are dependent on the various social cues experienced during social interactions. In vertebrates, little is known of how social status affects the underlying neural mechanisms regulating decision-making circuits that drive competing behaviors. Here, we demonstrate that social status in zebrafish (Danio rerio) influences behavioral decisions by shifting the balance in neural circuit activation between two competing networks (escape and swim). We show that socially dominant animals enhance activation of the swim circuit. Conversely, social subordinates display a decreased activation of the swim circuit, but an enhanced activation of the escape circuit. In an effort to understand how social status mediates these effects, we constructed a neurocomputational model of the escape and swim circuits. The model replicates our findings and suggests that social status-related shift in circuit dynamics could be mediated by changes in the relative excitability of the escape and swim networks. Together, our results reveal that changes in the excitabilities of the Mauthner command neuron for escape and the inhibitory interneurons that regulate swimming provide a cellular mechanism for the nervous system to adapt to changes in social conditions by permitting the animal to select a socially appropriate behavioral response.SIGNIFICANCE STATEMENT Understanding how social factors influence nervous system function is of great importance. Using zebrafish as a model system, we demonstrate how social experience affects decision making to enable animals to produce socially appropriate behavior. Based on experimental evidence and computational modeling, we show that behavioral decisions reflect the interplay between competing neural circuits whose activation thresholds shift in accordance with social status. We demonstrate this through analysis of the behavior and neural circuit responses that drive escape and swim behaviors in fish. We show that socially subordinate animals favor escape over swimming, while socially dominants favor swimming over escape. We propose that these differences are mediated by shifts in relative circuit excitability.
Collapse
|
14
|
Visual motion processing subserving behavior in crabs. Curr Opin Neurobiol 2016; 41:113-121. [PMID: 27662055 DOI: 10.1016/j.conb.2016.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/07/2016] [Accepted: 09/05/2016] [Indexed: 11/23/2022]
Abstract
Motion vision originated during the Cambrian explosion more than 500 million years ago, likely triggered by the race for earliest detection between preys and predators. To successfully evade a predator's attack a prey must react quickly and reliably, which imposes a common constrain to the implementation of escape responses among different species. Thus, neural circuits subserving fast escape responses are usually straightforward and contain giant neurons. This review summarizes knowledge about a small group of motion-sensitive giant neurons thought to be central in guiding the escape performance of crabs to visual stimuli. The flexibility of the escape behavior contrasts with the stiffness of the optomotor response, indicating a task-dependent early segregation of visual pathways.
Collapse
|
15
|
Magani F, Luppi T, Nuñez J, Tomsic D. Predation risk modifies behaviour by shaping the response of identified brain neurons. J Exp Biol 2016; 219:1172-7. [DOI: 10.1242/jeb.136903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/05/2016] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Interpopulation comparisons in species that show behavioural variations associated with particular ecological disparities offer good opportunities for assessing how environmental factors may foster specific functional adaptations in the brain. Yet, studies on the neural substrate that can account for interpopulation behavioural adaptations are scarce. Predation is one of the strongest driving forces for behavioural evolvability and, consequently, for shaping structural and functional brain adaptations. We analysed the escape response of crabs Neohelice granulata from two isolated populations exposed to different risks of avian predation. Individuals from the high-risk area proved to be more reactive to visual danger stimuli (VDS) than those from an area where predators are rare. Control experiments indicate that the response difference was specific for impending visual threats. Subsequently, we analysed the response to VDS of a group of giant brain neurons that are thought to play a main role in the visually guided escape response of the crab. Neurons from animals of the population with the stronger escape response were more responsive to VDS than neurons from animals of the less reactive population. Our results suggest a robust linkage between the pressure imposed by the predation risk, the response of identified neurons and the behavioural outcome.
Collapse
Affiliation(s)
- Fiorella Magani
- Departamento Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, 1428, Argentina
| | - Tomas Luppi
- Departamento Ciencia Biológicas, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET-Universidad Nacional de Mar del Plata, Mar de Plata, 7600, Argentina
| | - Jesus Nuñez
- Departamento Ciencia Biológicas, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET-Universidad Nacional de Mar del Plata, Mar de Plata, 7600, Argentina
| | - Daniel Tomsic
- Departamento Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, 1428, Argentina
| |
Collapse
|
16
|
Yang A, Daya T, Carlton K, Yan JH, Schmid S. Differential effect of clomipramine on habituation and prepulse inhibition in dominant versus subordinate rats. Eur Neuropsychopharmacol 2016; 26:591-601. [PMID: 26754403 DOI: 10.1016/j.euroneuro.2015.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/24/2015] [Accepted: 12/12/2015] [Indexed: 02/06/2023]
Abstract
Many patients with depression have comorbidities associated with an impairment of sensorimotor gating, such as e.g. schizophrenia, Parkinson Disease, or Alzheimer disease. Anti-depressants like clomipramine that modulate serotonergic or norepinephrinergic neurotransmission have been shown to impact sensorimotor gating, it is therefore important to study potential effects of clomipramine in order to rule out an exacerbation of sensorimotor gating impairment. Prior studies in animals and humans have been inconclusive. Since serotonin and norepinephrine levels are closely related to anxiety and stress levels and therefore to the social status of an animal, we tested the hypothesis that acute and chronic effects of clomipramine on sensorimotor gating are different in dominant versus subordinate rats, which might be responsible for conflicting results in past animal studies. We used habituation and prepulse inhibition (PPI) of the acoustic startle response as operational measures of sensorimotor gating. After establishing the dominant animal in pair-housed male rats, we injected clomipramine for two weeks and measured acute effects on baseline startle, habituation and PPI after the first injection and chronic effects at the end of the two weeks. Chronic treatment with clomipramine significantly increased habituation in subordinate rats, but had no effect on habituation in dominant animals. Furthermore, PPI was slightly enhanced in subordinate rats upon chronic treatment while no changes occurred in dominant animals. We conclude that the social status of an animal, and therefore the basic anxiety/stress level determines whether or not clomipramine has a beneficial effect on sensorimotor gating and discuss possible underlying mechanisms.
Collapse
Affiliation(s)
- Alvin Yang
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Tahira Daya
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Karen Carlton
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jin Hui Yan
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Susanne Schmid
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
17
|
Momohara Y, Yoshida M, Nagayama T. Serotonergic modulation of social status-dependent behavioural plasticity of the crayfish avoidance reaction. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:1063-74. [DOI: 10.1007/s00359-015-1038-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 08/04/2015] [Accepted: 08/09/2015] [Indexed: 11/28/2022]
|
18
|
van der Westhuizen D, Solms M. Social dominance and the Affective Neuroscience Personality Scales. Conscious Cogn 2015; 33:90-111. [DOI: 10.1016/j.concog.2014.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 11/04/2014] [Accepted: 12/07/2014] [Indexed: 11/17/2022]
|
19
|
van der Westhuizen D, Solms M. Basic emotional foundations of social dominance in relation to Panksepp's affective taxonomy. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/15294145.2015.1021371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Wang F, Kessels HW, Hu H. The mouse that roared: neural mechanisms of social hierarchy. Trends Neurosci 2014; 37:674-82. [PMID: 25160682 DOI: 10.1016/j.tins.2014.07.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/16/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
Abstract
Hierarchical social status greatly influences behavior and health. Human and animal studies have begun to identify the brain regions that are activated during the formation of social hierarchies. They point towards the prefrontal cortex (PFC) as a central regulator, with brain areas upstream of the PFC conveying information about social status, and downstream brain regions executing dominance behavior. This review summarizes our current knowledge on the neural circuits that control social status. We discuss how the neural mechanisms for various types of dominance behavior can be studied in laboratory rodents by selective manipulation of neuronal activity or synaptic plasticity. These studies may help in finding the cause of social stress-related mental and physical health problems.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Helmut W Kessels
- The Netherlands Institute for Neuroscience, The Royal Academy of Arts and Sciences, Amsterdam 1019 RG, The Netherlands.
| | - Hailan Hu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
21
|
Abstract
The last decades of neuroscience research have produced immense progress in the methods available to understand brain structure and function. Social, cognitive, clinical, affective, economic, communication, and developmental neurosciences have begun to map the relationships between neuro-psychological processes and behavioral outcomes, yielding a new understanding of human behavior and promising interventions. However, a limitation of this fast moving research is that most findings are based on small samples of convenience. Furthermore, our understanding of individual differences may be distorted by unrepresentative samples, undermining findings regarding brain-behavior mechanisms. These limitations are issues that social demographers, epidemiologists, and other population scientists have tackled, with solutions that can be applied to neuroscience. By contrast, nearly all social science disciplines, including social demography, sociology, political science, economics, communication science, and psychology, make assumptions about processes that involve the brain, but have incorporated neural measures to differing, and often limited, degrees; many still treat the brain as a black box. In this article, we describe and promote a perspective--population neuroscience--that leverages interdisciplinary expertise to (i) emphasize the importance of sampling to more clearly define the relevant populations and sampling strategies needed when using neuroscience methods to address such questions; and (ii) deepen understanding of mechanisms within population science by providing insight regarding underlying neural mechanisms. Doing so will increase our confidence in the generalizability of the findings. We provide examples to illustrate the population neuroscience approach for specific types of research questions and discuss the potential for theoretical and applied advances from this approach across areas.
Collapse
|
22
|
Whalley K. Social status defines circuits. Nat Rev Neurosci 2012. [DOI: 10.1038/nrn3264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Araki M, Hasegawa T, Komatsuda S, Nagayama T. Social status-dependent modulation of LG-flip habituation in the crayfish. J Exp Biol 2012; 216:681-6. [DOI: 10.1242/jeb.075689] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Strong stimuli applied to tailfan of the crayfish Procambarus clarkii (Girard) evoked lateral giant (LG) mediated tailflips. When the sensory stimulus was applied repeatedly, the response of LG habituated until it failed to give rise to a spike. We found that this LG-flip habituation was dependent on social-status. With a short interstimulus interval of 5 s, the rate of habituation of the LG in both socially dominant and subordinate crayfish was less than in socially isolated animals. By contrast, with a long interstimulus interval of 60 s, the rate of habituation of subordinate animals was less than both socially isolated and dominant animals. The excitability of the LGs following habituation was also dependent on social status. Following habituation the spike response of LGs recovered within several minutes, however they showed significant depression with a decrease in excitability. With a 5 s or 60 s interstimulus interval, subordinate animals showed longer delays of depression compared to dominant animals. A decrease in the rate of habituation and a delay of depression in subordinate crayfish would be advantageous to maintain an active escape response to evade repeated attacks of dominant animals and a reduced learning ability to adapt to social status.
Collapse
|