1
|
Ohe Y, Hasebe M, Hamanaka Y, Goto SG, Shiga S. Photoperiodic plasticity of pigment-dispersing factor immunoreactive fibers projecting toward prothoracicotropic hormone neurons in flesh fly Sarcophaga similis larvae. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:261-276. [PMID: 39812695 DOI: 10.1007/s00359-024-01729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
Larvae of the flesh fly, Sarcophaga similis exhibit photoperiodic responses to control pupal diapause. Although the external coincidence model is applicable to S. similis photoperiodism, it remains unknown how the circadian clock system integrates day-length information. To explore the mechanisms, we examined the neural circuitry involving circadian clock lateral neurons (LNs) and prothoracicotropic hormone (PTTH) neurons. We also examined the photoperiodic effects on LN-fiber patterns in third-instar S. similis larvae. Immunohistochemistry showed that the clock protein PERIOD and the neuropeptide pigment-dispersing factor (PDF) were co-localized in four cells per brain hemisphere, and we named these PDF-LNs of S. similis. Single-cell polymerase chain reaction of backfilled neurons from the ring gland showed that two pairs of pars lateralis neurons with contralateral axons (PL-c neurons) to the ring gland expressed ptth. Double labeling with immunohistochemistry and backfills revealed that PDF-immunoreactive varicose fibers projected close to fibers from PL-c neurons. short neuropeptide f (snpf) receptor and glutamate-gated chloride channel but not pdf receptor were expressed in PL-c neurons. sNPF and L-glutamate but not PDF acutely inhibited the spontaneous firing activity of PL-c neurons. The number of PDF-immunoreactive varicosities of PDF-LNs in the dorsal protocerebrum was significantly higher under short-day than that under long-day conditions in a time-dependent manner. These results suggest that sNPF and/or glutamate signaling to PTTH neurons and PDF-LNs form a potential neural circuity for the photoperiodic control of pupal diapause and that photoperiod modifies the connectivity strength between PDF-LNs and their post- or pre-neurons in the circuitry.
Collapse
Affiliation(s)
- Yutaro Ohe
- Graduate School of Science, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Masaharu Hasebe
- Graduate School of Science, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Yoshitaka Hamanaka
- Graduate School of Science, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Shin G Goto
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto-cho, Sumiyoshi, Osaka, Osaka, 558-8585, Japan
| | - Sakiko Shiga
- Graduate School of Science, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
2
|
Summers F, Tuske AM, Puglisi C, Wong A, Rojo A, Swierk L. Ambient light spectrum affects larval Mexican jumping bean moth (Cydia saltitans) behavior despite light obstruction from host seed. Behav Processes 2024; 221:105093. [PMID: 39191315 DOI: 10.1016/j.beproc.2024.105093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Spectral differences in ambient light can affect animal behavior and convey crucial information about an individual's environment. The ability to perceive and respond to differences in ambient light varies widely by taxa and is shaped by a species' ecology. Mexican jumping bean moths, Cydia saltitans, spend their entire larval period encased in fallen host seeds and contend with potentially lethal environmental temperatures when host seeds are in direct sunlight. We investigate if and how C. saltitans larvae in host seeds respond to lighting conditions associated with these thermal risks. In a temperature-controlled experiment, we identified that larvae demonstrated distinct behavioral ("jumping") responses corresponding to four lighting treatments (white, red, green, and purple), despite extremely minimal light penetration through host seed walls. Red light induced the greatest larval activity (measured by probability of movement and by displacement from origin), suggesting that larvae have mechanisms to perceive low levels of red light and/or to detect subtle increases in heat produced by red/near infrared-biased light spectra, possibly providing them with an early-warning mechanism against thermal stress. Our findings highlight the interplay of environmental lighting, behavior, and potential thermosensory adaptations in a species with a visually constrained environment.
Collapse
Affiliation(s)
- Faith Summers
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Amber M Tuske
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Cassandra Puglisi
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Annie Wong
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Andrés Rojo
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Lindsey Swierk
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA; Amazon Conservatory for Tropical Studies, Iquitos, Loreto 16001, Perú.
| |
Collapse
|
3
|
Liu J, Wang Y, Liu X, Han J, Tian Y. Spatiotemporal changes in Netrin/Dscam1 signaling dictate axonal projection direction in Drosophila small ventral lateral clock neurons. eLife 2024; 13:RP96041. [PMID: 39052321 PMCID: PMC11272162 DOI: 10.7554/elife.96041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Axon projection is a spatial- and temporal-specific process in which the growth cone receives environmental signals guiding axons to their final destination. However, the mechanisms underlying changes in axonal projection direction without well-defined landmarks remain elusive. Here, we present evidence showcasing the dynamic nature of axonal projections in Drosophila's small ventral lateral clock neurons (s-LNvs). Our findings reveal that these axons undergo an initial vertical projection in the early larval stage, followed by a subsequent transition to a horizontal projection in the early-to-mid third instar larvae. The vertical projection of s-LNv axons correlates with mushroom body calyx expansion, while the s-LNv-expressed Down syndrome cell adhesion molecule (Dscam1) interacts with Netrins to regulate the horizontal projection. During a specific temporal window, locally newborn dorsal clock neurons secrete Netrins, facilitating the transition of axonal projection direction in s-LNvs. Our study establishes a compelling in vivo model to probe the mechanisms of axonal projection direction switching in the absence of clear landmarks. These findings underscore the significance of dynamic local microenvironments in the complementary regulation of axonal projection direction transitions.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Yuedong Wang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Xian Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
- Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Yao Tian
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| |
Collapse
|
4
|
Parasram K, Zuccato A, Shin M, Willms R, DeVeale B, Foley E, Karpowicz P. The emergence of circadian timekeeping in the intestine. Nat Commun 2024; 15:1788. [PMID: 38413599 PMCID: PMC10899604 DOI: 10.1038/s41467-024-45942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
The circadian clock is a molecular timekeeper, present from cyanobacteria to mammals, that coordinates internal physiology with the external environment. The clock has a 24-h period however development proceeds with its own timing, raising the question of how these interact. Using the intestine of Drosophila melanogaster as a model for organ development, we track how and when the circadian clock emerges in specific cell types. We find that the circadian clock begins abruptly in the adult intestine and gradually synchronizes to the environment after intestinal development is complete. This delayed start occurs because individual cells at earlier stages lack the complete circadian clock gene network. As the intestine develops, the circadian clock is first consolidated in intestinal stem cells with changes in Ecdysone and Hnf4 signalling influencing the transcriptional activity of Clk/cyc to drive the expression of tim, Pdp1, and vri. In the mature intestine, stem cell lineage commitment transiently disrupts clock activity in differentiating progeny, mirroring early developmental clock-less transitions. Our data show that clock function and differentiation are incompatible and provide a paradigm for studying circadian clocks in development and stem cell lineages.
Collapse
Affiliation(s)
- Kathyani Parasram
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Amy Zuccato
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Minjeong Shin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Reegan Willms
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Brian DeVeale
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Phillip Karpowicz
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
5
|
Poe AR, Zhu L, Szuperak M, McClanahan PD, Anafi RC, Scholl B, Thum AS, Cavanaugh DJ, Kayser MS. Developmental emergence of sleep rhythms enables long-term memory in Drosophila. SCIENCE ADVANCES 2023; 9:eadh2301. [PMID: 37683005 PMCID: PMC10491288 DOI: 10.1126/sciadv.adh2301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
In adulthood, sleep-wake rhythms are one of the most prominent behaviors under circadian control. However, during early life, sleep is spread across the 24-hour day. The mechanism through which sleep rhythms emerge, and consequent advantage conferred to a juvenile animal, is unknown. In the second-instar Drosophila larvae (L2), like in human infants, sleep is not under circadian control. We identify the precise developmental time point when the clock begins to regulate sleep in Drosophila, leading to emergence of sleep rhythms in early third-instars (L3). At this stage, a cellular connection forms between DN1a clock neurons and arousal-promoting Dh44 neurons, bringing arousal under clock control to drive emergence of circadian sleep. Last, we demonstrate that L3 but not L2 larvae exhibit long-term memory (LTM) of aversive cues and that this LTM depends upon deep sleep generated once sleep rhythms begin. We propose that the developmental emergence of circadian sleep enables more complex cognitive processes, including the onset of enduring memories.
Collapse
Affiliation(s)
- Amy R. Poe
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucy Zhu
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Milan Szuperak
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ron C. Anafi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin Scholl
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andreas S. Thum
- Department of Genetics, Institute of Biology, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | | | - Matthew S. Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Yamaguchi A, Wu R, McNulty P, Karagyozov D, Mihovilovic Skanata M, Gershow M. Multi-neuronal recording in unrestrained animals with all acousto-optic random-access line-scanning two-photon microscopy. Front Neurosci 2023; 17:1135457. [PMID: 37389365 PMCID: PMC10303936 DOI: 10.3389/fnins.2023.1135457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/18/2023] [Indexed: 07/01/2023] Open
Abstract
To understand how neural activity encodes and coordinates behavior, it is desirable to record multi-neuronal activity in freely behaving animals. Imaging in unrestrained animals is challenging, especially for those, like larval Drosophila melanogaster, whose brains are deformed by body motion. A previously demonstrated two-photon tracking microscope recorded from individual neurons in freely crawling Drosophila larvae but faced limits in multi-neuronal recording. Here we demonstrate a new tracking microscope using acousto-optic deflectors (AODs) and an acoustic GRIN lens (TAG lens) to achieve axially resonant 2D random access scanning, sampling along arbitrarily located axial lines at a line rate of 70 kHz. With a tracking latency of 0.1 ms, this microscope recorded activities of various neurons in moving larval Drosophila CNS and VNC including premotor neurons, bilateral visual interneurons, and descending command neurons. This technique can be applied to the existing two-photon microscope to allow for fast 3D tracking and scanning.
Collapse
Affiliation(s)
- Akihiro Yamaguchi
- Department of Physics, New York University, New York, NY, United States
| | - Rui Wu
- Department of Physics, New York University, New York, NY, United States
| | - Paul McNulty
- Department of Physics, New York University, New York, NY, United States
| | - Doycho Karagyozov
- Department of Physics, New York University, New York, NY, United States
| | | | - Marc Gershow
- Department of Physics, New York University, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
- Neuroscience Institute, New York University, New York, NY, United States
| |
Collapse
|
7
|
Au DD, Liu JC, Park SJ, Nguyen TH, Dimalanta M, Foden AJ, Holmes TC. Drosophila photoreceptor systems converge in arousal neurons and confer light responsive robustness. Front Neurosci 2023; 17:1160353. [PMID: 37274190 PMCID: PMC10235467 DOI: 10.3389/fnins.2023.1160353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023] Open
Abstract
Lateral ventral neurons (LNvs) in the fly circadian neural circuit mediate behaviors other than clock resetting, including light-activated acute arousal. Converging sensory inputs often confer functional redundancy. The LNvs have three distinct light input pathways: (1) cell autonomously expressed cryptochrome (CRY), (2) rhodopsin 7 (Rh7), and (3) synaptic inputs from the eyes and other external photoreceptors that express opsins and CRY. We explored the relative photoelectrical and behavioral input contributions of these three photoreceptor systems to determine their functional impact in flies. Patch-clamp electrophysiology measuring light evoked firing frequency (FF) was performed on large LNvs (l-LNvs) in response to UV (365 nm), violet (405 nm), blue (450 nm), or red (635 nm) LED light stimulation, testing controls versus mutants that lack photoreceptor inputs gl60j, cry-null, rh7-null, and double mutant gl60j-cry-null flies. For UV, violet, and blue short wavelength light inputs, all photoreceptor mutants show significantly attenuated action potential FF responses measured in the l-LNv. In contrast, red light FF responses are only significantly attenuated in double mutant gl60j-cry-null flies. We used a light-pulse arousal assay to compare behavioral responses to UV, violet, blue and red light of control and light input mutants, measuring the awakening arousal response of flies during subjective nighttime at two different intensities to capture potential threshold differences (10 and 400 μW/cm2). The light arousal behavioral results are similar to the electrophysiological results, showing significant attenuation of behavioral light responses for mutants compared to control. These results show that the different LNv convergent photoreceptor systems are integrated and together confer functional redundancy for light evoked behavioral arousal.
Collapse
Affiliation(s)
- David D. Au
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Jenny C. Liu
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Soo Jee Park
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Thanh H. Nguyen
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Mia Dimalanta
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Alexander J. Foden
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Todd C. Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
- Center for Neural Circuit Mapping, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
8
|
Hirata K, Shiga S. Bolwig Organ and Its Role in the Photoperiodic Response of Sarcophaga similis Larvae. INSECTS 2023; 14:115. [PMID: 36835683 PMCID: PMC9959995 DOI: 10.3390/insects14020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Flesh-fly Sarcophaga similis larvae exhibit a photoperiodic response, in which short days induce pupal diapause for seasonal adaptation. Although the spectral sensitivity of photoperiodic photoreception is known, the photoreceptor organ remains unclear. We morphologically identified the Bolwig organ, a larval-photoreceptor identified in several other fly species, and examined the effects of its removal on the photoperiodic response in S. similis. Backfill-staining and embryonic-lethal-abnormal-vision (ELAV) immunohistochemical-staining identified ~34 and 38 cells, respectively, in a spherical body at the ocular depression of the cephalopharyngeal skeleton, suggesting that the spherical body is the Bolwig organ in S. similis. Forward-fill and immunohistochemistry revealed that Bolwig-organ neurons terminate in the vicinity of the dendritic fibres of pigment-dispersing factor-immunoreactive and potential circadian-clock neurons in the brain. After surgical removal of the Bolwig-organ regions, diapause incidence was not significantly different between short and long days, and was similar to that in the insects with an intact organ, under constant darkness. However, diapause incidence was not significantly different between the control and Bolwig-organ-removed insects for each photoperiod. These results suggest that the Bolwig organ contributes partially to photoperiodic photoreception, and that other photoreceptors may also be involved.
Collapse
Affiliation(s)
- Kazuné Hirata
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
- Center for Ecological Research, Kyoto University, Otsu 520-2133, Shiga, Japan
| | - Sakiko Shiga
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
9
|
Damulewicz M, Tyszka A, Pyza E. Light exposure during development affects physiology of adults in Drosophila melanogaster. Front Physiol 2022; 13:1008154. [PMID: 36505068 PMCID: PMC9732085 DOI: 10.3389/fphys.2022.1008154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Light is one of most important factors synchronizing organisms to day/night cycles in the environment. In Drosophila it is received through compound eyes, Hofbauer-Buchner eyelet, ocelli, using phospholipase C-dependent phototransduction and by deep brain photoreceptors, like Cryptochrome. Even a single light pulse during early life induces larval-time memory, which synchronizes the circadian clock and maintains daily rhythms in adult flies. In this study we investigated several processes in adult flies after maintaining their embryos, larvae and pupae in constant darkness (DD) until eclosion. We found that the lack of external light during development affects sleep time, by reduction of night sleep, and in effect shift to the daytime. However, disruption of internal CRY- dependent photoreception annuls this effect. We also observed changes in the expression of genes encoding neurotransmitters and their receptors between flies kept in different light regime. In addition, the lack of light during development results in decreasing size of mushroom bodies, involved in sleep regulation. Taking together, our results show that presence of light during early life plays a key role in brain development and affects adult behavior.
Collapse
|
10
|
Au DD, Foden AJ, Park SJ, Nguyen TH, Liu JC, Tran MD, Jaime OG, Yu Z, Holmes TC. Mosquito cryptochromes expressed in Drosophila confer species-specific behavioral light responses. Curr Biol 2022; 32:3731-3744.e4. [PMID: 35914532 PMCID: PMC9810238 DOI: 10.1016/j.cub.2022.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/28/2022] [Accepted: 07/08/2022] [Indexed: 01/07/2023]
Abstract
Cryptochrome (CRY) is a short-wavelength light-sensitive photoreceptor expressed in a subset of circadian neurons and eyes in Drosophila that regulates light-evoked circadian clock resetting. Acutely, light evokes rapid electrical excitation of the ventral lateral subset of circadian neurons and confers circadian-modulated avoidance behavioral responses to short-wavelength light. Recent work shows dramatically different avoidance versus attraction behavioral responses to short-wavelength light in day-active versus night-active mosquitoes and that these behavioral responses are attenuated by CRY protein degradation by constant light exposure in mosquitoes. To determine whether CRY1s mediate species-specific coding for behavioral and electrophysiological light responses, we used an "empty neuron" approach and transgenically expressed diurnal Aedes aegypti (AeCRY1) versus nocturnal Anopheles gambiae (AgCRY1) in a cry-null Drosophila background. AeCRY1 is much less light sensitive than either AgCRY1 or DmCRY as shown by partial behavioral rhythmicity following constant light exposure. Remarkably, expression of nocturnal AgCRY1 confers low survival to constant white light as does expression of AeCRY1 to a lesser extent. AgCRY1 mediates significantly stronger electrophysiological cell-autonomous responses to 365 nm ultraviolet (UV) light relative to AeCRY1. AgCRY1 expression mediates electrophysiological sensitivity to 635 nm red light, whereas AeCRY1 does not, consistent with species-specific mosquito red light responses. AgCRY1 and DmCRY mediate intensity-dependent avoidance behavior to UV light at different light intensity thresholds, whereas AeCRY1 does not, thus mimicking mosquito and fly behaviors. These findings highlight CRY as a key non-image-forming visual photoreceptor that mediates physiological and behavioral light responses in a species-specific fashion.
Collapse
Affiliation(s)
- David D Au
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Alexander J Foden
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Soo Jee Park
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Thanh H Nguyen
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Jenny C Liu
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Mary D Tran
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Olga G Jaime
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Zhaoxia Yu
- Department of Statistics, Donald Bren School of Information and Computer Sciences, University of California, Irvine, Irvine, CA 92697, USA; Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA; Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
11
|
Circuit analysis reveals a neural pathway for light avoidance in Drosophila larvae. Nat Commun 2022; 13:5274. [PMID: 36071059 PMCID: PMC9452580 DOI: 10.1038/s41467-022-33059-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding how neural circuits underlie behaviour is challenging even in the connectome era because it requires a combination of anatomical and functional analyses. This is exemplified in the circuit underlying the light avoidance behaviour displayed by Drosophila melanogaster larvae. While this behaviour is robust and the nervous system relatively simple, the circuit is only partially delineated with some contradictions among studies. Here, we devise trans-Tango MkII, an offshoot of the transsynaptic circuit tracing tool trans-Tango, and implement it in anatomical tracing together with functional analysis. We use neuronal inhibition to test necessity of particular neuronal types in light avoidance and selective neuronal activation to examine sufficiency in rescuing light avoidance deficiencies exhibited by photoreceptor mutants. Our studies reveal a four-order circuit for light avoidance connecting the light-detecting photoreceptors with a pair of neuroendocrine cells via two types of clock neurons. This approach can be readily expanded to studying other circuits. Studying neural circuits requires a multipronged approach. Here, the authors present a transsynaptic tracing tool in fruit fly larvae and combine it with neuronal inhibition and activation to study the circuit underlying light avoidance behaviour.
Collapse
|
12
|
Krittika S, Yadav P. Alterations in lifespan and sleep/wake duration under selective monochromes of visible light in Drosophila melanogaster. Biol Open 2022; 11:275983. [PMID: 35735020 DOI: 10.1242/bio.059273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Rapid technology development, exposure to gadgets, and artificial lights (with different monochromes) have disturbed our lifestyle and the circadian clock, which otherwise confers better regulation of behavioral patterns and sleep/wake cycles in most organisms including Drosophila melanogaster. We assay the effect of LD12:12 hr (light: dark) monochromatic lights (violet, blue, green, yellow, orange, and red) on the lifespan, activity, and sleep of the D. melanogaster. We observe a shortened lifespan under 12h of violet, blue, green, and yellow lights, while significantly reduced activity levels under the light phase of blue and green light as compared to their dark phase is observed. Significant increase in the evening anticipation index of flies under blue and green light alongside increased and decreased sleep depth during the day and night respectively suggests the light avoidance, while there is no effect of colored light on the waking time, daily active time, and sleep time. Thus, our study shows short and long-term exposure to certain colored lights in terms of reduced lifespan and locomotor activity, which cause qualitative as well as quantitative changes in the sleep of flies; probably as a sign of aversion towards a specific light.
Collapse
Affiliation(s)
- Sudhakar Krittika
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur-613401, Tamil Nadu, India
| | - Pankaj Yadav
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur-613401, Tamil Nadu, India
| |
Collapse
|
13
|
Hao S, Gestrich JY, Zhang X, Xu M, Wang X, Liu L, Wei H. Neurotransmitters Affect Larval Development by Regulating the Activity of Prothoracicotropic Hormone-Releasing Neurons in Drosophila melanogaster. Front Neurosci 2021; 15:653858. [PMID: 34975366 PMCID: PMC8718639 DOI: 10.3389/fnins.2021.653858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Ecdysone, an essential insect steroid hormone, promotes larval metamorphosis by coordinating growth and maturation. In Drosophila melanogaster, prothoracicotropic hormone (PTTH)-releasing neurons are considered to be the primary promoting factor in ecdysone biosynthesis. Recently, studies have reported that the regulatory mechanisms of PTTH release in Drosophila larvae are controlled by different neuropeptides, including allatostatin A and corazonin. However, it remains unclear whether neurotransmitters provide input to PTTH neurons and control the metamorphosis in Drosophila larvae. Here, we report that the neurotransmitters acetylcholine (ACh) affect larval development by modulating the activity of PTTH neurons. By downregulating the expression of different subunits of nicotinic ACh receptors in PTTH neurons, pupal volume was significantly increased, whereas pupariation timing was relatively unchanged. We also identified that PTTH neurons were excited by ACh application ex vivo in a dose-dependent manner via ionotropic nicotinic ACh receptors. Moreover, in our Ca2+ imaging experiments, relatively low doses of OA caused increased Ca2+ levels in PTTH neurons, whereas higher doses led to decreased Ca2+ levels. We also demonstrated that a low dose of OA was conveyed through OA β-type receptors. Additionally, our electrophysiological experiments revealed that PTTH neurons produced spontaneous activity in vivo, which provides the possibility of the bidirectional regulation, coming from neurons upstream of PTTH cells in Drosophila larvae. In summary, our findings indicate that several different neurotransmitters are involved in the regulation of larval metamorphosis by altering the activity of PTTH neurons in Drosophila.
Collapse
Affiliation(s)
- Shun Hao
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Julia Yvonne Gestrich
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Mengbo Xu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Xinwei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Li Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Hongying Wei
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Imambocus BN, Zhou F, Formozov A, Wittich A, Tenedini FM, Hu C, Sauter K, Macarenhas Varela E, Herédia F, Casimiro AP, Macedo A, Schlegel P, Yang CH, Miguel-Aliaga I, Wiegert JS, Pankratz MJ, Gontijo AM, Cardona A, Soba P. A neuropeptidergic circuit gates selective escape behavior of Drosophila larvae. Curr Biol 2021; 32:149-163.e8. [PMID: 34798050 DOI: 10.1016/j.cub.2021.10.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 10/05/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
Animals display selective escape behaviors when faced with environmental threats. Selection of the appropriate response by the underlying neuronal network is key to maximizing chances of survival, yet the underlying network mechanisms are so far not fully understood. Using synapse-level reconstruction of the Drosophila larval network paired with physiological and behavioral readouts, we uncovered a circuit that gates selective escape behavior for noxious light through acute and input-specific neuropeptide action. Sensory neurons required for avoidance of noxious light and escape in response to harsh touch, each converge on discrete domains of neuromodulatory hub neurons. We show that acute release of hub neuron-derived insulin-like peptide 7 (Ilp7) and cognate relaxin family receptor (Lgr4) signaling in downstream neurons are required for noxious light avoidance, but not harsh touch responses. Our work highlights a role for compartmentalized circuit organization and neuropeptide release from regulatory hubs, acting as central circuit elements gating escape responses.
Collapse
Affiliation(s)
- Bibi Nusreen Imambocus
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Fangmin Zhou
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Andrey Formozov
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Annika Wittich
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Federico M Tenedini
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Chun Hu
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Kathrin Sauter
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Ednilson Macarenhas Varela
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal
| | - Fabiana Herédia
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal
| | - Andreia P Casimiro
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal
| | - André Macedo
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal
| | - Philipp Schlegel
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Chung-Hui Yang
- Department of Neurobiology, Duke University Medical School, 427E Bryan Research, Durham, NC 27710, USA
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - J Simon Wiegert
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Michael J Pankratz
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Alisson M Gontijo
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Albert Cardona
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Peter Soba
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
15
|
Wang J, Zhao W, Zhao Q, Zhou J, Li X, He Y, Gong Z. Drosophila Larval Light-Avoidance is Negatively Regulated by Temperature Through Two Pairs of Central Brain Neurons. Neurosci Bull 2021; 38:200-204. [PMID: 34751918 PMCID: PMC8821760 DOI: 10.1007/s12264-021-00785-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/29/2021] [Indexed: 02/03/2023] Open
Affiliation(s)
- Jie Wang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Weiqiao Zhao
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qianhui Zhao
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jinrun Zhou
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xinhang Li
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yinhui He
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhefeng Gong
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Lab, Hangzhou, 311121, China.
| |
Collapse
|
16
|
Williamson M, Mitchell A, Condron B. Birth temperature followed by a visual critical period determines cooperative group membership. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:739-746. [PMID: 34611741 DOI: 10.1007/s00359-021-01512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022]
Abstract
Cooperative behavior often arises when a common exploitable resource is generated. Cooperation can provide equitable distribution and protection from raiding of a common resource such as processed food. Under crowded conditions in liquid food, Drosophila larvae adopt synchronized feeding behavior which provides a fitness benefit. A key for this synchronized feeding behavior is the visually guided alignment of a 1-2 s locomotion stride between adjacent larvae in a feeding cluster. The locomotion stride is thought to be set by embryonic incubation temperature. This raises a question as to whether sib larvae will only cluster efficiently if they hatch at the same temperature. To test this, larvae were first collected and incubated in outdoor conditions. Morning hatched lower temperature larvae move slower than their afternoon higher temperature sibs. Both temperature types synchronize but tend to exclude the other type of larvae from their clusters. In addition, fitness, as measured by adult wing size, is highest when larvae cluster with their own temperature type. Thus, the temperature at which an egg is laid sets a type of behavioral stamp or password which locks in membership for later cooperative feeding.
Collapse
Affiliation(s)
- Madeline Williamson
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Alexandra Mitchell
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Barry Condron
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA.
| |
Collapse
|
17
|
Poe AR, Mace KD, Kayser MS. Getting into rhythm: developmental emergence of circadian clocks and behaviors. FEBS J 2021; 289:6576-6588. [PMID: 34375504 DOI: 10.1111/febs.16157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
Circadian clocks keep time to coordinate diverse behaviors and physiological functions. While molecular circadian rhythms are evident during early development, most behavioral rhythms, such as sleep-wake, do not emerge until far later. Here, we examine the development of circadian clocks, outputs, and behaviors across phylogeny, with a particular focus on Drosophila. We explore potential mechanisms for how central clocks and circadian output loci establish communication, and discuss why from an evolutionary perspective sleep-wake and other behavioral rhythms emerge long after central clocks begin keeping time.
Collapse
Affiliation(s)
- Amy R Poe
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kyla D Mace
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Pagni M, Haikala V, Oberhauser V, Meyer PB, Reiff DF, Schnaitmann C. Interaction of “chromatic” and “achromatic” circuits in Drosophila color opponent processing. Curr Biol 2021; 31:1687-1698.e4. [DOI: 10.1016/j.cub.2021.01.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
|
19
|
Ahuja A, Tyagi PK, Tyagi S, Kumar A, Kumar M, Sharifi-Rad J. Potential of Pueraria tuberosa (Willd.) DC. to rescue cognitive decline associated with BACE1 protein of Alzheimer's disease on Drosophila model: An integrated molecular modeling and in vivo approach. Int J Biol Macromol 2021; 179:586-600. [PMID: 33705837 DOI: 10.1016/j.ijbiomac.2021.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 01/04/2023]
Abstract
The indispensable role of Beta-site amyloid precursor protein cleaving enzyme-1 (BACE1) in Amyloid beta (Aβ) plaques generation and Aβ-mediated synaptic dysfunctions makes it a crucial target for therapeutic intervention in Alzheimer's disease (AD). In order to find out the potential inhibitors of BACE1, the present study focused on five phytochemicals from Pueraria tuberosa, namely, daidzin, genistin, mangiferin, puerarin, and tuberosin. A molecular docking study showed that all five phytochemicals presented the strongest BACE1 inhibition. Integrated molecular dynamics simulations and free energy calculations demonstrated that all five natural compounds have stable and favorable energies causing strong binding with the pocket site of BACE1 on 50 ns. All these molecules also passed Lipinski's rule of five. To validate the molecular modeling based findings, we primarily targeted the cognitive decline associated with BACE1 expression in AD flies with P. tuberosa. Significant improvement in cognitive decline was observed in AD flies in different behavioral assays such as Larval crawling assay (16.38%), Larval light preference assay (26.39%), Climbing assay (32.97%), Cold sensitivity assay (43.6%), and Thermal sensitivity assay (44.42%). The present findings suggest that P. tuberosa may be considered as a promising dietary supplement that can significantly ameliorate cognitive decline caused by BACE1 in Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Anami Ahuja
- Research Scholar, Department of Biotechnology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226031, Uttar Pradesh, India; Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut 250005, Uttar Pradesh, India.
| | - Pankaj Kumar Tyagi
- Department of Biotechnology Engineering, Noida Institute of Engineering & Technology, Greater Noida 201306, Uttar Pradesh, India.
| | - Shruti Tyagi
- Department of Biotechnology Engineering, Noida Institute of Engineering & Technology, Greater Noida 201306, Uttar Pradesh, India
| | - Anuj Kumar
- Advanced Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun 248007, Uttarakhand, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
| |
Collapse
|
20
|
Dapergola E, Menegazzi P, Raabe T, Hovhanyan A. Light Stimuli and Circadian Clock Affect Neural Development in Drosophila melanogaster. Front Cell Dev Biol 2021; 9:595754. [PMID: 33763414 PMCID: PMC7982892 DOI: 10.3389/fcell.2021.595754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
Endogenous clocks enable organisms to adapt cellular processes, physiology, and behavior to daily variation in environmental conditions. Metabolic processes in cyanobacteria to humans are under the influence of the circadian clock, and dysregulation of the circadian clock causes metabolic disorders. In mouse and Drosophila, the circadian clock influences translation of factors involved in ribosome biogenesis and synchronizes protein synthesis. Notably, nutrition signals are mediated by the insulin receptor/target of rapamycin (InR/TOR) pathways to regulate cellular metabolism and growth. However, the role of the circadian clock in Drosophila brain development and the potential impact of clock impairment on neural circuit formation and function is less understood. Here we demonstrate that changes in light stimuli or disruption of the molecular circadian clock cause a defect in neural stem cell growth and proliferation. Moreover, we show that disturbed cell growth and proliferation are accompanied by reduced nucleolar size indicative of impaired ribosomal biogenesis. Further, we define that light and clock independently affect the InR/TOR growth regulatory pathway due to the effect on regulators of protein biosynthesis. Altogether, these data suggest that alterations in InR/TOR signaling induced by changes in light conditions or disruption of the molecular clock have an impact on growth and proliferation properties of neural stem cells in the developing Drosophila brain.
Collapse
Affiliation(s)
- Eleni Dapergola
- Institute of Medical Radiation and Cell Research, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Pamela Menegazzi
- Neurobiology and Genetics, Theodor-Boveri Institute, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Thomas Raabe
- Institute of Medical Radiation and Cell Research, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Anna Hovhanyan
- Institute of Medical Radiation and Cell Research, Biozentrum, University of Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Gowda SBM, Salim S, Mohammad F. Anatomy and Neural Pathways Modulating Distinct Locomotor Behaviors in Drosophila Larva. BIOLOGY 2021; 10:90. [PMID: 33504061 PMCID: PMC7910854 DOI: 10.3390/biology10020090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022]
Abstract
The control of movements is a fundamental feature shared by all animals. At the most basic level, simple movements are generated by coordinated neural activity and muscle contraction patterns that are controlled by the central nervous system. How behavioral responses to various sensory inputs are processed and integrated by the downstream neural network to produce flexible and adaptive behaviors remains an intense area of investigation in many laboratories. Due to recent advances in experimental techniques, many fundamental neural pathways underlying animal movements have now been elucidated. For example, while the role of motor neurons in locomotion has been studied in great detail, the roles of interneurons in animal movements in both basic and noxious environments have only recently been realized. However, the genetic and transmitter identities of many of these interneurons remains unclear. In this review, we provide an overview of the underlying circuitry and neural pathways required by Drosophila larvae to produce successful movements. By improving our understanding of locomotor circuitry in model systems such as Drosophila, we will have a better understanding of how neural circuits in organisms with different bodies and brains lead to distinct locomotion types at the organism level. The understanding of genetic and physiological components of these movements types also provides directions to understand movements in higher organisms.
Collapse
Affiliation(s)
| | | | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar; (S.B.M.G.); (S.S.)
| |
Collapse
|
22
|
Flyer-Adams JG, Rivera-Rodriguez EJ, Yu J, Mardovin JD, Reed ML, Griffith LC. Regulation of Olfactory Associative Memory by the Circadian Clock Output Signal Pigment-Dispersing Factor (PDF). J Neurosci 2020; 40:9066-9077. [PMID: 33106351 PMCID: PMC7673005 DOI: 10.1523/jneurosci.0782-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/10/2020] [Accepted: 09/07/2020] [Indexed: 01/19/2023] Open
Abstract
Dissociation between the output of the circadian clock and external environmental cues is a major cause of human cognitive dysfunction. While the effects of ablation of the molecular clock on memory have been studied in many systems, little has been done to test the role of specific clock circuit output signals. To address this gap, we examined the effects of mutations of Pigment-dispersing factor (Pdf) and its receptor, Pdfr, on associative memory in male and female Drosophila Loss of PDF signaling significantly decreases the ability to form associative memory. Appetitive short-term memory (STM), which in wild-type (WT) is time-of-day (TOD) independent, is decreased across the day by mutation of Pdf or Pdfr, but more substantially in the morning than in the evening. This defect is because of PDFR expression in adult neurons outside the core clock circuit and the mushroom body (MB) Kenyon cells (KCs). The acquisition of a TOD difference in mutants implies the existence of multiple oscillators that act to normalize memory formation across the day for appetitive processes. Interestingly, aversive STM requires PDF but not PDFR, suggesting that there are valence-specific pathways downstream of PDF that regulate memory formation. These data argue that the circadian clock uses circuit-specific and molecularly diverse output pathways to enhance the ability of animals to optimize responses to changing conditions.SIGNIFICANCE STATEMENT From humans to invertebrates, cognitive processes are influenced by organisms' internal circadian clocks, the pace of which is linked to the solar cycle. Disruption of this link is increasingly common (e.g., jetlag, social jetlag disorders) and causes cognitive impairments that are costly and long lasting. A detailed understanding of how the internal clock regulates cognition is critical for the development of therapeutic methods. Here, we show for the first time that olfactory associative memory in Drosophila requires signaling by Pigment-dispersing factor (PDF), a neuromodulatory signaling peptide produced only by circadian clock circuit neurons. We also find a novel role for the clock circuit in stabilizing appetitive sucrose/odor memory across the day.
Collapse
Affiliation(s)
- Johanna G Flyer-Adams
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Emmanuel J Rivera-Rodriguez
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Junwei Yu
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Jacob D Mardovin
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Martha L Reed
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Leslie C Griffith
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| |
Collapse
|
23
|
Nässel DR, Zandawala M. Hormonal axes in Drosophila: regulation of hormone release and multiplicity of actions. Cell Tissue Res 2020; 382:233-266. [PMID: 32827072 PMCID: PMC7584566 DOI: 10.1007/s00441-020-03264-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Hormones regulate development, as well as many vital processes in the daily life of an animal. Many of these hormones are peptides that act at a higher hierarchical level in the animal with roles as organizers that globally orchestrate metabolism, physiology and behavior. Peptide hormones can act on multiple peripheral targets and simultaneously convey basal states, such as metabolic status and sleep-awake or arousal across many central neuronal circuits. Thereby, they coordinate responses to changing internal and external environments. The activity of neurosecretory cells is controlled either by (1) cell autonomous sensors, or (2) by other neurons that relay signals from sensors in peripheral tissues and (3) by feedback from target cells. Thus, a hormonal signaling axis commonly comprises several components. In mammals and other vertebrates, several hormonal axes are known, such as the hypothalamic-pituitary-gonad axis or the hypothalamic-pituitary-thyroid axis that regulate reproduction and metabolism, respectively. It has been proposed that the basic organization of such hormonal axes is evolutionarily old and that cellular homologs of the hypothalamic-pituitary system can be found for instance in insects. To obtain an appreciation of the similarities between insect and vertebrate neurosecretory axes, we review the organization of neurosecretory cell systems in Drosophila. Our review outlines the major peptidergic hormonal pathways known in Drosophila and presents a set of schemes of hormonal axes and orchestrating peptidergic systems. The detailed organization of the larval and adult Drosophila neurosecretory systems displays only very basic similarities to those in other arthropods and vertebrates.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Meet Zandawala
- Department of Neuroscience, Brown University, Providence, RI USA
| |
Collapse
|
24
|
Zhao J, Warman G, Cheeseman J. The Development and Decay of the Circadian Clock in Drosophila melanogaster. Clocks Sleep 2020; 1:489-500. [PMID: 33089181 PMCID: PMC7445846 DOI: 10.3390/clockssleep1040037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022] Open
Abstract
The way in which the circadian clock mechanism develops and decays throughout life is interesting for a number of reasons and may give us insight into the process of aging itself. The Drosophila model has been proven invaluable for the study of the circadian clock and development and aging. Here we review the evidence for how the Drosophila clock develops and changes throughout life, and present a new conceptual model based on the results of our recent work. Firefly luciferase lines faithfully report the output of known clock genes at the central clock level in the brain and peripherally throughout the whole body. Our results show that the clock is functioning in embryogenesis far earlier than previously thought. This central clock in the fly remains robust throughout the life of the animal and only degrades immediately prior to death. However, at the peripheral (non-central oscillator level) the clock shows weakened output as the animal ages, suggesting the possibility of the breakdown in the cohesion of the circadian network.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Anaesthesiology, School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand; (J.Z.); (G.W.)
| | - Guy Warman
- Department of Anaesthesiology, School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand; (J.Z.); (G.W.)
| | - James Cheeseman
- Department of Anaesthesiology, School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand; (J.Z.); (G.W.)
| |
Collapse
|
25
|
Asirim EZ, Humberg TH, Maier GL, Sprecher SG. Circadian and Genetic Modulation of Visually-Guided Navigation in Drosophila Larvae. Sci Rep 2020; 10:2752. [PMID: 32066794 PMCID: PMC7026142 DOI: 10.1038/s41598-020-59614-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/23/2020] [Indexed: 12/17/2022] Open
Abstract
Organisms possess an endogenous molecular clock which enables them to adapt to environmental rhythms and to synchronize their metabolism and behavior accordingly. Circadian rhythms govern daily oscillations in numerous physiological processes, and the underlying molecular components have been extensively described from fruit flies to mammals. Drosophila larvae have relatively simple nervous system compared to their adult counterparts, yet they both share a homologous molecular clock with mammals, governed by interlocking transcriptional feedback loops with highly conserved constituents. Larvae exhibit a robust light avoidance behavior, presumably enabling them to avoid predators and desiccation, and DNA-damage by exposure to ultraviolet light, hence are crucial for survival. Circadian rhythm has been shown to alter light-dark preference, however it remains unclear how distinct behavioral strategies are modulated by circadian time. To address this question, we investigate the larval visual navigation at different time-points of the day employing a computer-based tracking system, which allows detailed evaluation of distinct navigation strategies. Our results show that due to circadian modulation specific to light information processing, larvae avoid light most efficiently at dawn, and a functioning clock mechanism at both molecular and neuro-signaling level is necessary to conduct this modulation.
Collapse
Affiliation(s)
- Ece Z Asirim
- Department of Biology, Institute of Zoology, University of Fribourg, Fribourg, Switzerland
| | - Tim-Henning Humberg
- Department of Biology, Institute of Zoology, University of Fribourg, Fribourg, Switzerland
| | - G Larisa Maier
- Department of Biology, Institute of Zoology, University of Fribourg, Fribourg, Switzerland
| | - Simon G Sprecher
- Department of Biology, Institute of Zoology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
26
|
Singh AK, Abdullahi A, Soller M, David A, Brogna S. Visualisation of ribosomes in Drosophila axons using Ribo-BiFC. Biol Open 2020; 8:bio047233. [PMID: 31822474 PMCID: PMC6955225 DOI: 10.1242/bio.047233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022] Open
Abstract
The distribution of assembled, and potentially translating, ribosomes within cells can be visualised in Drosophila by using Bimolecular Fluorescence Complementation (BiFC) to monitor the interaction between tagged pairs of 40S and 60S ribosomal proteins (RPs) that are close neighbours across inter-subunit junctions in the assembled 80S ribosome. Here we describe transgenes expressing two novel RP pairs tagged with Venus-based BiFC fragments that considerably increase the sensitivity of this technique we termed Ribo-BiFC. This improved method should provide a convenient way of monitoring the local distribution of ribosomes in most Drosophila cells and we suggest that it could be implemented in other organisms. We visualised 80S ribosomes in different neurons, particularly photoreceptors in the larva, pupa and adult brain. Assembled ribosomes are most abundant in the various neuronal cell bodies, but they are also present along the full length of axons. They are concentrated in growth cones of developing photoreceptors and are apparent at the terminals of mature larval photoreceptors targeting the larval optical neuropil. Surprisingly, there is relatively less puromycin incorporation in the distal portion of axons in the larval optic stalk, suggesting that some of the ribosomes that have initiated translation may not be engaged in elongation in growing axons.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anand K Singh
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Akilu Abdullahi
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Matthias Soller
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alexandre David
- Oncology Department, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier cedex 5, France
| | - Saverio Brogna
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
27
|
Abstract
CRYPTOCHROMES (CRYs) are structurally related to ultraviolet (UV)/blue-sensitive DNA repair enzymes called photolyases but lack the ability to repair pyrimidine dimers generated by UV exposure. First identified in plants, CRYs have proven to be involved in light detection and various light-dependent processes in a broad range of organisms. In Drosophila, CRY's best understood role is the cell-autonomous synchronization of circadian clocks. However, CRY also contributes to the amplitude of circadian oscillations in a light-independent manner, controls arousal and UV avoidance, influences visual photoreception, and plays a key role in magnetic field detection. Here, we review our current understanding of the mechanisms underlying CRY's various circadian and noncircadian functions in fruit flies.
Collapse
Affiliation(s)
- Lauren E Foley
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
28
|
Mishra PK, Ekielski A, Mukherjee S, Sahu S, Chowdhury S, Mishra M, Talegaonkar S, Siddiqui L, Mishra H. Wood-Based Cellulose Nanofibrils: Haemocompatibility and Impact on the Development and Behaviour of Drosophila melanogaster. Biomolecules 2019; 9:biom9080363. [PMID: 31412664 PMCID: PMC6722666 DOI: 10.3390/biom9080363] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Wood-based cellulose nanofibrils (CNF) offer an excellent scaffold for drug-delivery formulation development. However, toxicity and haemocompatibility of the drug carrier is always an important issue. In this study, toxicity-related issues of CNF were addressed. Different doses of CNF were orally administered to Drosophila and different tests like the developmental cycle, trypan blue exclusion assay, larva crawling assay, thermal sensitivity assay, cold sensitivity assay, larval light preference test, climbing behaviour, nitroblue tetrazolium (NBT) reduction assay, adult phenotype, and adult weight were conducted to observe the impact on its development and behaviour. A haemocompatibility assay was done on the blood taken from healthy Wistar rats. In Drosophila, the abnormalities in larval development and behaviour were observed in the behavioural assays. However, the cytotoxic effect could not be confirmed by the gut staining and level of reactive oxygen species. The larvae developed into an adult without any abnormality in the phenotype. The CNF did cause loss of weight in the adult flies and did not cause much toxicity within the body since there was no phenotypic defect. Hemolysis data also suggested that CNF was safe at lower doses, as the data was well within acceptable limits. All these results suggest that cellulose nanofibres have no significant cytotoxic effects on Drosophila. However, the developmental and behavioural abnormalities suggest that CNF may act as a behavioural teratogen.
Collapse
Affiliation(s)
- Pawan Kumar Mishra
- Department of Wood Processing Technology, Mendel University in Brno, 61300 Brno, Czech Republic.
| | - Adam Ekielski
- Department of Production Management and Engineering, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Sumit Mukherjee
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha 76908, India
| | - Swetapadma Sahu
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha 76908, India
| | - Saptarshi Chowdhury
- Biotechnology Department, Heritage Institute of Technology, Kolkata 700107, West Bengal, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha 76908, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Lubna Siddiqui
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi 110017, New Delhi, India
| | - Harshita Mishra
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi 110017, New Delhi, India
| |
Collapse
|
29
|
Dombrovski M, Kim A, Poussard L, Vaccari A, Acton S, Spillman E, Condron B, Yuan Q. A Plastic Visual Pathway Regulates Cooperative Behavior in Drosophila Larvae. Curr Biol 2019; 29:1866-1876.e5. [PMID: 31130457 PMCID: PMC6615885 DOI: 10.1016/j.cub.2019.04.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/11/2019] [Accepted: 04/23/2019] [Indexed: 01/23/2023]
Abstract
Cooperative behavior emerges in biological systems through coordinated actions among individuals [1, 2]. Although widely observed across animal species, the cellular and molecular mechanisms underlying the establishment and maintenance of cooperative behaviors remain largely unknown [3]. To characterize the circuit mechanisms serving the needs of independent individuals and social groups, we investigated cooperative digging behavior in Drosophila larvae [4-6]. Although chemical and mechanical sensations are important for larval aggregation at specific sites [7-9], an individual larva's ability to participate in a cooperative burrowing cluster relies on direct visual input as well as visual and social experience during development. In addition, vision modulates cluster dynamics by promoting coordinated movements between pairs of larvae [5]. To determine the specific pathways within the larval visual circuit underlying cooperative social clustering, we examined larval photoreceptors (PRs) and the downstream local interneurons (lOLPs) using anatomical and functional studies [10, 11]. Our results indicate that rhodopsin-6-expressing-PRs (Rh6-PRs) and lOLPs are required for both cooperative clustering and movement detection. Remarkably, visual deprivation and social isolation strongly impact the structural and functional connectivity between Rh6-PRs and lOLPs, while at the same time having no effect on the adjacent rhodopsin-5-expressing PRs (Rh5-PRs). Together, our findings demonstrate that a specific larval visual pathway involved in social interactions undergoes experience-dependent modifications during development, suggesting that plasticity in sensory circuits could act as the cellular substrate for social learning, a possible mechanism allowing an animal to integrate into a malleable social environment and engage in complex social behaviors.
Collapse
Affiliation(s)
- Mark Dombrovski
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Anna Kim
- National Institute of Neurological Disorders and Stroke, NIH, 31 Center Drive, Bethesda, MD 20892, USA
| | - Leanne Poussard
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Andrea Vaccari
- Department of Computer Science, Middlebury College, Bicentennial Way, Middlebury, VT 05753, USA
| | - Scott Acton
- Department of Electrical and Computer Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA 22901, USA
| | - Emma Spillman
- National Institute of Neurological Disorders and Stroke, NIH, 31 Center Drive, Bethesda, MD 20892, USA
| | - Barry Condron
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA.
| | - Quan Yuan
- National Institute of Neurological Disorders and Stroke, NIH, 31 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
Hartenstein V, Yuan M, Younossi-Hartenstein A, Karandikar A, Bernardo-Garcia FJ, Sprecher S, Knust E. Serial electron microscopic reconstruction of the drosophila larval eye: Photoreceptors with a rudimentary rhabdomere of microvillar-like processes. Dev Biol 2019; 453:56-67. [PMID: 31158364 DOI: 10.1016/j.ydbio.2019.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 11/26/2022]
Abstract
Photoreceptor cells (PRCs) across the animal kingdom are characterized by a stacking of apical membranes to accommodate the high abundance of photopigment. In arthropods and many other invertebrate phyla PRC membrane stacks adopt the shape of densely packed microvilli that form a structure called rhabdomere. PRCs and surrounding accessory cells, including pigment cells and lens-forming cells, are grouped in stereotyped units, the ommatidia. In larvae of holometabolan insects, eyes (called stemmata) are reduced in terms of number and composition of ommatidia. The stemma of Drosophila (Bolwig organ) is reduced to a bilateral cluster of subepidermal PRCs, lacking all other cell types. In the present paper we have analyzed the development and fine structure of the Drosophila larval PRCs. Shortly after their appearance in the embryonic head ectoderm, PRC precursors delaminate and lose expression of apical markers of epithelial cells, including Crumbs and several centrosome-associated proteins. In the early first instar larva, PRCs show an expanded, irregularly shaped apical surface that is folded into multiple horizontal microvillar-like processes (MLPs). Apical PRC membranes and MLPs are covered with a layer of extracellular matrix. MLPs are predominantly aligned along an axis that extends ventro-anteriorly to dorso-posteriorly, but vary in length, diameter, and spacing. Individual MLPs present a "beaded" shape, with thick segments (0.2-0.3 μm diameter) alternating with thin segments (>0.1 μm). We show that loss of the glycoprotein Chaoptin, which is absolutely essential for rhabdomere formation in the adult PRCs, does not lead to severe abnormalities in larval PRCs.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Michaela Yuan
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Amelia Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Aanavi Karandikar
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Simon Sprecher
- Department of Biology, University of Fribourg, 10, Ch. du Musée, 1700, Fribourg, Switzerland
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| |
Collapse
|
31
|
A Symphony of Signals: Intercellular and Intracellular Signaling Mechanisms Underlying Circadian Timekeeping in Mice and Flies. Int J Mol Sci 2019; 20:ijms20092363. [PMID: 31086044 PMCID: PMC6540063 DOI: 10.3390/ijms20092363] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022] Open
Abstract
The central pacemakers of circadian timekeeping systems are highly robust yet adaptable, providing the temporal coordination of rhythms in behavior and physiological processes in accordance with the demands imposed by environmental cycles. These features of the central pacemaker are achieved by a multi-oscillator network in which individual cellular oscillators are tightly coupled to the environmental day-night cycle, and to one another via intercellular coupling. In this review, we will summarize the roles of various neurotransmitters and neuropeptides in the regulation of circadian entrainment and synchrony within the mammalian and Drosophila central pacemakers. We will also describe the diverse functions of protein kinases in the relay of input signals to the core oscillator or the direct regulation of the molecular clock machinery.
Collapse
|
32
|
Zhao W, Zhou P, Gong C, Ouyang Z, Wang J, Zheng N, Gong Z. A disinhibitory mechanism biases Drosophila innate light preference. Nat Commun 2019; 10:124. [PMID: 30631066 PMCID: PMC6328558 DOI: 10.1038/s41467-018-07929-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/30/2018] [Indexed: 01/30/2023] Open
Abstract
Innate preference toward environmental conditions is crucial for animal survival. Although much is known about the neural processing of sensory information, how the aversive or attractive sensory stimulus is transformed through central brain neurons into avoidance or approaching behavior is largely unclear. Here we show that Drosophila larval light preference behavior is regulated by a disinhibitory mechanism. In the disinhibitory circuit, a pair of GABAergic neurons exerts tonic inhibition on one pair of contralateral projecting neurons that control larval reorientation behavior. When a larva enters the light area, the reorientation-controlling neurons are disinhibited to allow reorientation to occur as the upstream inhibitory neurons are repressed by light. When the larva exits the light area, the inhibition on the downstream neurons is restored to repress further reorientation and thus prevents the larva from re-entering the light area. We suggest that disinhibition may serve as a common neural mechanism for animal innate preference behavior.
Collapse
Affiliation(s)
- Weiqiao Zhao
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Peipei Zhou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Caixia Gong
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Zhenhuan Ouyang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310007, China
| | - Jie Wang
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310007, China.
| | - Zhefeng Gong
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
33
|
Hormonal signaling cascades required for phototaxis switch in wandering Leptinotarsa decemlineata larvae. PLoS Genet 2019; 15:e1007423. [PMID: 30615614 PMCID: PMC6336328 DOI: 10.1371/journal.pgen.1007423] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 01/17/2019] [Accepted: 11/27/2018] [Indexed: 02/08/2023] Open
Abstract
Many animals exploit several niches sequentially during their life cycles, a fitness referred to as ontogenetic niche shift (ONS). To successfully accomplish ONS, transition between development stages is often coupled with changes in one or more primitive, instinctive behaviors. Yet, the underlining molecular mechanisms remain elusive. We show here that Leptinotarsa decemlineata larvae finish their ONS at the wandering stage by leaving the plant and pupating in soil. At middle wandering phase, larvae also switch their phototactic behavior, from photophilic at foraging period to photophobic. We find that enhancement of juvenile hormone (JH) signal delays the phototactic switch, and vise verse. Moreover, RNA interference (RNAi)-aided knockdown of LdPTTH (prothoracicotropic hormone gene) or LdTorso (PTTH receptor gene) impairs avoidance response to light, a phenotype nonrescuable by 20-hydroxyecdysone. Consequently, the RNAi beetles pupate at the soil surface or in shallow layer of soil, with most of them failing to construct pupation chambers. Furthermore, a combination of depletion of LdPTTH/LdTorso and disturbance of JH signal causes no additive effects on light avoidance response and pupation site selection. Finally, we establish that TrpA1 (transient receptor potential (TRP) cation channel) is necessary for light avoidance behavior, acting downstream of PTTH. We conclude that JH/PTTH cascade concomitantly regulates metamorphosis and the phototaxis switch, to drive ONS of the wandering beetles from plant into soil to start the immobile pupal stage. Many animals occupy distinct niches and utilize diverse resources at different development stages in order to meet stage-dependent requirements and overcome stage-specific limitations. This fitness is referred to as ontogenetic niche shift (ONS). During the preparation for ONS, animals often change one or more primitive, instinctive behaviors. Holometabolous insects, with four discrete developmental periods usually in different niches, are a suitable animal group to explore the molecular modes of these behavioral switches. Here we find that Leptinotarsa decemlineata larvae, an insect defoliator of potatoes, switch their phototactic behavior, from photophilic at feeding period to photophobic during the larval-pupal transition (wandering stage). This phototactic switch facilitates the wandering larvae to accomplish the ONS from potato plants to their pupation sites below ground. We show that JH/PTTH cascade controls the phototaxis switch, through a step in photo transduction between the photoreceptor molecule and the transient receptor potential cation channel.
Collapse
|
34
|
Karagyozov D, Mihovilovic Skanata M, Lesar A, Gershow M. Recording Neural Activity in Unrestrained Animals with Three-Dimensional Tracking Two-Photon Microscopy. Cell Rep 2018; 25:1371-1383.e10. [PMID: 30380425 PMCID: PMC6287944 DOI: 10.1016/j.celrep.2018.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 08/07/2018] [Accepted: 10/02/2018] [Indexed: 11/25/2022] Open
Abstract
Optical recordings of neural activity in behaving animals can reveal the neural correlates of decision making, but brain motion, which often accompanies behavior, compromises these measurements. Two-photon point-scanning microscopy is especially sensitive to motion artifacts, and two-photon recording of activity has required rigid coupling between the brain and microscope. We developed a two-photon tracking microscope with extremely low-latency (360 μs) feedback implemented in hardware. This microscope can maintain continuous focus on neurons moving with velocities of 3 mm/s and accelerations of 1 m/s2 both in-plane and axially. We recorded calcium dynamics of motor neurons and inter-neurons in unrestrained freely behaving fruit fly larvae, correlating neural activity with stimulus presentations and behavioral outputs, and we measured light-induced depolarization of a visual interneuron in a moving animal using a genetically encoded voltage indicator. Our technique can be extended to stabilize recordings in a variety of moving substrates.
Collapse
Affiliation(s)
| | | | - Amanda Lesar
- Department of Physics, New York University, New York, NY, USA
| | - Marc Gershow
- Department of Physics, New York University, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA; Neuroscience Institute, New York University, New York, NY, USA.
| |
Collapse
|
35
|
Baik LS, Recinos Y, Chevez JA, Holmes TC. Circadian modulation of light-evoked avoidance/attraction behavior in Drosophila. PLoS One 2018; 13:e0201927. [PMID: 30106957 PMCID: PMC6091921 DOI: 10.1371/journal.pone.0201927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
Many insects show strong behavioral responses to short wavelength light. Drosophila melanogaster exhibit Cryptochrome- and Hyperkinetic-dependent blue and ultraviolet (UV) light avoidance responses that vary by time-of-day, suggesting that these key sensory behaviors are circadian regulated. Here we show mutant flies lacking core clock genes exhibit defects in both time-of-day responses and valence of UV light avoidance/attraction behavior. Non-genetic environmental disruption of the circadian clock by constant UV light exposure leads to complete loss of rhythmic UV light avoidance/attraction behavior. Flies with ablated or electrically silenced circadian lateral ventral neurons have attenuated avoidance response to UV light. We conclude that circadian clock proteins and the circadian lateral ventral neurons regulate both the timing and the valence of UV light avoidance/attraction. These results provide mechanistic support for Pittendrigh's "escape from light" hypothesis regarding the co-evolution of phototransduction and circadian systems.
Collapse
Affiliation(s)
- Lisa Soyeon Baik
- Department of Physiology and Biophysics, School of Medicine, University of California at Irvine, Irvine, California, United States of America
| | - Yocelyn Recinos
- Department of Physiology and Biophysics, School of Medicine, University of California at Irvine, Irvine, California, United States of America
| | - Joshua A. Chevez
- Department of Physiology and Biophysics, School of Medicine, University of California at Irvine, Irvine, California, United States of America
| | - Todd C. Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California at Irvine, Irvine, California, United States of America
| |
Collapse
|
36
|
de Andres-Bragado L, Mazza C, Senn W, Sprecher SG. Statistical modelling of navigational decisions based on intensity versus directionality in Drosophila larval phototaxis. Sci Rep 2018; 8:11272. [PMID: 30050066 PMCID: PMC6062584 DOI: 10.1038/s41598-018-29533-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/12/2018] [Indexed: 11/08/2022] Open
Abstract
Organisms use environmental cues for directed navigation. Understanding the basic logic behind navigational decisions critically depends on the complexity of the nervous system. Due to the comparably simple organization of the nervous system of the fruit fly larva, it stands as a powerful model to study decision-making processes that underlie directed navigation. We have quantitatively measured phototaxis in response to well-defined sensory inputs. Subsequently, we have formulated a statistical stochastic model based on biased Markov chains to characterize the behavioural basis of negative phototaxis. Our experiments show that larvae make navigational decisions depending on two independent physical variables: light intensity and its spatial gradient. Furthermore, our statistical model quantifies how larvae balance two potentially-contradictory factors: minimizing exposure to light intensity and at the same time maximizing their distance to the light source. We find that the response to the light field is manifestly non-linear, and saturates above an intensity threshold. The model has been validated against our experimental biological data yielding insight into the strategy that larvae use to achieve their goal with respect to the navigational cue of light, an important piece of information for future work to study the role of the different neuronal components in larval phototaxis.
Collapse
Affiliation(s)
| | - Christian Mazza
- Department of Mathematics, University of Fribourg, Fribourg, Switzerland.
| | - Walter Senn
- Department of Physiology, University of Bern, Bern, Switzerland.
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
37
|
Humberg TH, Bruegger P, Afonso B, Zlatic M, Truman JW, Gershow M, Samuel A, Sprecher SG. Dedicated photoreceptor pathways in Drosophila larvae mediate navigation by processing either spatial or temporal cues. Nat Commun 2018; 9:1260. [PMID: 29593252 PMCID: PMC5871836 DOI: 10.1038/s41467-018-03520-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/21/2018] [Indexed: 11/09/2022] Open
Abstract
To integrate changing environmental cues with high spatial and temporal resolution is critical for animals to orient themselves. Drosophila larvae show an effective motor program to navigate away from light sources. How the larval visual circuit processes light stimuli to control navigational decision remains unknown. The larval visual system is composed of two sensory input channels, Rhodopsin5 (Rh5) and Rhodopsin6 (Rh6) expressing photoreceptors (PRs). We here characterize how spatial and temporal information are used to control navigation. Rh6-PRs are required to perceive temporal changes of light intensity during head casts, while Rh5-PRs are required to control behaviors that allow navigation in response to spatial cues. We characterize how distinct behaviors are modulated and identify parallel acting and converging features of the visual circuit. Functional features of the larval visual circuit highlight the principle of how early in a sensory circuit distinct behaviors may be computed by partly overlapping sensory pathways.
Collapse
Affiliation(s)
| | - Pascal Bruegger
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Bruno Afonso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, VA, USA
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, VA, USA.,Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, UK
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, VA, USA
| | - Marc Gershow
- Department of Physics and Center for Neural Science, New York University, New York, 10003, NY, USA
| | - Aravinthan Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, 02138, MA, USA
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.
| |
Collapse
|
38
|
Drosophila Connectomics: Mapping the Larval Eye’s Mind. Curr Biol 2017; 27:R1161-R1163. [DOI: 10.1016/j.cub.2017.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Jarabo P, Martin FA. Neurogenetics of Drosophila circadian clock: expect the unexpected. J Neurogenet 2017; 31:250-265. [DOI: 10.1080/01677063.2017.1370466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Larderet I, Fritsch PM, Gendre N, Neagu-Maier GL, Fetter RD, Schneider-Mizell CM, Truman JW, Zlatic M, Cardona A, Sprecher SG. Organization of the Drosophila larval visual circuit. eLife 2017; 6:28387. [PMID: 30726702 PMCID: PMC5577918 DOI: 10.7554/elife.28387] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/07/2017] [Indexed: 11/20/2022] Open
Abstract
Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on photoreceptor neuron types (PR) present, organization of the eye and wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create two converging pathways potentially underlying the computation of ambient light intensity and temporal light changes already within this first visual processing center. Locally processed visual information then signals via dedicated projection interneurons to higher brain areas including the lateral horn and mushroom body. The stratified structure of the larval optic neuropil (LON) suggests common organizational principles with the adult fly and vertebrate visual systems. The complete synaptic wiring diagram of the LON paves the way to understanding how circuits with reduced numerical complexity control wide ranges of behaviors.
Collapse
Affiliation(s)
- Ivan Larderet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Nanae Gendre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | | | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
41
|
Zhao W, Gong C, Ouyang Z, Wang P, Wang J, Zhou P, Zheng N, Gong Z. Turns with multiple and single head cast mediate Drosophila larval light avoidance. PLoS One 2017; 12:e0181193. [PMID: 28700684 PMCID: PMC5507455 DOI: 10.1371/journal.pone.0181193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/26/2017] [Indexed: 11/19/2022] Open
Abstract
Drosophila larvae exhibit klinotaxis when placed in a gradient of temperature, chemicals, or light. The larva samples environmental stimuli by casting its head from side to side. By comparing the results of two consecutive samples, it decides the direction of movement, appearing as a turn proceeded by one or more head casts. Here by analyzing larval behavior in a light-spot-based phototaxis assay, we showed that, in addition to turns with a single cast (1-cast), turns with multiple head casts (n-cast) helped to improve the success of light avoidance. Upon entering the light spot, the probability of escape from light after the first head cast was only ~30%. As the number of head casts increased, the chance of successful light avoidance increased and the overall chance of escaping from light increased to >70%. The amplitudes of first head casts that failed in light avoidance were significantly smaller in n-cast turns than those in 1-cast events, indicating that n-cast turns might be planned before completion of the first head cast. In n-casts, the amplitude of the second head cast was generally larger than that of the first head cast, suggesting that larvae tried harder in later attempts to improve the efficacy of light avoidance. We propose that both 1-cast turns and n-cast turns contribute to successful larval light avoidance, and both can be initiated at the first head cast.
Collapse
Affiliation(s)
- Weiqiao Zhao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Caixia Gong
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhenhuan Ouyang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pengfei Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peipei Zhou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (ZFG); (NGZ)
| | - Zhefeng Gong
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- * E-mail: (ZFG); (NGZ)
| |
Collapse
|
42
|
Humberg TH, Sprecher SG. Age- and Wavelength-Dependency of Drosophila Larval Phototaxis and Behavioral Responses to Natural Lighting Conditions. Front Behav Neurosci 2017; 11:66. [PMID: 28473759 PMCID: PMC5397426 DOI: 10.3389/fnbeh.2017.00066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022] Open
Abstract
Animals use various environmental cues as key determinant for their behavioral decisions. Visual systems are hereby responsible to translate light-dependent stimuli into neuronal encoded information. Even though the larval eyes of the fruit fly Drosophila melanogaster are comparably simple, they comprise two types of photoreceptor neurons (PRs), defined by different Rhodopsin genes expressed. Recent findings support that for light avoidance Rhodopsin5 (Rh5) expressing photoreceptors are crucial, while Rhodopsin6 (Rh6) expressing photoreceptors are dispensable under laboratory conditions. However, it remains debated how animals change light preference during larval live. We show that larval negative phototaxis is age-independent as it persists in larvae from foraging to wandering developmental stages. Moreover, if spectrally different Rhodopsins are employed for the detection of different wavelength of light remains unexplored. We found that negative phototaxis can be elicit by light with wavelengths ranging from ultraviolet (UV) to green. This behavior is uniquely mediated by Rh5 expressing photoreceptors, and therefore suggest that this photoreceptor-type is able to perceive UV up to green light. In contrast to laboratory our field experiments revealed that Drosophila larvae uses both types of photoreceptors under natural lighting conditions. All our results, demonstrate that Drosophila larval eyes mediate avoidance of light stimuli with a wide, ecological relevant range of quantity (intensities) and quality (wavelengths). Thus, the two photoreceptor-types appear more likely to play a role in different aspects of phototaxis under natural lighting conditions, rather than color discrimination.
Collapse
Affiliation(s)
| | - Simon G Sprecher
- Department of Biology, University of FribourgFribourg, Switzerland
| |
Collapse
|
43
|
Ormerod KG, LePine OK, Abbineni PS, Bridgeman JM, Coorssen JR, Mercier AJ, Tattersall GJ. Drosophila development, physiology, behavior, and lifespan are influenced by altered dietary composition. Fly (Austin) 2017; 11:153-170. [PMID: 28277941 DOI: 10.1080/19336934.2017.1304331] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Diet profoundly influences the behavior of animals across many phyla. Despite this, most laboratories using model organisms, such as Drosophila, use multiple, different, commercial or custom-made media for rearing their animals. In addition to measuring growth, fecundity and longevity, we used several behavioral and physiological assays to determine if and how altering food media influence wild-type (Canton S) Drosophila melanogaster, at larval, pupal, and adult stages. Comparing 2 commonly used commercial food media we observed several key developmental and morphological differences. Third-instar larvae and pupae developmental timing, body weight and size, and even lifespan significantly differed between the 2 diets, and some of these differences persisted into adulthood. Diet was also found to produce significantly different thermal preference, locomotory capacity for geotaxis, feeding rates, and lower muscle response to hormonal stimulation. There were no differences, however, in adult thermal preferences, in the number or viability of eggs laid, or in olfactory learning and memory between the diets. We characterized the composition of the 2 diets and found particularly significant differences in cholesterol and (phospho)lipids between them. Notably, diacylglycerol (DAG) concentrations vary substantially between the 2 diets, and may contribute to key phenotypic differences, including lifespan. Overall, the data confirm that 2 different diets can profoundly influence the behavior, physiology, morphology and development of wild-type Drosophila, with greater behavioral and physiologic differences occurring during the larval stages.
Collapse
Affiliation(s)
- Kiel G Ormerod
- a Department of Biological Sciences , Brock University , St. Catharines , ON , Canada
| | - Olivia K LePine
- a Department of Biological Sciences , Brock University , St. Catharines , ON , Canada
| | - Prabhodh S Abbineni
- b Department of Molecular Physiology, and the WSU Molecular Medicine Research Group, School of Medicine , Western Sydney University , Penrith , New South Wales , Australia
| | - Justin M Bridgeman
- a Department of Biological Sciences , Brock University , St. Catharines , ON , Canada
| | - Jens R Coorssen
- a Department of Biological Sciences , Brock University , St. Catharines , ON , Canada.,b Department of Molecular Physiology, and the WSU Molecular Medicine Research Group, School of Medicine , Western Sydney University , Penrith , New South Wales , Australia.,c Faculty of Graduate Studies, Department of Health Sciences , Brock University , St. Catharines , ON , Canada
| | - A Joffre Mercier
- a Department of Biological Sciences , Brock University , St. Catharines , ON , Canada
| | - Glenn J Tattersall
- a Department of Biological Sciences , Brock University , St. Catharines , ON , Canada
| |
Collapse
|
44
|
CRYPTOCHROME mediates behavioral executive choice in response to UV light. Proc Natl Acad Sci U S A 2017; 114:776-781. [PMID: 28062690 DOI: 10.1073/pnas.1607989114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Drosophila melanogaster CRYPTOCHROME (CRY) mediates behavioral and electrophysiological responses to blue light coded by circadian and arousal neurons. However, spectroscopic and biochemical assays of heterologously expressed CRY suggest that CRY may mediate functional responses to UV-A (ultraviolet A) light as well. To determine the relative contributions of distinct phototransduction systems, we tested mutants lacking CRY and mutants with disrupted opsin-based phototransduction for behavioral and electrophysiological responses to UV light. CRY and opsin-based external photoreceptor systems cooperate for UV light-evoked acute responses. CRY mediates behavioral avoidance responses related to executive choice, consistent with its expression in central brain neurons.
Collapse
|
45
|
Kohsaka H, Guertin PA, Nose A. Neural Circuits Underlying Fly Larval Locomotion. Curr Pharm Des 2017; 23:1722-1733. [PMID: 27928962 PMCID: PMC5470056 DOI: 10.2174/1381612822666161208120835] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/01/2016] [Indexed: 12/17/2022]
Abstract
Locomotion is a complex motor behavior that may be expressed in different ways using a variety of strategies depending upon species and pathological or environmental conditions. Quadrupedal or bipedal walking, running, swimming, flying and gliding constitute some of the locomotor modes enabling the body, in all cases, to move from one place to another. Despite these apparent differences in modes of locomotion, both vertebrate and invertebrate species share, at least in part, comparable neural control mechanisms for locomotor rhythm and pattern generation and modulation. Significant advances have been made in recent years in studies of the genetic aspects of these control systems. Findings made specifically using Drosophila (fruit fly) models and preparations have contributed to further understanding of the key role of genes in locomotion. This review focuses on some of the main findings made in larval fruit flies while briefly summarizing the basic advantages of using this powerful animal model for studying the neural locomotor system.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Department of Complexity Science and Engineering, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Pierre A. Guertin
- Department of Psychiatry & Neurosciences, Laval University, Québec City, QC, Canada
| | - Akinao Nose
- Department of Complexity Science and Engineering, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
46
|
Yoshikawa S, Long H, Thomas JB. A subset of interneurons required for Drosophila larval locomotion. Mol Cell Neurosci 2015; 70:22-9. [PMID: 26621406 DOI: 10.1016/j.mcn.2015.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 11/28/2022] Open
Abstract
Efforts to define the neural circuits generating locomotor behavior have produced an initial understanding of some of the components within the spinal cord, as well as a basic understanding of several invertebrate motor pattern generators. However, how these circuits are assembled during development is poorly understood. We are defining the neural circuit that generates larval locomotion in the genetically tractable fruit fly Drosophila melanogaster to study locomotor circuit development. Forward larval locomotion involves a stereotyped posterior-to-anterior segmental translocation of body wall muscle contraction and is generated by a relatively small number of identified muscles, motor and sensory neurons, plus an unknown number of the ~270 bilaterally-paired interneurons per segment of the 1st instar larva. To begin identifying the relevant interneurons, we have conditionally inactivated synaptic transmission of interneuron subsets and assayed for the effects on locomotion. From this screen we have identified a subset of 25 interneurons per hemisegment, called the lateral locomotor neurons (LLNs), that are required for locomotion. Both inactivation and constitutive activation of the LLNs disrupt locomotion, indicating that patterned output of the LLNs is required. By expressing a calcium indicator in the LLNs, we found that they display a posterior-to-anterior wave of activity within the CNS corresponding to the segmental translocation of the muscle contraction wave. Identification of the LLNs represents the first step toward elucidating the circuit generating larval locomotion.
Collapse
Affiliation(s)
- Shingo Yoshikawa
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Hong Long
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - John B Thomas
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
47
|
Sprecher SG, Bernardo-Garcia FJ, van Giesen L, Hartenstein V, Reichert H, Neves R, Bailly X, Martinez P, Brauchle M. Functional brain regeneration in the acoel worm Symsagittifera roscoffensis. Biol Open 2015; 4:1688-95. [PMID: 26581588 PMCID: PMC4736034 DOI: 10.1242/bio.014266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ability of some animals to regrow their head and brain after decapitation provides a striking example of the regenerative capacity within the animal kingdom. The acoel worm Symsagittifera roscoffensis can regrow its head, brain and sensory head organs within only a few weeks after decapitation. How rapidly and to what degree it also reacquires its functionality to control behavior however remains unknown. We provide here a neuroanatomical map of the brain neuropils of the adult S. roscoffensis and show that after decapitation a normal neuroanatomical organization of the brain is restored in the majority of animals. By testing different behaviors we further show that functionality of both sensory perception and the underlying brain architecture are restored within weeks after decapitation. Interestingly not all behaviors are restored at the same speed and to the same extent. While we find that phototaxis recovered rapidly, geotaxis is not restored within 7 weeks. Our findings show that regeneration of the head, sensory organs and brain result in the restoration of directed navigation behavior, suggesting a tight coordination in the regeneration of certain sensory organs with that of their underlying neural circuits. Thus, at least in S. roscoffensis, the regenerative capacity of different sensory modalities follows distinct paths. Summary: Brain and head regeneration in the acoel Symsagittifera roscoffensis is coordinated with restoration of directed navigation behavior, suggesting that the regenerative capacity of different sensory modalities follows distinct paths.
Collapse
Affiliation(s)
- Simon G Sprecher
- Institute of Developmental and Cell Biology, Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - F Javier Bernardo-Garcia
- Institute of Developmental and Cell Biology, Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - Lena van Giesen
- Institute of Developmental and Cell Biology, Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 621 Charles E. Young Drive, East Boyer Hall 559, Los Angeles, CA 90095-1606, USA
| | - Heinrich Reichert
- Biozentrum, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland
| | - Ricardo Neves
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 621 Charles E. Young Drive, East Boyer Hall 559, Los Angeles, CA 90095-1606, USA
| | - Xavier Bailly
- UPMC-CNRS, FR2424, Station Biologique de Roscoff, Roscoff 29680, France
| | - Pedro Martinez
- Departament de Genètica, Universitat de Barcelona, A v. Diagonal, 643, Barcelona, Catalonia 08028, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, Barcelona, Catalonia 23 08010, Spain
| | - Michael Brauchle
- Institute of Developmental and Cell Biology, Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| |
Collapse
|
48
|
Abstract
Entrainment to environmental light/dark (LD) cycles is a central function of circadian clocks. In Drosophila, entrainment is achieved by Cryptochrome (CRY) and input from the visual system. During activation by brief light pulses, CRY triggers the degradation of TIMELESS and subsequent shift in circadian phase. This is less important for LD entrainment, leading to questions regarding light input circuits and mechanisms from the visual system. Recent studies show that different subsets of brain pacemaker clock neurons, the morning (M) and evening (E) oscillators, have distinct functions in light entrainment. However, the role of CRY in M and E oscillators for entrainment to LD cycles is unknown. Here, we address this question by selectively expressing CRY in different subsets of clock neurons in a cry-null (cry(0)) mutant background. We were able to rescue the light entrainment deficits of cry(0) mutants by expressing CRY in E oscillators but not in any other clock neurons. Par domain protein 1 molecular oscillations in the E, but not M, cells of cry(0) mutants still responded to the LD phase delay. This residual light response was stemming from the visual system because it disappeared when all external photoreceptors were ablated genetically. We concluded that the E oscillators are the targets of light input via CRY and the visual system and are required for normal light entrainment.
Collapse
|
49
|
Gepner R, Mihovilovic Skanata M, Bernat NM, Kaplow M, Gershow M. Computations underlying Drosophila photo-taxis, odor-taxis, and multi-sensory integration. eLife 2015; 4. [PMID: 25945916 PMCID: PMC4466338 DOI: 10.7554/elife.06229] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/05/2015] [Indexed: 12/31/2022] Open
Abstract
To better understand how organisms make decisions on the basis of temporally varying multi-sensory input, we identified computations made by Drosophila larvae responding to visual and optogenetically induced fictive olfactory stimuli. We modeled the larva's navigational decision to initiate turns as the output of a Linear-Nonlinear-Poisson cascade. We used reverse-correlation to fit parameters to this model; the parameterized model predicted larvae's responses to novel stimulus patterns. For multi-modal inputs, we found that larvae linearly combine olfactory and visual signals upstream of the decision to turn. We verified this prediction by measuring larvae's responses to coordinated changes in odor and light. We studied other navigational decisions and found that larvae integrated odor and light according to the same rule in all cases. These results suggest that photo-taxis and odor-taxis are mediated by a shared computational pathway. DOI:http://dx.doi.org/10.7554/eLife.06229.001 Living organisms can sense cues from their surroundings and respond in appropriate ways. For example, animals will often move towards the smell of food or away from potential threats, such as predators. However, it is not fully understood how an animal's nervous system is set up to allow sensory information to control how the animal navigates its environment. It is also not clear how animals ‘decide’ what to do when they receive conflicting information from different senses. Optogenetics is a technique that allows neuroscientists to control the activities of individual nerve cells simply by shining light on to them. Fruit fly larvae have a simple but well-studied nervous system, and they are nearly transparent, so scientists can use optogenetics to activate nerve cells in freely moving larvae. Fruit fly larvae move in a series of forward ‘runs’ and direction-changing ‘turns’ and use sensory cues to decide when to turn, how large of a turn to make, and whether to turn left or right. Gepner, Mihovilovic Skanata et al. used optogenetics to stimulate different combinations of sensory nerve cells in larvae, while tracking the larvae's movements to discover exactly what information they used to make these decisions. An independent study by Hernandez-Nunez et al. also used a similar approach. Fruit fly larvae are attracted towards scents from rotting fruit and are repelled by light—in particular, larvae are most sensitive to blue light but cannot detect red light. Therefore, Gepner, Mihovilovic Skanata et al. could expose the larvae to blue light to activate light-sensing nerve cells as normal, and use red light to activate odor-sensing nerve cells via optogenetics. These experiments showed that larvae changed direction more often when the level of blue light was increased or when the level of red light (which simulated the detection of odors from rotting fruits) was decreased. Analysis of the data from these experiments revealed that larvae essentially assign negative values to the blue light and positive values to the ‘odor-mimicking’ red light. The larvae then use the sum of these two values to dictate their next move. This suggests that navigation in response to both light and odors is supported by the same pathways in a larva's nervous system. The approach of using optogenetics in combination with quantitative analysis, as used in these two independent studies, is now opening the door to a more complete understanding of the connections between the activities of sensory nerve cells and perception and behavior. DOI:http://dx.doi.org/10.7554/eLife.06229.002
Collapse
Affiliation(s)
- Ruben Gepner
- Department of Physics, New York University, New York, United States
| | | | - Natalie M Bernat
- Department of Physics, New York University, New York, United States
| | - Margarita Kaplow
- Center for Neural Science, New York University, New York, United States
| | - Marc Gershow
- Department of Physics, New York University, New York, United States
| |
Collapse
|
50
|
Abstract
Genetic manipulations of neuronal activity are a cornerstone of studies aimed to identify the functional impact of defined neurons for animal behavior. With its small nervous system, rapid life cycle, and genetic amenability, the fruit fly Drosophila melanogaster provides an attractive model system to study neuronal circuit function. In the past two decades, a large repertoire of elegant genetic tools has been developed to manipulate and study neural circuits in the fruit fly. Current techniques allow genetic ablation, constitutive silencing, or hyperactivation of neuronal activity and also include conditional thermogenetic or optogenetic activation or inhibition. As for all genetic techniques, the choice of the proper transgenic tool is essential for behavioral studies. Potency and impact of effectors may vary in distinct neuron types or distinct types of behavior. We here systematically test genetic effectors for their potency to alter the behavior of Drosophila larvae, using two distinct behavioral paradigms: general locomotor activity and directed, visually guided navigation. Our results show largely similar but not equal effects with different effector lines in both assays. Interestingly, differences in the magnitude of induced behavioral alterations between different effector lines remain largely consistent between the two behavioral assays. The observed potencies of the effector lines in aminergic and cholinergic neurons assessed here may help researchers to choose the best-suited genetic tools to dissect neuronal networks underlying the behavior of larval fruit flies.
Collapse
|