1
|
Worthy AE, Anderson JT, Lane AR, Gomez-Perez L, Wang AA, Griffith RW, Rivard AF, Bikoff JB, Alvarez FJ. Spinal V1 inhibitory interneuron clades differ in birthdate, projections to motoneurons, and heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.29.569270. [PMID: 38076820 PMCID: PMC10705425 DOI: 10.1101/2023.11.29.569270] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Spinal cord interneurons play critical roles shaping motor output, but their precise identity and connectivity remain unclear. Focusing on the V1 interneuron cardinal class we defined four major V1 subsets according to neurogenesis timing, genetic lineage-tracing, synaptic output to motoneurons, and synaptic inputs from muscle afferents. Birthdate delineates two early born (Renshaw and Pou6f2) and two late born (Foxp2 and Sp8) V1 clades, showing that sequential neurogenesis produces different V1 subsets. Early born Renshaw cells and late born Foxp2-V1 interneurons are tightly coupled to motoneurons, while early born Pou6f2-V1 and late born Sp8-V1 interneurons are not, indicating that timing of neurogenesis does not correlate with motoneuron targeting. V1 clades also differ in cell numbers and diversity. Lineage labeling shows that the Foxp2-V1 clade contains over half of all V1 interneurons, provides the largest inhibitory input to motoneuron cell bodies and includes subgroups that differ in birthdate, location, and proprioceptive input. Notably, one Foxp2-V1 subgroup, defined by postnatal Otp expression is positioned near the lateral motor column and receives substantial input from proprioceptors, consistent with an involvement in reciprocal inhibitory pathways. Combined tracing of ankle flexor sensory afferents and interneurons monosynaptically connected to ankle extensors confirmed placement of Foxp2-V1 interneurons in reciprocal inhibitory pathways. Our results validate previously proposed V1 clades as unique functional subtypes that differ in circuit placement, with Foxp2-V1 cells forming the most heterogeneous subgroup. We discuss how V1 organizational diversity enables understanding of their roles in motor control, with implications for their diverse ontogenetic and phylogenetic origins. SIGNIFICANCE STATEMENT The complexity of spinal interneuron diversity and circuit organization represents a challenge to understand neural control of movement in normal adults as well as during motor development and in disease. Inhibitory interneurons are a core element of these spinal circuits. V1 interneurons comprise the largest group of inhibitory interneurons in the ventral horn, and their organization remains unclear. Here we present a comprehensive examination of V1 subtypes according to neurogenesis, placement in spinal motor circuits, and motoneuron synaptic targeting. V1 diversity increases during evolution from axial-swimming fishes to limb-based mammalian terrestrial locomotion. This increased diversity is reflected in the size and heterogeneity of the Foxp2-V1 clade, a group closely associated with limb motor pools. We show that Foxp2-V1 interneurons establish the densest direct inhibitory input to motoneurons, especially on cell bodies. These findings are particularly significant because recent studies have shown that motor neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) affect inhibitory V1 synapses on motoneuron cell bodies and Foxp2-V1 interneurons themselves in the earliest stages of pathology.
Collapse
|
2
|
Desbois M, Grill B. Molecular regulation of axon termination in mechanosensory neurons. Development 2024; 151:dev202945. [PMID: 39268828 PMCID: PMC11698068 DOI: 10.1242/dev.202945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Spatially and temporally accurate termination of axon outgrowth, a process called axon termination, is required for efficient, precise nervous system construction and wiring. The mechanosensory neurons that sense low-threshold mechanical stimulation or gentle touch have proven exceptionally valuable for studying axon termination over the past 40 years. In this Review, we discuss progress made in deciphering the molecular and genetic mechanisms that govern axon termination in touch receptor neurons. Findings across model organisms, including Caenorhabditis elegans, Drosophila, zebrafish and mice, have revealed that complex signaling is required for termination with conserved principles and players beginning to surface. A key emerging theme is that axon termination is mediated by complex signaling networks that include ubiquitin ligase signaling hubs, kinase cascades, transcription factors, guidance/adhesion receptors and growth factors. Here, we begin a discussion about how these signaling networks could represent termination codes that trigger cessation of axon outgrowth in different species and types of mechanosensory neurons.
Collapse
Affiliation(s)
- Muriel Desbois
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98101, USA
| |
Collapse
|
3
|
Baltar J, Miranda RM, Cabral M, Rebelo S, Grahammer F, Huber TB, Reguenga C, Monteiro FA. Neph1 is required for neurite branching and is negatively regulated by the PRRXL1 homeodomain factor in the developing spinal cord dorsal horn. Neural Dev 2024; 19:13. [PMID: 39049046 PMCID: PMC11271021 DOI: 10.1186/s13064-024-00190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
The cell-adhesion molecule NEPH1 is required for maintaining the structural integrity and function of the glomerulus in the kidneys. In the nervous system of Drosophila and C. elegans, it is involved in synaptogenesis and axon branching, which are essential for establishing functional circuits. In the mammalian nervous system, the expression regulation and function of Neph1 has barely been explored. In this study, we provide a spatiotemporal characterization of Neph1 expression in mouse dorsal root ganglia (DRGs) and spinal cord. After the neurogenic phase, Neph1 is broadly expressed in the DRGs and in their putative targets at the dorsal horn of the spinal cord, comprising both GABAergic and glutamatergic neurons. Interestingly, we found that PRRXL1, a homeodomain transcription factor that is required for proper establishment of the DRG-spinal cord circuit, prevents a premature expression of Neph1 in the superficial laminae of the dorsal spinal cord at E14.5, but has no regulatory effect on the DRGs or on either structure at E16.5. By chromatin immunoprecipitation analysis of the dorsal spinal cord, we identified four PRRXL1-bound regions within the Neph1 introns, suggesting that PRRXL1 directly regulates Neph1 transcription. We also showed that Neph1 is required for branching, especially at distal neurites. Together, our work showed that Prrxl1 prevents the early expression of Neph1 in the superficial dorsal horn, suggesting that Neph1 might function as a downstream effector gene for proper assembly of the DRG-spinal nociceptive circuit.
Collapse
Affiliation(s)
- João Baltar
- Unidade de Biologia Experimental, Departamento de Biomedicina, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Pain Neurobiology, IBMC - Instituto de Biologia Celular e Molecular, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rafael Mendes Miranda
- Unidade de Biologia Experimental, Departamento de Biomedicina, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Pain Neurobiology, IBMC - Instituto de Biologia Celular e Molecular, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria Cabral
- Unidade de Biologia Experimental, Departamento de Biomedicina, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Pain Neurobiology, IBMC - Instituto de Biologia Celular e Molecular, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Rebelo
- Unidade de Biologia Experimental, Departamento de Biomedicina, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Pain Neurobiology, IBMC - Instituto de Biologia Celular e Molecular, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Departamento de Patologia Clínica, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carlos Reguenga
- Unidade de Biologia Experimental, Departamento de Biomedicina, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Pain Neurobiology, IBMC - Instituto de Biologia Celular e Molecular, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Filipe Almeida Monteiro
- Unidade de Biologia Experimental, Departamento de Biomedicina, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal.
- Pain Neurobiology, IBMC - Instituto de Biologia Celular e Molecular, Porto, Portugal.
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
4
|
Desiderio S, Schwaller F, Tartour K, Padmanabhan K, Lewin GR, Carroll P, Marmigere F. Touch receptor end-organ innervation and function require sensory neuron expression of the transcription factor Meis2. eLife 2024; 12:RP89287. [PMID: 38386003 PMCID: PMC10942617 DOI: 10.7554/elife.89287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Touch sensation is primarily encoded by mechanoreceptors, called low-threshold mechanoreceptors (LTMRs), with their cell bodies in the dorsal root ganglia. Because of their great diversity in terms of molecular signature, terminal endings morphology, and electrophysiological properties, mirroring the complexity of tactile experience, LTMRs are a model of choice to study the molecular cues differentially controlling neuronal diversification. While the transcriptional codes that define different LTMR subtypes have been extensively studied, the molecular players that participate in their late maturation and in particular in the striking diversity of their end-organ morphological specialization are largely unknown. Here we identified the TALE homeodomain transcription factor Meis2 as a key regulator of LTMRs target-field innervation in mice. Meis2 is specifically expressed in cutaneous LTMRs, and its expression depends on target-derived signals. While LTMRs lacking Meis2 survived and are normally specified, their end-organ innervations, electrophysiological properties, and transcriptome are differentially and markedly affected, resulting in impaired sensory-evoked behavioral responses. These data establish Meis2 as a major transcriptional regulator controlling the orderly formation of sensory neurons innervating peripheral end organs required for light touch.
Collapse
Affiliation(s)
- Simon Desiderio
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM U 1298MontpellierFrance
| | - Frederick Schwaller
- Department of Neuroscience, Max‐Delbrück Centre for Molecular MedicineBerlin‐BuchGermany
| | | | | | - Gary R Lewin
- Department of Neuroscience, Max‐Delbrück Centre for Molecular MedicineBerlin‐BuchGermany
| | - Patrick Carroll
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM U 1298MontpellierFrance
| | | |
Collapse
|
5
|
Espinosa-Juárez JV, Chiquete E, Estañol B, Aceves JDJ. Optogenetic and Chemogenic Control of Pain Signaling: Molecular Markers. Int J Mol Sci 2023; 24:10220. [PMID: 37373365 DOI: 10.3390/ijms241210220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Pain is a complex experience that involves physical, emotional, and cognitive aspects. This review focuses specifically on the physiological processes underlying pain perception, with a particular emphasis on the various types of sensory neurons involved in transmitting pain signals to the central nervous system. Recent advances in techniques like optogenetics and chemogenetics have allowed researchers to selectively activate or inactivate specific neuronal circuits, offering a promising avenue for developing more effective pain management strategies. The article delves into the molecular targets of different types of sensory fibers such as channels, for example, TRPV1 in C-peptidergic fiber, TRPA1 in C-non-peptidergic receptors expressed differentially as MOR and DOR, and transcription factors, and their colocalization with the vesicular transporter of glutamate, which enable researchers to identify specific subtypes of neurons within the pain pathway and allows for selective transfection and expression of opsins to modulate their activity.
Collapse
Affiliation(s)
- Josue Vidal Espinosa-Juárez
- Escuela de Ciencias Químicas Sede Ocozocoautla, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Mexico
| | - Erwin Chiquete
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Bruno Estañol
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - José de Jesús Aceves
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
6
|
Ma YQ, Hu QQ, Kang YR, Ma LQ, Qu SY, Wang HZ, Zheng YM, Li SY, Shao XM, Li XY, Hu HT, Jiang YL, Fang JQ, He XF. Electroacupuncture Alleviates Diabetic Neuropathic Pain and Downregulates p-PKC and TRPV1 in Dorsal Root Ganglions and Spinal Cord Dorsal Horn. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:3333563. [PMID: 36777630 PMCID: PMC9918371 DOI: 10.1155/2023/3333563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/10/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023]
Abstract
Diabetic neuropathic pain (DNP) is a common complication of diabetes. Streptozotocin (STZ)-induced changes of protein in dorsal root ganglion (DRG) and spinal cord dorsal horn (SCDH) are critical for DNP genesis. However, which proteins change remains elusive. Here, the DNP model was established by a single intraperitoneal injection of STZ, accompanied by increased fasting blood glucose (FBG), decreased body weight (BW), and decreased paw withdrawal latency (PWL). Proteins change in L4-L6 DRGs and SCDH of rats were detected. Western blot and immunofluorescence results showed that expression levels of phosphorylated protein kinase C (p-PKC), transient receptor potential vanilloid-1 (TRPV1), Substance P (SP) and calcitonin gene-related peptide (CGRP) in the DRG and the SCDH of rats were increased after STZ injection. A preliminary study from our previous study showed that 2 Hz electroacupuncture (EA) effectively alleviates DNP. However, the analgesic mechanism of EA needs further elucidation. Here, EA at the bilateral Zusanli (ST36) and KunLun (BL60) acupoints was applied for one week, and to investigate the effect on DNP. EA reversed thermal hyperalgesia in DNP rats and downregulated the expression of p-PKC, TRPV1, SP, and CGRP in DRG and SCDH.
Collapse
Affiliation(s)
- Yi-qi Ma
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Qun-qi Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yu rong Kang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Li-qian Ma
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Si-ying Qu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Han-zhi Wang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yin-mu Zheng
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Si-yi Li
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiao-mei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiao-yu Li
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Han-tong Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yong-liang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jian-qiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiao-fen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
7
|
Monteiro FA, Miranda RM, Samina MC, Dias AF, Raposo AASF, Oliveira P, Reguenga C, Castro DS, Lima D. Tlx3 Exerts Direct Control in Specifying Excitatory Over Inhibitory Neurons in the Dorsal Spinal Cord. Front Cell Dev Biol 2021; 9:642697. [PMID: 33996801 PMCID: PMC8117147 DOI: 10.3389/fcell.2021.642697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/30/2021] [Indexed: 11/28/2022] Open
Abstract
The spinal cord dorsal horn is a major station for integration and relay of somatosensory information and comprises both excitatory and inhibitory neuronal populations. The homeobox gene Tlx3 acts as a selector gene to control the development of late-born excitatory (dILB) neurons by specifying glutamatergic transmitter fate in dorsal spinal cord. However, since Tlx3 direct transcriptional targets remain largely unknown, it remains to be uncovered how Tlx3 functions to promote excitatory cell fate. Here we combined a genomics approach based on chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) and expression profiling, with validation experiments in Tlx3 null embryos, to characterize the transcriptional program of Tlx3 in mouse embryonic dorsal spinal cord. We found most dILB neuron specific genes previously identified to be directly activated by Tlx3. Surprisingly, we found Tlx3 also directly represses many genes associated with the alternative inhibitory dILA neuronal fate. In both cases, direct targets include transcription factors and terminal differentiation genes, showing that Tlx3 directly controls cell identity at distinct levels. Our findings provide a molecular frame for the master regulatory role of Tlx3 in developing glutamatergic dILB neurons. In addition, they suggest a novel function for Tlx3 as direct repressor of GABAergic dILA identity, pointing to how generation of the two alternative cell fates being tightly coupled.
Collapse
Affiliation(s)
- Filipe A Monteiro
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Pain Research Group, Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rafael M Miranda
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Pain Research Group, Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Marta C Samina
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Pain Research Group, Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana F Dias
- Pain Research Group, Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Alexandre A S F Raposo
- Molecular Neurobiology Group, Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Patrícia Oliveira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Diagnostics, Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Carlos Reguenga
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Pain Research Group, Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Diogo S Castro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Molecular Neurobiology Group, Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Stem Cells & Neurogenesis Group, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Deolinda Lima
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Pain Research Group, Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Gatto G, Bourane S, Ren X, Di Costanzo S, Fenton PK, Halder P, Seal RP, Goulding MD. A Functional Topographic Map for Spinal Sensorimotor Reflexes. Neuron 2021; 109:91-104.e5. [PMID: 33181065 PMCID: PMC7790959 DOI: 10.1016/j.neuron.2020.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/17/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023]
Abstract
Cutaneous somatosensory modalities play pivotal roles in generating a wide range of sensorimotor behaviors, including protective and corrective reflexes that dynamically adapt ongoing movement and posture. How interneurons (INs) in the dorsal horn encode these modalities and transform them into stimulus-appropriate motor behaviors is not known. Here, we use an intersectional genetic approach to functionally assess the contribution that eight classes of dorsal excitatory INs make to sensorimotor reflex responses. We demonstrate that the dorsal horn is organized into spatially restricted excitatory modules composed of molecularly heterogeneous cell types. Laminae I/II INs drive chemical itch-induced scratching, laminae II/III INs generate paw withdrawal movements, and laminae III/IV INs modulate dynamic corrective reflexes. These data reveal a key principle in spinal somatosensory processing, namely, sensorimotor reflexes are driven by the differential spatial recruitment of excitatory neurons.
Collapse
Affiliation(s)
- Graziana Gatto
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Steeve Bourane
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Université de la Réunion, DéTROI, UMR 1188 INSERM, Sainte Clotilde, La Réunion 97490, France
| | - Xiangyu Ren
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stefania Di Costanzo
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Peter K Fenton
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Priyabrata Halder
- Departments of Neurobiology and Otolaryngology, Center for Neural Basis of Cognition, and Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Rebecca P Seal
- Departments of Neurobiology and Otolaryngology, Center for Neural Basis of Cognition, and Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Martyn D Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
Vermeiren S, Bellefroid EJ, Desiderio S. Vertebrate Sensory Ganglia: Common and Divergent Features of the Transcriptional Programs Generating Their Functional Specialization. Front Cell Dev Biol 2020; 8:587699. [PMID: 33195244 PMCID: PMC7649826 DOI: 10.3389/fcell.2020.587699] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Sensory fibers of the peripheral nervous system carry sensation from specific sense structures or use different tissues and organs as receptive fields, and convey this information to the central nervous system. In the head of vertebrates, each cranial sensory ganglia and associated nerves perform specific functions. Sensory ganglia are composed of different types of specialized neurons in which two broad categories can be distinguished, somatosensory neurons relaying all sensations that are felt and visceral sensory neurons sensing the internal milieu and controlling body homeostasis. While in the trunk somatosensory neurons composing the dorsal root ganglia are derived exclusively from neural crest cells, somato- and visceral sensory neurons of cranial sensory ganglia have a dual origin, with contributions from both neural crest and placodes. As most studies on sensory neurogenesis have focused on dorsal root ganglia, our understanding of the molecular mechanisms underlying the embryonic development of the different cranial sensory ganglia remains today rudimentary. However, using single-cell RNA sequencing, recent studies have made significant advances in the characterization of the neuronal diversity of most sensory ganglia. Here we summarize the general anatomy, function and neuronal diversity of cranial sensory ganglia. We then provide an overview of our current knowledge of the transcriptional networks controlling neurogenesis and neuronal diversification in the developing sensory system, focusing on cranial sensory ganglia, highlighting specific aspects of their development and comparing it to that of trunk sensory ganglia.
Collapse
Affiliation(s)
- Simon Vermeiren
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Eric J Bellefroid
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Simon Desiderio
- Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier, France
| |
Collapse
|
10
|
Frezel N, Platonova E, Voigt FF, Mateos JM, Kastli R, Ziegler U, Karayannis T, Helmchen F, Wildner H, Zeilhofer HU. In-Depth Characterization of Layer 5 Output Neurons of the Primary Somatosensory Cortex Innervating the Mouse Dorsal Spinal Cord. Cereb Cortex Commun 2020; 1:tgaa052. [PMID: 34296117 PMCID: PMC8152836 DOI: 10.1093/texcom/tgaa052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/07/2020] [Accepted: 08/09/2020] [Indexed: 12/26/2022] Open
Abstract
Neuronal circuits of the spinal dorsal horn integrate sensory information from the periphery with inhibitory and facilitating input from higher central nervous system areas. Most previous work focused on projections descending from the hindbrain. Less is known about inputs descending from the cerebral cortex. Here, we identified cholecystokinin (CCK) positive layer 5 pyramidal neurons of the primary somatosensory cortex (CCK + S1-corticospinal tract [CST] neurons) as a major source of input to the spinal dorsal horn. We combined intersectional genetics and virus-mediated gene transfer to characterize CCK+ S1-CST neurons and to define their presynaptic input and postsynaptic target neurons. We found that S1-CST neurons constitute a heterogeneous population that can be subdivided into distinct molecular subgroups. Rabies-based retrograde tracing revealed monosynaptic input from layer 2/3 pyramidal neurons, from parvalbumin positive cortical interneurons, and from thalamic relay neurons in the ventral posterolateral nucleus. Wheat germ agglutinin-based anterograde tracing identified postsynaptic target neurons in dorsal horn laminae III and IV. About 60% of these neurons were inhibitory and about 60% of all spinal target neurons expressed the transcription factor c-Maf. The heterogeneous nature of both S1-CST neurons and their spinal targets suggest complex roles in the fine-tuning of sensory processing.
Collapse
Affiliation(s)
- N Frezel
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zürich, Switzerland
| | - E Platonova
- Center for Microscopy and Image Analysis, University of Zurich, CH-8057 Zürich CH-8057, Switzerland
| | - F F Voigt
- Brain Research Institute, University of Zurich, CHJ-8057 Zurich CH-8057 , Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, CH-8057 Zurich CH-8057, Switzerland
| | - J M Mateos
- Center for Microscopy and Image Analysis, University of Zurich, CH-8057 Zürich CH-8057, Switzerland
| | - R Kastli
- Brain Research Institute, University of Zurich, CHJ-8057 Zurich CH-8057 , Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, CH-8057 Zurich CH-8057, Switzerland
| | - U Ziegler
- Center for Microscopy and Image Analysis, University of Zurich, CH-8057 Zürich CH-8057, Switzerland
| | - T Karayannis
- Brain Research Institute, University of Zurich, CHJ-8057 Zurich CH-8057 , Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, CH-8057 Zurich CH-8057, Switzerland
| | - F Helmchen
- Brain Research Institute, University of Zurich, CHJ-8057 Zurich CH-8057 , Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, CH-8057 Zurich CH-8057, Switzerland
| | - H Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zürich, Switzerland
| | - H U Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zürich, Switzerland.,Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH Zürich), CH-8090 Zürich, Switzerland
| |
Collapse
|
11
|
Nelson TS, Taylor BK. Targeting spinal neuropeptide Y1 receptor-expressing interneurons to alleviate chronic pain and itch. Prog Neurobiol 2020; 196:101894. [PMID: 32777329 DOI: 10.1016/j.pneurobio.2020.101894] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
An accelerating basic science literature is providing key insights into the mechanisms by which spinal neuropeptide Y (NPY) inhibits chronic pain. A key target of pain inhibition is the Gi-coupled neuropeptide Y1 receptor (Y1). Y1 is located in key sites of pain transmission, including the peptidergic subpopulation of primary afferent neurons and a dense subpopulation of small, excitatory, glutamatergic/somatostatinergic interneurons (Y1-INs) that are densely expressed in the dorsal horn, particularly in superficial lamina I-II. Selective ablation of spinal Y1-INs with an NPY-conjugated saporin neurotoxin attenuates the development of peripheral nerve injury-induced mechanical and cold hypersensitivity. Conversely, conditional knockdown of NPY expression or intrathecal administration of Y1 antagonists reinstates hypersensitivity in models of chronic latent pain sensitization. These and other results indicate that spinal NPY release and the consequent inhibition of pain facilitatory Y1-INs represent an important mechanism of endogenous analgesia. This mechanism can be mimicked with exogenous pharmacological approaches (e.g. intrathecal administration of Y1 agonists) to inhibit mechanical and thermal hypersensitivity and spinal neuron activity in rodent models of neuropathic, inflammatory, and postoperative pain. Pharmacological activation of Y1 also inhibits mechanical- and histamine-induced itch. These immunohistochemical, pharmacological, and cell type-directed lesioning data, in combination with recent transcriptomic findings, point to Y1-INs as a promising therapeutic target for the development of spinally directed NPY-Y1 agonists to treat both chronic pain and itch.
Collapse
Affiliation(s)
- Tyler S Nelson
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bradley K Taylor
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Zhang Y, Zheng L, Le M, Nakano Y, Chan B, Huang Y, Torbaty PM, Kohwi Y, Marcucio R, Habelitz S, Den Besten PK, Kohwi-Shigematsu T. SATB1 establishes ameloblast cell polarity and regulates directional amelogenin secretion for enamel formation. BMC Biol 2019; 17:104. [PMID: 31830989 PMCID: PMC6909472 DOI: 10.1186/s12915-019-0722-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 11/13/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Polarity is necessary for epithelial cells to perform distinct functions at their apical and basal surfaces. Oral epithelial cell-derived ameloblasts at secretory stage (SABs) synthesize large amounts of enamel matrix proteins (EMPs), largely amelogenins. EMPs are unidirectionally secreted into the enamel space through their apical cytoplasmic protrusions, or Tomes' processes (TPs), to guide the enamel formation. Little is known about the transcriptional regulation underlying the establishment of cell polarity and unidirectional secretion of SABs. RESULTS The higher-order chromatin architecture of eukaryotic genome plays important roles in cell- and stage-specific transcriptional programming. A genome organizer, special AT-rich sequence-binding protein 1 (SATB1), was discovered to be significantly upregulated in ameloblasts compared to oral epithelial cells using a whole-transcript microarray analysis. The Satb1-/- mice possessed deformed ameloblasts and a thin layer of hypomineralized and non-prismatic enamel. Remarkably, Satb1-/- ameloblasts at the secretory stage lost many morphological characteristics found at the apical surface of wild-type (wt) SABs, including the loss of Tomes' processes, defective inter-ameloblastic adhesion, and filamentous actin architecture. As expected, the secretory function of Satb1-/- SABs was compromised as amelogenins were largely retained in cells. We found the expression of epidermal growth factor receptor pathway substrate 8 (Eps8), a known regulator for actin filament assembly and small intestinal epithelial cytoplasmic protrusion formation, to be SATB1 dependent. In contrast to wt SABs, EPS8 could not be detected at the apical surface of Satb1-/- SABs. Eps8 expression was greatly reduced in small intestinal epithelial cells in Satb1-/- mice as well, displaying defective intestinal microvilli. CONCLUSIONS Our data show that SATB1 is essential for establishing secretory ameloblast cell polarity and for EMP secretion. In line with the deformed apical architecture, amelogenin transport to the apical secretory front and secretion into enamel space were impeded in Satb1-/- SABs resulting in a massive cytoplasmic accumulation of amelogenins and a thin layer of hypomineralized enamel. Our studies strongly suggest that SATB1-dependent Eps8 expression plays a critical role in cytoplasmic protrusion formation in both SABs and in small intestines. This study demonstrates the role of SATB1 in the regulation of amelogenesis and the potential application of SATB1 in ameloblast/enamel regeneration.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Orofacial Sciences, University of California, San Francisco, USA.
| | - Liwei Zheng
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | - Michael Le
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | - Yukiko Nakano
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | - Barry Chan
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | - Yulei Huang
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | | | - Yoshinori Kohwi
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Stefan Habelitz
- Preventive and Restorative Dental Sciences, University of California, San Francisco, USA
| | - Pamela K Den Besten
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | | |
Collapse
|
13
|
Neuronal diversity in the somatosensory system: bridging the gap between cell type and function. Curr Opin Neurobiol 2019; 56:167-174. [PMID: 30953870 DOI: 10.1016/j.conb.2019.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/11/2019] [Accepted: 03/01/2019] [Indexed: 12/22/2022]
Abstract
A recent flurry of genetic studies in mice have provided key insights into how the somatosensory system is organized at a cellular level to encode itch, pain, temperature, and touch. These studies are largely predicated on the idea that functional cell types can be identified by their unique developmental provenance and gene expression profile. However, the extent to which gene expression profiles can be correlated with functional cell types and circuit organization remains an open question. In this review, we focus on recent progress in characterizing the sensory afferent and dorsal horn neuron cell types that process cutaneous somatosensory information and ongoing circuit studies that are beginning to bridge the divide between cell type and function.
Collapse
|
14
|
Foveau B, Correia AS, Hébert SS, Rainone S, Potvin O, Kergoat MJ, Belleville S, Duchesne S, LeBlanc AC. Stem Cell-Derived Neurons as Cellular Models of Sporadic Alzheimer’s Disease. J Alzheimers Dis 2019; 67:893-910. [DOI: 10.3233/jad-180833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bénédicte Foveau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ana Sofia Correia
- Université Laval, Département de Psychiatrie et Neurosciences, Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec – Université Laval, Axe neurosciences, Québec, Canada
| | - Sébastien S. Hébert
- Université Laval, Département de Psychiatrie et Neurosciences, Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec – Université Laval, Axe neurosciences, Québec, Canada
| | - Sara Rainone
- Université Laval, Département de Psychiatrie et Neurosciences, Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec – Université Laval, Axe neurosciences, Québec, Canada
| | - Olivier Potvin
- Centre de recherche du CHU de Québec – Université Laval, Axe neurosciences, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
| | - Marie-Jeanne Kergoat
- Université de Montréal, Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Sylvie Belleville
- Université de Montréal, Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Simon Duchesne
- Centre de recherche du CHU de Québec – Université Laval, Axe neurosciences, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
| | - Andréa C. LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
15
|
Feito J, García-Suárez O, García-Piqueras J, García-Mesa Y, Pérez-Sánchez A, Suazo I, Cabo R, Suárez-Quintanilla J, Cobo J, Vega JA. The development of human digital Meissner's and Pacinian corpuscles. Ann Anat 2018; 219:8-24. [PMID: 29842990 DOI: 10.1016/j.aanat.2018.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/12/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Meissner's and Pacinian corpuscles are cutaneous mechanoreceptors responsible for different modalities of touch. The development of these sensory formations in humans is poorly known, especially regarding the acquisition of the typical immunohistochemical profile related to their full functional maturity. Here we used a panel of antibodies (to specifically label the main corpuscular components: axon, Schwann-related cells and endoneurial-perineurial-related cells) to investigate the development of digital Meissner's and Pacinian corpuscles in a representative sample covering from 11 weeks of estimated gestational age (wega) to adulthood. Development of Pacinian corpuscles starts at 13 wega, and it is completed at 4 months of life, although their basic structure and immunohistochemical characteristics are reached at 36 wega. During development, around the axon, a complex network of S100 positive Schwann-related processes is progressively compacted to form the inner core, while the surrounding mesenchyme is organized and forms the outer core and the capsule. Meissner's corpuscles start to develop at 22 wega and complete their typical morphology and immunohistochemical profile at 8 months of life. In developing Meissner's corpuscles, the axons establish complex relationships with the epidermis and are progressively covered by Schwann-like cells until they complete the mature arrangement late in postnatal life. The present results demonstrate an asynchronous development of the Meissner's and Pacini's corpuscles and show that there is not a total correlation between morphological and immunohistochemical maturation. The correlation of the present results with touch-induced cortical activity in developing humans is discussed.
Collapse
Affiliation(s)
- J Feito
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain; Servicio de Anatomía Patológica, Complejo Hospitalario Universitario de Salamanca, Spain
| | - O García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain
| | - J García-Piqueras
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain
| | - Y García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain
| | - A Pérez-Sánchez
- Servicio de Anatomía Patológica, Complejo Hospitalario Universitario de Salamanca, Spain
| | - I Suazo
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - R Cabo
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain
| | - J Suárez-Quintanilla
- Departamento de Ciencias Morfológicas, Universidad de Santiago de Compostela, Spain
| | - J Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Instituto Asturiano de Odontología, Oviedo, Spain
| | - J A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile.
| |
Collapse
|
16
|
Abstract
The sensation of touch is mediated by mechanosensory neurons that are embedded in skin and relay signals from the periphery to the central nervous system. During embryogenesis, axons elongate from these neurons to make contact with the developing skin. Concurrently, the epithelium of skin transforms from a homogeneous tissue into a heterogeneous organ that is made up of distinct layers and microdomains. Throughout this process, each neuronal terminal must form connections with an appropriate skin region to serve its function. This Review presents current knowledge of the development of the sensory microdomains in mammalian skin and the mechanosensory neurons that innervate them.
Collapse
Affiliation(s)
- Blair A Jenkins
- Department of Physiology & Cellular Biophysics and Department of Dermatology, Columbia University in the City of New York, New York, NY 10032, USA
| | - Ellen A Lumpkin
- Department of Physiology & Cellular Biophysics and Department of Dermatology, Columbia University in the City of New York, New York, NY 10032, USA
| |
Collapse
|
17
|
Wang F, Wang Q, Li C, Yu P, Qu Y, Zhou L. The role of Celsr3 in the development of central somatosensory projections from dorsal root ganglia. Neuroscience 2017; 359:267-276. [PMID: 28754314 DOI: 10.1016/j.neuroscience.2017.07.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/29/2017] [Accepted: 07/17/2017] [Indexed: 01/10/2023]
Abstract
Dorsal root ganglion (DRG) neurons receive peripheral somatosensory information and send orderly projections to second-order relay nuclei in the spinal cord and in the brainstem. Atypical cadherin Celsr3 is known to play a critical role in wiring of several central and peripheral axons. Although Celsr3 mRNA is heavily expressed in DRG neurons, its role in the development of somatosensory projections remains unexplored. Here we assessed the role of Celsr3 in DRG using conditional gene inactivation in crosses with Wnt1-Cre mice. Using Celsr3-GFP transgenic mice, we found that Celsr3 was highly expressed in different DRG cells, such as Pavalbumin-, TrkB-, and calcitonin gene-related peptide (CGRP)-positive neurons. Wnt1-Cre;Celsr3f/- animals survived for a few weeks and looked smaller than littermate controls. DiI tracing showed that early DRG axons entered the spinal cord and reached spinal cord targets similarly in mutant and control mice. CGRP-positive fiber density was significantly decreased in lamina I in the mutant versus control spinal cord at postnatal day (P) 7 and P14. Furthermore, more Pavalbumin-positive fibers invaded the gray matter and made more contacts with spinal motor neurons in mutant than in control samples. Behavioral analysis showed that mutant animals were less sensitive to pain and more sensitive to mechanical stimulation than controls. In conclusion, Celsr3 is dispensable for the patterning of central DRG projections, but it regulates for the fine mapping of sensory fibers in the gray matter, which is important for somatosensory processing.
Collapse
Affiliation(s)
- Feifei Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Qianghua Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Chen Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China; Co-innovation Center of Neuroregeneration, Jiangsu, PR China; Key Laboratory of Neuroscience, School of Basic Medical Sciences, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
18
|
Olson W, Dong P, Fleming M, Luo W. The specification and wiring of mammalian cutaneous low-threshold mechanoreceptors. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:389-404. [PMID: 26992078 DOI: 10.1002/wdev.229] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 11/08/2022]
Abstract
The mammalian cutaneous low-threshold mechanoreceptors (LTMRs) are a diverse set of primary somatosensory neurons that function to sense external mechanical force. Generally, LTMRs are composed of Aβ-LTMRs, Aδ-LTMRs, and C-LTMRs, which have distinct molecular, physiological, anatomical, and functional features. The specification and wiring of each type of mammalian cutaneous LTMRs is established during development by the interplay of transcription factors with trophic factor signalling. In this review, we summarize the cohort of extrinsic and intrinsic factors generating the complex mammalian cutaneous LTMR circuits that mediate our tactile sensations and behaviors. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- William Olson
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Dong
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Fleming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
|
20
|
Presynaptic modulation of spinal nociceptive transmission by glial cell line-derived neurotrophic factor (GDNF). J Neurosci 2015; 34:13819-33. [PMID: 25297108 DOI: 10.1523/jneurosci.0808-14.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of glial cell line-derived neurotrophic factor (GDNF) in nociceptive pathways is still controversial, as both pronociceptive and antinociceptive actions have been reported. To elucidate this role in the mouse, we performed combined structural and functional studies in vivo and in acute spinal cord slices where C-fiber activation was mimicked by capsaicin challenge. Nociceptors and their terminals in superficial dorsal horn (SDH; laminae I-II) constitute two separate subpopulations: the peptidergic CGRP/somatostatin+ cells expressing GDNF and the nonpeptidergic IB4+ neurons expressing the GFRα1-RET GDNF receptor complex. Ultrastructurally the dorsal part of inner lamina II (LIIid) harbors a mix of glomeruli that either display GDNF/somatostatin (GIb)-IR or GFRα1/IB4 labeling (GIa). LIIid thus represents the preferential site for ligand-receptor interactions. Functionally, endogenous GDNF released from peptidergic CGRP/somatostatin+ nociceptors upon capsaicin stimulation exert a tonic inhibitory control on the glutamate excitatory drive of SDH neurons as measured after ERK1/2 phosphorylation assay. Real-time Ca(2+) imaging and patch-clamp experiments with bath-applied GDNF (100 nM) confirm the presynaptic inhibition of SDH neurons after stimulation of capsaicin-sensitive, nociceptive primary afferent fibers. Accordingly, the reduction of the capsaicin-evoked [Ca(2+)]i rise and of the frequency of mEPSCs in SDH neurons is specifically abolished after enzymatic ablation of GFRα1. Therefore, GDNF released from peptidergic CGRP/somatostatin+ nociceptors acutely depresses neuronal transmission in SDH signaling to nonpeptidergic IB4+ nociceptors at glomeruli in LIIid. These observations are of potential pharmacological interest as they highlight a novel modality of cross talk between nociceptors that may be relevant for discrimination of pain modalities.
Collapse
|
21
|
Niceta M, Stellacci E, Gripp K, Zampino G, Kousi M, Anselmi M, Traversa A, Ciolfi A, Stabley D, Bruselles A, Caputo V, Cecchetti S, Prudente S, Fiorenza M, Boitani C, Philip N, Niyazov D, Leoni C, Nakane T, Keppler-Noreuil K, Braddock S, Gillessen-Kaesbach G, Palleschi A, Campeau P, Lee B, Pouponnot C, Stella L, Bocchinfuso G, Katsanis N, Sol-Church K, Tartaglia M. Mutations Impairing GSK3-Mediated MAF Phosphorylation Cause Cataract, Deafness, Intellectual Disability, Seizures, and a Down Syndrome-like Facies. Am J Hum Genet 2015; 96:816-25. [PMID: 25865493 PMCID: PMC4570552 DOI: 10.1016/j.ajhg.2015.03.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/02/2015] [Indexed: 11/26/2022] Open
Abstract
Transcription factors operate in developmental processes to mediate inductive events and cell competence, and perturbation of their function or regulation can dramatically affect morphogenesis, organogenesis, and growth. We report that a narrow spectrum of amino-acid substitutions within the transactivation domain of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF), a leucine zipper-containing transcription factor of the AP1 superfamily, profoundly affect development. Seven different de novo missense mutations involving conserved residues of the four GSK3 phosphorylation motifs were identified in eight unrelated individuals. The distinctive clinical phenotype, for which we propose the eponym Aymé-Gripp syndrome, is not limited to lens and eye defects as previously reported for MAF/Maf loss of function but includes sensorineural deafness, intellectual disability, seizures, brachycephaly, distinctive flat facial appearance, skeletal anomalies, mammary gland hypoplasia, and reduced growth. Disease-causing mutations were demonstrated to impair proper MAF phosphorylation, ubiquitination and proteasomal degradation, perturbed gene expression in primary skin fibroblasts, and induced neurodevelopmental defects in an in vivo model. Our findings nosologically and clinically delineate a previously poorly understood recognizable multisystem disorder, provide evidence for MAF governing a wider range of developmental programs than previously appreciated, and describe a novel instance of protein dosage effect severely perturbing development.
Collapse
|
22
|
Chen S, Wu B, Lin J. Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury. Neural Regen Res 2015; 7:1445-53. [PMID: 25657678 PMCID: PMC4308773 DOI: 10.3969/j.issn.1673-5374.2012.19.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/14/2014] [Indexed: 01/19/2023] Open
Abstract
Bone marrow mesenchymal stem cells were isolated, purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method. Passages 3–5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein. Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1–5 weeks). Expressions of choline acetyltransferase, glutamic acid decarboxylase and synapsins in the damaged spinal cord of rats was significantly increased after transplantation, determined by immunofluorescence staining and laser confocal scanning microscopy. Bone marrow mesenchymal stem cells that had migrated into the damaged area of rats in the experimental group began to express choline acetyltransferase, glutamic acid decarboxylase and synapsins, 3 weeks after transplantation. The Basso-Beattie- Bresnahan scores positively correlated with expression of choline acetyltransferase and synapsins. Experimental findings indicate that intravenously transplanted bone marrow mesenchymal stem cells traverse into the damaged spinal cord of rats, promote expression of choline acetyltransferase, glutamic acid decarboxylase and synapsins, and improve nerve function in rats with spinal cord injury.
Collapse
Affiliation(s)
- Shaoqiang Chen
- Department of Human Anatomy and Tissue Embryology, Fujian Medical University, Minhou 350108, Fujian Province, China
| | - Bilian Wu
- Department of Human Anatomy, Fujian Vcational and Technical College of Health, Minhou 350101, Fujian Province, China
| | - Jianhua Lin
- Department of Orthopedics, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| |
Collapse
|
23
|
Bourane S, Grossmann KS, Britz O, Dalet A, Del Barrio MG, Stam FJ, Garcia-Campmany L, Koch S, Goulding M. Identification of a spinal circuit for light touch and fine motor control. Cell 2015; 160:503-15. [PMID: 25635458 PMCID: PMC4431637 DOI: 10.1016/j.cell.2015.01.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/02/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
Abstract
Sensory circuits in the dorsal spinal cord integrate and transmit multiple cutaneous sensory modalities including the sense of light touch. Here, we identify a population of excitatory interneurons (INs) in the dorsal horn that are important for transmitting innocuous light touch sensation. These neurons express the ROR alpha (RORα) nuclear orphan receptor and are selectively innervated by cutaneous low threshold mechanoreceptors (LTMs). Targeted removal of RORα INs in the dorsal spinal cord leads to a marked reduction in behavioral responsiveness to light touch without affecting responses to noxious and itch stimuli. RORα IN-deficient mice also display a selective deficit in corrective foot movements. This phenotype, together with our demonstration that the RORα INs are innervated by corticospinal and vestibulospinal projection neurons, argues that the RORα INs direct corrective reflex movements by integrating touch information with descending motor commands from the cortex and cerebellum.
Collapse
Affiliation(s)
- Steeve Bourane
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Katja S Grossmann
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Olivier Britz
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Antoine Dalet
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marta Garcia Del Barrio
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Floor J Stam
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lidia Garcia-Campmany
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stephanie Koch
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
24
|
Szymańska K, Szczałuba K, Ługowska A, Obersztyn E, Radkowski M, Nowakowska BA, Kuśmierska K, Tryfon J, Demkow U. The analysis of genetic aberrations in children with inherited neurometabolic and neurodevelopmental disorders. BIOMED RESEARCH INTERNATIONAL 2014; 2014:424796. [PMID: 24949445 PMCID: PMC4052700 DOI: 10.1155/2014/424796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/11/2014] [Accepted: 04/16/2014] [Indexed: 02/05/2023]
Abstract
Inherited encephalopathies include a broad spectrum of heterogeneous disorders. To provide a correct diagnosis, an integrated approach including genetic testing is warranted. We report seven patients with difficult to diagnose inborn paediatric encephalopathies. The diagnosis could not be attained only by means of clinical and laboratory investigations and MRI. Additional genetic testing was required. Cytogenetics, PCR based tests, and array-based comparative genome hybridization were performed. In 4 patients with impaired language abilities we found the presence of microduplication in the region 16q23.1 affecting two dose-sensitive genes: WWOX (OMIM 605131) and MAF (OMIM 177075) (1 case), an interstitial deletion of the 17p11.2 region (2 patients further diagnosed as Smith-Magenis syndrome), and deletion encompassing first three exons of Myocyte Enhancer Factor gene 2MEF2C (1 case). The two other cases represented progressing dystonia. Characteristic GAG deletion in DYT1 consistently with the diagnosis of torsion dystonia was confirmed in 1 case. Last enrolled patient presented with clinical picture consistent with Krabbe disease confirmed by finding of two pathogenic variants of GALC gene and the absence of mutations in PSAP. The integrated diagnostic approach including genetic testing in selected examples of complicated hereditary diseases of the brain is largely discussed in this paper.
Collapse
Affiliation(s)
- Krystyna Szymańska
- Department of Clinical and Experimental Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Child Psychiatry, Medical University of Warsaw, 00-576 Warsaw, Poland
| | - Krzysztof Szczałuba
- GenCentrum (Regional Center for Clinical Genetics and Modern Technologies), 25-375 Kielce, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Ewa Obersztyn
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Marek Radkowski
- Department of Immunopathology of Infectious Diseases, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Beata A. Nowakowska
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Katarzyna Kuśmierska
- Clinic of Child and Adolescent Neurology, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Jolanta Tryfon
- Department of Laboratory Diagnostics and Clinical Immunology, Medical University of Warsaw, 00-576 Warsaw, Poland
| | - Urszula Demkow
- Clinic of Child and Adolescent Neurology, Institute of Mother and Child, 01-211 Warsaw, Poland
| |
Collapse
|
25
|
Punnakkal P, von Schoultz C, Haenraets K, Wildner H, Zeilhofer HU. Morphological, biophysical and synaptic properties of glutamatergic neurons of the mouse spinal dorsal horn. J Physiol 2013; 592:759-76. [PMID: 24324003 PMCID: PMC3934713 DOI: 10.1113/jphysiol.2013.264937] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Interneurons of the spinal dorsal horn are central to somatosensory and nociceptive processing. A mechanistic understanding of their function depends on profound knowledge of their intrinsic properties and their integration into dorsal horn circuits. Here, we have used BAC transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of the vesicular glutamate transporter (vGluT2) gene (vGluT2::eGFP mice) to perform a detailed electrophysiological and morphological characterisation of excitatory dorsal horn neurons, and to compare their properties to those of GABAergic (Gad67::eGFP tagged) and glycinergic (GlyT2::eGFP tagged) neurons. vGluT2::eGFP was detected in about one-third of all excitatory dorsal horn neurons and, as demonstrated by the co-expression of vGluT2::eGFP with different markers of subtypes of glutamatergic neurons, probably labelled a representative fraction of these neurons. Three types of dendritic tree morphologies (vertical, central, and radial), but no islet cell-type morphology, were identified in vGluT2::eGFP neurons. vGluT2::eGFP neurons had more depolarised action potential thresholds and longer action potential durations than inhibitory neurons, while no significant differences were found for the resting membrane potential, input resistance, cell capacitance and after-hyperpolarisation. Delayed firing and single action potential firing were the single most prevalent firing patterns in vGluT2::eGFP neurons of the superficial and deep dorsal horn, respectively. By contrast, tonic firing prevailed in inhibitory interneurons of the dorsal horn. Capsaicin-induced synaptic inputs were detected in about half of the excitatory and inhibitory neurons, and occurred more frequently in superficial than in deep dorsal horn neurons. Primary afferent-evoked (polysynaptic) inhibitory inputs were found in the majority of glutamatergic and glycinergic neurons, but only in less than half of the GABAergic population. Excitatory dorsal horn neurons thus differ from their inhibitory counterparts in several biophysical properties and possibly also in their integration into the local neuronal circuitry.
Collapse
Affiliation(s)
- Pradeep Punnakkal
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
26
|
Del Barrio MG, Bourane S, Grossmann K, Schüle R, Britsch S, O’Leary DD, Goulding M. A transcription factor code defines nine sensory interneuron subtypes in the mechanosensory area of the spinal cord. PLoS One 2013; 8:e77928. [PMID: 24223744 PMCID: PMC3817166 DOI: 10.1371/journal.pone.0077928] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 09/06/2013] [Indexed: 12/11/2022] Open
Abstract
Interneurons in the dorsal spinal cord process and relay innocuous and nociceptive somatosensory information from cutaneous receptors that sense touch, temperature and pain. These neurons display a well-defined organization with respect to their afferent innervation. Nociceptive afferents innervate lamina I and II, while cutaneous mechanosensory afferents primarily innervate sensory interneurons that are located in lamina III-IV. In this study, we outline a combinatorial transcription factor code that defines nine different inhibitory and excitatory interneuron populations in laminae III-IV of the postnatal cord. This transcription factor code reveals a high degree of molecular diversity in the neurons that make up laminae III-IV, and it lays the foundation for systematically analyzing and manipulating these different neuronal populations to assess their function. In addition, we find that many of the transcription factors that are expressed in the dorsal spinal cord at early postnatal times continue to be expressed in the adult, raising questions about their function in mature neurons and opening the door to their genetic manipulation in adult animals.
Collapse
Affiliation(s)
- Marta Garcia Del Barrio
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Steeve Bourane
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Katja Grossmann
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Roland Schüle
- Urologische Klinik/Frauenklinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Stefan Britsch
- Department of Medical Genetics, Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany
- Institute for Molecular and Cellular Anatomy Ulm University, Ulm, Germany
| | - Dennis D.M. O’Leary
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Tlx3 controls cholinergic transmitter and Peptide phenotypes in a subset of prenatal sympathetic neurons. J Neurosci 2013; 33:10667-75. [PMID: 23804090 DOI: 10.1523/jneurosci.0192-13.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The embryonic sympathetic nervous system consists of predominantly noradrenergic neurons and a very small population of cholinergic neurons. Postnatal development further allows target-dependent switch of a subset of noradrenergic neurons into cholinergic phenotype. How embryonic cholinergic neurons are specified at the prenatal stages remains largely unknown. In this study, we found that the expression of transcription factor Tlx3 was progressively restricted to a small population of embryonic sympathetic neurons in mice. Immunostaining for vesicular acetylcholine transporter (VAChT) showed that Tlx3 was highly expressed in cholinergic neurons at the late embryonic stage E18.5. Deletion of Tlx3 resulted in the loss of Vacht expression at E18.5 but not E12.5. By contrast, Tlx3 was required for expression of the cholinergic peptide vasoactive intestinal polypeptide (VIP), and somatostatin (SOM) at both E12.5 and E18.5. Furthermore, we found that, at E18.5 these putative cholinergic neurons expressed glial cell line-derived neurotrophic factor family coreceptor Ret but not tyrosine hydroxylase (Ret(+)/TH(-)). Deletion of Tlx3 also resulted in disappearance of high-level Ret expression. Last, unlike Tlx3, Ret was required for the expression of VIP and SOM at E18.5 but not E12.5. Together, these results indicate that transcription factor Tlx3 is required for the acquisition of cholinergic phenotype at the late embryonic stage as well as the expression and maintenance of cholinergic peptides VIP and SOM throughout prenatal development of mouse sympathetic neurons.
Collapse
|
28
|
Francius C, Harris A, Rucchin V, Hendricks TJ, Stam FJ, Barber M, Kurek D, Grosveld FG, Pierani A, Goulding M, Clotman F. Identification of multiple subsets of ventral interneurons and differential distribution along the rostrocaudal axis of the developing spinal cord. PLoS One 2013; 8:e70325. [PMID: 23967072 PMCID: PMC3744532 DOI: 10.1371/journal.pone.0070325] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/17/2013] [Indexed: 01/06/2023] Open
Abstract
The spinal cord contains neuronal circuits termed Central Pattern Generators (CPGs) that coordinate rhythmic motor activities. CPG circuits consist of motor neurons and multiple interneuron cell types, many of which are derived from four distinct cardinal classes of ventral interneurons, called V0, V1, V2 and V3. While significant progress has been made on elucidating the molecular and genetic mechanisms that control ventral interneuron differentiation, little is known about their distribution along the antero-posterior axis of the spinal cord and their diversification. Here, we report that V0, V1 and V2 interneurons exhibit distinct organizational patterns at brachial, thoracic and lumbar levels of the developing spinal cord. In addition, we demonstrate that each cardinal class of ventral interneurons can be subdivided into several subsets according to the combinatorial expression of different sets of transcription factors, and that these subsets are differentially distributed along the rostrocaudal axis of the spinal cord. This comprehensive molecular profiling of ventral interneurons provides an important resource for investigating neuronal diversification in the developing spinal cord and for understanding the contribution of specific interneuron subsets on CPG circuits and motor control.
Collapse
Affiliation(s)
- Cédric Francius
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Audrey Harris
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Vincent Rucchin
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Timothy J. Hendricks
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Floor J. Stam
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Melissa Barber
- CNRS UMR 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Dorota Kurek
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank G. Grosveld
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alessandra Pierani
- CNRS UMR 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Frédéric Clotman
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
- * E-mail:
| |
Collapse
|
29
|
Fleming MS, Luo W. The anatomy, function, and development of mammalian Aβ low-threshold mechanoreceptors. ACTA ACUST UNITED AC 2013; 8. [PMID: 24376457 DOI: 10.1007/s11515-013-1271-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Touch sensation is critical for our social and environmental interactions. In mammals, most discriminative light touch sensation is mediated by the Aβ low-threshold mechanoreceptors. Cell bodies of Aβ low-threshold mechanoreceptors are located in the dorsal root ganglia and trigeminal ganglia, which extend a central projection innervating the spinal cord and brain stem and a peripheral projection innervating the specialized mechanosensory end organs. These specialized mechanosensory end organs include Meissner's corpuscles, Pacinian corpuscles, lanceolate endings, Merkel cells, and Ruffini corpuscles. The morphologies and physiological properties of these mechanosensory end organs and their innervating neurons have been investigated for over a century. In addition, recent advances in mouse genetics have enabled the identification of molecular mechanisms underlying the development of Aβ low-threshold mechanoreceptors, which highlight the crucial roles of neurotrophic factor signaling and transcription factor activity in this process. Here, we will review the anatomy, physiological properties, and development of mammalian low-threshold Aβ mechanoreceptors.
Collapse
Affiliation(s)
- Michael S Fleming
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Wenqin Luo
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA
| |
Collapse
|
30
|
Yan R, Huang T, Xie Z, Xia G, Qian H, Zhao X, Cheng L. Lmx1b controls peptide phenotypes in serotonergic and dopaminergic neurons. Acta Biochim Biophys Sin (Shanghai) 2013; 45:345-52. [PMID: 23532063 DOI: 10.1093/abbs/gmt023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Serotonin (5-HT) neurons synthesize a variety of peptides. How these peptides are controlled during development remains unclear. It has been reported that the co-localization of peptides and 5-HT varies by species. In contrast to the situations in the rostral 5-HT neurons of human and rat brains, several peptides do not coexist with 5-HT in the rostral 5-HT neurons of mouse brain. In this study, we found that the peptide substance P and peptide genes, including those encoding peptides thyrotropin-releasing hormone, enkephalin, and calcitonin gene-related peptide, were expressed in the caudal 5-HT neurons of mouse brain; these findings are in line with observations in rat and monkey 5-HT neurons. We also revealed that these peptides/peptide genes partially overlapped with the transcription factor Lmx1b that specifies the 5-HT cell fate. Furthermore, we found that the peptide cholecystokinin was expressed in developing dopaminergic neurons and greatly overlapped with Lmx1b that specifies the dopaminergic cell fate. By examining the phenotype of Lmx1b deletion mice, we found that Lmx1b was required for the expression of above peptides expressed in 5-HT or dopaminergic neurons. Together, our results indicate that Lmx1b, a key transcription factor for the specification of 5-HT and dopaminergic transmitter phenotypes during embryogenesis, determines some peptide phenotypes in these neurons as well.
Collapse
Affiliation(s)
- Rui Yan
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Runx1 controls terminal morphology and mechanosensitivity of VGLUT3-expressing C-mechanoreceptors. J Neurosci 2013; 33:870-82. [PMID: 23325226 DOI: 10.1523/jneurosci.3942-12.2013] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
VGLUT3-expressing unmyelinated low-threshold mechanoreceptors (C-LTMRs) are proposed to mediate pleasant touch and/or pain, but the molecular programs controlling C-LTMR development are unknown. Here, we performed genetic fate mapping, showing that VGLUT3 lineage sensory neurons are divided into two groups, based on transient or persistent VGLUT3 expression. VGLUT3-transient neurons are large- or medium-diameter myelinated mechanoreceptors that form the Merkel cell-neurite complex. VGLUT3-persistent neurons are small-diameter unmyelinated neurons that are further divided into two subtypes: (1) tyrosine hydroxylase (TH)-positive C-LTMRs that form the longitudinal lanceolate endings around hairs, and (2) TH-negative neurons that form epidermal-free nerve endings. We then found that VGLUT3-persistent neurons express the runt domain transcription factor Runx1. Analyses of mice with a conditional knock-out of Runx1 in VGLUT3 lineage neurons demonstrate that Runx1 is pivotal to the development of VGLUT3-persistent neurons, such as the expression of VGLUT3 and TH and the formation of the longitudinal lanceolate endings. Furthermore, Runx1 is required to establish mechanosensitivity in C-LTMRs, by controlling the expression of the mechanically gated ion channel Piezo2. Surprisingly, both acute and chronic mechanical pain was largely unaffected in these Runx1 mutants. These findings appear to argue against the recently proposed role of VGLUT3 in C-LTMRs in mediating mechanical hypersensitivity induced by nerve injury or inflammation. Thus, our studies provide new insight into the genetic program controlling C-LTMR development and call for a revisit for the physiological functions of C-LTMRs.
Collapse
|
32
|
Yoshikawa M, Murakami Y, Senzaki K, Masuda T, Ozaki S, Ito Y, Shiga T. Coexpression of Runx1 and Runx3 in mechanoreceptive dorsal root ganglion neurons. Dev Neurobiol 2013; 73:469-79. [PMID: 23378040 DOI: 10.1002/dneu.22073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/17/2012] [Accepted: 01/22/2013] [Indexed: 11/08/2022]
Abstract
Runt-related transcription factors (Runx) regulate the development of various cells. It has been reported that Runx1 and Runx3 are expressed in distinct subpopulations of primary sensory neurons in the dorsal root ganglion (DRG), and play important roles in the differentiation of nociceptive and proprioceptive neurons, respectively. In the present study, we examined the developmental changes of the expression of Runx1 and Runx3 in the mouse DRG during embryonic and postnatal stages. We found that the expression of Runx3 preceded that of Runx1, but dramatically decreased before birth, whereas the Runx1 expression was maintained during postnatal periods. These results suggest that roles of Runx1 and Runx3 may change dynamically in the differentiation and maturation of DRG neurons. In addition, several DRG neurons expressed both Runx1 and Runx3 throughout embryonic and postnatal stages and many Runx3-expressing DRG neurons coexpressed Runx1 at postnatal day 28. Double and triple labeling studies suggest that some of the Runx1/Runx3-double expressing neurons coexpressed TrkB, c-ret, and TrkC, which have been shown in the mechanoreceptive DRG neurons. These results suggest that Runx1/Runx3-double expressing neurons may represent mechanoreceptive properties in the DRG.
Collapse
Affiliation(s)
- Masaaki Yoshikawa
- Doctoral Program in Kansei, Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Wende H, Lechner SG, Birchmeier C. The transcription factor c-Maf in sensory neuron development. Transcription 2012; 3:285-9. [PMID: 22889842 DOI: 10.4161/trns.21809] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The proto-oncogene c-Maf has been shown to be an important transcriptional regulator in the differentiation of a number of cellular contexts, like the eye and hematopoietic system. Here we discuss the recent progress made in understanding c-Maf function in the nervous system.
Collapse
Affiliation(s)
- Hagen Wende
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | |
Collapse
|