1
|
Grillner S, Robertson B, Kotaleski JH. Basal Ganglia—A Motion Perspective. Compr Physiol 2020; 10:1241-1275. [DOI: 10.1002/cphy.c190045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
2
|
The globus pallidus orchestrates abnormal network dynamics in a model of Parkinsonism. Nat Commun 2020; 11:1570. [PMID: 32218441 PMCID: PMC7099038 DOI: 10.1038/s41467-020-15352-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 02/28/2020] [Indexed: 11/29/2022] Open
Abstract
The dynamical properties of cortico-basal ganglia (CBG) circuits are dramatically altered following the loss of dopamine in Parkinson’s disease (PD). The neural circuit dysfunctions associated with PD include spike-rate alteration concomitant with excessive oscillatory spike-synchronization in the beta frequency range (12–30 Hz). Which neuronal circuits orchestrate and propagate these abnormal neural dynamics in CBG remains unknown. In this work, we combine in vivo electrophysiological recordings with advanced optogenetic manipulations in normal and 6-OHDA rats to shed light on the mechanistic principle underlying circuit dysfunction in PD. Our results show that abnormal neural dynamics present in a rat model of PD do not rely on cortical or subthalamic nucleus activity but critically dependent on globus pallidus (GP) integrity. Our findings highlight the pivotal role played by the GP which operates as a hub nucleus capable of orchestrating firing rate and synchronization changes across CBG circuits both in normal and pathological conditions. Oscillatory changes between basal ganglia nuclei occur in Parkinson’s disease. Here the authors determine that the globus pallidus is the source of beta oscillation generation in a rodent model of the disease.
Collapse
|
3
|
Baaske MK, Kramer ER, Meka DP, Engler G, Engel AK, Moll CKE. Parkin deficiency perturbs striatal circuit dynamics. Neurobiol Dis 2020; 137:104737. [PMID: 31923460 DOI: 10.1016/j.nbd.2020.104737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/16/2019] [Accepted: 01/05/2020] [Indexed: 01/09/2023] Open
Abstract
Loss-of-function mutations in the parkin-encoding PARK2 gene are a frequent cause of young-onset, autosomal recessive Parkinson's disease (PD). Parkin knockout mice have no nigro-striatal neuronal loss but exhibit abnormalities of striatal dopamine transmission and cortico-striatal synaptic function. How these predegenerative changes observed in vitro affect neural dynamics at the intact circuit level, however, remains hitherto elusive. Here, we recorded from motor cortex, striatum and globus pallidus (GP) of anesthetized parkin-deficient mice to assess cortex-basal ganglia circuit dynamics and to dissect cell type-specific functional connectivity in the presymptomatic phase of genetic PD. While ongoing activity of presumed striatal spiny projection neurons and their downstream counterparts in the GP was not different from controls, parkin deficiency had a differential impact on striatal interneurons: In parkin-mutant mice, tonically active neurons displayed elevated activity levels. Baseline firing rates of transgenic striatal fast spiking interneurons (FSI), on the contrary, were reduced and the correlational structure of the FSI microcircuitry was disrupted. The entire transgenic striatal microcircuit showed enhanced and phase-shifted phase coupling to slow (1-3 Hz) cortical population oscillations. Unexpectedly, local field potentials recorded from striatum and GP of parkin-mutant mice robustly displayed amplified beta oscillations (~22 Hz), phase-coupled to cortex. Parkin deficiency selectively increased spike-field coupling of FSIs to beta oscillations. Our findings suggest that loss of parkin function leads to amplifications of synchronized cortico-striatal oscillations and an intrastriatal reconfiguration of interneuronal circuits. This presymptomatic disarrangement of dynamic functional connectivity may precede nigro-striatal neurodegeneration and predispose to imbalance of striatal outflow accompanying symptomatic PD.
Collapse
Affiliation(s)
- Magdalena K Baaske
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; Department of Neurology, University of Lübeck, 23538 Lübeck, Germany.
| | - Edgar R Kramer
- Center of Molecular Neurobiology, 20251 Hamburg, Germany; Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth PL6 8BU, UK
| | | | - Gerhard Engler
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian K E Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
4
|
Mishra P, Narayanan R. Disparate forms of heterogeneities and interactions among them drive channel decorrelation in the dentate gyrus: Degeneracy and dominance. Hippocampus 2019; 29:378-403. [PMID: 30260063 PMCID: PMC6420062 DOI: 10.1002/hipo.23035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 09/05/2018] [Accepted: 09/20/2018] [Indexed: 12/29/2022]
Abstract
The ability of a neuronal population to effectuate channel decorrelation, which is one form of response decorrelation, has been identified as an essential prelude to efficient neural encoding. To what extent are diverse forms of local and afferent heterogeneities essential in accomplishing channel decorrelation in the dentate gyrus (DG)? Here, we incrementally incorporated four distinct forms of biological heterogeneities into conductance-based network models of the DG and systematically delineate their relative contributions to channel decorrelation. First, to effectively incorporate intrinsic heterogeneities, we built physiologically validated heterogeneous populations of granule (GC) and basket cells (BC) through independent stochastic search algorithms spanning exhaustive parametric spaces. These stochastic search algorithms, which were independently constrained by experimentally determined ion channels and by neurophysiological signatures, revealed cellular-scale degeneracy in the DG. Specifically, in GC and BC populations, disparate parametric combinations yielded similar physiological signatures, with underlying parameters exhibiting significant variability and weak pair-wise correlations. Second, we introduced synaptic heterogeneities through randomization of local synaptic strengths. Third, in including adult neurogenesis, we subjected the valid model populations to randomized structural plasticity and matched neuronal excitability to electrophysiological data. We assessed networks comprising different combinations of these three local heterogeneities with identical or heterogeneous afferent inputs from the entorhinal cortex. We found that the three forms of local heterogeneities were independently and synergistically capable of mediating significant channel decorrelation when the network was driven by identical afferent inputs. However, when we incorporated afferent heterogeneities into the network to account for the divergence in DG afferent connectivity, the impact of all three forms of local heterogeneities was significantly suppressed by the dominant role of afferent heterogeneities in mediating channel decorrelation. Our results unveil a unique convergence of cellular- and network-scale degeneracy in the emergence of channel decorrelation in the DG, whereby disparate forms of local and afferent heterogeneities could synergistically drive input discriminability.
Collapse
Affiliation(s)
- Poonam Mishra
- Cellular Neurophysiology Laboratory, Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
5
|
Wang Z, Kuang P, Lin Y, Liu W, Lao W, Ji Y, Zhu H. Re-expression of voltage-gated sodium channel subtype Nav1.3 in the substantia nigra after dopamine depletion. Neurosci Lett 2018; 687:146-152. [DOI: 10.1016/j.neulet.2018.09.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/06/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
|
6
|
Abbasi S, Hudson AE, Maran SK, Cao Y, Abbasi A, Heck DH, Jaeger D. Robust transmission of rate coding in the inhibitory Purkinje cell to cerebellar nuclei pathway in awake mice. PLoS Comput Biol 2017; 13:e1005578. [PMID: 28617798 PMCID: PMC5491311 DOI: 10.1371/journal.pcbi.1005578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 06/29/2017] [Accepted: 05/15/2017] [Indexed: 11/18/2022] Open
Abstract
Neural coding through inhibitory projection pathways remains poorly understood. We analyze the transmission properties of the Purkinje cell (PC) to cerebellar nucleus (CN) pathway in a modeling study using a data set recorded in awake mice containing respiratory rate modulation. We find that inhibitory transmission from tonically active PCs can transmit a behavioral rate code with high fidelity. We parameterized the required population code in PC activity and determined that 20% of PC inputs to a full compartmental CN neuron model need to be rate-comodulated for transmission of a rate code. Rate covariance in PC inputs also accounts for the high coefficient of variation in CN spike trains, while the balance between excitation and inhibition determines spike rate and local spike train variability. Overall, our modeling study can fully account for observed spike train properties of cerebellar output in awake mice, and strongly supports rate coding in the cerebellum. Detailed computer simulations of biological neurons can make an important contribution to our understanding of how the brain works. In this paper we use such a model of a neuron that represents the output from the cerebellum. We can show that the inhibition this neuron type receives from Purkinje cells in the cerebellar cortex is well suited to pass a detailed time course of movement control to the output of the cerebellum. Importantly we find that this type of coding requires a population of Purkinje cells that pass the same temporal coding of spike rate to the output neurons in the cerebellar nuclei.
Collapse
Affiliation(s)
- Samira Abbasi
- Department of Biology, Emory University, Atlanta, GA, United States of America
- Department of Biomedical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Amber E. Hudson
- Department of Biology, Emory University, Atlanta, GA, United States of America
| | - Selva K. Maran
- Department of Biology, Emory University, Atlanta, GA, United States of America
| | - Ying Cao
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Ataollah Abbasi
- Computational Neuroscience Laboratory, Department of Biomedical Engineering, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Detlef H. Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Dieter Jaeger
- Department of Biology, Emory University, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
7
|
Shouno O, Tachibana Y, Nambu A, Doya K. Computational Model of Recurrent Subthalamo-Pallidal Circuit for Generation of Parkinsonian Oscillations. Front Neuroanat 2017; 11:21. [PMID: 28377699 PMCID: PMC5359256 DOI: 10.3389/fnana.2017.00021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/06/2017] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease is a movement disorder caused by dopamine depletion in the basal ganglia. Abnormally synchronized neuronal oscillations between 8 and 15 Hz in the basal ganglia are implicated in motor symptoms of Parkinson's disease. However, how these abnormal oscillations are generated and maintained in the dopamine-depleted state is unknown. Based on neural recordings in a primate model of Parkinson's disease and other experimental and computational evidence, we hypothesized that the recurrent circuit between the subthalamic nucleus (STN) and the external segment of the globus pallidus (GPe) generates and maintains parkinsonian oscillations, and that the cortical excitatory input to the STN amplifies them. To investigate this hypothesis through computer simulations, we developed a spiking neuron model of the STN-GPe circuit by incorporating electrophysiological properties of neurons and synapses. A systematic parameter search by computer simulation identified regions in the space of the intrinsic excitability of GPe neurons and synaptic strength from the GPe to the STN that reproduce normal and parkinsonian states. In the parkinsonian state, reduced firing of GPe neurons and increased GPe-STN inhibition trigger burst activities of STN neurons with strong post-inhibitory rebound excitation, which is usually subject to short-term depression. STN neuronal bursts are shaped into the 8–15 Hz, synchronous oscillations via recurrent interactions of STN and GPe neurons. Furthermore, we show that cortical excitatory input to the STN can amplify or suppress pathological STN oscillations depending on their phase and strength, predicting conditions of cortical inputs to the STN for suppressing oscillations.
Collapse
Affiliation(s)
- Osamu Shouno
- Okinawa Institute of Science and Technology Graduate UniversityOkinawa, Japan; Honda Research Institute Japan Co., Ltd.Saitama, Japan
| | - Yoshihisa Tachibana
- Division of System Neurophysiology, Department of Physiological Sciences, National Institute for Physiological Sciences, Graduate University for Advanced Studies Aichi, Japan
| | - Atsushi Nambu
- Division of System Neurophysiology, Department of Physiological Sciences, National Institute for Physiological Sciences, Graduate University for Advanced Studies Aichi, Japan
| | - Kenji Doya
- Okinawa Institute of Science and Technology Graduate University Okinawa, Japan
| |
Collapse
|
8
|
Zhu H, Wang Z, Jin J, Pei X, Zhao Y, Wu H, Lin W, Tao J, Ji Y. Parkinson’s disease-like forelimb akinesia induced by BmK I, a sodium channel modulator. Behav Brain Res 2016; 308:166-76. [DOI: 10.1016/j.bbr.2016.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/16/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022]
|
9
|
Abstract
Alkali metals, especially sodium and potassium, are plentiful and vital in biological systems. They take on important roles in health and disease. Such roles include the regulation of homeostasis, osmosis, blood pressure, electrolytic equilibria, and electric current. However, there is a limit to our present understanding; the ions have a great ability and capacity for action in health and disease, much greater than our current understanding. For the regulation of physiological homeostasis, there is a crucial regulator (renin-angiotensin system, RAS), found at both peripheral and central levels. Misregulation of the Na(+)-K(+) pump, and sodium channels in RAS are important for the understanding of disease progression, hypertension, diabetes, and neurodegenerative diseases, etc. In particular, RAS displays direct or indirect interaction important to Parkinson's disease (PD). In this chapter, the relationship between the regulation of sodium/potassium concentration and PD was sought. In addition, some recent biochemical and clinical findings are also discussed that help describe sodium and potassium in the context of traumatic brain injury (TBI). TBI is caused from the heavy striking of the head; this strongly affects ion flux in the affected tissue (brain) and damages cellular regulation systems. Thus, inappropriate concentrations of ions (hyper- and hyponatremia, and hyper- and hypokalemia) will perturb homeostasis giving rise to important and far reaching effects. These changes also impact osmotic pressure and the concentration of other metal ions, such as the calcium(II) ion.
Collapse
|
10
|
Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus. J Neurosci 2015; 35:11830-47. [PMID: 26311767 DOI: 10.1523/jneurosci.4672-14.2015] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping expression of the markers parvalbumin and Npas1. Our study provides evidence that parvalbumin and Npas1 neurons have different topologies within the basal ganglia.
Collapse
|
11
|
Phookan S, Sutton AC, Walling I, Smith A, O'Connor KA, Campbell JC, Calos M, Yu W, Pilitsis JG, Brotchie JM, Shin DS. Gap junction blockers attenuate beta oscillations and improve forelimb function in hemiparkinsonian rats. Exp Neurol 2015; 265:160-70. [PMID: 25622779 DOI: 10.1016/j.expneurol.2015.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/14/2015] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by akinesia, bradykinesia, resting tremors and postural instability. Although various models have been developed to explain basal ganglia (BG) pathophysiology in PD, the recent reports that dominant beta (β) oscillations (12-30Hz) in BG nuclei of PD patients and parkinsonian animals coincide with motor dysfunction has led to an emerging idea that these oscillations may be a characteristic of PD. Due to the recent realization of these oscillations, the cellular and network mechanism(s) that underlie this process remain ill-defined. Here, we postulate that gap junctions (GJs) can contribute to β oscillations in the BG of hemiparkinsonian rats and inhibiting their activity will disrupt neuronal synchrony, diminish these oscillations and improve motor function. To test this, we injected the GJ blockers carbenoxolone (CBX) or octanol in the right globus pallidus externa (GPe) of anesthetized hemiparkinsonian rats and noted whether subsequent changes in β oscillatory activity occurred using in vivo electrophysiology. We found that systemic treatment of 200mg/kg CBX attenuated normalized GPe β oscillatory activity from 6.10±1.29 arbitrary units (A.U.) (pre-CBX) to 2.48±0.87 A.U. (post-CBX) with maximal attenuation occurring 90.0±20.5min after injection. The systemic treatment of octanol (350mg/kg) also decreased β oscillatory activity in a similar manner to CBX treatment with β oscillatory activity decreasing from 3.58±0.89 (pre-octanol) to 2.57±1.08 after octanol injection. Next, 1μl CBX (200mg/kg) was directly injected into the GPe of anesthetized hemiparkinsonian rats; 59.2±19.0min after injection, β oscillations in this BG nucleus decreased from 3.62±1.17 A.U. to 1.67±0.62 A.U. Interestingly, we were able to elicit β oscillations in the GPe of naive non-parkinsonian rats by increasing GJ activity with 1μl trimethylamine (TMA, 500nM). Finally, we systemically injected CBX (200mg/kg) into hemiparkinsonian rats which attenuated dominant β oscillations in the right GPe and also improved left forepaw akinesia in the step test. Conversely, direct injection of TMA into the right GPe of naive rats induced contralateral left forelimb akinesia. Overall, our results suggest that GJs contribute to β oscillations in the GPe of hemiparkinsonian rats.
Collapse
Affiliation(s)
- Sujoy Phookan
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA
| | - Alexander C Sutton
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA
| | - Ian Walling
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA
| | - Autumn Smith
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA
| | - Katherine A O'Connor
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA
| | - Joannalee C Campbell
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA
| | - Megan Calos
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA
| | - Wilson Yu
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA
| | - Julie G Pilitsis
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA; Division of Neurosurgery, Albany Medical Center, Albany, NY USA
| | - Jonathan M Brotchie
- Division of Brain Imaging and Behavioral Neuroscience Systems, Toronto Western Research Institute, Toronto Western Hospital, Toronto, ON, Canada
| | - Damian S Shin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY USA.
| |
Collapse
|
12
|
Sekulić V, Lawrence JJ, Skinner FK. Using multi-compartment ensemble modeling as an investigative tool of spatially distributed biophysical balances: application to hippocampal oriens-lacunosum/moleculare (O-LM) cells. PLoS One 2014; 9:e106567. [PMID: 25360752 PMCID: PMC4215854 DOI: 10.1371/journal.pone.0106567] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/30/2014] [Indexed: 01/15/2023] Open
Abstract
Multi-compartmental models of neurons provide insight into the complex, integrative properties of dendrites. Because it is not feasible to experimentally determine the exact density and kinetics of each channel type in every neuronal compartment, an essential goal in developing models is to help characterize these properties. To address biological variability inherent in a given neuronal type, there has been a shift away from using hand-tuned models towards using ensembles or populations of models. In collectively capturing a neuron's output, ensemble modeling approaches uncover important conductance balances that control neuronal dynamics. However, conductances are never entirely known for a given neuron class in terms of its types, densities, kinetics and distributions. Thus, any multi-compartment model will always be incomplete. In this work, our main goal is to use ensemble modeling as an investigative tool of a neuron's biophysical balances, where the cycling between experiment and model is a design criterion from the start. We consider oriens-lacunosum/moleculare (O-LM) interneurons, a prominent interneuron subtype that plays an essential gating role of information flow in hippocampus. O-LM cells express the hyperpolarization-activated current (Ih). Although dendritic Ih could have a major influence on the integrative properties of O-LM cells, the compartmental distribution of Ih on O-LM dendrites is not known. Using a high-performance computing cluster, we generated a database of models that included those with or without dendritic Ih. A range of conductance values for nine different conductance types were used, and different morphologies explored. Models were quantified and ranked based on minimal error compared to a dataset of O-LM cell electrophysiological properties. Co-regulatory balances between conductances were revealed, two of which were dependent on the presence of dendritic Ih. These findings inform future experiments that differentiate between somatic and dendritic Ih, thereby continuing a cycle between model and experiment.
Collapse
Affiliation(s)
- Vladislav Sekulić
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| | - J. Josh Lawrence
- NIH COBRE Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
| | - Frances K. Skinner
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Schwab BC, Heida T, Zhao Y, Marani E, van Gils SA, van Wezel RJA. Synchrony in Parkinson's disease: importance of intrinsic properties of the external globus pallidus. Front Syst Neurosci 2013; 7:60. [PMID: 24109437 PMCID: PMC3789943 DOI: 10.3389/fnsys.2013.00060] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/13/2013] [Indexed: 12/15/2022] Open
Abstract
The mechanisms for the emergence and transmission of synchronized oscillations in Parkinson's disease, which are potentially causal to motor deficits, remain debated. Aside from the motor cortex and the subthalamic nucleus, the external globus pallidus (GPe) has been shown to be essential for the maintenance of these oscillations and plays a major role in sculpting neural network activity in the basal ganglia (BG). While neural activity of the healthy GPe shows almost no correlations between pairs of neurons, prominent synchronization in the β frequency band arises after dopamine depletion. Several studies have proposed that this shift is due to network interactions between the different BG nuclei, including the GPe. However, recent studies demonstrate an important role for the properties of neurons within the GPe. In this review, we will discuss these intrinsic GPe properties and review proposed mechanisms for activity decorrelation within the dopamine-intact GPe. Failure of the GPe to desynchronize correlated inputs can be a possible explanation for synchronization in the whole BG. Potential triggers of synchronization involve the enhancement of GPe-GPe inhibition and changes in ion channel function in GPe neurons.
Collapse
Affiliation(s)
- Bettina C Schwab
- Applied Analysis and Mathematical Physics, MIRA Institute of Technical Medicine and Biomedical Technology, University of Twente Enschede, Netherlands ; Biomedical Signals and Systems, MIRA Institute of Technical Medicine and Biomedical Technology, University of Twente Enschede, Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Wilson CJ. Active decorrelation in the basal ganglia. Neuroscience 2013; 250:467-82. [PMID: 23892007 DOI: 10.1016/j.neuroscience.2013.07.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 01/22/2023]
Abstract
The cytoarchitecturally-homogeneous appearance of the globus pallidus, subthalamic nucleus and substantia nigra has long been said to imply a high degree of afferent convergence and sharing of inputs by nearby neurons. Moreover, axon collaterals of neurons in the external segment of the globus pallidus and the substantia nigra pars reticulata arborize locally and make inhibitory synapses on other cells of the same type. These features suggest that the connectivity of the basal ganglia may impose spike-time correlations among the cells, and it has been puzzling that experimental studies have failed to demonstrate such correlations. One possible solution arises from studies of firing patterns in basal ganglia cells, which reveal that they are nearly all pacemaker cells. Their high rate of firing does not depend on synaptic excitation, but they fire irregularly because a dense barrage of synaptic inputs normally perturbs the timing of their autonomous activity. Theoretical and computational studies show that the responses of repetitively-firing neurons to shared input or mutual synaptic coupling often defy classical intuitions about temporal synaptic integration. The patterns of spike-timing among such neurons depend on the ionic mechanism of pacemaking, the level of background uncorrelated cellular and synaptic noise, and the firing rates of the neurons, as well as the properties of their synaptic connections. Application of these concepts to the basal ganglia circuitry suggests that the connectivity and physiology of these nuclei may be configured to prevent the establishment of permanent spike-timing relationships between neurons. The development of highly synchronous oscillatory patterns of activity in Parkinson's disease may result from the loss of pacemaking by some basal ganglia neurons, and accompanying breakdown of the mechanisms responsible for active decorrelation.
Collapse
Affiliation(s)
- C J Wilson
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States.
| |
Collapse
|
15
|
Deister CA, Dodla R, Barraza D, Kita H, Wilson CJ. Firing rate and pattern heterogeneity in the globus pallidus arise from a single neuronal population. J Neurophysiol 2012; 109:497-506. [PMID: 23114208 DOI: 10.1152/jn.00677.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intrinsic heterogeneity in networks of interconnected cells has profound effects on synchrony and spike-time reliability of network responses. Projection neurons of the globus pallidus (GPe) are interconnected by GABAergic inhibitory synapses and in vivo fire continuously but display significant rate and firing pattern heterogeneity. Despite being deprived of most of their synaptic inputs, GPe neurons in slices also fire continuously and vary greatly in their firing rate (1-70 spikes/s) and in regularity of their firing. We asked if this rate and pattern heterogeneity arises from separate cell types differing in rate, local synaptic interconnections, or variability of intrinsic properties. We recorded the resting discharge of GPe neurons using extracellular methods both in vivo and in vitro. Spike-to-spike variability (jitter) was measured as the standard deviation of interspike intervals. Firing rate and jitter covaried continuously, with slow firing being associated with higher variability than faster firing, as would be expected from heterogeneity arising from a single physiologically distinct cell type. The relationship between rate and jitter was unaffected by blockade of GABA and glutamate receptors. When the firing rate of individual neurons was altered with constant current, jitter changed to maintain the rate-jitter relationship seen across neurons. Long duration (30-60 min) recordings showed slow and spontaneous bidirectional drift in rate similar to the across-cell heterogeneity. Paired recordings in vivo and in vitro showed that individual cells wandered in rate independently of each other. Input conductance and rate wandered together, in a manner suggestive that both were due to fluctuations of an inward current.
Collapse
Affiliation(s)
- Christopher A Deister
- Department of Biology and Neurosciences Institute, University of Texas, San Antonio, Texas, USA.
| | | | | | | | | |
Collapse
|
16
|
He Y, Wang J, Gao G, Zhang G. Reduced information transmission in the internal segment of the globus pallidus of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced rhesus monkey models of Parkinson's disease. Neural Regen Res 2012; 7:2028-35. [PMID: 25624834 PMCID: PMC4296422 DOI: 10.3969/j.issn.1673-5374.2012.26.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/11/2012] [Indexed: 11/06/2022] Open
Abstract
Rhesus monkey models of Parkinson's disease were induced by injection of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neural firings were recorded using microelectrodes placed in the internal segment of the globus pallidus. The wavelets and power spectra show gradual power reduction during the disease process along with increased firing rates in the Parkinson's disease state. Singular values of coefficients decreased considerably during tremor-related activity as well as in the Parkinson's disease state compared with normal signals, revealing that higher-frequency components weaken when Parkinson's disease occurs. We speculate that the death of neurons could be reflected by irregular frequency spike trains, and that wavelet packet decomposition can effectively detect the degradation of neurons and the loss of information transmission in the neural circuitry.
Collapse
Affiliation(s)
- Yan He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, National Engineering Research Center of Health Care and Medical Devices; Xi’an Jiaotong University Branch, Xi’an 710049, Shaanxi Province, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, National Engineering Research Center of Health Care and Medical Devices; Xi’an Jiaotong University Branch, Xi’an 710049, Shaanxi Province, China,
Corresponding author: Jue Wang, Professor, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, National Engineering Research Center of Health Care and Medical Devices; Xi’an Jiaotong University Branch, Xi’an 710049, Shaanxi Province, China (N20120507005/YJ)
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital Affiliated to the Fourth Military Medical University, Xi’an 710038, Shaanxi Province, China
| | - Guangjun Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, National Engineering Research Center of Health Care and Medical Devices; Xi’an Jiaotong University Branch, Xi’an 710049, Shaanxi Province, China
| |
Collapse
|
17
|
Skinner FK. Cellular-based modeling of oscillatory dynamics in brain networks. Curr Opin Neurobiol 2012; 22:660-9. [DOI: 10.1016/j.conb.2012.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/23/2012] [Accepted: 02/05/2012] [Indexed: 11/27/2022]
|
18
|
Schultheiss NW, Edgerton JR, Jaeger D. Robustness, variability, phase dependence, and longevity of individual synaptic input effects on spike timing during fluctuating synaptic backgrounds: a modeling study of globus pallidus neuron phase response properties. Neuroscience 2012; 219:92-110. [PMID: 22659567 DOI: 10.1016/j.neuroscience.2012.05.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
Abstract
A neuron's phase response curve (PRC) shows how inputs arriving at different times during the spike cycle differentially affect the timing of subsequent spikes. Using a full morphological model of a globus pallidus (GP) neuron, we previously demonstrated that dendritic conductances shape the PRC in a spike frequency-dependent manner, suggesting different functional roles of perisomatic and distal dendritic synapses in the control of patterned network activity. In the present study we extend this analysis to examine the impact of physiologically realistic high conductance states on somatic and dendritic PRCs and the time course of spike train perturbations. First, we found that average somatic and dendritic PRCs preserved their shapes and spike frequency dependence when the model was driven by spatially-distributed, stochastic conductance inputs rather than tonic somatic current. However, responses to inputs during specific synaptic backgrounds often deviated substantially from the average PRC. Therefore, we analyzed the interactions of PRC stimuli with transient fluctuations in the synaptic background on a trial-by-trial basis. We found that the variability in responses to PRC stimuli and the incidence of stimulus-evoked added or skipped spikes were stimulus-phase-dependent and reflected the profile of the average PRC, suggesting commonality in the underlying mechanisms. Clear differences in the relation between the phase of input and variability of spike response between dendritic and somatic inputs indicate that these regions generally represent distinct dynamical subsystems of synaptic integration with respect to influencing the stability of spike time attractors generated by the overall synaptic conductance.
Collapse
Affiliation(s)
- N W Schultheiss
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|