1
|
Matsumoto A, Morris J, Looger LL, Yonehara K. Functionally distinct GABAergic amacrine cell types regulate spatiotemporal encoding in the mouse retina. Nat Neurosci 2025:10.1038/s41593-025-01935-0. [PMID: 40234708 DOI: 10.1038/s41593-025-01935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025]
Abstract
GABA (γ-aminobutyric acid) is the primary inhibitory neurotransmitter in the mammalian central nervous system. GABAergic neuronal types play important roles in neural processing and the etiology of neurological disorders; however, there is no comprehensive understanding of their functional diversity. Here we perform two-photon imaging of GABA release in the inner plexiform layer of male and female mice retinae (8-16 weeks old) using the GABA sensor iGABASnFR2. By applying varied light stimuli to isolated retinae, we reveal over 40 different GABA-releasing neuron types. Individual types show layer-specific visual encoding within inner plexiform layer sublayers. Synaptic input and output sites are aligned along specific retinal orientations. The combination of cell type-specific spatial structure and unique release kinetics enables inhibitory neurons to sculpt excitatory signals in response to a wide range of behaviorally relevant motion structures. Our findings emphasize the importance of functional diversity and intricate specialization of GABAergic neurons in the central nervous system.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Japan.
| | - Jacqueline Morris
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| | - Loren L Looger
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Japan.
| |
Collapse
|
2
|
Kesavamoorthy N, Junge JA, Fraser SE, Ameri H. Insights into Metabolic Activity and Structure of the Retina through Multiphoton Fluorescence Lifetime Imaging Microscopy in Mice. Cells 2022; 11:2265. [PMID: 35892562 PMCID: PMC9331481 DOI: 10.3390/cells11152265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Fluorescence lifetime imaging microscopy (FLIM) evaluates the metabolic state of tissue based on reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavin adenine dinucleotide (FAD). Fluorescence lifetime imaging ophthalmoscopy (FLIO) can image the fundus of the eyes, but cannot detect NAD(P)H. We used multiphoton FLIM to study the metabolic state of the retina in fixed eyes of wild-type mice C57BL6/J. We sectioned the eye using a polyacrylamide gel-embedding technique and estimated the percentage of bound NAD(P)H. We found that oxidative phosphorylation was the predominant metabolic state, particularly in the inner retina, when a fixed retina was used. We also demonstrated the feasibility of FAD imaging of the retina. In addition, we demonstrated that autofluorescence and various FLIM channels, such as hemoglobin, melanin and collagen, can be used to evaluate the structure of the retina and other parts of the eye without any special staining.
Collapse
Affiliation(s)
- Niranjana Kesavamoorthy
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Jason A. Junge
- Department of Biological Sciences, David Dornsife College of Letters Arts and Sciences, University of Southern California Dana, Los Angeles, CA 90089, USA; (J.A.J.); (S.E.F.)
| | - Scott E. Fraser
- Department of Biological Sciences, David Dornsife College of Letters Arts and Sciences, University of Southern California Dana, Los Angeles, CA 90089, USA; (J.A.J.); (S.E.F.)
| | - Hossein Ameri
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| |
Collapse
|
3
|
Huang W, Xu Q, Liu F, Su J, Xiao D, Tang L, Hao ZZ, Liu R, Xiang K, Bi Y, Miao Z, Liu X, Liu Y, Liu S. Identification of TPBG-Expressing Amacrine Cells in DAT-tdTomato Mouse. Invest Ophthalmol Vis Sci 2022; 63:13. [PMID: 35551574 PMCID: PMC9123489 DOI: 10.1167/iovs.63.5.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose Neurons are the bricks of the neuronal system and experimental access to certain neuron subtypes will be of great help to decipher neuronal circuits. Here, we identified trophoblast glycoprotein (TPBG)-expressing GABAergic amacrine cells (ACs) that were selectively labeled in DAT-tdTomato transgenic mice. Methods Retina and brain sections were prepared for immunostaining with antibodies against various biomarkers. Patch-sequencing was performed to obtain the transcriptomes of tdTomato-positive cells in DAT-tdTomato mice. Whole-cell recordings were conducted to identify responses to light stimulation. Results Tyrosine hydroxylase immunoreactive cells were colocalized with tdTomato-positive cells in substantia nigra pars compacta, but not in the retina. Transcriptomes collected from tdTomato-positive cells in retinas via Patch-sequencing exhibited the expression of marker genes of ACs (Pax6 and Slc32a1) and marker genes of GABAergic neurons (Gad1, Gad2, and Slc6a1). Immunostaining with antibodies against relevant proteins (GAD67, GAD65, and GABA) also confirmed transcriptomic results. Furthermore, tdTomato-positive cells in retinas selectively expressed Tpbg, a marker gene for distinct clusters molecularly defined, which was proved with TPBG immunoreactivity in fluorescently labeled cells. Finally, tdTomato-positive cells recorded showed ON-OFF responses to light stimulation. Conclusions Ectopic expression occurs in the retina but not in the substantia nigra pars compacta in the DAT-tdTomato mouse, and fluorescently labeled cells in the retina are TPBG-expressing GABAergic ACs. This type of transgenic mice has been proved as an ideal tool to achieve efficient labeling of a distinct subset of ACs that selectively express Tpbg.
Collapse
Affiliation(s)
- Wanjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qiang Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Feng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lei Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ruifeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kangjian Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yalan Bi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, United Kingdom
| | - Zhichao Miao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, United Kingdom
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
4
|
Abstract
Retinal circuits transform the pixel representation of photoreceptors into the feature representations of ganglion cells, whose axons transmit these representations to the brain. Functional, morphological, and transcriptomic surveys have identified more than 40 retinal ganglion cell (RGC) types in mice. RGCs extract features of varying complexity; some simply signal local differences in brightness (i.e., luminance contrast), whereas others detect specific motion trajectories. To understand the retina, we need to know how retinal circuits give rise to the diverse RGC feature representations. A catalog of the RGC feature set, in turn, is fundamental to understanding visual processing in the brain. Anterograde tracing indicates that RGCs innervate more than 50 areas in the mouse brain. Current maps connecting RGC types to brain areas are rudimentary, as is our understanding of how retinal signals are transformed downstream to guide behavior. In this article, I review the feature selectivities of mouse RGCs, how they arise, and how they are utilized downstream. Not only is knowledge of the behavioral purpose of RGC signals critical for understanding the retinal contributions to vision; it can also guide us to the most relevant areas of visual feature space. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences; Department of Neuroscience; Department of Biomedical Engineering; and Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri, USA;
| |
Collapse
|
5
|
Yamagata M, Sanes JR. Expression and Roles of the Immunoglobulin Superfamily Recognition Molecule Sidekick1 in Mouse Retina. Front Mol Neurosci 2019; 11:485. [PMID: 30687002 PMCID: PMC6333872 DOI: 10.3389/fnmol.2018.00485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/13/2018] [Indexed: 12/24/2022] Open
Abstract
Processes of >100 types of interneurons (bipolar and amacrine cells) and projection neurons (retinal ganglion cells, RGCs) form specific and stereotyped patterns of connections in the inner plexiform layer (IPL) of the mouse retina. Four closely related homophilic immunoglobulin superfamily recognition molecules (Sidekick [Sdk] 1, Sdk 2, Dscam, and DscamL1) have been shown to play roles in patterning neuronal arbors and connections in chick retina, and all but Sdk1 have been shown to play related roles in mice. Here, we compare patterns of Sdk1 and Sdk2 expression in mouse retina and use genetic methods to assess roles of Sdk1. In adult retina, 3 neuronal types express sdk1 but not sdk2 at detectable levels, 5 express sdk2 but not sdk1 and 3 express both. Patterns of gene expression and protein localization at or near synapses are established during the first postnatal week. Dendrites of amacrine cells and RGCs that express sdk1 but not sdk2 arborize in the same narrow stratum in the center of the IPL. In the absence of Sdk1, this laminar restriction is degraded. Overexpression of sdk1 in developing cells that normally express sdk2 reorients their dendrites to resemble those of endogenously Sdk1-positive cells, indicating that Sdk1 plays an instructive role in patterning the IPL. Sdk1 fails to affect arbors when introduced after they are mature, suggesting that it is required to form but not maintain laminar restrictions. The effect of ectopically expressed sdk1 requires the presence of endogenous Sdk1, suggesting that the effect requires homophilic interactions among Sdk1-positive neurites. Together with previous results on Sdk2, Dscam, DscamL1, as well as the related Contactins, our results support the idea that an elaborate immunoglobulin superfamily code plays a prominent role in establishing neural circuits in the retina by means of tightly regulated cell type-specific expression and homophilically restricted intercellular interactions.
Collapse
Affiliation(s)
- Masahito Yamagata
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, United States
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, United States
| |
Collapse
|
6
|
Kim T, Kerschensteiner D. Inhibitory Control of Feature Selectivity in an Object Motion Sensitive Circuit of the Retina. Cell Rep 2018; 19:1343-1350. [PMID: 28514655 DOI: 10.1016/j.celrep.2017.04.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 11/26/2022] Open
Abstract
Object motion sensitive (OMS) W3-retinal ganglion cells (W3-RGCs) in mice respond to local movements in a visual scene but remain silent during self-generated global image motion. The excitatory inputs that drive responses of W3-RGCs to local motion were recently characterized, but which inhibitory neurons suppress W3-RGCs' responses to global motion, how these neurons encode motion information, and how their connections are organized along the excitatory circuit axis remains unknown. Here, we find that a genetically identified amacrine cell (AC) type, TH2-AC, exhibits fast responses to global motion and slow responses to local motion. Optogenetic stimulation shows that TH2-ACs provide strong GABAA receptor-mediated input to W3-RGCs but only weak input to upstream excitatory neurons. Cell-type-specific silencing reveals that temporally coded inhibition from TH2-ACs cancels W3-RGC spike responses to global but not local motion stimuli and, thus, controls the feature selectivity of OMS signals sent to the brain.
Collapse
Affiliation(s)
- Tahnbee Kim
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
7
|
Eliminating Glutamatergic Input onto Horizontal Cells Changes the Dynamic Range and Receptive Field Organization of Mouse Retinal Ganglion Cells. J Neurosci 2018; 38:2015-2028. [PMID: 29352045 DOI: 10.1523/jneurosci.0141-17.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022] Open
Abstract
In the mammalian retina, horizontal cells receive glutamatergic inputs from many rod and cone photoreceptors and return feedback signals to them, thereby changing photoreceptor glutamate release in a light-dependent manner. Horizontal cells also provide feedforward signals to bipolar cells. It is unclear, however, how horizontal cell signals also affect the temporal, spatial, and contrast tuning in retinal output neurons, the ganglion cells. To study this, we generated a genetically modified mouse line in which we eliminated the light dependency of feedback by deleting glutamate receptors from mouse horizontal cells. This genetic modification allowed us to investigate the impact of horizontal cells on ganglion cell signaling independent of the actual mode of feedback in the outer retina and without pharmacological manipulation of signal transmission. In control and genetically modified mice (both sexes), we recorded the light responses of transient OFF-α retinal ganglion cells in the intact retina. Excitatory postsynaptic currents (EPSCs) were reduced and the cells were tuned to lower temporal frequencies and higher contrasts, presumably because photoreceptor output was attenuated. Moreover, receptive fields of recorded cells showed a significantly altered surround structure. Our data thus suggest that horizontal cells are responsible for adjusting the dynamic range of retinal ganglion cells and, together with amacrine cells, contribute to the center/surround organization of ganglion cell receptive fields in the mouse.SIGNIFICANCE STATEMENT Horizontal cells represent a major neuronal class in the mammalian retina and provide lateral feedback and feedforward signals to photoreceptors and bipolar cells, respectively. The mode of signal transmission remains controversial and, moreover, the contribution of horizontal cells to visual processing is still elusive. To address the question of how horizontal cells affect retinal output signals, we recorded the light responses of transient OFF-α retinal ganglion cells in a newly generated mouse line. In this mouse line, horizontal cell signals were no longer modulated by light. With light response recordings, we show that horizontal cells increase the dynamic range of retinal ganglion cells for contrast and temporal changes and contribute to the center/surround organization of their receptive fields.
Collapse
|
8
|
Oliveira FG, Nascimento-Júnior ESD, Cavalcante JC, Guzen FP, Cavalcante JDS, Soares JG, Cavalcanti JRLDP, Freitas LMD, Costa MSMDO, Andrade-da-Costa BLDS. Topographic specializations of catecholaminergic cells and ganglion cells and distribution of calcium binding proteins in the crepuscular rock cavy (Kerodon rupestris) retina. J Chem Neuroanat 2017; 90:57-69. [PMID: 29277705 DOI: 10.1016/j.jchemneu.2017.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 01/16/2023]
Abstract
The rock cavy (Kerodon rupestris) is a crepuscular Hystricomorpha rodent that has been used in comparative analysis of retinal targets, but its retinal organization remains to be investigated. In order to better characterize its visual system, the present study analyzed neurochemical features related to the topographic organization of catecholaminergic cells and ganglion cells, as well the distribution of calcium-binding proteins in the outer and inner retina. Retinal sections and/or wholemounts were processed using tyrosine hydroxylase (TH), GABA, calbindin, parvalbumin and calretinin immunohistochemistry or Nissl staining. Two types of TH-immunoreactive (TH-IR) cells were found which differ in soma size, dendritic arborization, intensity of TH immunoreactivity and stratification pattern in the inner plexiform layer. The topographic distribution of all TH-IR cells defines a visual streak along the horizontal meridian in the superior retina. The ganglion cells are also distributed in a visual streak and the visual acuity estimated considering their peak density is 4.13 cycles/degree. A subset of TH-IR cells express GABA or calbindin. Calretinin is abundant in most of retinal layers and coexists with calbindin in horizontal cells. Parvalbumin is less abundant and expressed by presumed amacrine cells in the INL and some ganglion cells in the GCL. The topographic distribution of TH-IR cells and ganglion cells in the rock cavy retina indicate a suitable adaptation for using a broad extension of its inferior visual field in aspects that involve resolution, adjustment to ambient light intensity and movement detection without specialized eye movements.
Collapse
Affiliation(s)
- Francisco Gilberto Oliveira
- Departamento de Ciências Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Regional do Cariri - URCA, Crato, CE, Brazil; Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Expedito Silva do Nascimento-Júnior
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Judney Cley Cavalcante
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Fausto Pierdoná Guzen
- Faculdade de Ciências da Saúde, Departamento de Ciências Biomédicas, Universidade do Estado do Rio Grande do Norte - UERN, Mossoró, RN, Brazil
| | - Jeferson de Souza Cavalcante
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil; Departamento de Fisiologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Joacil Germano Soares
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | | | - Leandro Moura de Freitas
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Miriam Stela Maris de Oliveira Costa
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | | |
Collapse
|
9
|
Tetenborg S, Yadav SC, Hormuzdi SG, Monyer H, Janssen-Bienhold U, Dedek K. Differential Distribution of Retinal Ca 2+/Calmodulin-Dependent Kinase II (CaMKII) Isoforms Indicates CaMKII-β and -δ as Specific Elements of Electrical Synapses Made of Connexin36 (Cx36). Front Mol Neurosci 2017; 10:425. [PMID: 29311815 PMCID: PMC5742114 DOI: 10.3389/fnmol.2017.00425] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022] Open
Abstract
AII amacrine cells are essential interneurons of the primary rod pathway and transmit rod-driven signals to ON cone bipolar cells to enable scotopic vision. Gap junctions made of connexin36 (Cx36) mediate electrical coupling among AII cells and between AII cells and ON cone bipolar cells. These gap junctions underlie a remarkable degree of plasticity and are modulated by different signaling cascades. In particular, Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been characterized as an important regulator of Cx36, capable of potentiating electrical coupling in AII cells. However, it is unclear which CaMKII isoform mediates this effect. To obtain a more detailed understanding of the isoform composition of CaMKII at retinal gap junctions, we analyzed the retinal distribution of all four CaMKII isoforms using confocal microscopy. These experiments revealed a differential distribution of CaMKII isoforms: CaMKII-α was strongly expressed in starburst amacrine cells, which are known to lack electrical coupling. CaMKII-β was abundant in OFF bipolar cells, which form electrical synapses in the outer and the inner retina. CaMKII-γ was diffusely distributed across the entire retina and could not be assigned to a specific cell type. CaMKII-δ labeling was evident in bipolar and AII amacrine cells, which contain the majority of Cx36-immunoreactive puncta in the inner retina. We double-labeled retinas for Cx36 and the four CaMKII isoforms and revealed that the composition of the CaMKII enzyme differs between gap junctions in the outer and the inner retina: in the outer retina, only CaMKII-β colocalized with Cx36-containing gap junctions, whereas in the inner retina, CaMKII-β and -δ colocalized with Cx36. This finding suggests that gap junctions in the inner and the outer retina may be regulated differently although they both contain the same connexin. Taken together, our study identifies CaMKII-β and -δ as Cx36-specific regulators in the mouse retina with CaMKII-δ regulating the primary rod pathway.
Collapse
Affiliation(s)
- Stephan Tetenborg
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Shubhash C Yadav
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Sheriar G Hormuzdi
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | | | - Ulrike Janssen-Bienhold
- Visual Neuroscience, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Xu GZ, Cui LJ, Liu AL, Zhou W, Gong X, Zhong YM, Yang XL, Weng SJ. Transgene is specifically and functionally expressed in retinal inhibitory interneurons in the VGAT-ChR2-EYFP mouse. Neuroscience 2017; 363:107-119. [PMID: 28918256 DOI: 10.1016/j.neuroscience.2017.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
Abstract
Ectopic transgene expression in the retina has been reported in various transgenic mice, indicating the importance of characterizing retinal phenotypes. We examined transgene expression in the VGAT-ChR2-EYFP mouse retina by fluorescent immunohistochemistry and electrophysiology, with special emphasis on enhanced yellow fluorescent protein (EYFP) localization in retinal neuronal subtypes identified by specific markers. Strong EYFP signals were detected in both the inner and outer plexiform layers. In addition, the ChR2-EYFP fusion protein was also expressed in somata of the great majority of inhibitory interneurons, including horizontal cells and GABAergic and glycinergic amacrine cells. However, a small population of amacrine cells residing in the ganglion cell layer were not labeled by EYFP, and a part of them were cholinergic ones. In contrast, no EYFP signal was detected in the somata of retinal excitatory neurons: photoreceptors, bipolar and ganglion cells, as well as Müller glial cells. When glutamatergic transmission was blocked, bright blue light stimulation elicited inward photocurrents from amacrine cells, as well as post-synaptic inhibitory currents from ganglion cells, suggesting a functional ChR2 expression. The VGAT-ChR2-EYFP mouse therefore could be a useful animal model for dissecting retinal microcircuits when targeted labeling and/or optogenetic manipulation of retinal inhibitory neurons are required.
Collapse
Affiliation(s)
- Guo-Zhong Xu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Ling-Jie Cui
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Ai-Lin Liu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Wei Zhou
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xue Gong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yong-Mei Zhong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xiong-Li Yang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Shi-Jun Weng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Abstract
Amacrine cells are a diverse set of local circuit neurons of the inner retina, and they all release either GABA or glycine, amino acid neurotransmitters that are generally inhibitory. But some types of amacrine cells have another function besides inhibiting other neurons. One glycinergic amacrine cell, the Aii type, excites a subset of bipolar cells via extensive gap junctions while inhibiting others at chemical synapses. Many types of GABAergic amacrine cells also release monoamines, acetylcholine, or neuropeptides. There is now good evidence that another type of amacrine cell releases glycine at some of its synapses and releases the excitatory amino acid glutamate at others. The glutamatergic synapses are made onto a subset of retinal ganglion cells and amacrine cells and have the asymmetric postsynaptic densities characteristic of central excitatory synapses. The glycinergic synapses are made onto other types of ganglion cells and have the symmetric postsynaptic densities characteristic of central inhibitory synapses. These amacrine cells, which contain vesicular glutamate transporter 3, will be the focus of this brief review.
Collapse
|
12
|
Balasubramanian R, Bui A, Dong X, Gan L. Lhx9 Is Required for the Development of Retinal Nitric Oxide-Synthesizing Amacrine Cell Subtype. Mol Neurobiol 2017; 55:2922-2933. [PMID: 28456934 DOI: 10.1007/s12035-017-0554-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/12/2017] [Indexed: 11/29/2022]
Abstract
Amacrine cells are the most diverse group of retinal neurons. Various subtypes of amacrine interneurons mediate a vast majority of image forming and non-image forming visual functions. The transcriptional regulation governing the development of individual amacrine cell subtypes is not well understood. One such amacrine cell subtype comprises neuronal nitric oxide synthase (nNOS/bNOS/NOS1)-expressing amacrine cells (NOACs) that regulate the release of nitric oxide (NO), a neurotransmitter with physiological and clinical implications in the retina. We have identified the LIM-homeodomain transcription factor LHX9 to be necessary for the genesis of NOACs. During retinal development, NOACs express Lhx9, and Lhx9-null retinas lack NOACs. Lhx9-null retinas also display aberrations in dendritic stratification at the inner plexiform layer. Our cell lineage-tracing studies show that Lhx9-expressing cells give rise to both the GAD65 and GAD67 expressing sub-populations of GABAergic amacrine cells. As development proceeds, Lhx9 is downregulated in the GAD65 sub-population of GABAergic cells and is largely restricted to the GAD67 sub-population of amacrine cells that NOACs are a part of. Taken together, we have uncovered Lhx9 as a new molecular marker that defines a subset of amacrine cells and show that it is necessary for the development of the NOAC subtype of amacrine cells.
Collapse
Affiliation(s)
- Revathi Balasubramanian
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA.,Department of Neurobiology and Anatomy, University of Rochester, Rochester, NY, 14642, USA.,Department of Ophthalmology, Columbia University, New York, NY, 10032, USA
| | - Andrew Bui
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
| | - Xuhui Dong
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Lin Gan
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA. .,Department of Neurobiology and Anatomy, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
13
|
Synaptic connections of amacrine cells containing vesicular glutamate transporter 3 in baboon retinas. Vis Neurosci 2016; 32:E006. [PMID: 26241195 DOI: 10.1017/s0952523815000036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The goals of these experiments were to describe the morphology and synaptic connections of amacrine cells in the baboon retina that contain immunoreactive vesicular glutamate transporter 3 (vGluT3). These amacrine cells had the morphology characteristic of knotty bistratified type 1 cells, and their dendrites formed two plexuses on either side of the center of the inner plexiform layer. The primary dendrites received large synapses from amacrine cells, and the higher-order dendrites were both pre- and postsynaptic to other amacrine cells. Based on light microscopic immunolabeling results, these include AII cells and starburst cells, but not the polyaxonal amacrine cells tracer-coupled to ON parasol ganglion cells. The vGluT3 cells received input from ON bipolar cells at ribbon synapses and made synapses onto OFF bipolar cells, including the diffuse DB3a type. Many synapses from vGluT3 cells onto retinal ganglion cells were observed in both plexuses. At synapses where vGluT3 cells were presynaptic, two types of postsynaptic densities were observed; there were relatively thin ones characteristic of inhibitory synapses and relatively thick ones characteristic of excitatory synapses. In the light microscopic experiments with Neurobiotin-injected ganglion cells, vGluT3 cells made contacts with midget and parasol ganglion cells, including both ON and OFF types. Puncta containing immunoreactive gephyrin, an inhibitory synapse marker, were found at appositions between vGluT3 cells and each of the four types of labeled ganglion cells. The vGluT3 cells did not have detectable levels of immunoreactive γ-aminobutyric acid (GABA) or immunoreactive glycine transporter 1. Thus, the vGluT3 cells would be expected to have ON responses to light and make synapses onto neurons in both the ON and the OFF pathways. Taken with previous results, these findings suggest that vGluT3 cells release glycine at some of their output synapses and glutamate at others.
Collapse
|
14
|
Vuong HE, Pérez de Sevilla Müller L, Hardi CN, McMahon DG, Brecha NC. Heterogeneous transgene expression in the retinas of the TH-RFP, TH-Cre, TH-BAC-Cre and DAT-Cre mouse lines. Neuroscience 2015; 307:319-37. [PMID: 26335381 PMCID: PMC4603663 DOI: 10.1016/j.neuroscience.2015.08.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 11/29/2022]
Abstract
Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) mouse line with three catecholamine-related Cre recombinase mouse lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ∼ 6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines was generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing.
Collapse
Affiliation(s)
- H E Vuong
- Molecular, Cellular, and Integrative Physiology Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - L Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - C N Hardi
- Department of Psychology, College of Letters and Science, UCLA, Los Angeles, CA 90095, United States
| | - D G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, United States
| | - N C Brecha
- Molecular, Cellular, and Integrative Physiology Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; CURE-Digestive Diseases Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90095, United States.
| |
Collapse
|
15
|
Bowrey HE, James MH. Commentary: "Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity". Front Cell Neurosci 2015; 9:424. [PMID: 26578884 PMCID: PMC4621434 DOI: 10.3389/fncel.2015.00424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/09/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- Hannah E Bowrey
- Brain Health Institute, Rutgers, The State University of New Jersey Piscataway, NJ, USA
| | - Morgan H James
- Brain Health Institute, Rutgers, The State University of New Jersey Piscataway, NJ, USA
| |
Collapse
|
16
|
Abstract
UNLABELLED Visual processing in the retina depends on coordinated signaling by interneurons. Photoreceptor signals are relayed to ∼20 ganglion cell types through a dozen excitatory bipolar interneurons, each responsive to light increments (ON) or decrements (OFF). ON and OFF bipolar cell pathways become tuned through specific connections with inhibitory interneurons: horizontal and amacrine cells. A major obstacle for understanding retinal circuitry is the unknown function of most of the ∼30-40 amacrine cell types, each of which synapses onto a subset of bipolar cell terminals, ganglion cell dendrites, and other amacrine cells. Here, we used a transgenic mouse line in which vasoactive intestinal polypeptide-expressing (VIP+) GABAergic interneurons express Cre recombinase. Targeted whole-cell recordings of fluorescently labeled VIP+ cells revealed three predominant types: wide-field bistratified and narrow-field monostratified cells with somas in the inner nuclear layer (INL) and medium-field monostratified cells with somas in the ganglion cell layer (GCL). Bistratified INL cells integrated excitation and inhibition driven by both ON and OFF pathways with little spatial tuning. Narrow-field INL cells integrated excitation driven by the ON pathway and inhibition driven by both pathways, with pronounced hyperpolarizations at light offset. Monostratified GCL cells integrated excitation and inhibition driven by the ON pathway and showed center-surround spatial tuning. Optogenetic experiments showed that, collectively, VIP+ cells made strong connections with OFF δ, ON-OFF direction-selective, and W3 ganglion cells but weak, inconsistent connections with ON and OFF α cells. Revealing VIP+ cell morphologies, receptive fields and synaptic connections advances our understanding of their role in visual processing. SIGNIFICANCE STATEMENT The retina is a model system for understanding nervous system function. At the first stage, rod and cone photoreceptors encode light and communicate with a complex network of interneurons. These interneurons drive the responses of ganglion cells, which form the optic nerve and transmit visual information to the brain. Presently, we lack information about many of the retina's inhibitory amacrine interneurons. In this study, we used genetically modified mice to study the light responses and intercellular connections of specific amacrine cell types. The results show diversity in the shape and function of the studied amacrine cells and elucidate their connections with specific types of ganglion cell. The findings advance our understanding of the cellular basis for retinal function.
Collapse
|
17
|
Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity. J Neurosci 2015; 35:8004-20. [PMID: 25995483 DOI: 10.1523/jneurosci.0089-15.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Amacrine interneurons, which are highly diversified in morphological, neurochemical, and physiological features, play crucial roles in visual information processing in the retina. However, the specification mechanisms and functions in vision for each amacrine subtype are not well understood. We found that the Prdm13 transcriptional regulator is specifically expressed in developing and mature amacrine cells in the mouse retina. Most Prdm13-positive amacrine cells are Calbindin- and Calretinin-positive GABAergic or glycinergic neurons. Absence of Prdm13 significantly reduces GABAergic and glycinergic amacrines, resulting in a specific defect of the S2/S3 border neurite bundle in the inner plexiform layer. Forced expression of Prdm13 distinctively induces GABAergic and glycinergic amacrine cells but not cholinergic amacrine cells, whereas Ptf1a, an upstream transcriptional regulator of Prdm13, induces all of these subtypes. Moreover, Prdm13-deficient mice showed abnormally elevated spatial, temporal, and contrast sensitivities in vision. Together, these results show that Prdm13 regulates development of a subset of amacrine cells, which newly defines an amacrine subtype to negatively modulate visual sensitivities. Our current study provides new insights into mechanisms of the diversification of amacrine cells and their function in vision.
Collapse
|
18
|
DSCAM promotes refinement in the mouse retina through cell death and restriction of exploring dendrites. J Neurosci 2015; 35:5640-54. [PMID: 25855178 DOI: 10.1523/jneurosci.2202-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this study we develop and use a gain-of-function mouse allele of the Down syndrome cell adhesion molecule (Dscam) to complement loss-of-function models. We assay the role of Dscam in promoting cell death, spacing, and laminar targeting of neurons in the developing mouse retina. We find that ectopic or overexpression of Dscam is sufficient to drive cell death. Gain-of-function studies indicate that Dscam is not sufficient to increase spatial organization, prevent cell-to-cell pairing, or promote active avoidance in the mouse retina, despite the similarity of the Dscam loss-of-function phenotype in the mouse retina to phenotypes observed in Drosophila Dscam1 mutants. Both gain- and loss-of-function studies support a role for Dscam in targeting neurites; DSCAM is necessary for precise dendrite lamination, and is sufficient to retarget neurites of outer retinal cells after ectopic expression. We further demonstrate that DSCAM guides dendrite targeting in type 2 dopaminergic amacrine cells, by restricting the stratum in which exploring retinal dendrites stabilize, in a Dscam dosage-dependent manner. Based on these results we propose a single model to account for the numerous Dscam gain- and loss-of-function phenotypes reported in the mouse retina whereby DSCAM eliminates inappropriately placed cells and connections.
Collapse
|
19
|
Löffler K, Schäfer P, Völkner M, Holdt T, Karl MO. Age-dependent Müller glia neurogenic competence in the mouse retina. Glia 2015; 63:1809-24. [PMID: 25943952 DOI: 10.1002/glia.22846] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/08/2015] [Indexed: 11/10/2022]
Abstract
The mechanisms limiting neuronal regeneration in mammals and their relationship with reactive gliosis are unknown. Müller glia (MG), common to all vertebrate retinas, readily regenerate neuron loss in some species, but normally not in mammals. However, experimental stimulation of limited mammalian retina regeneration has been reported. Here, we use a mouse retina organ culture approach to investigate the MG responses at different mouse ages. We found that MG undergo defined spatio-temporal changes upon stimulation. In EGF-stimulated juvenile postmitotic retinas, most MG upregulate cell-cycle regulators (Mcm6, Pcna, Ki67, Ccnd1) within 48 h ex vivo; some also express the neurogenic factors Ascl1, Pax6, and Vsx2; up to 60% re-enter the cell cycle, some of which delaminate to divide mostly apically; and the majority cease to proliferate after stimulation. A subpopulation of MG progeny starts to express transcription factors (Ptf1a, Nr4a2) and neuronal (Calb1, Calb2, Rbfox3), but not glial, markers, indicating neurogenesis. BrdU-tracking, genetic lineage-tracing, and transgenic-reporter experiments suggest that MG reprogram to a neurogenic stage and proliferate; and that some MG progeny differentiate into neuronal-like cells, most likely amacrines, no photoreceptors; most others remain in a de-differentiated state. The mouse MG regeneration potential becomes restricted, dependent on the age of the animal, as observed by limited activation of the cell cycle and neurogenic factors. The stage-dependent analysis of mouse MG revealed similarities and differences when compared with MG-derived regeneration in fish and chicks. Therefore, the mouse retina ex vivo approach is a potential assay for understanding and overcoming the limitations of mammalian MG-derived neuronal regeneration. Postmitotic MG in mouse retina ex vivo can be stimulated to proliferate, express neurogenic factors, and generate progeny expressing neuronal or glial markers. This potential regenerative competence becomes limited with increasing mouse age.
Collapse
Affiliation(s)
- Kati Löffler
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany
| | - Patrick Schäfer
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, 01307, Germany
| | - Manuela Völkner
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, 01307, Germany
| | - Tina Holdt
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, 01307, Germany
| | - Mike O Karl
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, 01307, Germany
| |
Collapse
|
20
|
Brüggen B, Meyer A, Boven F, Weiler R, Dedek K. Type 2 wide-field amacrine cells in TH::GFP mice show a homogenous synapse distribution and contact small ganglion cells. Eur J Neurosci 2014; 41:734-47. [PMID: 25546402 DOI: 10.1111/ejn.12813] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/11/2014] [Accepted: 11/28/2014] [Indexed: 01/25/2023]
Abstract
In vertebrate retinas, wide-field amacrine cells represent a diverse class of interneurons, important for the extraction of selective features, like motion or objects, from the visual scene. Most types of wide-field amacrine cells lack dedicated output processes, whereas some types spatially segregate outputs from inputs. In the tyrosine hydroxylase (TH)::green fluorescent protein (GFP) mouse line, two types of GFP-expressing wide-field amacrine cells have been described: dopaminergic type 1 and γ-aminobutyric acid-ergic type 2 cells (TH2). TH2 cells possess short and long radial processes stratifying in the middle of the inner plexiform layer, where they collect excitatory and inhibitory inputs from bipolar cells and other amacrine cells, respectively. Although it was shown that these inputs lead to ON-OFF light responses, their spatial distribution along TH2 cell processes is unknown. Also, the postsynaptic targets of TH2 cells have not been identified so far. Here, we analysed the synapse distribution of these cells in TH::GFP mice and show that they form a weakly coupled network. Electrical synapses (made of connexin36) and chemical (excitatory and inhibitory) synapses are uniformly distributed along TH2 dendrites, independent of dendrite length or distance from soma. Moreover, we reveal that TH2 cells contact at least two types of small ganglion cells; one of them is the W3 cell, a ganglion cell sensitive to object motion. Contacts were often associated with markers of inhibitory synapses. Thus, TH2 wide-field amacrine cells likely provide postsynaptic inhibition to W3 ganglion cells and may contribute to object-motion detection in the mouse retina.
Collapse
Affiliation(s)
- Bianca Brüggen
- Neurobiology, University of Oldenburg, 26111, Oldenburg, Germany
| | | | | | | | | |
Collapse
|
21
|
Hoon M, Okawa H, Della Santina L, Wong ROL. Functional architecture of the retina: development and disease. Prog Retin Eye Res 2014; 42:44-84. [PMID: 24984227 DOI: 10.1016/j.preteyeres.2014.06.003] [Citation(s) in RCA: 388] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/08/2014] [Accepted: 06/22/2014] [Indexed: 12/22/2022]
Abstract
Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina.
Collapse
Affiliation(s)
- Mrinalini Hoon
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Haruhisa Okawa
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Luca Della Santina
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
22
|
Knop GC, Pottek M, Monyer H, Weiler R, Dedek K. Morphological and physiological properties of enhanced green fluorescent protein (EGFP)-expressing wide-field amacrine cells in the ChAT-EGFP mouse line. Eur J Neurosci 2013; 39:800-10. [PMID: 24299612 DOI: 10.1111/ejn.12443] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/01/2013] [Accepted: 11/06/2013] [Indexed: 01/25/2023]
Abstract
Mammalian retinas comprise a variety of interneurons, among which amacrine cells represent the largest group, with more than 30 different cell types each exhibiting a rather distinctive morphology and carrying out a unique function in retinal processing. However, many amacrine types have not been studied systematically because, in particular, amacrine cells with large dendritic fields, i.e. wide-field amacrine cells, have a low abundance and are therefore difficult to target. Here, we used a transgenic mouse line expressing the coding sequence of enhanced green fluorescent protein under the promoter for choline acetyltransferase (ChAT-EGFP mouse) and characterized a single wide-field amacrine cell population monostratifying in layer 2/3 of the inner plexiform layer (WA-S2/3 cell). Somata of WA-S2/3 cells are located either in the inner nuclear layer or are displaced to the ganglion cell layer and exhibit a low cell density. Using immunohistochemistry, we show that WA-S2/3 cells are presumably GABAergic but may also release acetylcholine as their somata are weakly positive for ChAT. Two-photon-guided patch-clamp recordings from intact retinas revealed WA-S2/3 cells to be ON-OFF cells with a homogenous receptive field even larger than the dendritic field. The large spatial extent of the receptive field is most likely due to the extensive homologous and heterologous coupling among WA-S2/3 cells and to other amacrine cells, respectively, as indicated by tracer injections. In summary, we have characterized a novel type of GABAergic ON-OFF wide-field amacrine cell which is ideally suited to providing long-range inhibition to ganglion cells due to its strong coupling.
Collapse
Affiliation(s)
- Gabriel C Knop
- Neurobiology, University of Oldenburg, 26111, Oldenburg, Germany
| | | | | | | | | |
Collapse
|
23
|
Cameron MA, Suaning GJ, Lovell NH, Morley JW. Electrical stimulation of inner retinal neurons in wild-type and retinally degenerate (rd/rd) mice. PLoS One 2013; 8:e68882. [PMID: 23874798 PMCID: PMC3708954 DOI: 10.1371/journal.pone.0068882] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/31/2013] [Indexed: 11/19/2022] Open
Abstract
Electrical stimulation of the retina following photoreceptor degeneration in diseases such as retinitis pigmentosa and age-related macular degeneration has become a promising therapeutic strategy for the restoration of vision. Many retinal neurons remain functional following photoreceptor degeneration; however, the responses of the different classes of cells to electrical stimuli have not been fully investigated. Using whole-cell patch clamp electrophysiology in retinal slices we investigated the response to electrical stimulation of cells of the inner nuclear layer (INL), pre-synaptic to retinal ganglion cells, in wild-type and retinally degenerate (rd/rd) mice. The responses of these cells to electrical stimulation were extremely varied, with both extrinsic and intrinsic evoked responses observed. Further examination of the intrinsically evoked responses revealed direct activation of both voltage-gated Na+ channels and K+ channels. The expression of these channels, which is particularly varied between INL cells, and the stimulus intensity, appears to dictate the polarity of the eventual response. Retinally degenerate animals showed similar responses to electrical stimulation of the retina to those of the wild-type, but the relative representation of each response type differed. The most striking difference between genotypes was the existence of a large amplitude oscillation in the majority of INL cells in rd/rd mice (as previously reported) that impacted on the signal to noise ratio following electrical stimulation. This confounding oscillation may significantly reduce the efficacy of electrical stimulation of the degenerate retina, and a greater understanding of its origin will potentially enable it to be dampened or eliminated.
Collapse
Affiliation(s)
- Morven A Cameron
- School of Medicine, the University of Western Sydney, Campbelltown, New South Wales, Australia.
| | | | | | | |
Collapse
|
24
|
|
25
|
Abstract
Amacrine cells are a morphologically and functionally diverse group of inhibitory interneurons. Morphologically, they have been divided into approximately 30 types. Although this diversity is probably important to the fine structure and function of the retinal circuit, the amacrine cells have been more generally divided into two subclasses. Glycinergic narrow-field amacrine cells have dendrites that ramify close to their somas, cross the sublaminae of the inner plexiform layer, and create cross talk between its parallel ON and OFF pathways. GABAergic wide-field amacrine cells have dendrites that stretch long distances from their soma but ramify narrowly within an inner plexiform layer sublamina. These wide-field cells are thought to mediate inhibition within a sublamina and thus within the ON or OFF pathway. The postsynaptic targets of all amacrine cell types include bipolar, ganglion, and other amacrine cells. Almost all amacrine cells use GABA or glycine as their primary neurotransmitter, and their postsynaptic receptor targets include the most common GABA(A), GABA(C), and glycine subunit receptor configurations. This review addresses the diversity of amacrine cells, the postsynaptic receptors on their target cells in the inner plexiform layer of the retina, and some of the inhibitory mechanisms that arise as a result. When possible, the effects of GABAergic and glycinergic inputs on the visually evoked responses of their postsynaptic targets are discussed.
Collapse
|
26
|
Pottek M, Knop GC, Weiler R, Dedek K. Electrophysiological characterization of GFP-expressing cell populations in the intact retina. J Vis Exp 2011:3457. [PMID: 22105413 PMCID: PMC3308615 DOI: 10.3791/3457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Studying the physiological properties and synaptic connections of specific neurons in the intact tissue is a challenge for those cells that lack conspicuous morphological features or show a low population density. This applies particularly to retinal amacrine cells, an exceptionally multiform class of interneurons that comprise roughly 30 subtypes in mammals(1). Though being a crucial part of the visual processing by shaping the retinal output(2), most of these subtypes have not been studied up to now in a functional context because encountering these cells with a recording electrode is a rare event. Recently, a multitude of transgenic mouse lines is available that express fluorescent markers like green fluorescent protein (GFP) under the control of promoters for membrane receptors or enzymes that are specific to only a subset of neurons in a given tissue(3,4). These pre-labeled cells are therefore accessible to directed microelectrode targeting under microscopic control, permitting the systematic study of their physiological properties in situ. However, excitation of fluorescent markers is accompanied by the risk of phototoxicity for the living tissue. In the retina, this approach is additionally hampered by the problem that excitation light causes appropriate stimulation of the photoreceptors, thus inflicting photopigment bleaching and transferring the retinal circuits into a light-adapted condition. These drawbacks are overcome by using infrared excitation delivered by a mode-locked laser in short pulses of the femtosecond range. Two-photon excitation provides energy sufficient for fluorophore excitation and at the same time restricts the excitation to a small tissue volume minimizing the hazards of photodamage(5). Also, it leaves the retina responsive to visual stimuli since infrared light (>850 nm) is only poorly absorbed by photopigments(6). In this article we demonstrate the use of a transgenic mouse retina to attain electrophysiological in situ recordings from GFP-expressing cells that are visually targeted by two-photon excitation. The retina is prepared and maintained in darkness and can be subjected to optical stimuli which are projected through the condenser of the microscope (Figure 1). Patch-clamp recording of light responses can be combined with dye filling to reveal the morphology and to check for gap junction-mediated dye coupling to neighboring cells, so that the target cell can by studied on different experimental levels.
Collapse
Affiliation(s)
- Mark Pottek
- Department of Neurobiology, University of Oldenburg
| | | | | | | |
Collapse
|