1
|
Madadi Asl M, Valizadeh A. Entrainment by transcranial alternating current stimulation: Insights from models of cortical oscillations and dynamical systems theory. Phys Life Rev 2025; 53:147-176. [PMID: 40106964 DOI: 10.1016/j.plrev.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Signature of neuronal oscillations can be found in nearly every brain function. However, abnormal oscillatory activity is linked with several brain disorders. Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that can potentially modulate neuronal oscillations and influence behavior both in health and disease. Yet, a complete understanding of how interacting networks of neurons are affected by tACS remains elusive. Entrainment effects by which tACS synchronizes neuronal oscillations is one of the main hypothesized mechanisms, as evidenced in animals and humans. Computational models of cortical oscillations may shed light on the entrainment effects of tACS, but current modeling studies lack specific guidelines to inform experimental investigations. This study addresses the existing gap in understanding the mechanisms of tACS effects on rhythmogenesis within the brain by providing a comprehensive overview of both theoretical and experimental perspectives. We explore the intricate interactions between oscillators and periodic stimulation through the lens of dynamical systems theory. Subsequently, we present a synthesis of experimental findings that demonstrate the effects of tACS on both individual neurons and collective oscillatory patterns in animal models and humans. Our review extends to computational investigations that elucidate the interplay between tACS and neuronal dynamics across diverse cortical network models. To illustrate these concepts, we conclude with a simple oscillatory neuron model, showcasing how fundamental theories of oscillatory behavior derived from dynamical systems, such as phase response of neurons to external perturbation, can account for the entrainment effects observed with tACS. Studies reviewed here render the necessity of integrated experimental and computational approaches for effective neuromodulation by tACS in health and disease.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran.
| | - Alireza Valizadeh
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran; Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran; The Zapata-Briceño Institute of Neuroscience, Madrid, Spain
| |
Collapse
|
2
|
Trajkovic J, Sack AT. Neuromodulating the rhythms of cognition. Neurosci Biobehav Rev 2025; 175:106232. [PMID: 40412459 DOI: 10.1016/j.neubiorev.2025.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 05/12/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Rhythmic non-invasive brain stimulation (rh-NIBS) allows to modulate neural oscillations and study the functional role of these brain rhythms for cognition. We hope to draw attention to often neglected aspects of this field that limit the interpretations of the findings and their translational potential. We here review current rh-NIBS trends and propose to conceptually differentiate oscillatory synchronization, aimed at enhancing an intrinsic oscillatory amplitude, from frequency-shifting, designed to speed-up or slow-down a given oscillatory rhythm. At the same time, we offer a precise mechanistic account of these two rh-NIBS protocols that accounts for inter-individual differences in stimulation outcomes. Finally, we gap the bridge between entrainment, understood as an online manipulation of neural oscillations via rh-NIBS, versus plasticity, defined as the aftereffects of the TMS offline protocols. Specifically, we bring forward a promising possibility that the aftereffects of rh-NIBS protocols, preferably tuned to the dominant oscillatory frequency, might produce the desired outcome through a successful online oscillatory tuning, understood as a prerequisite for the generation of synaptic plasticity reflecting enduring aftereffects. This conceptual and mechanistic framework aims to provide a deeper theoretical understanding of recommended rh-NIBS best practices for noninvasively studying dynamic oscillation-cognition relationships in cognitive and clinical research.
Collapse
Affiliation(s)
- Jelena Trajkovic
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER, Netherlands.
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER, Netherlands
| |
Collapse
|
3
|
Schulze-Bonhage A, Hirsch M, Knake S, Mertens A, Rademacher M, Kaufmann E, Kegele J, Jenkner C, Coenen V, Glaser M, Groppa S, Winter Y. Two-year outcomes of epicranial focal cortex stimulation in pharmacoresistant focal epilepsy. Epilepsia 2025. [PMID: 40377414 DOI: 10.1111/epi.18448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/18/2025]
Abstract
OBJECTIVE This study was undertaken to report on the long-term safety and efficacy of epicranial focal cortex stimulation (FCS) using the EASEE device as adjunctive neuromodulatory therapy in improving seizure control in adults with pharmacoresistant epilepsy originating from one predominant epileptogenic zone. METHODS Prospective open-label follow-up of patients from the EASEE II and PIMIDES I clinical trials was done for a period of 2 years after the epicranial implantation of the EASEE electrode and stimulator device. RESULTS Thirty-three patients underwent device implantation, and stimulation was activated in 32 patients. Of these, 26 patients continued stimulation up to 2-year follow-up and provided seizure diary data for efficacy analysis. The 50% responder rate at 2-year follow-up was 65.4% (95% confidence interval = 44.3-82.8), corresponding to a median seizure frequency reduction of 68%. Patients reported improved health-related quality of life. Tolerability was excellent, and there were no severe adverse events considered to be related to implantation or stimulation, nor were adverse effects on mood or cognition reported. SIGNIFICANCE Results of the 2-year follow-up show that epicranial FCS is well tolerated by patients while providing improved seizure control in the long term. It thus offers a minimally invasive treatment option for patients with a predominant epileptic focus.
Collapse
Affiliation(s)
- Andreas Schulze-Bonhage
- Epilepsy Center, University Medical Center, University of Freiburg, Freiburg, Germany
- NeuroModul Basic, University of Freiburg, Freiburg, Germany
- Bernstein Center of Computational Neuroscience, University of Freiburg, Freiburg, Germany
- European Reference Network EpiCARE, Lyon, France
| | - Martin Hirsch
- Epilepsy Center, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Knake
- Neurology, University Hospital Marburg, Marburg, Germany
| | - Ann Mertens
- Neurology, University Hospital Gent, Ghent, Belgium
| | | | - Elisabeth Kaufmann
- Department of Neurology, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Josua Kegele
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Carolin Jenkner
- Clinical Trials Unit, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Volker Coenen
- Department of Stereotactic and Functional Neurosurgery, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Martin Glaser
- Department of Neurosurgery, University of Mainz, Mainz, Germany
| | - Sergiu Groppa
- Department of Neurology, Saarland University Medical Center, University of Saarland, Homburg, Germany
| | - Yaroslav Winter
- Neurology, University Hospital Marburg, Marburg, Germany
- Department of Neurology, Saarland University Medical Center, University of Saarland, Homburg, Germany
| |
Collapse
|
4
|
van Bree S, Levenstein D, Krause MR, Voytek B, Gao R. Processes and measurements: a framework for understanding neural oscillations in field potentials. Trends Cogn Sci 2025; 29:448-466. [PMID: 39753446 DOI: 10.1016/j.tics.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 05/09/2025]
Abstract
Various neuroscientific theories maintain that brain oscillations are important for neuronal computation, but opposing views claim that these macroscale dynamics are 'exhaust fumes' of more relevant processes. Here, we approach the question of whether oscillations are functional or epiphenomenal by distinguishing between measurements and processes, and by reviewing whether causal or inferentially useful links exist between field potentials, electric fields, and neurobiological events. We introduce a vocabulary for the role of brain signals and their underlying processes, demarcating oscillations as a distinct entity where both processes and measurements can exhibit periodicity. Leveraging this distinction, we suggest that electric fields, oscillating or not, are causally and computationally relevant, and that field potential signals can carry information even without causality.
Collapse
Affiliation(s)
- Sander van Bree
- Department of Medicine, Justus Liebig University, Giessen, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Daniel Levenstein
- MILA - Quebec AI Institute, Montreal, QC, Canada; Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Matthew R Krause
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Bradley Voytek
- Department of Cognitive Science, Halıcıŏglu Data Science Institute, Kavli Institute for Brain & Mind, University of California, San Diego, La Jolla, CA, USA
| | - Richard Gao
- Machine Learning in Science, Excellence Cluster Machine Learning and Tübingen AI Center, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Elyamany O, Iffland J, Bak J, Classen C, Nolte G, Schneider TR, Leicht G, Mulert C. Predictive role of endogenous phase lags between target brain regions in dual-site transcranial alternating current stimulation. Brain Stimul 2025; 18:780-793. [PMID: 40222667 DOI: 10.1016/j.brs.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Dual-site transcranial alternating current stimulation (tACS) provides a promising tool for modulating interregional brain connectivity by entraining neural oscillations. However, prior studies have reported inconsistent effects on connectivity and behavioral outcomes. They often focused on individualized stimulation-frequency as a key entrainment factor, while typically not focusing on the role of endogenous phase lags. To address this gap, we explored the predictive value of endogenous phase lags in dual-site tACS to modulate interhemispheric connectivity during dichotic listening. METHODS Thirty healthy participants (16 females) completed a dichotic listening task while undergoing simultaneous electroencephalography and tACS, including four bitemporal verum conditions with varying phase lags (0°, 45°, 90°, and 180°), and a sham condition across five sessions. Each session involved 20 min of 40-Hz tACS at a 0.5 mA peak-to-baseline amplitude applied to the temporal regions, with phase lags differing across sessions. Endogenous phase lags between the auditory cortices were calculated to explain changes in the laterality index (LI) across stimulation conditions by defining optimal and disruptive stimulation conditions for each participant. RESULTS Consistent with our hypothesis, our personalized analysis based on the calculated endogenous phase lags showed a significantly lower LI during the closest (optimal) stimulation condition compared to both the sham and farthest (disruptive) conditions. Conversely, the farthest stimulation condition did not statistically increase the LI compared to sham. CONCLUSIONS These findings highlight the importance of incorporating endogenous phase dynamics into dual-site tACS protocols, paving the way for more consistent and individualized neuromodulatory interventions.
Collapse
Affiliation(s)
- Osama Elyamany
- Centre of Psychiatry, Justus-Liebig University, Klinikstrasse 36, Giessen, Hessen, 35392, Germany; Centre for Mind, Brain and Behaviour (CMBB), Hans-Meerwein-Strasse 6, Marburg, 35043, Hessen, Germany.
| | - Jona Iffland
- Centre of Psychiatry, Justus-Liebig University, Klinikstrasse 36, Giessen, Hessen, 35392, Germany
| | - Josef Bak
- Centre of Psychiatry, Justus-Liebig University, Klinikstrasse 36, Giessen, Hessen, 35392, Germany
| | - Cornelius Classen
- Centre of Psychiatry, Justus-Liebig University, Klinikstrasse 36, Giessen, Hessen, 35392, Germany
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Christoph Mulert
- Centre of Psychiatry, Justus-Liebig University, Klinikstrasse 36, Giessen, Hessen, 35392, Germany; Centre for Mind, Brain and Behaviour (CMBB), Hans-Meerwein-Strasse 6, Marburg, 35043, Hessen, Germany
| |
Collapse
|
6
|
Gao B, Zhang J, Zhang J, Pei G, Liu T, Wang L, Funahashi S, Wu J, Zhang Z, Zhang J. Gamma Transcranial Alternating Current Stimulation Enhances Working Memory Ability in Healthy People: An EEG Microstate Study. Brain Sci 2025; 15:381. [PMID: 40309851 PMCID: PMC12025431 DOI: 10.3390/brainsci15040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Working memory (WM) is a core cognitive function closely linked to various cognitive processes including language, decision making, and reasoning. Transcranial alternating current stimulation (tACS), a non-invasive brain stimulation technique, has been shown to modulate cognitive abilities and treat psychiatric disorders. Although gamma tACS (γ-tACS) has demonstrated positive effects on WM, its underlying neural mechanisms remain unclear. METHODS In this study, we employed electroencephalogram (EEG) microstate analysis to investigate the spatiotemporal dynamics of γ-tACS effects on WM performance. Healthy participants (N = 104) participated in two-back and three-back WM tasks before and after two types (sine and triangular) of γ-tACS, with sham stimulation as a control. RESULTS Our results revealed that γ-tACS improved performance in both the two-back and three-back tasks, with triangular γ-tACS showing greater accuracy improvement in the three-back task than the sham group. Furthermore, γ-tACS significantly modulated EEG microstate dynamics, specifically downregulating microstate Class C and upregulating microstate Classes D and B. These changes were positively correlated with reduced reaction times in the three-back task. CONCLUSIONS Our findings establish microstate analysis as an effective approach for evaluating γ-tACS-induced changes in global brain activity and advance the understanding of how γ-tACS influences WM.
Collapse
Affiliation(s)
- Binbin Gao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China;
| | - Jinyan Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (J.Z.); (J.Z.)
| | - Jianxu Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (J.Z.); (J.Z.)
| | - Guangying Pei
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| | - Tiantian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| | - Li Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| | - Shintaro Funahashi
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China;
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| | - Zhilin Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jian Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| |
Collapse
|
7
|
Venugopal R, Sasidharan A, Bhowmick K, Nagaraj N, Udupa K, John JP, Kutty BM. Personalized Theta Transcranial Alternating Current Stimulation and Gamma Transcranial Alternating Current Stimulation Bring Differential Neuromodulatory Effects on the Resting Electroencephalogram: Characterizing the Temporal, Spatial, and Spectral Dimensions of Transcranial Alternating Current Stimulation. Neuromodulation 2025; 28:425-433. [PMID: 39425734 DOI: 10.1016/j.neurom.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES The neuromodulatory effects of transcranial alternating current stimulation (tACS) on electroencephalogram (EEG) dynamics are quite heterogenous. The primary objective of the study is to comprehensively characterize the effects of two tACS protocols on resting-state EEG. MATERIALS AND METHODS A total of 36 healthy participants were recruited and were randomized into three groups. Two groups received either personalized theta (4-8 Hz) or gamma (40 Hz) stimulation bilaterally in the frontal regions for 20 minutes (4 minutes ON, 1 minute OFF, four cycles). The third group performed relaxed breath watching for 20 minutes. Artifact-free, 1-minute EEG segments from the baseline, during tACS, and after stimulation resting EEG were characterized to see the effects of tACS. Threshold-free cluster enhanced permutation tests (for spectral measures) and two-way mixed analysis of variance (for aperiodic slope) were used for statistical inferences. RESULTS Current modeling simulation using ROAST with preset parameters (800 μA, AF3 AF4 locations) showed that induced electric fields can activate frontal cortical regions. During the stimulation period, personalized theta tACS entrained theta band power in the centro-parietal areas. There was a compensatory power decrease in the beta and gamma bands after theta tACS. No entrainment effects were observed for gamma tACS during stimulation, but a significant entrainment was observed in the theta and beta bands in the parieto-occipital regions after stimulation. The delta band power decreased in the central regions. No spectral modulations were seen after breath watching. The spectral slope, which measures aperiodic activity, was not affected by either breath watching or tACS. CONCLUSIONS Characterizing the effects of multiple tACS protocols is critical to effectively target specific neural oscillatory patterns and to personalize the protocols. The study can be extended to target specific oscillatory patterns associated with cognitive deficits in neuro-psychiatric conditions.
Collapse
Affiliation(s)
- Rahul Venugopal
- Centre for Consciousness Studies, Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Arun Sasidharan
- Centre for Consciousness Studies, Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Kankana Bhowmick
- Indian Institute of Science Education and Research, Mohali, India
| | - Nithin Nagaraj
- Consciousness Studies Programme, School of Humanities, National Institute of Advanced Studies, Indian Institute of Science Campus, Bengaluru
| | - Kaviraja Udupa
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - John P John
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Bindu M Kutty
- Centre for Consciousness Studies, Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India.
| |
Collapse
|
8
|
Zhang S, Cui X, Yu S, Li X. Is transcranial alternating current stimulation effective for improving working memory? A three-level meta-analysis. Psychon Bull Rev 2025; 32:636-651. [PMID: 39438426 DOI: 10.3758/s13423-024-02595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Working memory, an essential component of cognitive function, can be improved through specific methods. This meta-analysis evaluates the effectiveness of transcranial alternating current stimulation (tACS), an emerging technique for enhancing working memory, and explores its efficacy, influencing factors, and underlying mechanisms. A PRISMA systematic search was conducted. Hedges's g was used to quantify effect sizes. We constructed a three-level meta-analytic model to account for all effect sizes and performed subgroup analyses to assess moderating factors. Recognizing the distinct neural underpinnings of various working memory processes, we separately assessed the effects on n-back tasks and traditional working memory tasks. A total of 39 studies with 405 effect sizes were included (170 from n-back tasks and 235 from other tasks). The overall analysis indicated a net benefit of g = 0.060 of tACS on working memory. Separate analyses showed that tACS had a small positive effect on n-back tasks (g = 0.102), but almost no effect on traditional working memory tasks (g = 0.045). Further analyses revealed mainly: A moderately positive effect of theta tACS (without anti-phase stimulation) on n-back tasks (g = 0.207); and a small effect of offline stimulation on working memory maintenance (g = 0.127). Overall, tACS has minimal impact on working memory improvement, but it shows potential under certain conditions. Specifically, both online and offline theta tACS can improve n-back task performance, while only offline stimulation enhances working memory maintenance. More research is needed to understand the mechanisms behind these effects to make tACS an effective method.
Collapse
Affiliation(s)
- Siyuan Zhang
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Cui
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Yu
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuebing Li
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Akaiwa M, Kurokawa R, Matsuda Y, Sugawara Y, Kosuge R, Saito H, Shibata E, Sasaki T, Sugawara K. Enhancement of beta rebound elicited by proprioceptive stimulation in the sensorimotor cortex by transcranial alternating current stimulation matched to the dominant beta frequency. Neurosci Res 2025:S0168-0102(25)00067-7. [PMID: 40158629 DOI: 10.1016/j.neures.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/08/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Transcranial alternating current stimulation (tACS) can modulate endogenous brain oscillations in a frequency-specific manner. Previous studies have reported that beta tACS modulates the excitability of primary motor cortex and improves task performance. Tactile and proprioceptive stimuli also elicit event-related synchronization of the beta rhythm in contralateral sensorimotor cortex, termed beta rebound, and a strong correlation was reported between proprioception-induced rebound strength and clinical recovery in stroke patients. We investigated the effects of tACS matched to the dominant beta frequency on the strength of proprioception-induced beta rebound.We recorded the beta rebound from 14 healthy young adults in response to passive index finger movement by electroencephalography to determine individual peak beta frequency. Electroencephalograms (EEG) were recorded during passive movements before and after active or sham tACS. We recorded beta rebound of all participants to determine their individual peak frequency of beta rebound prior to this experiment. Active tACS at individually matched frequencies increased beta rebound strength during subsequent passive movement compared to sham tACS in the majority of participants, while the remaining participants demonstrated no significant change or a decrease. These findings on healthy participants provide an essential foundation for further studies on the effects of beta frequency-matched tACS for stroke patient rehabilitation.
Collapse
Affiliation(s)
- Mayu Akaiwa
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Hokkaido, Japan; Department of Rehabilitation, Sapporo Hakuyokai Hospital, Sapporo, Hokkaido, Japan.
| | - Ryo Kurokawa
- Department of Rehabilitation, Sapporo Hakuyokai Hospital, Sapporo, Hokkaido, Japan
| | - Yuya Matsuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Yasushi Sugawara
- Department of Rehabilitation, Sapporo Hakuyokai Hospital, Sapporo, Hokkaido, Japan
| | - Rin Kosuge
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Hidekazu Saito
- Department of Occupational Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Eriko Shibata
- Major of Physical Therapy, Department of Rehabilitation, Faculty of Healthcare and Science, Hokkaido Bunkyo University, Eniwa, Hokkaido, Japan
| | - Takeshi Sasaki
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Kazuhiro Sugawara
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Hokkaido, Japan
| |
Collapse
|
10
|
Sveva V, Guerra A, Mangone M, Agostini F, Bernetti A, Berardelli A, Paoloni M, Bologna M. Effects of cerebellar transcranial alternating current stimulation on balance and gait in healthy subjects. Clin Neurophysiol 2025:S1388-2457(25)00453-5. [PMID: 40180842 DOI: 10.1016/j.clinph.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Transcranial Alternating Current Stimulation (tACS) is a non-invasive brain stimulation technique that modulates cortical oscillations and influences behavior. OBJECTIVES This study aimed to explore the effects of cerebellar theta (5 Hz) and gamma (50 Hz) tACS on human balance and gait through kinematic analysis. MATERIALS AND METHODS Nineteen right-handed healthy subjects participated in three randomized motor tasks: postural standing (PS), gait initiation (GI), and gait cycle (GC). Participants underwent theta-, gamma-, or sham-tACS over the cerebellum while kinematic data were collected using a force platform and an 8-camera optoelectronic system. RESULTS Theta-tACS significantly influenced motor behavior during PS and GC, but not GI. Specifically, it reduced the Maximum Radius, Total Trace Length, Longitudinal Range, and Area during PS, and decreased Stride Width during GC. In contrast, cerebellar gamma-tACS had no significant effect on any kinematic parameters across the tasks. CONCLUSIONS Cerebellar theta-tACS may enhance postural stability and gait control in healthy individuals. We hypothesize that theta-tACS may entrain theta-resonant neurons in the cerebellar cortex, affecting motor control networks involved in balance and gait. SIGNIFICANCE This study highlights tACS's potential as a non-invasive treatment for balance and gait disorders associated with cerebellar dysfunction.
Collapse
Affiliation(s)
- Valerio Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | - Andrea Guerra
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128 Padua, Italy; Padova Neuroscience Center (PNC), University of Padua, Via Giuseppe Orus, 2, 35131 Padua, Italy
| | - Massimiliano Mangone
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Agostini
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Bernetti
- Department of Science and Biological and Ambient Technologies, University of Salento, Via Lecce-Monteroni, 73100 Lecce, LE, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy; IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Marco Paoloni
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy; IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
11
|
Prasad SM, Khan MNA, Tariq U, Al-Nashash H. Impact of Electrical Stimulation on Mental Stress, Depression, and Anxiety: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2025; 25:2133. [PMID: 40218646 PMCID: PMC11991385 DOI: 10.3390/s25072133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 04/14/2025]
Abstract
Individuals experiencing high levels of stress face significant impacts on their overall well-being and quality of life. Electrical stimulation techniques have emerged as promising interventions to address mental stress, depression, and anxiety. This systematic review investigates the impact of different electrical stimulation approaches on these types of disorders. The review synthesizes data from 30 studies, revealing promising findings and identifying several research gaps and challenges. The results indicate that electrical stimulation has the potential to alleviate symptoms of anxiety, depression, and tension, although the degree of efficacy varies among different patient populations and modalities. Nevertheless, the findings also underscore the necessity of standardized protocols and additional research to ascertain the most effective treatment parameters. There is also a need for integrated methodologies that combine hybrid EEG-fNIRS techniques with stress induction paradigms, the exploration of alternative stimulation modalities beyond tDCS, and the investigation of the combined effects of stimulation on stress. Despite these challenges, the growing body of evidence underscores the potential of electrical stimulation as a valuable tool to manage mental stress, depression, and anxiety, paving the way for future advancements in this field.
Collapse
Affiliation(s)
- Sandra Mary Prasad
- Bioscience and Bioengineering Graduate Program, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - M. N. Afzal Khan
- Department of Electrical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.N.A.K.); (H.A.-N.)
| | - Usman Tariq
- Department of Electrical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.N.A.K.); (H.A.-N.)
| | - Hasan Al-Nashash
- Department of Electrical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.N.A.K.); (H.A.-N.)
| |
Collapse
|
12
|
Seo J, Lee D, Pantazis D, Min BK. Phase-lagged tACS between executive and default mode networks modulates working memory. Sci Rep 2025; 15:9171. [PMID: 40097468 PMCID: PMC11914490 DOI: 10.1038/s41598-025-91881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Transcranial alternating current stimulation (tACS) is an efficient neuromodulation technique to enhance cognitive function in a non-invasive manner. Using functional magnetic resonance imaging, we investigated whether a cross-frequency coupled tACS protocol with a phase lag (45 and 180 degrees) between the central executive and the default mode networks modulated working-memory performance. We found tACS-phase-dependent modulation of task performance reflected in hippocampal activation and task-related functional connectivity. Our observations provide a neurophysiological basis for neuromodulation and a feasible non-invasive approach to selectively stimulate a task-relevant deep brain structure. Overall, our study highlights the potential of tACS as a powerful tool for enhancing cognitive function and sheds light on the underlying mechanisms of this technique.
Collapse
Affiliation(s)
- Jeehye Seo
- Institute of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea
| | - Dongha Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Korea
| | - Dimitrios Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Byoung-Kyong Min
- Institute of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea.
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
13
|
Nakazono H, Ogata K, Mitsutake T, Takeda A, Yamada E, Tobimatsu S. Neural mechanisms underlying the after-effects of repetitive paired-pulse TMS with Β tACS on the human primary motor cortex. Sci Rep 2025; 15:7286. [PMID: 40025222 PMCID: PMC11873315 DOI: 10.1038/s41598-025-92444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/27/2025] [Indexed: 03/04/2025] Open
Abstract
We previously reported that repetitive paired-pulse transcranial magnetic stimulation (TMS; rPPS) synchronized to the peak phase of transcranial alternating current stimulation (tACS) at the β frequency induced long-lasting after-effects on primary motor cortex (M1) with less inter-individual variability compared with rPPS alone. Here, we investigated the plasticity mechanisms underlying combined stimulation effects using paired-pulse TMS paradigms. rPPS was applied to the peak phase of β tACS (rPPS-tACS-peak) or sham tACS (rPPS alone), or tACS was delivered without rPPS (tACS alone). Resting motor threshold (RMT) and motor evoked potentials (MEPs) elicited by single-pulse TMS, short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), short-latency afferent inhibition (SAI), and short-interval intracortical facilitation (SICF) were measured before and after intervention. rPPS-tACS-peak stimulation significantly increased MEPs compared with other conditions after intervention. Although I-wave interaction was expected to be produced by the facilitation effect of rPPS, rPPS-tACS-peak did not change SICF. In contrast, SAI was decreased in rPPS-tACS-peak compared with baseline. In the control experiment, rPPS-tACS-trough did not change MEPs, SAI, and SICF. Therefore, the after-effects of rPPS-tACS-peak on M1 may be caused by a partial reduction in the inhibitory circuit mediated by cholinergic interneurons, rather than an enhancement of the facilitatory effects of rPPS.
Collapse
Affiliation(s)
- Hisato Nakazono
- Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, 814-0001, Japan.
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Katsuya Ogata
- Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, 831-8501, Japan
| | - Tsubasa Mitsutake
- Clinical Research Center, Saga University Hospital, Saga, 849-8501, Japan
| | - Akinori Takeda
- Research Center for Brain Communication, Research Institute, Kochi University of Technology, Kochi, 782-8502, Japan
| | - Emi Yamada
- Department of Linguistics, Faculty of Humanities, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shozo Tobimatsu
- Department of Orthoptics, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, 814-0001, Japan
| |
Collapse
|
14
|
Kasanov D, Dorogina O, Mushtaq F, Pavlov YG. Theta Transcranial Alternating Current Stimulation Is Not Effective in Improving Working Memory Performance. J Cogn Neurosci 2025; 37:641-656. [PMID: 39485911 DOI: 10.1162/jocn_a_02269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
There is an extensive body of research showing a significant relationship between frontal midline theta activity in the 4- to 8-Hz range and working memory (WM) performance. Transcranial alternating current stimulation (tACS) is recognized for inducing lasting changes in brain oscillatory activity. Across two experiments, we tested whether WM could be improved through tACS of dorsomedial PFC and ACC, by affecting executive control networks associated with frontal midline theta. In Experiment 1, after either a 20-min verum or sham stimulation applied to Fpz-CPz at 1 mA and 6 Hz, 31 participants performed WM tasks, while EEG was recorded. The tasks required participants to either mentally manipulate memory items or retain them in memory as they were originally presented. No significant effects were observed in behavioral performance, and we found no change in theta activity during rest and task after stimulation. However, alpha activity during retention or manipulation of information in WM was less strongly enhanced during the delay period after verum stimulation as compared with sham. In Experiment 2 (n = 25), tACS was administered during the task in two separate sessions. Here, we changed the order of the stimulation blocks: A 25-min task block was either accompanied first by sham stimulation and then by verum stimulation, or vice versa. Again, we found no improvements in WM through either tACS after-effects or online stimulation. Taken together, our results demonstrate that theta frequency tACS applied at the midline is not an effective method for enhancing WM.
Collapse
Affiliation(s)
| | | | - Faisal Mushtaq
- University of Leeds
- NIHR Leeds Biomedical Research Centre, Leeds, West Yorkshire, United Kingdom
| | | |
Collapse
|
15
|
Geffen A, Bland N, Sale M. μ-Transcranial Alternating Current Stimulation Induces Phasic Entrainment and Plastic Facilitation of Corticospinal Excitability. Eur J Neurosci 2025; 61:e70042. [PMID: 40040311 PMCID: PMC11880748 DOI: 10.1111/ejn.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/04/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
Transcranial alternating current stimulation (tACS) has been proposed to modulate neural activity through two primary mechanisms: entrainment and neuroplasticity. The current study aimed to probe both of these mechanisms in the context of the sensorimotor μ-rhythm using transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to assess entrainment of corticospinal excitability (CSE) during stimulation (i.e., online) and immediately following stimulation, as well as neuroplastic aftereffects on CSE and μ EEG power. Thirteen participants received three sessions of stimulation. Each session consisted of 90 trials of μ-tACS tailored to each participant's individual μ frequency (IMF), with each trial consisting of 16 s of tACS followed by 8 s of rest (for a total of 24 min of tACS and 12 min of rest per session). Motor-evoked potentials (MEPs) were acquired at the start and end of the session (n = 41), and additional MEPs were acquired across the different phases of tACS at three epochs within each tACS trial (n = 90 for each epoch): early online, late online and offline echo. Resting EEG activity was recorded at the start, end and throughout the tACS session. The data were then pooled across the three sessions for each participant to maximise the MEP sample size per participant. We present preliminary evidence of CSE entrainment persisting immediately beyond tACS and have also replicated the plastic CSE facilitation observed in previous μ-tACS studies, thus supporting both entrainment and neuroplasticity as mechanisms by which tACS can modulate neural activity.
Collapse
Affiliation(s)
- Asher Geffen
- School of Health and Rehabilitation SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Nicholas Bland
- School of Health and Rehabilitation SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Martin V. Sale
- School of Health and Rehabilitation SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
16
|
Chu Z, Wang R, Zhou T. Modulation of vigilance/alertness using beta (30 Hz) transcranial alternating current stimulation. Front Neurosci 2025; 19:1445006. [PMID: 40018360 PMCID: PMC11865085 DOI: 10.3389/fnins.2025.1445006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
Vigilance refers to the ability to maintain alertness and sustain attention for prolonged periods to detect and respond to subtle changes in the environment. Previous research has explored the use of transcranial alternating current stimulation (tACS) to modulate brain oscillations and enhance vigilance/alertness. In this study, we explore the modulation effects of different stimulation parameters on Vigilance using an open-source dataset. The open-source dataset includes within participant application of High-Definition tES (HD-tES) types, targeting two cortical regions (frontal, motor) with one stimulation waveforms (30 Hz); combining human-participant high-density electroencephalography (EEG) with continuous behavioral metrics. We only analyzed the behavioral task performance data to assess how vigilant states are acutely altered by specific tES types. Our findings indicate that (1) Both online and offline tACS improve vigilance performance; (2) online tACS have greater effect on vigilance performance than offline tACS; (3) tACS that targeting frontal region have greater effect on vigilance performance than stimulating the motor region. These results align with the view of current the theoretical accounts on the oscillatory nature of vigilance attention and contribute to the groundwork for tACS closed-loop interventions for counteracting vigilance decrements.
Collapse
Affiliation(s)
- Zhongliang Chu
- Department of Psychology, Faculty of Arts and Sciences, Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
| | - Rui Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Tianyi Zhou
- Department of Psychology, Faculty of Arts and Sciences, Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, China
| |
Collapse
|
17
|
H Liu D, Kumar S, Alawieh H, Samuel Racz F, Del R Millán J. Personalized µ-transcranial alternating current stimulation improves online brain-computer interface control. J Neural Eng 2025; 22:016037. [PMID: 39819671 DOI: 10.1088/1741-2552/ada980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025]
Abstract
Objective.A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).Approach.Previous studies have identified that the peak power spectral density value in sensorimotor idling rhythms is a neural correlate of participants' upper limb MI-BCI performances. In this active-controlled, single-blind study, we applied 20 min of tACS at the participant-specific, peakµfrequency in resting-state sensorimotor rhythms (SMRs), with the goal of enhancing resting-stateµSMRs.Main results.After tACS, we observed significant improvements in event-related desynchronizations (ERDs) ofµSMRs, and in the performance of an online MI-BCI that decodes left versus right hand commands in healthy participants (N= 10)-but not in an active control-stimulation control group (N= 10). Lastly, we showed a significant correlation between the resting-stateµSMRs andµERD, offering a mechanistic interpretation behind the observed changes in online BCI performances.Significance.Our research lays the groundwork for future non-invasive interventions designed to enhance BCI performances, thereby improving the independence and interactions of individuals who rely on these systems.
Collapse
Affiliation(s)
- Deland H Liu
- Chandra Department of Electrical and Computer Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Satyam Kumar
- Chandra Department of Electrical and Computer Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Hussein Alawieh
- Chandra Department of Electrical and Computer Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Frigyes Samuel Racz
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - José Del R Millán
- Chandra Department of Electrical and Computer Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, United States of America
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, United States of America
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, United States of America
- Mulva Clinic for the Neurosciences, The University of Texas at Austin, Austin, TX 78712, United States of America
| |
Collapse
|
18
|
Gaugain G, Al Harrach M, Yochum M, Wendling F, Bikson M, Modolo J, Nikolayev D. Frequency-dependent phase entrainment of cortical cell types during tACS: computational modeling evidence. J Neural Eng 2025; 22:016028. [PMID: 39569929 DOI: 10.1088/1741-2552/ad9526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/20/2024] [Indexed: 11/22/2024]
Abstract
Objective. Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for clinical and research applications. Yet, it remains unclear how the stimulation frequency differentially impacts various neuron types. Here, we aimed to quantify the frequency-dependent behavior of key neocortical cell types.Approach. We used both detailed (anatomical multicompartments) and simplified (three compartments) single-cell modeling approaches based on the Hodgkin-Huxley formalism to study neocortical excitatory and inhibitory cells under various tACS intensities and frequencies within the 5-50 Hz range at rest and during basal 10 Hz activity.Main results. L5 pyramidal cells (PCs) exhibited the highest polarizability at direct current, ranging from 0.21 to 0.25 mm and decaying exponentially with frequency. Inhibitory neurons displayed membrane resonance in the 5-15 Hz range with lower polarizability, although bipolar cells had higher polarizability. Layer 5 PC demonstrated the highest entrainment close to 10 Hz, which decayed with frequency. In contrast, inhibitory neurons entrainment increased with frequency, reaching levels akin to PC. Results from simplified models could replicate phase preferences, while amplitudes tended to follow opposite trends in PC.Significance. tACS-induced membrane polarization is frequency-dependent, revealing observable resonance behavior. Whilst optimal phase entrainment of sustained activity is achieved in PC when tACS frequency matches endogenous activity, inhibitory neurons tend to be entrained at higher frequencies. Consequently, our results highlight the potential for precise, cell-specific targeting for tACS.
Collapse
Affiliation(s)
- Gabriel Gaugain
- Institut d'électronique et des technologies du numérique (IETR UMR 6164), CNRS / University of Rennes, 35000 Rennes, France
| | - Mariam Al Harrach
- Laboratoire Traitement du Signal et de l'Image (LTSI UMR 1099), INSERM / University of Rennes, 35000 Rennes, France
| | - Maxime Yochum
- Laboratoire Traitement du Signal et de l'Image (LTSI UMR 1099), INSERM / University of Rennes, 35000 Rennes, France
| | - Fabrice Wendling
- Laboratoire Traitement du Signal et de l'Image (LTSI UMR 1099), INSERM / University of Rennes, 35000 Rennes, France
| | - Marom Bikson
- The City College of New York, New York, NY 11238, United States of America
| | - Julien Modolo
- Laboratoire Traitement du Signal et de l'Image (LTSI UMR 1099), INSERM / University of Rennes, 35000 Rennes, France
| | - Denys Nikolayev
- Institut d'électronique et des technologies du numérique (IETR UMR 6164), CNRS / University of Rennes, 35000 Rennes, France
| |
Collapse
|
19
|
Agnihotri SK, Cai J, Wang Z. Exploring the synchronization of cortical networks via entrainment to intrinsic frequencies. Heliyon 2024; 10:e41034. [PMID: 39720065 PMCID: PMC11665456 DOI: 10.1016/j.heliyon.2024.e41034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/26/2024] Open
Abstract
Introduction Transcranial electrical stimulation (tES), including transcranial alternating current stimulation (tACS) and transcranial direct current stimulation (tDCS), is widely studied for its potential to modulate brain oscillations and connectivity, offering treatment options for neurological disorders like Alzheimer's, Parkinson's, and insomnia. In this study, we focus on investigating the efficacy of tACS and tDCS in entraining intrinsic cortical network oscillations through a computational model. Materials and methods We developed a 2D computational cortical neuron model with 2000 neurons (1600 pyramidal and 400 inhibitory), based on the Izhikevich neuron model. The network was structured to generate low-frequency oscillations, particularly within the delta (4 Hz) range. Both tACS and tDCS were simulated to assess their effect on network synchronization. An algorithm was employed to extract the network's intrinsic frequency and align stimulation frequencies accordingly. Results Our model successfully generated 4 Hz oscillations, characteristic of delta waves, associated with sleep states. t-ACS stimulation enhanced the power of the 4 Hz frequency, achieving effective synchronization with the intrinsic network dynamics. In contrast, tDCS failed to increase the power of 4 Hz oscillations and disrupted the excitatory-inhibitory balance of the network, reducing connectivity and synchronization. Our results demonstrate that tACS effectively enhances network synchronization and maintains excitatory-inhibitory balance by aligning with the network's intrinsic oscillatory frequency. In contrast, tDCS disrupts these dynamics, reducing connectivity and failing to entrain the target frequency. These findings suggest that tACS may hold greater potential for applications requiring precise network synchronization, while tDCS may have distinct but more limited efficacy in influencing oscillatory activity. Conclusion The study demonstrates the superior efficacy of tACS over tDCS in enhancing the synchronization of cortical networks by entraining intrinsic frequencies. Future research may extend this model by incorporating long-term plasticity mechanisms to better understand tES effects over longer time scales.
Collapse
Affiliation(s)
- Sandeep Kumar Agnihotri
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, Guangdong, China
| | - Jiang Cai
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, Guangdong, China
| | - Zhen Wang
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, Guangdong, China
| |
Collapse
|
20
|
Shen F, Zhou H. Effects of non-invasive brain stimulation on emotion regulation in patients with attention deficit hyperactivity disorder: a systematic review. Front Psychiatry 2024; 15:1483753. [PMID: 39698210 PMCID: PMC11652829 DOI: 10.3389/fpsyt.2024.1483753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Background and objective A growing body of research evidence suggests that many patients with attention deficit hyperactivity disorder (ADHD) have difficulties with emotion regulation. Non-invasive brain stimulation (NIBS), which mainly includes transcranial electrical stimulation (tES) and repetitive transcranial magnetic stimulation (rTMS), has been considered a potential new direction in the treatment of emotion dysregulation in ADHD patients. The key components of tES are transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS). However, there is no systematic evaluation exploring the effects of non-invasive brain stimulation on emotion regulation in ADHD patients. Therefore, this systematic review aimed to summarize the effects of NIBS on emotion regulation in ADHD patients. Methods This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched PubMed, Embase, Web of Science, and the Cochrane Library electronic databases up to 1 July 2024. We also hand-searched the reference lists of retrieved articles and reviews. Assessing risk of bias using the Cochrane Assessment Tool. Results Through database search, we obtained a total of 1134 studies, of which 5 met the inclusion criteria. Statistically significant improvements in emotion regulation in children with ADHD were observed in 1 study after treatment with tDCS. In the remaining 4 studies (2 with tDCS and 2 with rTMS), there were no statistically significant changes in emotion regulation in ADHD patients after treatment with either tDCS or rTMS. Conclusions The data from our preliminary study do not allow us to draw definitive conclusions that non-invasive brain stimulation improves emotion regulation in ADHD patients. This is because there is a paucity of literature on the effects of tES or rTMS on emotion regulation in ADHD patients and a limited number of randomized controlled trials. More high-quality multicenter randomized controlled trials exploring the efficacy of non-invasive brain stimulation on emotion regulation in ADHD patients are needed in the future to provide strong evidence for definitive conclusions before it can be considered as a potential treatment option. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024569041.
Collapse
Affiliation(s)
| | - Hui Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Chengdu, China
| |
Collapse
|
21
|
Wischnewski M, Shirinpour S, Alekseichuk I, Lapid MI, Nahas Z, Lim KO, Croarkin PE, Opitz A. Real-time TMS-EEG for brain state-controlled research and precision treatment: a narrative review and guide. J Neural Eng 2024; 21:061001. [PMID: 39442548 PMCID: PMC11528152 DOI: 10.1088/1741-2552/ad8a8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Transcranial magnetic stimulation (TMS) modulates neuronal activity, but the efficacy of an open-loop approach is limited due to the brain state's dynamic nature. Real-time integration with electroencephalography (EEG) increases experimental reliability and offers personalized neuromodulation therapy by using immediate brain states as biomarkers. Here, we review brain state-controlled TMS-EEG studies since the first publication several years ago. A summary of experiments on the sensorimotor mu rhythm (8-13 Hz) shows increased cortical excitability due to TMS pulse at the trough and decreased excitability at the peak of the oscillation. Pre-TMS pulse mu power also affects excitability. Further, there is emerging evidence that the oscillation phase in theta and beta frequency bands modulates neural excitability. Here, we provide a guide for real-time TMS-EEG application and discuss experimental and technical considerations. We consider the effects of hardware choice, signal quality, spatial and temporal filtering, and neural characteristics of the targeted brain oscillation. Finally, we speculate on how closed-loop TMS-EEG potentially could improve the treatment of neurological and mental disorders such as depression, Alzheimer's, Parkinson's, schizophrenia, and stroke.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Psychology, Experimental Psychology, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, United States of America
| | - Maria I Lapid
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, United States of America
| | - Ziad Nahas
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Kelvin O Lim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Paul E Croarkin
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, United States of America
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
22
|
Abellaneda-Pérez K, Potash RM, Pascual-Leone A, Sacchet MD. Neuromodulation and meditation: A review and synthesis toward promoting well-being and understanding consciousness and brain. Neurosci Biobehav Rev 2024; 166:105862. [PMID: 39186992 DOI: 10.1016/j.neubiorev.2024.105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
The neuroscience of meditation is providing insight into meditation's beneficial effects on well-being and informing understanding of consciousness. However, further research is needed to explicate mechanisms linking brain activity and meditation. Non-invasive brain stimulation (NIBS) presents a promising approach for causally investigating neural mechanisms of meditation. Prior NIBS-meditation research has predominantly targeted frontal and parietal cortices suggesting that it might be possible to boost the behavioral and neural effects of meditation with NIBS. Moreover, NIBS has revealed distinct neural signatures in long-term meditators. Nonetheless, methodological variations in NIBS-meditation research contributes to challenges for definitive interpretation of previous results. Future NIBS studies should further investigate core substrates of meditation, including specific brain networks and oscillations, and causal neural mechanisms of advanced meditation. Overall, NIBS-meditation research holds promise for enhancing meditation-based interventions in support of well-being and resilience in both non-clinical and clinical populations, and for uncovering the brain-mind mechanisms of meditation and consciousness.
Collapse
Affiliation(s)
- Kilian Abellaneda-Pérez
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain.
| | - Ruby M Potash
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
23
|
Abubaker M, Al Qasem W, Pilátová K, Ježdík P, Kvašňák E. Theta-gamma-coupling as predictor of working memory performance in young and elderly healthy people. Mol Brain 2024; 17:74. [PMID: 39415245 PMCID: PMC11619296 DOI: 10.1186/s13041-024-01149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024] Open
Abstract
The relationship between working memory (WM) and neuronal oscillations can be studied in detail using brain stimulation techniques, which provide a method for modulating these oscillations and thus influencing WM. The endogenous coupling between the amplitude of gamma oscillations and the phase of theta oscillations is crucial for cognitive control. Theta/gamma peak-coupled transcranial alternating current stimulation (TGCp-tACS) can modulate this coupling and thus influence WM performance. This study investigated the effects of TGCp-tACS on WM in older adults and compared their responses with those of younger participants from our previous work who underwent the same experimental design. Twenty-eight older subjects underwent both TGCp-tACS and sham stimulation sessions at least 72 h apart. Resting-state electroencephalography (EEG) was recorded before and after the interventions, and a WM task battery with five different WM tasks was performed during the interventions to assess various WM components. Outcomes measured included WM task performance (e.g., accuracy, reaction time (RT)) and changes in power spectral density (PSD) in different frequency bands. TGCp-tACS significantly decreased accuracy and RT on the 10- and 14-point Sternberg tasks and increased RT on the Digit Symbol Substitution Test in older adults. In contrast, younger participants showed a significant increase in accuracy only on the 14-item Sternberg task. Electrophysiological analysis revealed a decrease in delta and theta PSD and an increase in high gamma PSD in both younger and older participants after verum stimulation. In conclusion, theta-gamma coupling is essential for WM and modulation of this coupling affects WM performance. The effects of TGCp-tACS on WM vary with age due to natural brain changes. To better support older adults, the study suggests several strategies to improve cognitive function, including: Adjusting stimulation parameters, applying stimulation to two sites, conducting multiple sessions, and using brain imaging techniques for precise targeting.
Collapse
Affiliation(s)
- Mohammed Abubaker
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia.
| | - Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Kateřina Pilátová
- Department of Information and Communication Technology in Medicine, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Petr Ježdík
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Eugen Kvašňák
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
24
|
Karimi N, Amirfattahi R, Zeidaabadi Nezhad A. Neuromodulation effect of temporal interference stimulation based on network computational model. Front Hum Neurosci 2024; 18:1436205. [PMID: 39386280 PMCID: PMC11461302 DOI: 10.3389/fnhum.2024.1436205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Deep brain stimulation (DBS) has long been the conventional method for targeting deep brain structures, but noninvasive alternatives like transcranial Temporal Interference Stimulation (tTIS) are gaining traction. Research has shown that alternating current influences brain oscillations through neural modulation. Understanding how neurons respond to the stimulus envelope, particularly considering tTIS's high-frequency carrier, is vital for elucidating its mechanism of neuronal engagement. This study aims to explore the focal effects of tTIS across varying amplitudes and modulation depths in different brain regions. An excitatory-inhibitory network using the Izhikevich neuron model was employed to investigate responses to tTIS and compare them with transcranial Alternating Current Stimulation (tACS). We utilized a multi-scale model that integrates brain tissue modeling and network computational modeling to gain insights into the neuromodulatory effects of tTIS on the human brain. By analyzing the parametric space, we delved into phase, amplitude, and frequency entrainment to elucidate how tTIS modulates endogenous alpha oscillations. Our findings highlight a significant difference in current intensity requirements between tTIS and tACS, with tTIS requiring notably higher intensity. We observed distinct network entrainment patterns, primarily due to tTIS's high-frequency component, whereas tACS exhibited harmonic entrainment that tTIS lacked. Spatial resolution analysis of tTIS, conducted via computational modeling and brain field distribution at a 13 Hz stimulation frequency, revealed modulation in deep brain areas, with minimal effects on the surface. Notably, we observed increased power within intrinsic and stimulation bands beneath the electrodes, attributed to the high stimulus signal amplitude. Additionally, Phase Locking Value (PLV) showed slight increments in non-deep areas. Our analysis indicates focal stimulation using tTIS, prompting further investigation into the necessity of high amplitudes to significantly affect deep brain regions, which warrants validation through clinical experiments.
Collapse
Affiliation(s)
| | - Rassoul Amirfattahi
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|
25
|
Schwippel T, Pupillo F, Feldman Z, Walker C, Townsend L, Rubinow D, Frohlich F. Closed-Loop Transcranial Alternating Current Stimulation for the Treatment of Major Depressive Disorder: An Open-Label Pilot Study. Am J Psychiatry 2024; 181:842-845. [PMID: 39108159 DOI: 10.1176/appi.ajp.20230838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/02/2024]
Affiliation(s)
- Tobias Schwippel
- Department of Psychiatry, University of North Carolina Chapel Hill, N.C. (Schwippel, Pupillo, Feldman, Rubinow, Frohlich); Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, N.C. (Schwippel, Pupillo, Feldman, Frohlich); Electromedical Products International, Inc., Mineral Wells, Tex. (Townsend); Pulvinar Neuro, LLC., Durham, N.C. (Townsend, Walker)
| | - Francesca Pupillo
- Department of Psychiatry, University of North Carolina Chapel Hill, N.C. (Schwippel, Pupillo, Feldman, Rubinow, Frohlich); Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, N.C. (Schwippel, Pupillo, Feldman, Frohlich); Electromedical Products International, Inc., Mineral Wells, Tex. (Townsend); Pulvinar Neuro, LLC., Durham, N.C. (Townsend, Walker)
| | - Zachary Feldman
- Department of Psychiatry, University of North Carolina Chapel Hill, N.C. (Schwippel, Pupillo, Feldman, Rubinow, Frohlich); Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, N.C. (Schwippel, Pupillo, Feldman, Frohlich); Electromedical Products International, Inc., Mineral Wells, Tex. (Townsend); Pulvinar Neuro, LLC., Durham, N.C. (Townsend, Walker)
| | - Christopher Walker
- Department of Psychiatry, University of North Carolina Chapel Hill, N.C. (Schwippel, Pupillo, Feldman, Rubinow, Frohlich); Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, N.C. (Schwippel, Pupillo, Feldman, Frohlich); Electromedical Products International, Inc., Mineral Wells, Tex. (Townsend); Pulvinar Neuro, LLC., Durham, N.C. (Townsend, Walker)
| | - Leah Townsend
- Department of Psychiatry, University of North Carolina Chapel Hill, N.C. (Schwippel, Pupillo, Feldman, Rubinow, Frohlich); Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, N.C. (Schwippel, Pupillo, Feldman, Frohlich); Electromedical Products International, Inc., Mineral Wells, Tex. (Townsend); Pulvinar Neuro, LLC., Durham, N.C. (Townsend, Walker)
| | - David Rubinow
- Department of Psychiatry, University of North Carolina Chapel Hill, N.C. (Schwippel, Pupillo, Feldman, Rubinow, Frohlich); Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, N.C. (Schwippel, Pupillo, Feldman, Frohlich); Electromedical Products International, Inc., Mineral Wells, Tex. (Townsend); Pulvinar Neuro, LLC., Durham, N.C. (Townsend, Walker)
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina Chapel Hill, N.C. (Schwippel, Pupillo, Feldman, Rubinow, Frohlich); Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, N.C. (Schwippel, Pupillo, Feldman, Frohlich); Electromedical Products International, Inc., Mineral Wells, Tex. (Townsend); Pulvinar Neuro, LLC., Durham, N.C. (Townsend, Walker)
| |
Collapse
|
26
|
Lee TW, Li CSR, Tramontano G. Tripod transcranial alternating current stimulation at 5-Hz to alleviate anxiety symptoms: A preliminary report. J Affect Disord 2024; 360:156-162. [PMID: 38821364 DOI: 10.1016/j.jad.2024.05.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
INTRODUCTION One of the most common applications of transcranial electrical stimulation (tES) at low current intensity is to induce a relaxed state or reduce anxiety. With technical advancement, different waveforms, montages, and parameters can be incorporated into the treatment regimen. We developed a novel protocol to treat individuals with anxiety disorders by transcranial alternating current stimulation (tACS). METHODS A total of 27 individuals with anxiety disorders underwent tACS treatment for 12 sessions, with each session lasting 25 min. tACS at 5 Hz was applied to F4 (1.0 mA), P4 (1.0 mA), and T8 (2.0 mA) EEG lead positions (tripod), with sinewave oscillation between T8 and F4/P4. We evaluated the primary and secondary outcomes using the Beck Anxiety Inventory (BAI) and neuropsychological assessments. RESULTS Of the 27 patients, 19 (70.4 %) experienced a reduction in symptom severity >50 %, with an average reduction of BAI 58.5 %. All reported side effects were mild, with itching or tingling being the most common complaint. No significant differences were noted in attention, linguistic working memory, visuospatial working memory, or long-term memory in neuropsychological assessments. CONCLUSION The results suggest the potential of this novel tripod tACS design as a rapid anxiety alleviator and the importance of a clinical trial to verify its efficacy.
Collapse
Affiliation(s)
- Tien-Wen Lee
- The NeuroCognitive Institute (NCI) Clinical Research Foundation, NJ 07856, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Wu Tsai Institute, Yale University, New Haven, CT 06520, USA.
| | - Gerald Tramontano
- The NeuroCognitive Institute (NCI) Clinical Research Foundation, NJ 07856, USA.
| |
Collapse
|
27
|
Millard SK, Speis DB, Skippen P, Chiang AKI, Chang WJ, Lin AJ, Furman AJ, Mazaheri A, Seminowicz DA, Schabrun SM. Can non-invasive brain stimulation modulate peak alpha frequency in the human brain? A systematic review and meta-analysis. Eur J Neurosci 2024; 60:4182-4200. [PMID: 38779808 DOI: 10.1111/ejn.16424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Peak alpha frequency (PAF), the dominant oscillatory frequency within the alpha range (8-12 Hz), is associated with cognitive function and several neurological conditions, including chronic pain. Manipulating PAF could offer valuable insight into the relationship between PAF and various functions and conditions, potentially providing new treatment avenues. This systematic review aimed to comprehensively synthesise effects of non-invasive brain stimulation (NIBS) on PAF speed. Relevant studies assessing PAF pre- and post-NIBS in healthy adults were identified through systematic searches of electronic databases (Embase, PubMed, PsychINFO, Scopus, The Cochrane Library) and trial registers. The Cochrane risk-of-bias tool was employed for assessing study quality. Quantitative analysis was conducted through pairwise meta-analysis when possible; otherwise, qualitative synthesis was performed. The review protocol was registered with PROSPERO (CRD42020190512) and the Open Science Framework (https://osf.io/2yaxz/). Eleven NIBS studies were included, all with a low risk-of-bias, comprising seven transcranial alternating current stimulation (tACS), three repetitive transcranial magnetic stimulation (rTMS), and one transcranial direct current stimulation (tDCS) study. Meta-analysis of active tACS conditions (eight conditions from five studies) revealed no significant effects on PAF (mean difference [MD] = -0.12, 95% CI = -0.32 to 0.08, p = 0.24). Qualitative synthesis provided no evidence that tDCS altered PAF and moderate evidence for transient increases in PAF with 10 Hz rTMS. However, it is crucial to note that small sample sizes were used, there was substantial variation in stimulation protocols, and most studies did not specifically target PAF alteration. Further studies are needed to determine NIBS's potential for modulating PAF.
Collapse
Affiliation(s)
- Samantha K Millard
- Faculty of Medicine, Wallace Wurth Building, University of New South Wales (UNSW), Kensington, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
| | - Darrah B Speis
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA
| | - Patrick Skippen
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Alan K I Chiang
- Faculty of Medicine, Wallace Wurth Building, University of New South Wales (UNSW), Kensington, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
| | - Wei-Ju Chang
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
- School of Health Science, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Andrew J Lin
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
| | - Andrew J Furman
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA
- Department of Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ali Mazaheri
- School of Psychology, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK
| | - David A Seminowicz
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Siobhan M Schabrun
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
- School of Physical Therapy, University of Western Ontario, London, Ontario, Canada
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, Ontario, Canada
| |
Collapse
|
28
|
Feng T, Zhang L, Wu Y, Tang L, Chen X, Li Y, Shan C. Exploring the Therapeutic Effects and Mechanisms of Transcranial Alternating Current Stimulation on Improving Walking Ability in Stroke Patients via Modulating Cerebellar Gamma Frequency Band-a Narrative Review. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1593-1603. [PMID: 37962773 PMCID: PMC11269344 DOI: 10.1007/s12311-023-01632-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
The cerebellum plays an important role in maintaining balance, posture control, muscle tone, and lower limb coordination in healthy individuals and stroke patients. At the same time, the relationship between cerebellum and motor learning has been widely concerned in recent years. Due to the relatively intact structure preservation and high plasticity after supratentorial stroke, non-invasive neuromodulation targeting the cerebellum is increasingly used to treat abnormal gait in stroke patients. The gamma frequency of transcranial alternating current stimulation (tACS) is commonly used to improve motor learning. It is an essential endogenous EEG oscillation in the gamma range during the swing phase, and rhythmic movement changes in the gait cycle. However, the effect of cerebellar tACS in the gamma frequency band on balance and walking after stroke remains unknown and requires further investigation.
Collapse
Affiliation(s)
- Tingyi Feng
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lichao Zhang
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuwei Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Tang
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xixi Chen
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanli Li
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunlei Shan
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Institute of Rehabilitation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
Lee TW, Tramontano G. Neural consequences of 5-Hz transcranial alternating current stimulation over right hemisphere: An eLORETA EEG study. Neurosci Lett 2024; 835:137849. [PMID: 38825146 DOI: 10.1016/j.neulet.2024.137849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
INTRODUCTION Transcranial alternating current stimulation (tACS) at 5-Hz to the right hemisphere can effectively alleviate anxiety symptoms. This study aimed to explore the neural mechanisms that drive the therapeutic benefits. METHODS We collected electroencephalography (EEG) data from 24 participants with anxiety disorders before and after a tACS treatment session. tACS was applied over the right hemisphere, with 1.0 mA at F4, 1.0 mA at P4, and 2.0 mA at T8 (10-10 EEG convention). With eLORETA, we transformed the scalp signals into the current source density in the cortex. We then assessed the differences between post- and pre-treatment brain maps across multiple spectra (delta to low gamma) with non-parametric statistics. RESULTS We observed a trend of heightened power in alpha and reduced power in mid-to-high beta and low gamma, in accord with the EEG markers of anxiolytic effects reported in previous studies. Additionally, we observed a consistent trend of de-synchronization at the stimulating sites across spectra. CONCLUSION tACS 5-Hz over the right hemisphere demonstrated EEG markers of anxiety reduction. The after-effects of tACS on the brain are intricate and cannot be explained solely by the widely circulated entrainment theory. Rather, our results support the involvement of plasticity mechanisms in the offline effects of tACS.
Collapse
Affiliation(s)
- Tien-Wen Lee
- The NeuroCognitive Institute (NCI) Clinical Research Foundation, NJ 07856, USA
| | - Gerald Tramontano
- The NeuroCognitive Institute (NCI) Clinical Research Foundation, NJ 07856, USA.
| |
Collapse
|
30
|
De Koninck BP, Brazeau D, Deshaies AA, Briand MM, Maschke C, Williams V, Arbour C, Williamson D, Duclos C, Bernard F, Blain-Moraes S, De Beaumont L. Modulation of brain activity in brain-injured patients with a disorder of consciousness in intensive care with repeated 10-Hz transcranial alternating current stimulation (tACS): a randomised controlled trial protocol. BMJ Open 2024; 14:e078281. [PMID: 38991682 PMCID: PMC11243138 DOI: 10.1136/bmjopen-2023-078281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
INTRODUCTION Therapeutic interventions for disorders of consciousness lack consistency; evidence supports non-invasive brain stimulation, but few studies assess neuromodulation in acute-to-subacute brain-injured patients. This study aims to validate the feasibility and assess the effect of a multi-session transcranial alternating current stimulation (tACS) intervention in subacute brain-injured patients on recovery of consciousness, related brain oscillations and brain network dynamics. METHODS AND ANALYSES The study is comprised of two phases: a validation phase (n=12) and a randomised controlled trial (n=138). Both phases will be conducted in medically stable brain-injured adult patients (traumatic brain injury and hypoxic-ischaemic encephalopathy), with a Glasgow Coma Scale score ≤12 after continuous sedation withdrawal. Recruitment will occur at the intensive care unit of a Level 1 Trauma Centre in Montreal, Quebec, Canada. The intervention includes a 20 min 10 Hz tACS at 1 mA intensity or a sham session over parieto-occipital cortical sites, repeated over five consecutive days. The current's frequency targets alpha brain oscillations (8-13 Hz), known to be associated with consciousness. Resting-state electroencephalogram (EEG) will be recorded four times daily for five consecutive days: pre and post-intervention, at 60 and 120 min post-tACS. Two additional recordings will be included: 24 hours and 1-week post-protocol. Multimodal measures (blood samples, pupillometry, behavioural consciousness assessments (Coma Recovery Scale-revised), actigraphy measures) will be acquired from baseline up to 1 week after the stimulation. EEG signal analysis will focus on the alpha bandwidth (8-13 Hz) using spectral and functional network analyses. Phone assessments at 3, 6 and 12 months post-tACS, will measure long-term functional recovery, quality of life and caregivers' burden. ETHICS AND DISSEMINATION Ethical approval for this study has been granted by the Research Ethics Board of the CIUSSS du Nord-de-l'Île-de-Montréal (Project ID 2021-2279). The findings of this two-phase study will be submitted for publication in a peer-reviewed academic journal and submitted for presentation at conferences. The trial's results will be published on a public trial registry database (ClinicalTrials.gov). TRIAL REGISTRATION NUMBER NCT05833568.
Collapse
Affiliation(s)
- Béatrice P De Koninck
- Psychology, University of Montreal, Montreal, Quebec, Canada
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
| | - Daphnee Brazeau
- Psychology, University of Montreal, Montreal, Quebec, Canada
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
| | | | - Marie-Michele Briand
- CIUSSS du Nord-de-l'Ile-de-Montreal, Montreal, Quebec, Canada
- IRDPQ, Montreal, Quebec, Canada
| | - Charlotte Maschke
- McGill University, Montreal, Quebec, Canada
- Montreal General Hospital, Montreal, Quebec, Canada
| | - Virginie Williams
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
| | - Caroline Arbour
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
- University of Montreal, Montreal, Quebec, Canada
| | | | - Catherine Duclos
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
- Anesthesiology and Pain Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Francis Bernard
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
- Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Stefanie Blain-Moraes
- Montreal General Hospital, Montreal, Quebec, Canada
- Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
| | - Louis De Beaumont
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
- Surgery, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Haslacher D, Cavallo A, Reber P, Kattein A, Thiele M, Nasr K, Hashemi K, Sokoliuk R, Thut G, Soekadar SR. Working memory enhancement using real-time phase-tuned transcranial alternating current stimulation. Brain Stimul 2024; 17:850-859. [PMID: 39029737 DOI: 10.1016/j.brs.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Prior work has shown that transcranial alternating current stimulation (tACS) of parietooccipital alpha oscillations (8-14 Hz) can modulate working memory (WM) performance as a function of the phase lag to endogenous oscillations. However, leveraging this effect using real-time phase-tuned tACS has not been feasible so far due to stimulation artifacts preventing continuous phase tracking. OBJECTIVES AND HYPOTHESIS We aimed to develop a system that tracks and adapts the phase lag between tACS and ongoing parietooccipital alpha oscillations in real-time. We hypothesized that such real-time phase-tuned tACS enhances working memory performance, depending on the phase lag. METHODS We developed real-time phase-tuned closed-loop amplitude-modulated tACS (CLAM-tACS) targeting parietooccipital alpha oscillations. CLAM-tACS was applied at six different phase lags relative to ongoing alpha oscillations while participants (N = 21) performed a working memory task. To exclude that behavioral effects of CLAM-tACS were mediated by other factors such as sensory co-stimulation, a second group of participants (N = 25) received equivalent stimulation of the forehead. RESULTS WM accuracy improved in a phase lag dependent manner (p = 0.0350) in the group receiving parietooccipital stimulation, with the strongest enhancement observed at 330° phase lag between tACS and ongoing alpha oscillations (p = 0.00273, d = 0.976). Moreover, across participants, modulation of frontoparietal alpha oscillations correlated both in amplitude (p = 0.0248) and phase (p = 0.0270) with the modulation of WM accuracy. No such effects were observed in the control group receiving frontal stimulation. CONCLUSIONS Our results demonstrate the feasibility and efficacy of real-time phase-tuned CLAM-tACS in modulating both brain activity and behavior, thereby paving the way for further investigation into brain-behavior relationships and the exploration of innovative therapeutic applications.
Collapse
Affiliation(s)
- David Haslacher
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alessia Cavallo
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology and Experimental Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Reber
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Psychology, University of California, Berkeley, CA, USA
| | - Anna Kattein
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Thiele
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Khaled Nasr
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kimia Hashemi
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rodika Sokoliuk
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gregor Thut
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, UK
| | - Surjo R Soekadar
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
32
|
Huang X, Wang J, Yi G. Frequency-domain analysis of membrane polarization in two-compartment model neurons with weak alternating electric fields. Cogn Neurodyn 2024; 18:1245-1264. [PMID: 38826658 PMCID: PMC11143154 DOI: 10.1007/s11571-023-09980-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/05/2023] [Accepted: 05/01/2023] [Indexed: 06/04/2024] Open
Abstract
Transcranial alternating current stimulation (tACS) is widely used in studying brain functions and the treatment of neuropsychiatric diseases in a frequency-specific manner. However, how tACS works on neuronal activity has been poorly understood. In this paper, we use linear system analysis to investigate how weak alternating electric fields (EFs) affect the membrane polarization of neurons in the frequency domain. Two biophysically realistic conductance-based two-compartment models of cortical pyramidal neurons are developed to simulate subthreshold membrane polarization with weak alternating EFs. We linearize the original nonlinear models at the stable equilibrium points and further simplify them to the two- or three-dimensional linear systems. Thus, we calculate the transfer functions of the low-dimensional linear models to model neuronal polarization patterns. Based on the transfer functions, we compute the amplitude- and phase-frequency characteristics to describe the relationship between weak EFs and membrane polarization. We also computed the parameters (gain, zeros, and poles) and structures (the number of zeros and poles) of transfer functions to reveal how neuronal intrinsic properties affect the parameters and structure of transfer functions and thus the frequency-dependent membrane polarization with alternating EFs. We find that the amplitude and phase of membrane polarization both strongly depended on EF frequency, and these frequency responses are modulated by the intrinsic properties of neurons. The compartment geometry, internal coupling conductance, and ionic currents (except Ih) affect the frequency-dependent polarization by mainly changing the gain and pole of transfer functions. Larger gain contributes to larger amplitude-frequency characteristics. The closer the pole is to the imaginary axis, the lower phase-frequency characteristics. However, Ih changes the structure of transfer function in the dendrite by introducing a new pair of zero-pole points, which decrease the amplitude at low frequencies and thus lead to a visible resonance. These results highlight the effects of passive properties and active ion currents on subthreshold membrane polarization with alternating EFs in the frequency domain, which provide an explainable connection of how intrinsic properties of neurons modulate the neuronal input-output functions with weak EF stimulation.
Collapse
Affiliation(s)
- Xuelin Huang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| |
Collapse
|
33
|
Fu W, Yu X, Lai M, Li Y, Yang Y, Qin Y, Yu M, Wang F, Wang C. Gamma oscillations induced by 40-Hz visual-auditory stimulation for the treatment of acute-phase limb motor rehabilitation after stroke: study protocol for a prospective randomized controlled trial. Trials 2024; 25:284. [PMID: 38671516 PMCID: PMC11046895 DOI: 10.1186/s13063-024-08121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The incidence of hemiparetic limb dysfunction reaches 85% in stroke patients, emerging as a critical factor influencing their daily lives. However, the effectiveness of current rehabilitation treatments is considerably limited, particularly in patients with upper extremity impairment. This study aims to conduct a prospective clinical trial to validate the safety and effectiveness of gamma oscillations induced by 40-Hz visual-auditory stimulation in treating post-stroke upper limb dysfunction and to explore the relevant mechanisms. METHODS This trial is a prospective, randomized controlled, double-blind study. All enrolled patients were randomly assigned to two groups. The experimental group received intervention through 40-Hz visual-auditory stimulation, while the control group underwent intervention with randomly matched visual-auditory stimulation frequencies. The primary efficacy endpoint is the change in motor function. Secondary efficacy endpoints include motor-evoked potentials, cerebral hemodynamic changes, neural network connectivity, and alterations in synaptic-related genes. Safety evaluation included major adverse events, all-cause mortality, and photosensitive epilepsy. Assessments will be conducted at baseline, after a 14-day treatment period, and during subsequent follow-up visits (at 3 and 6 months) post-treatment. The differences between the two groups will be compared. DISCUSSION This study will evaluate the safety and efficacy of gamma oscillations induced by 40-Hz visual-auditory stimulation in treating patients with upper extremity dysfunction after an acute cerebral stroke. Concurrently, we will explore potential mechanisms, including changes in synaptic-related genes and neural network connectivity. This trial is expected to provide evidence for the effectiveness of this new technique in treating upper extremity dysfunction after a stroke and improving patients' quality of life. TRIAL REGISTRATION The study protocol has been registered with the Chinese Clinical Trial Registry (ChiCTR) under registration number ChiCTR2300076579 on October 12, 2023.
Collapse
Affiliation(s)
- Wang Fu
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Xiaoming Yu
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Minghui Lai
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Yuanli Li
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yingting Yang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Yong Qin
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Min Yu
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Feng Wang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Cong Wang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China.
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China.
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Queensland Brain Institute, the University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
34
|
Fang Z, Sack AT, Leunissen I. The phase of tACS-entrained pre-SMA beta oscillations modulates motor inhibition. Neuroimage 2024; 290:120572. [PMID: 38490584 DOI: 10.1016/j.neuroimage.2024.120572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Inhibitory control has been linked to beta oscillations in the fronto-basal ganglia network. Here we aim to investigate the functional role of the phase of this oscillatory beta rhythm for successful motor inhibition. We applied 20 Hz transcranial alternating current stimulation (tACS) to the pre-supplementary motor area (pre-SMA) while presenting stop signals at 4 (Experiment 1) and 8 (Experiment 2) equidistant phases of the tACS entrained beta oscillations. Participants showed better inhibitory performance when stop signals were presented at the trough of the beta oscillation whereas their inhibitory control performance decreased with stop signals being presented at the oscillatory beta peak. These results are consistent with the communication through coherence theory, in which postsynaptic effects are thought to be greater when an input arrives at an optimal phase within the oscillatory cycle of the target neuronal population. The current study provides mechanistic insights into the neural communication principles underlying successful motor inhibition and may have implications for phase-specific interventions aimed at treating inhibitory control disorders such as PD or OCD.
Collapse
Affiliation(s)
- Zhou Fang
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Oxfordlaan 55, 6229EV, Maastricht, The Netherlands
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Oxfordlaan 55, 6229EV, Maastricht, The Netherlands; Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Inge Leunissen
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Oxfordlaan 55, 6229EV, Maastricht, The Netherlands.
| |
Collapse
|
35
|
Jiang Y, Ramasawmy P, Antal A. Uncorking the limitation-improving dual tasking using transcranial electrical stimulation and task training in the elderly: a systematic review. Front Aging Neurosci 2024; 16:1267307. [PMID: 38650865 PMCID: PMC11033383 DOI: 10.3389/fnagi.2024.1267307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction With aging, dual task (DT) ability declines and is more cognitively demanding than single tasks. Rapidly declining DT performance is regarded as a predictor of neurodegenerative disease. Task training and non-invasive transcranial electrical stimulation (tES) are methods applied to optimize the DT ability of the elderly. Methods A systematic search was carried out in the PUBMED, TDCS (transcranial direct current stimulation) databases, as well as Web of Science, and a qualitative analysis was conducted in 56 included studies. Aiming to summarize the results of studies that implemented tES, task training, or the combination for improving DT ability and related performance changes in healthy elderly and geriatric patients. For different approaches, the training procedures, parameters, as well as outcomes were discussed. Results Task training, particularly cognitive-motor DT training, has more notable effects on improving DT performance in the elderly when compared to the neuromodulation method. Discussion Anodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (L-DLPFC), or its combination with task training could be promising tools. However, additional evidence is required from aged healthy people and patients, as well as further exploration of electrode montage.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Neurology, University Medical Center, Georg August University of Göttingen, Göttingen, Germany
| | | | | |
Collapse
|
36
|
Mendes AJ, Lema A, Carvalho S, Leite J. Tailoring transcranial alternating current stimulation based on endogenous event-related P3 to modulate premature responses: a feasibility study. PeerJ 2024; 12:e17144. [PMID: 38584936 PMCID: PMC10998630 DOI: 10.7717/peerj.17144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/29/2024] [Indexed: 04/09/2024] Open
Abstract
Background Transcranial alternating current stimulation (tACS) is a brain stimulation method for modulating ongoing endogenous oscillatory activity at specified frequency during sensory and cognitive processes. Given the overlap between event-related potentials (ERPs) and event-related oscillations (EROs), ERPs can be studied as putative biomarkers of the effects of tACS in the brain during cognitive/sensory task performance. Objective This preliminary study aimed to test the feasibility of individually tailored tACS based on individual P3 (latency and frequency) elicited during a cued premature response task. Thus, tACS frequency was individually tailored to match target-P3 ERO for each participant. Likewise, the target onset in the task was adjusted to match the tACS phase and target-P3 latency. Methods Twelve healthy volunteers underwent tACS in two separate sessions while performing a premature response task. Target-P3 latency and ERO were calculated in a baseline block during the first session to allow a posterior synchronization between the tACS and the endogenous oscillatory activity. The cue and target-P3 amplitudes, delta/theta ERO, and power spectral density (PSD) were evaluated pre and post-tACS blocks. Results Target-P3 amplitude significantly increased after activetACS, when compared to sham. Evoked-delta during cue-P3 was decreased after tACS. No effects were found for delta ERO during target-P3 nor for the PSD and behavioral outcomes. Conclusion The present findings highlight the possible effect of phase synchronization between individualized tACS parameters and endogenous oscillatory activity, which may result in an enhancement of the underlying process (i.e., an increase of target-P3). However, an unsuccessful synchronization between tACS and EEG activity might also result in a decrease in the evoked-delta activity during cue-P3. Further studies are needed to optimize the parameters of endogenous activity and tACS synchronization. The implications of the current results for future studies, including clinical studies, are further discussed since transcranial alternating current stimulation can be individually tailored based on endogenous event-related P3 to modulate responses.
Collapse
Affiliation(s)
- Augusto J. Mendes
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, University of Geneva, Geneva, Switzerland
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, Universidade do Minho, Braga, Portugal
| | - Alberto Lema
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, Universidade do Minho, Braga, Portugal
| | - Sandra Carvalho
- Translational Neuropsychology Lab, Department of Education and Psychology, William James Center for Research (WJCR), University of Aveiro, Aveiro, Portugal
| | - Jorge Leite
- CINTESIS@RISE, CINTESIS.UPT, Universidade Portucalense Infante D. Henrique, Porto, Portugal
| |
Collapse
|
37
|
Zhao Z, Shirinpour S, Tran H, Wischnewski M, Opitz A. intensity- and frequency-specific effects of transcranial alternating current stimulation are explained by network dynamics. J Neural Eng 2024; 21:026024. [PMID: 38530297 DOI: 10.1088/1741-2552/ad37d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Objective. Transcranial alternating current stimulation (tACS) can be used to non-invasively entrain neural activity and thereby cause changes in local neural oscillatory power. Despite its increased use in cognitive and clinical neuroscience, the fundamental mechanisms of tACS are still not fully understood.Approach. We developed a computational neuronal network model of two-compartment pyramidal neurons (PY) and inhibitory interneurons, which mimic the local cortical circuits. We modeled tACS with electric field strengths that are achievable in human applications. We then simulated intrinsic network activity and measured neural entrainment to investigate how tACS modulates ongoing endogenous oscillations.Main results. The intensity-specific effects of tACS are non-linear. At low intensities (<0.3 mV mm-1), tACS desynchronizes neural firing relative to the endogenous oscillations. At higher intensities (>0.3 mV mm-1), neurons are entrained to the exogenous electric field. We then further explore the stimulation parameter space and find that the entrainment of ongoing cortical oscillations also depends on stimulation frequency by following an Arnold tongue. Moreover, neuronal networks can amplify the tACS-induced entrainment via synaptic coupling and network effects. Our model shows that PY are directly entrained by the exogenous electric field and drive the inhibitory neurons.Significance. The results presented in this study provide a mechanistic framework for understanding the intensity- and frequency-specific effects of oscillating electric fields on neuronal networks. This is crucial for rational parameter selection for tACS in cognitive studies and clinical applications.
Collapse
Affiliation(s)
- Zhihe Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Harry Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
38
|
Schulze-Bonhage A, Nitsche MA, Rotter S, Focke NK, Rao VR. Neurostimulation targeting the epileptic focus: Current understanding and perspectives for treatment. Seizure 2024; 117:183-192. [PMID: 38452614 DOI: 10.1016/j.seizure.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024] Open
Abstract
For the one third of people with epilepsy whose seizures are not controlled with medications, targeting the seizure focus with neurostimulation can be an effective therapeutic strategy. In this focused review, we summarize a discussion of targeted neurostimulation modalities during a workshop held in Frankfurt, Germany in September 2023. Topics covered include: available devices for seizure focus stimulation; alternating current (AC) and direct current (DC) stimulation to reduce focal cortical excitability; modeling approaches to simulate DC stimulation; reconciling the efficacy of focal stimulation with the network theory of epilepsy; and the emerging concept of 'neurostimulation zones,' which are defined as cortical regions where focal stimulation is most effective for reducing seizures and which may or may not directly involve the seizure onset zone. By combining experimental data, modeling results, and clinical outcome analysis, rational selection of target regions and stimulation parameters is increasingly feasible, paving the way for a broader use of neurostimulation for epilepsy in the future.
Collapse
Affiliation(s)
- Andreas Schulze-Bonhage
- Epilepsy Center, University Medical Center, University of Freiburg, Germany; European Reference Network EpiCare, Belgium; NeuroModul Basic, University of Freiburg, Freiburg, Germany.
| | - Michael A Nitsche
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, Germany; German Center for Mental Health (DZPG), Germany
| | - Stefan Rotter
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Germany
| | - Niels K Focke
- Epilepsy Center, Clinic for Neurology, University Medical Center Göttingen, Germany
| | - Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, USA
| |
Collapse
|
39
|
Brus J, Heng JA, Beliaeva V, Gonzalez Pinto F, Cassarà AM, Neufeld E, Grueschow M, Imbach L, Polanía R. Causal phase-dependent control of non-spatial attention in human prefrontal cortex. Nat Hum Behav 2024; 8:743-757. [PMID: 38366104 PMCID: PMC11045450 DOI: 10.1038/s41562-024-01820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
Non-spatial attention is a fundamental cognitive mechanism that allows organisms to orient the focus of conscious awareness towards sensory information that is relevant to a behavioural goal while shifting it away from irrelevant stimuli. It has been suggested that attention is regulated by the ongoing phase of slow excitability fluctuations of neural activity in the prefrontal cortex, a hypothesis that has been challenged with no consensus. Here we developed a behavioural and non-invasive stimulation paradigm aiming at modulating slow excitability fluctuations of the inferior frontal junction. Using this approach, we show that non-spatial attention can be selectively modulated as a function of the ongoing phase of exogenously modulated excitability states of this brain structure. These results demonstrate that non-spatial attention relies on ongoing prefrontal excitability states, which are probably regulated by slow oscillatory dynamics, that orchestrate goal-oriented behaviour.
Collapse
Affiliation(s)
- Jeroen Brus
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, Zurich, Switzerland.
| | - Joseph A Heng
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Valeriia Beliaeva
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Fabian Gonzalez Pinto
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Antonino Mario Cassarà
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Marcus Grueschow
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Lukas Imbach
- Swiss Epilepsy Center (Klinik Lengg), Zurich, Switzerland
| | - Rafael Polanía
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, Zurich, Switzerland.
| |
Collapse
|
40
|
Di Dona G, Zamfira DA, Battista M, Battaglini L, Perani D, Ronconi L. The role of parietal beta-band activity in the resolution of visual crowding. Neuroimage 2024; 289:120550. [PMID: 38382861 DOI: 10.1016/j.neuroimage.2024.120550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
Visual crowding is the difficulty in identifying an object when surrounded by neighbouring flankers, representing a bottleneck for object perception. Crowding arises not only from the activity of visual areas but also from parietal areas and fronto-parietal network activity. Parietal areas would provide the dorsal-to-ventral guidance for object identification and the fronto-parietal network would modulate the attentional resolution. Several studies highlighted the relevance of beta oscillations (15-25 Hz) in these areas for visual crowding and other connatural visual phenomena. In the present study, we investigated the differential contribution of beta oscillations in the parietal cortex and fronto-parietal network in the resolution of visual crowding. During a crowding task with letter stimuli, high-definition transcranial Alternating Current Stimulation (tACS) in the beta band (18 Hz) was delivered bilaterally on parietal sites, on the right fronto-parietal network, and in a sham regime. Resting-state EEG was recorded before and after stimulation to measure tACS-induced aftereffects. The influence of crowding was reduced only when tACS was delivered bilaterally on parietal sites. In this condition, beta power was reduced after the stimulation. Furthermore, the magnitude of tACS-induced aftereffects varied as a function of individual differences in beta oscillations. Results corroborate the link between parietal beta oscillations and visual crowding, providing fundamental insights on brain rhythms underlying the dorsal-to-ventral guidance in visual perception and suggesting that beta tACS can induce plastic changes in these areas. Remarkably, these findings open new possibilities for neuromodulatory interventions for disorders characterised by abnormal crowding, such as dyslexia.
Collapse
Affiliation(s)
- Giuseppe Di Dona
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy.
| | - Denisa Adina Zamfira
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy
| | - Martina Battista
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza S. Francesco 19, 55100 Lucca LU, Italy
| | - Luca Battaglini
- Dipartimento di Psicologia Generale, University of Padova, Via Venezia 8, 35131 Padova PD, Italy
| | - Daniela Perani
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy
| | - Luca Ronconi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy.
| |
Collapse
|
41
|
Meng H, Houston M, Zhang Y, Li S. Exploring the Prospects of Transcranial Electrical Stimulation (tES) as a Therapeutic Intervention for Post-Stroke Motor Recovery: A Narrative Review. Brain Sci 2024; 14:322. [PMID: 38671974 PMCID: PMC11047964 DOI: 10.3390/brainsci14040322] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Stroke survivors often have motor impairments and related functional deficits. Transcranial Electrical Stimulation (tES) is a rapidly evolving field that offers a wide range of capabilities for modulating brain function, and it is safe and inexpensive. It has the potential for widespread use for post-stroke motor recovery. Transcranial Direct Current Stimulation (tDCS), Transcranial Alternating Current Stimulation (tACS), and Transcranial Random Noise Stimulation (tRNS) are three recognized tES techniques that have gained substantial attention in recent years but have different mechanisms of action. tDCS has been widely used in stroke motor rehabilitation, while applications of tACS and tRNS are very limited. The tDCS protocols could vary significantly, and outcomes are heterogeneous. PURPOSE the current review attempted to explore the mechanisms underlying commonly employed tES techniques and evaluate their prospective advantages and challenges for their applications in motor recovery after stroke. CONCLUSION tDCS could depolarize and hyperpolarize the potentials of cortical motor neurons, while tACS and tRNS could target specific brain rhythms and entrain neural networks. Despite the extensive use of tDCS, the complexity of neural networks calls for more sophisticated modifications like tACS and tRNS.
Collapse
Affiliation(s)
- Hao Meng
- Department of Physical Medicine & Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael Houston
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA;
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA;
| | - Sheng Li
- Department of Physical Medicine & Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
| |
Collapse
|
42
|
Liu Y, Luo Y, Zhang N, Zhang X, Liu S. A scientometric review of the growing trends in transcranial alternating current stimulation (tACS). Front Hum Neurosci 2024; 18:1362593. [PMID: 38510513 PMCID: PMC10950919 DOI: 10.3389/fnhum.2024.1362593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Objective The aim of the current study was to provide a comprehensive picture of tACS-related research in the last decade through a bibliometric approach in order to systematically analyze the current status and cutting-edge trends in this field. Methods Articles and review articles related to tACS from 2013 to 2022 were searched on the Web of Science platform. A bibliometric analysis of authors, journals, countries, institutions, references, and keywords was performed using CiteSpace (6.2.R2), VOSviewer (1.6.19), Scimago Graphica (1.0.30), and Bibliometrix (4.2.2). Results A total of 602 papers were included. There was an overall increase in annual relevant publications in the last decade. The most contributing author was Christoph S. Herrmann. Brain Stimulation was the most prolific journal. The most prolific countries and institutions were Germany and Harvard University, respectively. Conclusion The findings reveal the development prospects and future directions of tACS and provide valuable references for researchers in the field. In recent years, the keywords "gamma," "transcranial direct current simulation," and "Alzheimer's disease" that have erupted, as well as many references cited in the outbreak, have provided certain clues for the mining of research prefaces. This will act as a guide for future researchers in determining the path of tACS research.
Collapse
Affiliation(s)
- Yuanli Liu
- Department of Psychology, School of Humanities and Social Sciences, Anhui Agricultural University, Hefei, China
| | - Yulin Luo
- Department of Psychology, School of Humanities and Social Sciences, Anhui Agricultural University, Hefei, China
| | - Na Zhang
- Department of Information Management, Anhui Vocational College of Police Officers, Hefei, China
| | - Xiaochu Zhang
- Department of Psychology, School of Humanities & Social Science, University of Science & Technology of China, Hefei, Anhui, China
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Shen Liu
- Department of Psychology, School of Humanities and Social Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
43
|
Manippa V, Palmisano A, Nitsche MA, Filardi M, Vilella D, Logroscino G, Rivolta D. Cognitive and Neuropathophysiological Outcomes of Gamma-tACS in Dementia: A Systematic Review. Neuropsychol Rev 2024; 34:338-361. [PMID: 36877327 PMCID: PMC10920470 DOI: 10.1007/s11065-023-09589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/23/2023] [Indexed: 03/07/2023]
Abstract
Despite the numerous pharmacological interventions targeting dementia, no disease-modifying therapy is available, and the prognosis remains unfavorable. A promising perspective involves tackling high-frequency gamma-band (> 30 Hz) oscillations involved in hippocampal-mediated memory processes, which are impaired from the early stages of typical Alzheimer's Disease (AD). Particularly, the positive effects of gamma-band entrainment on mouse models of AD have prompted researchers to translate such findings into humans using transcranial alternating current stimulation (tACS), a methodology that allows the entrainment of endogenous cortical oscillations in a frequency-specific manner. This systematic review examines the state-of-the-art on the use of gamma-tACS in Mild Cognitive Impairment (MCI) and dementia patients to shed light on its feasibility, therapeutic impact, and clinical effectiveness. A systematic search from two databases yielded 499 records resulting in 10 included studies and a total of 273 patients. The results were arranged in single-session and multi-session protocols. Most of the studies demonstrated cognitive improvement following gamma-tACS, and some studies showed promising effects of gamma-tACS on neuropathological markers, suggesting the feasibility of gamma-tACS in these patients anyhow far from the strong evidence available for mouse models. Nonetheless, the small number of studies and their wide variability in terms of aims, parameters, and measures, make it difficult to draw firm conclusions. We discuss results and methodological limitations of the studies, proposing possible solutions and future avenues to improve research on the effects of gamma-tACS on dementia.
Collapse
Affiliation(s)
- Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari "Aldo Moro", Bari, Italy.
| | - Annalisa Palmisano
- Department of Education, Psychology and Communication, University of Bari "Aldo Moro", Bari, Italy
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
- Department of Basic Medicine, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Davide Vilella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
- Department of Basic Medicine, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
44
|
Wischnewski M, Tran H, Zhao Z, Shirinpour S, Haigh ZJ, Rotteveel J, Perera ND, Alekseichuk I, Zimmermann J, Opitz A. Induced neural phase precession through exogenous electric fields. Nat Commun 2024; 15:1687. [PMID: 38402188 PMCID: PMC10894208 DOI: 10.1038/s41467-024-45898-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
The gradual shifting of preferred neural spiking relative to local field potentials (LFPs), known as phase precession, plays a prominent role in neural coding. Correlations between the phase precession and behavior have been observed throughout various brain regions. As such, phase precession is suggested to be a global neural mechanism that promotes local neuroplasticity. However, causal evidence and neuroplastic mechanisms of phase precession are lacking so far. Here we show a causal link between LFP dynamics and phase precession. In three experiments, we modulated LFPs in humans, a non-human primate, and computational models using alternating current stimulation. We show that continuous stimulation of motor cortex oscillations in humans lead to a gradual phase shift of maximal corticospinal excitability by ~90°. Further, exogenous alternating current stimulation induced phase precession in a subset of entrained neurons (~30%) in the non-human primate. Multiscale modeling of realistic neural circuits suggests that alternating current stimulation-induced phase precession is driven by NMDA-mediated synaptic plasticity. Altogether, the three experiments provide mechanistic and causal evidence for phase precession as a global neocortical process. Alternating current-induced phase precession and consequently synaptic plasticity is crucial for the development of novel therapeutic neuromodulation methods.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Harry Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Zhihe Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Zachary J Haigh
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jonna Rotteveel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nipun D Perera
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jan Zimmermann
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
45
|
Omae E, Shima A, Tanaka K, Yamada M, Cao Y, Nakamura T, Hoshiai H, Chiba Y, Irisawa H, Mizushima T, Mima T, Koganemaru S. Case report: An N-of-1 study using amplitude modulated transcranial alternating current stimulation between Broca's area and the right homotopic area to improve post-stroke aphasia with increased inter-regional synchrony. Front Hum Neurosci 2024; 18:1297683. [PMID: 38454909 PMCID: PMC10917932 DOI: 10.3389/fnhum.2024.1297683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
Over one-third of stroke survivors develop aphasia, and language dysfunction persists for the remainder of their lives. Brain language network changes in patients with aphasia. Recently, it has been reported that phase synchrony within a low beta-band (14-19 Hz) frequency between Broca's area and the homotopic region of the right hemisphere is positively correlated with language function in patients with subacute post-stroke aphasia, suggesting that synchrony is important for language recovery. Here, we employed amplitude-modulated transcranial alternating current stimulation (AM-tACS) to enhance synchrony within the low beta band frequency between Broca's area and the right homotopic area, and to improve language function in a case of chronic post-stroke aphasia. According to an N-of-1 study design, the patient underwent short-term intervention with a one-time intervention of 15 Hz-AM-tACS with Broca's and the right homotopic areas (real condition), sham stimulation (sham condition), and 15 Hz-AM-tACS with Broca's and the left parietal areas (control condition) and long-term intervention with sham and real conditions (10 sessions in total, each). In the short-term intervention, the reaction time and accuracy rate of the naming task improved after real condition, not after sham and control conditions. The synchrony between the stimulated areas evaluated by coherence largely increased after the real condition. In the long-term intervention, naming ability, verbal fluency and overall language function improved, with the increase in the synchrony, and those improvements were sustained for more than a month after real condition. This suggests that AM-tACS on Broca's area and the right homotopic areas may be a promising therapeutic approach for patients with poststroke aphasia.
Collapse
Affiliation(s)
- Erika Omae
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Neurobiology and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Shima
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuki Tanaka
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masako Yamada
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yedi Cao
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoyuki Nakamura
- Department of Rehabilitation Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Hajime Hoshiai
- Department of Rehabilitation Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Yumi Chiba
- Department of Rehabilitation Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Hiroshi Irisawa
- Department of Rehabilitation Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Takashi Mizushima
- Department of Rehabilitation Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Tatsuya Mima
- The Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, Japan
| | - Satoko Koganemaru
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Rehabilitation Medicine, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
46
|
Guerra A, Paparella G, Passaretti M, Costa D, Birreci D, De Biase A, Colella D, Angelini L, Cannavacciuolo A, Berardelli A, Bologna M. Theta-tACS modulates cerebellar-related motor functions and cerebellar-cortical connectivity. Clin Neurophysiol 2024; 158:159-169. [PMID: 38219405 DOI: 10.1016/j.clinph.2023.12.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVE To evaluate the effects of cerebellar transcranial alternating current stimulation (tACS) delivered at cerebellar-resonant frequencies, i.e., theta (θ) and gamma (γ), on upper limb motor performance and cerebellum-primary motor cortex (M1) connectivity, as assessed by cerebellar-brain inhibition (CBI), in healthy subjects. METHODS Participants underwent cerebellar-tACS while performing three cerebellar-dependent motor tasks: (i) rhythmic finger-tapping, (ii) arm reaching-to-grasp ('grasping') and (iii) arm reaching-to-point ('pointing') an object. Also, we evaluated possible changes in CBI during cerebellar-tACS. RESULTS θ-tACS decreased movement regularity during the tapping task and increased the duration of the pointing task compared to sham- and γ-tACS. Additionally, θ-tACS increased the CBI effectiveness (greater inhibition). The effect of θ-tACS on movement rhythm correlated with CBI changes and less tapping regularity corresponded to greater CBI. CONCLUSIONS Cerebellar-tACS delivered at the θ frequency modulates cerebellar-related motor behavior and this effect is, at least in part, mediated by changes in the cerebellar inhibitory output onto M1. The effects of θ-tACS may be due to the modulation of cerebellar neurons that resonate to the θ rhythm. SIGNIFICANCE These findings contribute to a better understanding of the physiological mechanisms of motor control and provide new evidence on cerebellar non-invasive brain stimulation.
Collapse
Affiliation(s)
- Andrea Guerra
- Parkinson and Movement Disorders Unit, Study Center on Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy; Padova Neuroscience Center (PNC), University of Padua, Padua, Italy
| | - Giulia Paparella
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | | | - Davide Costa
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Daniele Birreci
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Alessandro De Biase
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Donato Colella
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | | | | | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
47
|
Lai MH, Yu XM, Lu Y, Wang HL, Fu W, Zhou HX, Li YL, Hu J, Xia J, Hu Z, Shan CL, Wang F, Wang C. Effectiveness and brain mechanism of multi-target transcranial alternating current stimulation (tACS) on motor learning in stroke patients: study protocol for a randomized controlled trial. Trials 2024; 25:97. [PMID: 38291500 PMCID: PMC10826150 DOI: 10.1186/s13063-024-07913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) has proven to be an effective treatment for improving cognition, a crucial factor in motor learning. However, current studies are predominantly focused on the motor cortex, and the potential brain mechanisms responsible for the therapeutic effects are still unclear. Given the interconnected nature of motor learning within the brain network, we have proposed a novel approach known as multi-target tACS. This study aims to ascertain whether multi-target tACS is more effective than single-target stimulation in stroke patients and to further explore the potential underlying brain mechanisms by using techniques such as transcranial magnetic stimulation (TMS) and magnetic resonance imaging (MRI). METHODS This study employs a double-blind, sham-controlled, randomized controlled trial design with a 2-week intervention period. Both participants and outcome assessors will remain unaware of treatment allocation throughout the study. Thirty-nine stroke patients will be recruited and randomized into three distinct groups, including the sham tACS group (SS group), the single-target tACS group (ST group), and the multi-target tACS group (MT group), at a 1:1:1 ratio. The primary outcomes are series reaction time tests (SRTTs) combined with electroencephalograms (EEGs). The secondary outcomes include motor evoked potential (MEP), central motor conduction time (CMCT), short interval intracortical inhibition (SICI), intracortical facilitation (ICF), magnetic resonance imaging (MRI), Box and Block Test (BBT), and blood sample RNA sequencing. The tACS interventions for all three groups will be administered over a 2-week period, with outcome assessments conducted at baseline (T0) and 1 day (T1), 7 days (T2), and 14 days (T3) of the intervention phase. DISCUSSION The study's findings will determine the potential of 40-Hz tACS to improve motor learning in stroke patients. Additionally, it will compare the effectiveness of multi-target and single-target approaches, shedding light on their respective improvement effects. Through the utilization of techniques such as TMS and MRI, the study aims to uncover the underlying brain mechanisms responsible for the therapeutic impact. Furthermore, the intervention has the potential to facilitate motor learning efficiency, thereby contributing to the advancement of future stroke rehabilitation treatment. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2300073465. Registered on 11 July 2023.
Collapse
Affiliation(s)
- Ming-Hui Lai
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Xiao-Ming Yu
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Yan Lu
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Hong-Lin Wang
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Wang Fu
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Huan-Xia Zhou
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Yuan-Li Li
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jun Hu
- The Second Rehabilitation Hospital of Shanghai, Shanghai, 200435, China
| | - Jiayi Xia
- The Second Rehabilitation Hospital of Shanghai, Shanghai, 200435, China
| | - Zekai Hu
- The Second Rehabilitation Hospital of Shanghai, Shanghai, 200435, China
| | - Chun-Lei Shan
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Feng Wang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Cong Wang
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China.
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China.
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- The Second Rehabilitation Hospital of Shanghai, Shanghai, 200435, China.
- Queensland Brain Institute, the University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
48
|
Cruciani A, Pellegrino G, Todisco A, Motolese F, Sferruzzi M, Norata D, Santoro F, Musumeci G, Rossi M, Pilato F, Di Lazzaro V, Capone F. High-frequency transcranial alternating current stimulation matching individual frequency of somatosensory evoked high-frequency oscillations can modulate the somatosensory system through thalamocortical pathway. Cereb Cortex 2024; 34:bhad481. [PMID: 38100323 DOI: 10.1093/cercor/bhad481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
tACS (transcranial alternating current stimulation) is a technique for modulating brain activity through electrical current. Its effects depend on cortical entrainment, which is most effective when transcranial alternating current stimulation matches the brain's natural rhythm. High-frequency oscillations produced by external stimuli are useful for studying the somatosensory pathway. Our study aims to explore transcranial alternating current stimulation's impact on the somatosensory system when synchronized with individual high-frequency oscillation frequencies. We conducted a randomized, sham-controlled study with 14 healthy participants. The study had three phases: Individualized transcranial alternating current stimulation (matching the individual's high-frequency oscillation rhythm), Standard transcranial alternating current stimulation (600 Hz), and sham stimulation. We measured early and late HFO components after median nerve electrical stimulation at three time points: before (T0), immediately after (T1), and 10 min after transcranial alternating current stimulation (T2). Compared to Sham and Standard stimulation Individualized transcranial alternating current stimulation significantly enhanced high-frequency oscillations, especially the early component, immediately after stimulation and for at least 15 min. No other effects were observed for other high-frequency oscillation measures. In summary, our study provides initial evidence that transcranial alternating current stimulation synchronized with an individual's high-frequency oscillation frequency can precisely and time-specifically modulate thalamocortical activity. These insights may pave the way for innovative, personalized neuromodulation methods for the somatosensory system.
Collapse
Affiliation(s)
- Alessandro Cruciani
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Antonio Todisco
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| | - Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| | - Marco Sferruzzi
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| | - Davide Norata
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
- Neurological Clinic, Department of Experimental and Clinical Medicine (DIMSC), Marche Polytechnic University, 60121 Ancona, Italy
| | - Francesca Santoro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| | - Gabriella Musumeci
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| | - Mariagrazia Rossi
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| | - Fabio Pilato
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| |
Collapse
|
49
|
Harquel S, Cian C, Torlay L, Cousin E, Barraud PA, Bougerol T, Guerraz M. Modulation of Visually Induced Self-motion Illusions by α Transcranial Electric Stimulation over the Superior Parietal Cortex. J Cogn Neurosci 2024; 36:143-154. [PMID: 37870524 DOI: 10.1162/jocn_a_02074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The growing popularity of virtual reality systems has led to a renewed interest in understanding the neurophysiological correlates of the illusion of self-motion (vection), a phenomenon that can be both intentionally induced or avoided in such systems, depending on the application. Recent research has highlighted the modulation of α power oscillations over the superior parietal cortex during vection, suggesting the occurrence of inhibitory mechanisms in the sensorimotor and vestibular functional networks to resolve the inherent visuo-vestibular conflict. The present study aims to further explore this relationship and investigate whether neuromodulating these waves could causally affect the quality of vection. In a crossover design, 22 healthy volunteers received high amplitude and focused α-tACS (transcranial alternating current stimulation) over the superior parietal cortex while experiencing visually induced vection triggered by optokinetic stimulation. The tACS was tuned to each participant's individual α peak frequency, with θ-tACS and sham stimulation serving as controls. Overall, participants experienced better quality vection during α-tACS compared with control θ-tACS and sham stimulations, as quantified by the intensity of vection. The observed neuromodulation supports a causal relationship between parietal α oscillations and visually induced self-motion illusions, with their entrainment triggering overinhibition of the conflict within the sensorimotor and vestibular functional networks. These results confirm the potential of noninvasive brain stimulation for modulating visuo-vestibular conflicts, which could help to enhance the sense of presence in virtual reality environments.
Collapse
Affiliation(s)
- Sylvain Harquel
- Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, UMR5105, LPNC, Grenoble, France
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Corinne Cian
- Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, UMR5105, LPNC, Grenoble, France
- Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Laurent Torlay
- Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, UMR5105, LPNC, Grenoble, France
| | - Emilie Cousin
- Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, UMR5105, LPNC, Grenoble, France
| | - Pierre-Alain Barraud
- Université Grenoble-Alpes, CNRS, CHU Grenoble-Alpes, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Thierry Bougerol
- Centre Hospitalier Université Grenoble-Alpes, Pôle Psychiatrie, Grenoble, France
- Université Grenoble-Alpes, Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
| | - Michel Guerraz
- Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, UMR5105, LPNC, Grenoble, France
| |
Collapse
|
50
|
Fujiyama H, Williams A, Tan J, Levin O, Hinder MR. Comparison of online and offline applications of dual-site transcranial alternating current stimulation (tACS) over the pre-supplementary motor area (preSMA) and right inferior frontal gyrus (rIFG) for improving response inhibition. Neuropsychologia 2023; 191:108737. [PMID: 37995902 DOI: 10.1016/j.neuropsychologia.2023.108737] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/25/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
The efficacy of transcranial alternating current stimulation (tACS) is thought to be brain state-dependent, such that tACS during task performance would be hypothesised to offer greater potential for improving performance compared to tACS at rest. However, to date, no empirical study has tested this postulation. The current study compared the effects of dual-site beta tACS applied during a stop signal task (online) to the effects of the same tACS protocol applied prior to the task (offline) and a sham control stimulation in 53 young, healthy adults (32 female; 18-35 yrs). The right inferior frontal gyrus (rIFG) and centre (midline) of the pre-supplementary motor area (preSMA), which are thought to play critical roles in action cancellation, were simultaneously stimulated, sending phase-synchronised stimulation for 15 min with the aim of increasing functional connectivity. The offline group showed significant within-group improvement in response inhibition without showing overt task-related changes in functional connectivity measured with EEG connectivity analysis, suggesting offline tACS is efficacious in inducing behavioural changes potentially via a post-stimulation early plasticity mechanism. In contrast, neither the online nor sham group showed significant improvements in response inhibition. However, EEG connectivity analysis revealed significantly increased task-related functional connectivity following online stimulation and a medium effect size observed in correlation analyses suggested that an increase in functional connectivity in the beta band at rest was potentially associated with an improvement in response inhibition. Overall, the results indicate that both online and offline dual-site beta tACS can be beneficial in improving inhibitory control via distinct underlying mechanisms.
Collapse
Affiliation(s)
- Hakuei Fujiyama
- School of Psychology, Murdoch University, Western Australia, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Western Australia, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.
| | | | - Jane Tan
- School of Psychology, Murdoch University, Western Australia, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Western Australia, Australia
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania; Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, Catholic University Leuven, Leuven, Belgium
| | - Mark R Hinder
- Sensorimotor Neuroscience and Ageing Research Group, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Tasmania, Australia
| |
Collapse
|